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ON THE PROBLEM OF CONTROLLING A SECOND-ORDER NONLINEAR SYSTEM
BY MEANS OF DISCRETE CONTROL UNDER DISTURBANCE

The problem of bringing a trajectory to a neighborhood of zero under disturbance is considered in terms
of a differential pursuit game. The dynamics are described by a nonlinear autonomous system of second-
order differential equations. The set of values of the pursuer’s controls is finite, and that of the evader
(disturbance) is compact. The goal of the control, that is, the goal of the pursuer, is to bring, within a finite
time, the trajectory to any predetermined neighborhood of zero, regardless of the actions of the disturbance.
To construct the control, the pursuer knows only the phase coordinates and the value of the velocity at some
discrete moments of time and the choice of the disturbance control is unknown. Conditions are obtained
for the existence of a set of initial positions, from each point of which a capture occurs in the specified
sense. Moreover, this set contains a certain neighborhood of zero. The winning control is constructed
constructively and has an additional property specified in the theorem. In addition, an estimate of the
time required to bring the speed from one given point to the neighborhood of another given point under
disturbance conditions was obtained.
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Introduction

Differential game theory is a branch of mathematical control theory, which studies the control
of objects in conflict situations described by differential equations. The works of R. Isaacs [1]
originally considered differential games of pursuit—evasion and laid the foundations of the theory.
At present, differential games are a substantial theory and have a wide field of research [2-7].
Methods for solving different classes of game problems have been developed: Isaacs method,
based on the analysis of a certain partial derivative equation and its characteristics, Krasovsky’s
method of extreme aiming, Pontryagin’s method and others. N.N. Krasovsky and representa-
tives of his scientific school have created the theory of positional games, which is based on the
concept of the maximal statistical bridge and the rule of extreme aiming. However, the effective
construction of such bridges for the study of real conflict-controlled processes, primarily nonlinear
differential games, is very difficult or even impossible. It is more convenient to construct bridges
that are not maximal, but possess the property of stability and giving effectively realizable control
procedures for certain classes of games having additional properties. The construction of approx-
imations of stable bridges in nonlinear differential games, including numerically, is considered,
in particular, in the works [8,9].

Sufficient conditions for solvability of the pursuit problem in the nonlinear example of
L.S. Pontryagin are obtained in [10]. In [11], sufficient conditions for the solvability of the
pursuit problem in a nonlinear differential game under some additional conditions on the set of
values of the right-hand side of the system of differential equations are presented. In [12], suf-
ficient conditions for capture in a nonlinear game described by a stationary nonlinear system are
obtained, and the optimality of the capture time for some case in the plane is investigated. In [12],
the pursuer uses a counterstrategy. In [13] it is considered a nonlinear control problem with dis-
turbance using the formalization of a differential game. Sufficient conditions for the existence of
a winning strategy are obtained. In [14] a nonlinear two-person differential game with an integral


https://doi.org/10.35634/vm240308

436 On the problem of controlling a second-order nonlinear system

quality criterion is considered. Players use piecewise program controls of a specific form, and the
time interval is divided in two parts. Necessary and sufficient conditions for the existence of a
saddle point for the game under consideration are obtained. In [15] the differential pursuit game
on the plane, the dynamics of which is described by a nonlinear system of differential equations
of a specific form, is considered. The target set is the origin of coordinates. The conditions for
realizing capture by means of a positional counterstrategy and the characteristics of the game in
explicit form are obtained, and some examples are given.

In [16] the concept of positive basis was introduced, which was effectively used in the works
of [17-19] to study the controllability property of nonlinear systems described by differential
equations in a finite-dimensional Euclidean space. The conditions of controllability to zero of a
nonlinear autonomous system by means of discrete control with a finite set of control values are
obtained.

