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FINITE SPECTRUM ASSIGNMENT PROBLEM FOR BILINEAR SYSTEMS WITH
SEVERAL DELAYS

A bilinear control system defined by a linear stationary differential system with several non-commensurate
delays in the state variable is considered. A problem of finite spectrum assignment by constant control is
studied. One needs to construct constant control vectors such that the characteristic function of the closed-
loop system is equal to a polynomial with arbitrary given coefficients. Conditions on coefficients of the
system are obtained under which the criterion was found for solvability of the finite spectrum assignment
problem. Interconnection of the criterion conditions with the property of consistency for the truncated
system without delays is shown. Corollaries on stabilization of bilinear systems with delays are obtained.
The similar results are obtained for discrete-time bilinear systems with several delays. An illustrative
example is considered.

Keywords: linear systems with delays, spectrum assignment, stabilization, bilinear system.

DOI: 10.20537/vm190303

Introduction

To date, a fairly large number of studies have been devoted to the problems of spectrum control
and stabilization of delayed systems, which have already become classic. These are works on
stabilization of an object with delay [1-5], stabilization of a group of objects by a single controller
[6], assignment of a given finite spectrum [7-9], spectral reducibility [10-12], i.e., reduction of
systems to a finite (but not given) spectrum, modal controllability [13-17]. At present, for
retarded and neutral type systems, as well as for completely regular differential-algebraic systems
with several delays, spectral criteria of modal controllability have been obtained [13, 15, 16] that
coincide in form with the criterion of complete controllability (see, for example, [18]). They are
also solvability conditions for the problem of assigning a finite spectrum [7,9].

One of the features that delay systems may possess is the presence of invariant eigenvalues that
can be excluded from the spectrum only by using integral regulators [9]. Respectively, in general
case, the closed-loop system becomes a system with lumped and distributed delays. In the case
of practical realization, integrals containing distributed delay are replaced by finite sums, which,
even when using quadrature formulas of high accuracy, can lead to undesirable effects [4, 19,20].
As an alternative to the situation described, some works [13, 14, 16] (see also the introduction
in [13]) offer sufficient conditions for modal controllability in the class of differential-difference
controllers. Such works are based on the transformation of the object under study to a certain
special form, which makes it easy to obtain the required controller, and formulate solvability
conditions in terms of a controllability matrix or its analogue.

Stabilization problems for bilinear systems with delays were studied in many papers; see,
e.g., [21-25]. In this article, we study the problem of assigning an arbitrary finite spectrum to
a bilinear system with delays. In the paper [26] (see also [27]), the sufficient conditions have
been obtained for solvability of arbitrary finite spectrum assignment problem for a bilinear system
with one delay in the state variable. In the present paper, we extend the results of [26] to systems
with several noncommensurate delays. Sufficient conditions for solvability of arbitrary finite
spectrum assignment problem are obtained in the class of difference controllers. The possibility
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of extending the results to the case of discrete systems is shown. The results of Section 1
of this paper (Theorem 1 and Corollary 1) was announced, without a proof, in the conference
proceedings [28].

§ 1. Continuous-time systems with delays

Suppose K = C or K = R; K" = {x = col(xy,...,x,): x; € K} is the linear space of
column vectors over K; M,, ,(K) is the space of m x n-matrices over K; M, (K) := M, ,,(K);
I € M, (K) is the identity matrix; 7" is the transposition of a vector or a matrix; * is the Hermitian
conjugation, i.e., A* = ﬁT; X(H; X) is the characteristic polynomial of a matrix H € M, (K);
Sp H is the trace of a matrix H € M, (K); for a matrix H € M, (K), we use the denotation
H® =1

Consider a bilinear differential system with constant coefficients with several noncommensu-
rate delays in the state variable of the following form:

IE(t) = Aool‘(t) + U01A01{L‘(t) + ...+ uOroAOrox(t) +
-+ Alol’(t — hl) —+ UHAH.’L'(t — hl) + ...+ UlrlAh«lZL’(t — hl) + ...+ (1)
+ Agox(t — hy) + usg Agx(t — hs) + ... + ug Agrx(t — hg), t>0,

with initial conditions z(7) = u(7), 7 € [—h,0]; here h; > 0 are constant delays such that
0="ho <hy <...<hg, u:[—hs,0] = K" is a continuous function, x € K" is a state vector,
uj = col (u;y, ..., u;,) € K are control vectors, A;, € M, (K), j =0,s, v =0,r;.