In papers [19] and [20] the problem of capture in a nonlinear differential game analogous to
the differential game of the presented paper was considered. In these papers, sufficient conditions
on the parameters of the game were obtained for the existence of a neighborhood of zero from
which catching occurs. Among these conditions, the key one was that some set of vectors forms
a positive basis. In [20], additional properties of the winning strategy are obtained.

The presented work is a continuation of studies of [19,20] with substantially more general
dynamics. We consider the problem of bringing the trajectory to a neighborhood of zero under
the influence of a disturbance in terms of a differential pursuit game. The control objective,
1.e., the goal of the pursuer, is to bring the trajectory, within finite time, to any predetermined
neighborhood of zero regardless of the disturbance action. In this paper, we obtain conditions
for the existence of a set of initial positions from each point of which capture in the above sense
occurs. In addition, an estimate of the time of velocity conversion from one given point to the
neighborhood of another given point under the disturbance action is obtained.

§ 1. Statement of the problem

In the space R, k > 2, we consider a differential game I'(z, 7() of two persons — a pursuer P
and an evader £. The dynamics of the game are described by the system of differential equations
with a discontinuous right-hand side

i:f(x,x',u,v), UGU, UGVZ x(O):l’o, l’(O):l‘O,

where z, © € RF, x is the phase vector, @ is the velocity vector, u and v are controls,
U={uy,...,un}, u; €RY,i=1,...,m. The set V C R® is a compact set. For each u € U the
function f: R¥ x R*¥ x U x V — R is continuous in the set of variables z, &, v and satisfies the
Lipschitz condition in x,  with a constant L independent of v. That is, the following inequality
holds:

Hf(xlaa}laui),u) f $2,$2,ul, H ||IE1 - .Z'QH + ||l’1 - $2||)

Ty, X9, 01,00 €RE, weV, i=1,....m.

Here and everywhere below, we consider the Euclidean norm. By a partition o of the inter-
val [0, 7] we mean a finite partition {7,}]_o, where 0 =7 <7y <o < ... <7, =T.

Definition 1.1. A piecewise constant strategy W of pursuer P on the interval [0,7] is a
pair (o0, W, ), where o is a partition of the interval [0, 7] and W, is a family of mappings d,,
r=0,1,...,n7— 1, that take the values (7., z(7,), Z(7;)) to the constant control u,(t) = u, € U,
t e [7’7",7'7»4_1).
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Admissible control of the evader is an arbitrary measurable function v: [0, 00) — V. To con-
struct control for evader E (disturbance) at the initial moment of time, the initial position z, %
and the chosen strategy I of pursuer P are known. In addition, the players know the dynamics
of the system, i.e., the function f and the sets U and V.

Definition 1.2. An e-capture occurs in a game ['(xg, &) if there exists 7' > 0 such that for any
€ > 0 there exists a piecewise constant strategy W of pursuer P on the interval [0, 7] such that
for any admissible evader control v(-) one has the inequality ||z(7)|| < & for some 7 € [0, T.

The goal of the pursuer is to perform the e-capture. The goal of the evader is to prevent this.
Note that for any u € U and any measurable function v: [0,00) — V, t > 0, 2,4 € R¥, the
inequality holds n

Hf(:z:,:'v,u,v(t))” = Hf(x,j:,u,v(t)) — f(0,0,u,v(t)) + f(0,0,u,v(t))H <
< L(|lll + (1)) + ||£ (0,0, u,v(8))|| < L(ll=]l + l£]l) + B,

for some positive B. Such a B exists by due to the continuity of the function f with respect to v,
the compactness of V' and the finiteness of U.

Consequently, for any 7" > 0 and any partition o of the interval [0,7], on each interval
of the partition, the Caratheodory conditions of existence, uniqueness and right extendability of
a solution of the Cauchy problem for a first-order system obtained from a given second-order
system by standard substitution are satisfied. Thus, the problem statement is correct.