In [29] the following linear stationary differential control system with several noncommensu-
rate delays was considered:

(t) = Ax(t) + ipjx(t —hy)+ Buw(t), t>0, @)
y(t) = C"x(1), A3)

where A, P; € M, (K), j =1,s, B € M, ,(K), C € M, x(K), h; > 0 are constant delays such
that 0 = hg < hy < ... < h,, x € K" is a state vector, w € K™ is an input vector, and y € K*
is an output vector. For the system (2), (3) in [29] the controller is constructed as linear static
output feedback with delays

w(t) =) Quylt—hy), t>0, @)

j=0
where Q; € M,, x(K) (j = 0, s) are constant. The closed-loop system (2), (3), (4) takes the form
#(t) = (A+ BQoC™)x(t) + Y (P + BQ;C*)a(t — hy). (5)

Jj=1

Sufficient conditions for assigning an arbitrary finite spectrum for the system (5) have been
obtained in [29, §2]. The system (5) can be considered as a particular case of the system (1).
In fact, every system (5), where B = [by,...,by,], C = [c1,..., ¢, bi,co € K", Q; = {ca,},
ol €K, j=0,s1i=1,m, =1,k can be rewritten in the form (1), where rp = 7, = ... =
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Aw =4, Ajp=P (1=1s), (6)
A=A =... =44 = b101, , Aoy = A = = Ay = blck,
Appr1 = A1 = ... = Ag 1 = bacy, , Agor = Ao =... = Ao =bacy, ..., (7)
AO,r—k-l—l =...= As,r—k—i—l = meT, ey AOr = Alr =...= Asr = bmc,’;,
uj = col (), o, ady, ok, ol al), j=0,s. (8)

In the present paper, we obtain sufficient conditions for assigning an arbitrary finite spectrum
for the system (1). These results extend the results [29, § 2] from the system (5) to the system (1).
Let us denote by

ro s Ty
(p(>\, €7>\) = det [)\[ — (A(]O + Z uOl/AOI/) - Z eiAhj (AjO + Z ujuAjz/):|
j=1 v=1

v=1

the characteristic function of the system (1). The characteristic equation (A, e™*) = 0 of the
system (1) has the form

n—1 )
A AT N G [ [ exp(=ARy,) = 0. 9)
=0

0<po<...<pi<s u=0

Here numbers 9, ,, depend on A;,, u;j,. The set o = {A € C: ¢(A, e~*) = 0} of the roots of (9)
is called the spectrum of the system (1). In general, the spectrum o of a system with delays (1) is
countable. If ,, ,, =0 forall i =0,n—1,0 < py < ... < p; < s (possibly with the exception
of g, dgo, - - -, do..0) In the equation (9), then the characteristic quasi-polynomial is polynomial
and the spectrum o is finite. Consider the problem of assigning an arbitrary finite spectrum o for
the system (1) by constant control.

Definition 1. The system (1) is called arbitrary finite spectrum assignable by constant con-
trol [26] if for any ; € K, i = 1, n, there exist u; € K7 (j = 0, s) such that

e(X, e™) = A"y AT

Suppose that the matrices of the system (1) have the following special form: the matrix Ay
has the lower Hessenberg form with nonzero superdiagonal entries; for some p € {1,...,n}, the
first p — 1 rows and the last n — p columns of A;,, 7 =0,s, v =0,r; ((4,v) # (0,0)), are equal
to zero, i.e.,

ai ap 0 0
921 a9o asg ... 0
AOO S R R R T S U AP EP O s A 41 7é 0, 1= 1,’/’L - ]_, (10)
Ap—11 Ap—12 oo Ap—1.n
QAp1 Apo2 e (07
0 0 ~ ,
Aj i o) A€ My pi1p(K), 7=0,s, v=0,7; (j,v) # (0,0). (11)
jv

For the system (1), (10), (11) without delays (i.e., for the case A;, = 0, j = 1,5, v = 0,7)),
it was proved in [30] (see also [31]) that the system is arbitrary finite spectrum assignable by
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constant control iff the rank of the matrix I" = {Sp (Ag; A" )i
is extended to systems with several delays.