Let us introduce the following notation: Int A is the interior of the set A; co A is a convex
hull of the set A; D.(z) is a closed ball of radius ¢ centered at point x; O.(x) is an open ball of
radius ¢ centered at point x; (a,b) is the inner product of vectors a, b.

§ 2. c-capture theorem

Theorem 2.1. Let
min  maxmin (f(0,0,u,v > 0.
PpERK |p||=1 u€U veV (£(0,0,4,0),p)
Then there exist eg > 0, 0 > 0 and T' > 0 such that an s-capture occurs in time l" for any xg, Zg
such that ||zo|| + 00| < €0. Moreover, the pursuer can use a fixed-step partitioning of the time
interval to construct a strategy.

Proof 19 In this item, the value of £, from the theorem condition, a number of parameters to
be applied to construct the pursuer’s strategy, and the value of the time interval partitioning step
will be obtained.

Since the function f, for each fixed u, is continuous with respect to the set of variables x, z, v,
there exists ¢ > 0 such that for any 7,7 € D,,(0) the following inequality holds:

min  max min { f(Z,T, u,v < 0.
pERF ||p||=1 ueU veV <f( et it/ )7p>

Therefore,

a = min min maxmin T.T. U, > 0. 2.1
7€ Dey (0) pERF,|pl|=1 u€U veV @7 0),p) @1

Then, we show that the given gy is the required one from the condition of the theorem,
To, To € 050(0), Zo 7& 0.
We take

D= | max 1f(Z,Z,u, )]
%,2€D¢(0), ucU,weV
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Let us define a number A of the form

where p € (0,1) is arbitrary fixed number. Let 7,7 € D, (0), p € R*, |Ip| = 1, z € Du(T),
& € Dy(T), v € V and

11?685(%1‘1}“ T, T, U, ),p) = <ff§ T,0),p).

Note that, by (2.1), for any v € V/,

It follows that, for any 7,7 € D.,(0), p € R¥, ||p|| = 1, 2 € Dy(Z), © € Dy(Z), v € V, the
following inequality holds

(f(x,:t,ﬂ,v),p) > a(1 - M) = Q.

Note that o < D.
Let us fix a number 0 < § < gy. Choose a partitioning step

A — mi ad h h
TN DN D 5 (7

where N > 1 is an arbitrary number. Thus 73 = A, ..., 7,, = nA. Note that if z(¢), 2(t) € D,,(0)
for all ¢ E [TZ,TZ_H] i € {0,...,n — 1}, then Hx — 2(r)|| < eo(t —7) < oA < h and
|2(t) — &(m)|| < Dt —7) < DA < hy t € [T, Tiga)-

2°. In the given item, we estimate the distance between #(¢) and some target point £ € O,,(0)
forall t € [1;, 741, 7 € {0,...,n— 1}, when the evader’s control v(-) is arbitrary admissible, the
pursuer’s control u(-) is constant at each partitioning interval. The values of the pursuer’s control
at each partitioning interval are defined below.

Assume that z(t) € O, (0), t € [, Tir1). Next, in 4° the conditions guaranteeing the
fulfillment of this inclusion will be obtained.

Let Dyja(r)—¢)(§) C Deo(0) be true for the target point &. Then, if ||d(t) — &[] < ||#(r) — ¢
te (TZ',TZ'Jrl), then l’(t) € OEO(O), te [TZ‘, Ti+1).

We will choose the value of the pursuer ’s control as follows. If £ — &(7;) = 0, then wg € U is
arbitrary. Then, the inequality H§ —a(t H (t— TZ VD < AD < ad/D < §forallt € [1;,7544] is
true. If & — i(7;) # 0, then denote p; = (5 —i(7;))/||€ — @(7)| and W; € U is chosen from the
following maximum:

max min <f( i), x'(Ti),U,U),pz'> = <f(1’<7'z)a Ti), Wi, 0 ) p2>'

uelU veV

9

Thus, due to 1°, for any ¢ € [7;,75,1), v € V, the following inequality holds:

<f( ) Uj, U )api>>04
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Let t € [1;,7;+1). Let’s estimate the square of the norm § — &(t).
t
€ = a(t) Hf—x i) / f(x(s), 2(s),w,v dSH Hf—iif(Tz')H2+

/. f(x(s),(s), U, v ds / <f ), s, 0(s)), € — i(m)) ds <

+

Let’s estimate the last polynomial A = H§ — z(1) H +D*(t—7)? = 2(t—7) aH§ — z(1y) H

If H§ — l‘(Tl)H< 9, then polynom1al A reaches its maximum at H§ — &(m) H— 0 or at
H§ — z(7 H— Then, if H§ — (7 H— 0, then
ad o 282 - a?é? )
<D2N:>A_D(t—n) < DA D2N2<5'

If || — @(7:)||= 6, then
A=88+D*(t—1)* =20t —1)ad < 0* + D*(t — 1) A —2(t — 73)ad <
D%*(t — 7;)ad
D2N
If ||¢ — @(7:)||> 0 and t € (74, 7i41), then

<o+ —2(t —m)ad < 0% — (t — 1)ad < 6%

9 D( ;)
DZN

< H{—x (13) H +(t —1i)ad —2(t — 7) aHf’—x (13) H<

<[l =@~ (t = malle - dm)]|< [l€ = &)

AL Hf z(r H —2(t—1) osz—:'L’ T H<

If Hf — $<TZ)H> 0 and t = 7,41, then

. 2 DQAOéé .
A< g —a(m) |+ — 28als — i(n)||=
Ao Aol — (7 Aad
= l¢ - sl -l - s (280 - 57) - e 2], Aol

< Jle= st~ (280 - 57 ) e~ i< (Hg—a:«mu—m(l—%))z.

Thus, if ||€ — &(7)||> 6, then || — @(t)|| < ||¢ — @(7)]| for all ¢ € (73, 7341] and

1
e = it < i€ = )l -da (1 5 ).

If H§ — l‘(TZ)H< 9, then H§ — x(t)H < d forallt € (7, Tiy1].

3°. In this item, we estimate the time required for i(-) to reach Os(€).

Without loss of generality, we consider the velocity function from time 7o = 0. If &9 € O5(),
then the time to reach O;() equals zero. Let us consider the case @ ¢ Os(&). At each interval
[7:, Ti41), we will choose the pursuer’s control according to 2°. Due to the estimates of 2°, if
|€ = @(7:)||> 6, then

& =il < Hﬁ—wH—Aa(“%)



440 On the problem of controlling a second-order nonlinear system

Therefore,

€ — () H < ¢ for some ¢ that satisfies the following inequality:

1€ = ol = 0
Aa(l-1/(2N))

q< +1=4q.

In fact, if Hf —i(7y) H > 0, then, by the estimates of item 2°,
Then

{—i(r)||> dforalli =0,...,4—1.

e = a(ry)|| < llg — ol —qm(l _ %) <0,

It’s a contradiction.
Let us estimate 7,:

(Il§ = @0l =)A€~ ol =0
<Aa@—1ﬂmw) A_a@—dﬂ%W) As
< 1§ — @0l — 0 . o - 1§ — dol| — 0 . o
Sa(l-1/(2N))  D2N " a(1—1/(2N))  aN
_ ll€ =0l —6(1 - 1/N +1/(2N?))

a(l1—=1/(2N))

49, Here we construct the pursuer’s strategy.

First, we choose £ = 0 as the target point. Take ¢ such that § < ¢/3 and &¢/(39) = [ for some
| € N. We denote by #, the moment of partition of the time interval for which @(f,) € Os(0).
According to the item 3°, , < T(y’co, 0,9). Wherein

Tg =

=T(i,£,0).

ol

a(l1—1/(2N))

T(i0,0,8) < (2.2)

Due to the estimates of 2°, i(t) € O.,(0) for all ¢ € [0,1y] if 2(t) € O.,(0) for all ¢ € [0, £].
Hence, if
[zo]| + tollZo || < €o,

then z(t) € O.,(0) for all ¢ € [0, £].