Let x(Ago; A) = A" + a; A"t + ... + a,,. Set ap := 1. Let us construct the matrices

} is equal to n. Here this result

Fp = apAby + oAbt + . v, k=0,n— 1 (12)
Further, we will use the following lemma (see [32, Lemma 1]).

Lemma 1. Suppose a matrix Ay has the form (10) and a matrix D € M, (K) has the following
form for some p € {1,... n}:

0 0
D:(QO,ZheMﬁHmﬁ) (13)

Let x(Ago + D; N) = N+ A\ L+ ...+, Then v; = o; — Sp (DF;_y) foralli =1,... n.

From the system (1), we construct the matrices I; € M, , (K) (j = 0,s), 4; € M,;(K)
(G =1,9):

Sp (Aor) Sp(Ao2) ... Sp(Ao)
I, = Sp (A(nAoo) Sp (A02A00) ... Sp (Aom Aoo) ’ (14)
Sp (Aot Afy ') Sp (AeeAfy?) - Sp(Aw,Agy )
Sp (A1) Sp(A4j2) ... Sp(4;) Sp (4;0)
Fj _ Sp (AleOO) Sp (Aj2A00) ... Sp (AjrjAoo) ’ A]‘ _ Sp (Ajvoo) - (15)
Sp (4145 ") Sp (4,45 ) Sp (A, Ay ) Sp (4045 ")

and construct the matrices A; = [I';, A;] € M, ,,11(K), j =1,s.

Theorem 1. Suppose that the matrices of the system (1) have the special form (10), (11).
Then the system (1) is arbitrary finite spectrum assignable by constant control iff the following
conditions hold:

rank Iy = n, (16)
rank I; =rank A;, j=1,s. (17)

Proof. Suppose the matrices of the system (1) have the form (10), (11). Consider the
problem of assigning an arbitrary finite spectrum. Let a polynomial

qA) = X"+ 1A (18)

with numbers 7; € K be given. One needs to construct u; € K™, j = 0,s, such that the
characteristic quasi-polynomial ¢ (), e~*) of the system (1) satisfies the equality

(A e = q(N). (19)

Denote

0 S Tj
D= Z UOVAQV + Z G_Ahj (Ajo + Z UjVAjV). (20)
v=1 j=1 v=1
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We have
(X, e) =det (A — (Agy + D)) = x(Ao + D; \). 1)

It follows from conditions (11) that the matrix (20) has the form (13). Taking into account (21),
(19), (18), condition (10), and applying Lemma 1, we obtain that the system (1) is arbitrary finite
spectrum assignable by constant control iff there exist u; € K™, j = 0, s, such that forall i = 1,n
the following equalities hold:
70 S Tj
Yi = o — Sp (( ZUOVAOV)E‘—1> - Z My Sp ((Ajo + Z ujuAju) E—l)- (22)
v=1 7j=1 v=1

Equalities (22) hold iff forall: =1,...,n

To
Yi = a; — Sp (( ZUOVAOV)F@'A)’ (23)
v=1
rj
Sp ((Ajo + Zuijjy)F’i,l) —0 forall j—=1,. .. s (24)
v=1

Taking into account the definition (12) of the matrices F}, we have

( ZuOI/AOI/ i— 1) Zaz 1—- z(ZUOV Sp AOVA€O)>
sp (( Jo+zuw w)Fit) = Zal 1e(SP (Aj046) +ZuWSp (A Aly) ).