Further, if z(f,) = 0, then the game is complete. Otherwise, we denote ¢ = —x(fo)/||z({o)]|
and choose d( as the target point. By the choice of 9, this target point satisfies the constraints of
item 2°. Let us denote by 7, the moment of time interval partitioning for which #(¢,) € O;(5¢).
According to 3°, i1 — o < T'(4(fo), ¢, 0). And in this case

26— (1~ 1/N + 1/@N%) 6+ 6(1/N — 1/(2N?))

TE). 060 < =—— =168y~ a(-1/eN)

= A. (2.3)

Next, we choose 25( as the target point and denote by #, the moment of time interval parti-
tioning for which i(t;) € Os(20¢). According to 3°, t, — £; < T(j:(fl), 26¢, ). In this case,
T (i(t1),26¢, ) is estimated similarly to (2.3).

And so on, until the trajectory i(-) reaches the set O5(15¢) by the moment #;. After that and
until the end of the game, we choose [6( = (g(/3 as the target point. According to the estimates
of item 29, the trajectory () will continue to stay in Os(16C).

Let us introduce the following notation: ¢(t) = @(t) —i5¢, when t € [t;_1, %), 4 = 1,...,1;
©(t) = @(t) — Ceo/3, when t > #; p(t) = i6C, when t € [t;_1,t;), 1 =1,...,1; ¥(t) = Ceo/3,

A~

when t > ;.
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Thus, the form of @(t) = 1 (t)+p(t), t > to, is valid. Note that ng(t)” < 26, when t € [tg, 1)),

and ||o(t)|| <6, when ¢ > {,.
Estimate the norm of z(t), when t € [tg,,):

Hx(t)u:Hx(io)+(t—£o)5g+/ pls)ds|| < [[atio)] = (¢ = 0)d[+(t = )20, 24)

to

If for some t € [{o, {1) the equality ||2(fo)|| — (t — o)d = 0 is true, then we denote this moment
by T and assume that the game is over. Otherwise, we have the following estimate:

(8| < |Ja(Eo)|| + (Fr — f0)d < ||Jx(Eo)|| + Ad.

Estimate the norm of () when t € [f;,%,). Similarly to (2.4), we obtain the following
estimation:

(1) < }Hx(fo)u —(y—0)d — (1 — mza\ +(t — 19)20.

If for some t € [y, ) the equality ||z(fo)|| — (1 — £0)d — (t — £1)26 = 0 holds, then we denote
this moment by T and assume the game to be over. Otherwise, we have the following estimate

2(E)|| < ||| + (B — f0)d — (B — )20 + (F — £1)20 < ||(do)|| + Ao,
Next, we similarly estimate the norm of z(fs):
2(E)|| < [J(to)|| + A8 — (5 — i2)a.
And so on, until the moment #;. Note that the following inequality is true
|z@)]| < ||l=(E)|| + A8, ¢ > to. (2.5)
If T is not determined to the moment #;, we determine it from the following equality:
|z(fo)|| = (F1 — t0)d — ... — (B — E_1)16 — (T — ;)16 = 0.

Since ||z(fo)|| < €0 and I = £9/(34), then T—1 <3.
Thus, we have the following estimate of the norm of x(7'):

[ etora

The last expression tends to 0 when 6 — 0.
Since o < T(z9,0,9), then, by (2.2), we can determine § from the condition of the theorem

as follows:
0 1 0
= m .
1 el =1/

Then, if ||zo[| +0||Zo|| < €0, then xg, &g € O,(0) and x(t), 2(t) € O, (0) for all ¢ € [0, to]. Then,
by (2.5), choosing § with an additional constraint of the form ||zol| + 0||Zo[| + Ad < &9, ensure
that the inequality Hx(t)” < g0, t € [to, T holds.

~

(T < (b —10)20 + (T — 1,)0 < 1A25 + 30.

<
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Let us estimate 7 using (2.2) and (2.3):

~

T =to+ (b —to) + (T — 1) < T(io,0,8) +IA+3 <
|| 20| 16 +16(1/N — 1/(2N?))
a(1—1/(2N)) a(1—-1/(2N)) I (2.6)
€0

0 =+ 2—0(1/]\[ —1/(2N?))

a(l1—1/(2N)) * a(l—1/(2N))

The obtained 7" does not depend on 4, so it is required.
The theorem is proved. ]

+3=T.

Remark 2.1. Since, obtained in the proof of Theorem 2.1, the pursuer’s winning strategy guar-
antees the fulfillment of the inclusion z(t),Z(t) € O, (0), t € [0,T], it is sufficient that the
function f satisfies on z, & the local Lipschitz condition with a constant independent of v.

Corollary 2.1. Let the conditions of Theorem 2.1 are satisfied, xq, io,& € O, (0) and

1€ — ol _ €0 — [l
Oé(Eo) o ’
where
a(r) = min min  maxmin (f(z, &, u,v),p).

2,4€ Dr(0) peR, p|||=1 u€U veV

Then for any 6 > 0 there exists a piecewise constant strategy W of the pursuer P on the
interval [0, Tg] such that for any admissible control of the evader v(-) the following inequality
holds ||& — i(7)|| < & for some T € [0, T¢], where Ty = ||€ — dol|/a(e).

Proof Initem 4° of the proof of Theorem 2.1, we performed the procedure of bringing the
(50)50
A 3]
does not leave the set {y € R* | y = A\§, A € [0,1]} + Oq5(0). An estimate of the time of this
translation is obtained in (2.6) (second summand). Similarly, we will bring the trajectory (-)
from & to Os(§).
Thus, if z(t) € O.,(0) for all t € [0, T¢(u, N)], where

I = oll = 11§ = all(1/N = 1/@N2) _[j§ = aall(1 + 1/N = 1/2N%))
a(l—=1/(2N)) a(l—p)(1=1/2N))

then for any § > 0 the trajectory #(-) can be brought from iy to Os(¢) in time T¢(p, N). Note

that this happens for any 1 € (0,1), N > 1. Furthermore, to fulfill the inclusion & (t) € O,,(0)

for all ¢ € [0, T¢(p, N)], it suffices to fulfill the inequality 26 < min{eq — [|€[|, 0 — [|@0]|}.
Note that
1€ — ol

inf{T¢(u, N) | p € (0,1), N> 1} = — =T

trajectory & (-) from Os(0) to Os(€), where & = In this case, the trajectory ()

Tﬁ(uaN) =

and for any T > T there exist p € (0,1), N > 0 such that T¢(u, N) < T. Therefore, for
any T > T; u § > 0, the trajectory i(-) can be brought from iy B Os(¢) in time 7. Since the
trajectories x(-), ©(-) do not leave the set O, (0), then the function f is bounded by the value D
from clause 1° of the proof of Theorem 2.1. Let T' < T + §/(2D). The trajectory @(-) can be
brought to O;/2(£) in time 7, that is, at some moment 7 € [0, T, the inequality H§ —&(T) H <d/2
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is true. Therefore, || (7 — d/(2D)) — 5” < ¢, that is, the trajectory @(-) is brought to Oy(¢) in
time 7.

Since @ = a(ey), the conditions of Corollary 2.1 guarantee that the trajectory &(-) is brought
to Os(§) in time 7T for any pregiven 6 > 0.

The corollary is proved. O

Example 2.1. Consider the dynamics in R? of the following form:

i = Az, &, v)u,
{60-C) () v

s
where 0 < 3 < T Here A(-,-,-) is a square matrix defined over the entire space R? x R? x V/,
the elements of the matrix are Lipschitz functions over the set of arguments z, &, v. Moreover,
A(0,0,v) is a rotation matrix over the angle v.