Therefore the equalities (23), (24) are equivalent to (1 + s) systems of n linear equations, where
every jth system has r; unknown variables of the vector u;, j = 0, s:

i—1 0
Z 042‘714(2 Ugy SP (AOVA€O)> = Q4 — Y, t=1,n, (25)
=0 v=1
i—1 T i—1
> aie( D Sp (4Al)) = = 3 a1 Sp(4504k)), i=Tm, j=Ts. (6
=0 v=1 =0
Let us construct the matrices
1 0 0 0
aq 1 0 0
G frnd Q{Q O{l ]_ O 5 (27)
Qp1 Op_o p_3 ... 1

and (14), (15). Denote wq := col (g — 7Y1,...,, —7,) € K". Then one can rewrite (1 + s)
systems (25), (26) in the vector form
GFQUQ = Wy, (28)
GF]'UJ‘ = —GA]', j = 1, S. (29)

Taking into account that det G = 1 # 0, we see that the system (28) is resolvable with respect to
ug (over K) for any pregiven ; € K, i = 1, n, iff condition (16) holds, and the systems (29) are
resolvable with respect to u;, j = 1, s, (over K) iff conditions (17) hold. Finding uo, uj, j = 1, s,
from (28), (29), we assign the polynomial (18) as the characteristic function for the system (1). [
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Remark 1. Let us show that Theorem 1 is a generalization of [29, Theorem 2]. Suppose that
the system (1) has the form (5), i.e., the equalities (6), (7), (8) are fulfilled. Suppose that the
matrices of the system (5) (i.e., of the system (2.4) of [29]) have the form (1.6), (1.7), (2.5) of [29],
that is the matrix A has the lower Hessenberg form with nonzero superdiagonal entries (i.e., the
form (10)), the first p — 1 rows of the matrix B and the last n — p rows of the matrix C' are equal
to zero, and P; (j = 1, s) have the form (11). Then the matrices (6), (7) will satisfy the form (10),
(11). Next, the condition 1 of [29, Theorem 2], which states that, for the system (5), the matrices
C*B, C*AB, ..., C*A" !B are linearly independent, is equivalent to the condition (16), where
the matrices A;, j = 0, 1o, in (14) are defined by equalities (6), (7). It follows from Lemma 2
below. Next, by (7), we have I; = Iy, j = 1,s. Hence, if rank I, = n, then rank I} = n,
i.e., the matrices I; (j = 1, s) have the full rank. Hence, rank A; = n, j = 1, s, i.e., condition
(17) holds. Thus, if the system (1) has the form (5), then the condition 1 of [29, Theorem 2] is
equivalent to (16)&(17). Therefore, Theorem 1 is a generalization of [29, Theorem 2]. U

Lemma 2. Let A € M,(K), B = [b1,...,bn] € M,n(K), C = [c1,...,c] € M, (K),
bi,co € K", 1 =1,m, { =1,k Setr:=mk. Let the following matrices be constructed:

A1 = bl(?){, A2 = blc;, ey Ak = blcz,
AkJrl = bQCT, Ak+2 = bzcg, ooy AQk = bzc’,;, ey
Arkarl = meT, AT*k+2 = me; SR Ar = bmcl>';7
Sp (A1) Sp (A2) e Sp (Ar)
I = Sp (41 4) Sp(A24) ... Sp(A.A)
Sp (A1 A1) Sp (A A1) . Sp (A, A"

Then the following conditions are equivalent:
1. The matrices C*AB, ..., C*A""' B are linearly independent.
2. rank I’ = n.

Proof (1 = 2). Suppose rank " < n. Then there exists « = col (aq,...,q,) € K",
a # 0, such that o I" = 0 € (K")7T, i.e.,

a1+ Sp(A4;) +ay-Sp(A;A) + ...+, - Sp(A; A1) =0, Vi=T1r.
Hence, foralli =1,m, /= 1,k

0=Sp (bic; (a1l + axA+ ...+ a,A" ")) =
=Sp (] + A+ ...+, A" b)) =
= (o] + A+ ...+ a, A" Db,

Therefore,
C*(Ozl[ —+ OéQA 4+ ...+ OénAn_l)B = 0 € Mk,m(K)a

1.e.,
a1(C*B) + ay(C*AB) + ...+ 0y (C*A" ' B) = 0 € My, (K).

This contradicts condition 1.
Arguments in the reverse order prove the implication (2 = 1). U

Remark 2. Theorem 1 extends results of [26, Theorem 1] from systems (1) with one delay
(s = 1) to systems (1) with several delays. Also, Theorem 1 extends the results of [30] from
bilinear systems without delays to bilinear systems (1) with several delays (see [26, Remark
2D. O
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The obvious corollary on stabilization follows from Theorem 1. Choosing the polynomial
(18) in such a way that its roots belong to left half-plane w, = {A € C: ReX < —n < 0}, one
can obtain exponential stability for the system (1) with any pregiven decay rate n > 0.

Corollary 1. Suppose that the matrices of the system (1) have the special form (10), (11).
Suppose conditions (16), (17) hold. Then the system (1) is exponentially stabilizable by constant
control with an arbitrary pregiven decay rate.

For the system (1), let us construct the “truncated system” (without delays) assuming A;, = 0,
Jj=1s5v=0r;,

() = (AOO + 20: uOVAOV)x(t). (30)

v=1

Let us denote by X (¢, s) the transition matrix of the free system #(t) = Agox(t). Hence, X (¢, s) =
(t—S)Aoo
e :

Definition 2. The system (30) is said to be consistent on [to, 1] if for any H € M, (K) there
exists a piecewise continuous control function g : [tg,t;] — K" such that the solution of the
n X n-matrix initial value problem

Z(t) = ApZ(t) + ZO (Tow (1) Aoy ) X (¢, o), Z(ty) =0,

satisfies condition Z(t;) = H.

The property of consistency was introduced in [33] for continuous-time systems (30), which
are not necessarily stationary. For systems (30) with a cyclic matrix Ay (in particular, with
Ago of the form (10)), the property of consistency is sufficient for condition (16) to be fulfilled
(see [34, Assertion 5]). Thus, the following theorem holds.

Theorem 2. Suppose that the matrices of the system (1) have the special form (10), (11).
Suppose that the truncated system (30) is consistent and conditions (17) hold. Then the system
(1) is arbitrary finite spectrum assignable by constant control.

Remark 3. Theorem 1 together with Theorem 2 extends Theorem 2 of [34] from bilinear
systems without delay (30) to bilinear systems (1) with delays (see also [26, Remark 3]). U

§ 2. Discrete-time systems with delays

Consider a bilinear discrete-time system with constant coefficients with several delays in the
state variable of the following form:

l’(t + 1) = Aooﬂf(t> + UOlA(]lSL’(t) + ...+ uOroAOrox(t> +
+ Alol'(t — hl) + UHAHZE(t — hl) + Ce + ulrlAlrlx(t — hl) + e + (31)
+ Agox(t — hs) + ugg Asix(t — hs) + ... + ug Agr.x(t — hy),

t =0,1,2,..., with initial conditions z(7) = u(7), 7 = —hs,—hs +1,...,0; here h; > 0 are
integer constant delays such that 0 = hg < hy < ... < hg, u(7) € K" (1 = —hs,...,0), z € K"
is a state vector, u; = col (uj1,...,u;;) € K are control vectors, A;, € M,(K), j = 0, s,
V= 0, Tj.
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Denote by

S

w()\) = det |:)\I — (AOO + Z uOVAOU) - Z Aihj (AjO + Z UjVAj,/)i|
v=1

v=1 7j=1

the characteristic function of the system (31). This function is rational. The characteristic equation
(X)) = 0 of the system (31) has the form

n—1 %
AT AN S [[ A =0 (32)
i=0 pn=0

0<po<...<pi<s

The spectrum of the system (31) is the set § = {\ € C : ¢»(\) = 0} of the roots of (32). In general,
the spectrum 6 of a discrete-time system with delay (31) consists of a finite amount N > n of
numbers \,, € C, m = 1, N. The spectrum 6 consists of exactly n points (with accounting
the multiplicity) iff 6,, ,, = 0 forall i = 0,n—1,0 < pp < ... < p; < s (possibly with the
exception of dg, doo, - - -, do..0) in the equation (32); in that case ¢)(\) is polynomial. Consider the

problem of assigning an arbitrary n-point spectrum 6 for the system (31) by constant control.

Definition 3. The system (31) is called arbitrary n-point spectrum assignable by constant
control [26] if for any ; € K, i = 1, n, there exist u; € K7 (j = 0, s) such that

Theorem 3. Suppose that the matrices of the system (31) have the special form (10), (11).

Then the system (31) is arbitrary n-point spectrum assignable by constant control iff conditions
(16), (17) hold.

The proof of Theorem 3 is the same as the proof of Theorem 1.

Remark 4. Theorem 3 extends results of [26, Theorem 3] from systems (31) with one delay
(s = 1) to systems (31) with several delays. U

Corollary 2. Suppose that the matrices of the system (31) have the special form (10), (11).
Suppose conditions (16), (17) hold. Then the system (31) is exponentially stabilizable by constant
control with an arbitrary pregiven decay rate.

For the system (31), consider the truncated system
T0
v=1

Let us denote by X (¢, s) the transition matrix of the free system z(t + 1) = Agox(t). Hence,
X(t,s) = Ab5, t > s.

Definition 4. The system (33) is said to be consistent on [ty,t;) C Z [35] if, for any matrix

H € M,(K), there exists a Uo(t) = col (Uoi(t), ..., TUor(t)), t = to,...,t1 — 1, such that the
solution of the n x n-matrix initial value problem

Z<t + 1) = AOOZ(t> + TZO (a01/<t)AOV)X<t7 tO)v Z<t0> = 07

satisfies condition Z(t,) = H.
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The property of consistency was introduced in [35] for discrete-time systems (33), which are
not necessarily stationary. For time-invariant systems (33) with a cyclic matrix Ag (in particular,
with Ay of the form (10)), the property of consistency is sufficient for condition (16) to be
fulfilled for discrete-time systems (see [36, Assertion 3]). Thus, the following theorem holds.

Theorem 4. Suppose that the matrices of the system (31) have the special form (10), (11).
Suppose that the truncated system (33) is consistent, and condition (17) holds. Then the system
(31) is arbitrary n-point spectrum assignable by constant control.

Remark 5. Theorem 3 together with Theorem 4 extends Theorem 6 of [36] from bilinear
systems without delays (33) to bilinear systems (31) with delays. 0

Remark 6. The condition 7y > n is obviously necessary both for condition (16) and for the
property of consistency of the truncated system (see [34, Corollary 5] for continuous-time systems
and [36, Corollary 7] for discrete-time systems). Nevertheless, there is no necessary estimation
to r; (j = 1, s) for condition (17) to be fulfilled.

§ 3. Example

Consider an example illustrating Theorem 1. Suppose K=C, n=3,s=2,10 =3, = 3,
ro =2, 0= hg < hy < hy, p= 2, and the matrices of the system (1) have the following form:

1 1 0 0 00 0 0 0 0 0O
AOO - —1 Z ]_ y AOI - Z Z 0 5 A02 = ]_ y = —Z ]_ 0 5
i 1 —i 010 1 0 00
000 0O 0 0 0o 0 0 0 0 0
AIO = 0 1 O 5 All - —1 -1 0 5 A12 == 1 —1 0 5 A13 = —1 0 O y
100 0 -1 0 -1 0 0 -1 -1 0
000 0 0 0 0 0 0
AQQ = 010 s A21 = 7 1 0 s AQQ = 1 -1 0 (34)
100 1 — 0 - —1 0
The matrices (34) of the system (1) have the special form (10), (11). We have
X(AOO; )\) = )\3 — )\2 + )\,
hence, a1 = —1, ay = 1, ag = 0. Let’s calculate the matrices (27), (14), (15):
10 0 0 1
G=|-1 1 0), Io=|1¢ -1 0], (35)
1 -1 1 -1 — —i
-1 —1 0 i 1 -1 1
n=(-1-2 2 —-1—i|, ;4= -1 ], [h= 0 -], Ag=|17]|. (36)
2—1 2 —1 1—1 —14+7 2 0

One can see that conditions (16), (17) hold. Hence, by Theorem 1, the system (1) with the
matrices (34) is arbitrary finite spectrum assignable by constant control. Let us construct that
control uy € K3, u; € K3, uy € K2 Suppose, for example, that

g(N) = (A +1)°.
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We have v; = 3, 752 = 3, 73 = 1. Hence,
wp = col (ag — 1, 9 — Y2, a3 — 73) = col (—4, —2, —1). (37)
Resolving the systems (28), (29) with coefficients (35), (36), (37), we obtain
ug = col (3 — 20,84 3i,—6 — 3i), wuy; =col(—i,2,1), wug=col(—1+1,1). (38)

The system (1) with the matrices (34) and with the control (38) takes the form

1 1 0
it)=[-1046i —4+i 1 |x(t)+
8+4i A—2 —i
0 0 0 0 00
+(1-=i o olxt—h)+| -1 0 0)xz(t—hy). (39)
—2  —1+i 0 1+i 1 0

Calculating the characteristic function for the system (39), we obtain that
o\, M) = A+ 3X\2 43N+ 1.
In particular the system (39) is exponentially stable. U
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PaccmarpuBaercs OunmHelHas ynpasiseMasi CUcTeMa, 3a/laHHasi IMHEWHOH cTalioHapHOU auddepeHn-
aJIbHOM CHCTEMOMW C HECKOJIBKMMM HECOU3MEPUMBIMU 3ala3bplBaHUsIMU B cocTosiHUU. Mccnenyercs 3anaua
Ha3HAYCHHS] TIPOM3BOJIBHOTO KOHEYHOTO CIIEKTpa ITOCPEICTBOM CTAIIMOHAPHOTO yrpasieHus. TpeOyercs
MOCTPOUTH TIOCTOSHHBIC BEKTOPHI YIPABJICHUS TaKUM 00pa3oM, 4TOObI XapaKTepuCTUYecKas (pyHKIMs 3a-
MKHYTOW CHCTEMBI paBHSJIACh MHOTOWICHY C MPOU3BOJILHBIMH HAmepea 3aJaHHBIMHA KO QHUITHCHTaAMH.
[Monyyens! ycnoBus Ha K03(D(QUIMEHTHI CUCTEMBI, TIPH KOTOPBIX HAiJIeH KPUTEPUH pa3peliuMOCTH IaH-
HOM 3aJlaul Ha3Ha4eHHUs KOHEYHOro crekTpa. [lokazaHa B3aWMOCBSI3b YCJIOBUH KPUTEpPHUS CO CBOMCTBOM
COIIACOBAHHOCTU YCEYCHHOU CHUCTeMbl 0e3 3amasipiBaHuii. [1oimydeHsl ClIeCTBUS O CTa0WIU3auu OWIIn-
HEHWHBIX CHCTEM C 3ama3IbIBaHUSAMU. AHAJOTHYHBIC PE3YJIBTAThl MMOYYCHBI I OMITMHEHHBIX CHCTEMBI C
HECKOJIbKUMHM 3ama3/IbIBAHUSMU C IMCKPETHBIM BpeMeHeM. PaccMOTpeH WILTHOCTPUPYIOIIMM TpUMeED.

duHaHcHpoBaHUe. VccrenoBaHus MepBOro aBTOPa BHITIOIHEHBI MPH (DHHAHCOBOU MOAep)KKe MUHHCTEp-
CTBa HAayKH W BbIcIIero oOpa3zoBanus PD B pamkax 0a30BOil 4acTW roc3ajaHusi B cepe HAyKH, MPOCKT
Ne1.5211.2017/8.9. HccnemoBanusi BTOPOTO aBTOpa BBIMOJIHEHBI IpH (WHAHCOBON momnepxke PODU B
pamkax Hay4Horo npoekra 18-51-41005.
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