Let us find the minimum from the condition of the Theorem 2.1. It has the following form

min ~ max min (A(0,0, v)u, p) = 7.
PERF,|Ipll|=1 uelU veV

It is not difficult to check geometrically that v = cos(m/4 + ). Note that
n m V2
peRk,m:l 11%1‘1/1 ugf( (0,v)u, p) 5 £~

However, in the previous work with dynamics of the form & = f(z, &, u)+g(z, &, v) the following
equality is true for all z, &, p € R*:

maxmin (f(z, #,u) + g(z, &,v), p) = minmax (f(z, &, u) + g(z, 2, v), p).

§ 3. Comparison with results for less general dynamics
In [19] and [20], we considered a problem similar to the problem of the present paper with
less general dynamics of the form

i = f(z,d,u) + g(r,i,0), wel, veV, (0)=x, (0)= o

Here, the sets U, V are defined similarly. The function f: R* x R* x U — R* for every u € U is
Lipschitz continuous with respect to the variables = and &. The function g: R¥ x R*¥ x V — R*
is Lipschitz continuous with respect to the set of variables. That is, there exist positive num-

bers Ly, Ly such that
| f (1, @0, wi) = f (22, @, u)|| < Ly(loy — @]l + (|31 — dal]),
.Tl,l’z,jfl,ijGRk, izl,...,m,

g (21, &1, 01) = gwa, da,00) || < La(llzg — ol + [J41 — ol 4 [ — val]),

.. k
x17x27x17x2€R ) U17U2€V

In [20] the theorem on e-capture is proved, for the formulation of which it is necessary to
introduce an additional definition.

Definition 3.1 (see [16]). The set of vectors ay,...,a, € R¥ is called positive basis if for any

n
point ¢ € R there exist real numbers p;, . . ., 1, > 0 such that £ = >~ ya,.
i=1
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Theorem 3.1 (see [20]). Let f(0,uq), ..., f(0,u,,) set up a positive basis and

—g(0,0,V) C Int (co { f(0,0,u1),..., f(0,0,umn)}).

Then there exist £ > 0, 0 > 0 and T' > 0 such that an e-capture occurs in time T for any xg, g
such that ||zo|| + 0||2o|| < 0. Moreover, the pursuer only needs to use a fixed-step partitioning
of the time interval to construct a strategy.

We use the following property of a positive basis: vectors ay,...,a, € R* form a positive
basis if and only if for any vector p € R¥, ||p|| = 1 there exists an index j € {1,...,n} such that
(aj,p) > 0.

Due to the conditions of Theorem 3.1 and the properties of the positive basis (see [16]),
for each v € V the vectors f(0,0,u1) + ¢(0,0,v),..., f(0,0,uy) + ¢g(0,0,v) form a positive
basis. Hence, for any v € V, p € R, ||p|| = 1, there exists an index j € {1,...,n} such that
(f(0,0,uj) 4+ ¢(0,0,v),p) > 0. Thus, due to the Lipschitz properties of the functions f and g,
the following inequality is true

peRIBm:l max min (f(0,0,u)+ ¢(0,0,v),p) > 0.
That is, the condition of Theorem 2.1 is satisfied.

On the other hand, if the last inequality is true, i.e., if the condition of Theorem 2.1
holds, then for any v € V, p € RF, |[p|| = 1, there exists an index j € {1,...,n} such
that (f(0,0,u;) + ¢(0,0,v),p) > 0. Hence, by virtue of the properties of the positive basis
(see [16]), there exists a vector & € R¥ such that the functions f(z, %, u) = f(z, &, u) — & and
g(x,2,v) = g(z,&,v) + £ satisfies the conditions of Theorem 3.1. Thus, Theorem 2.1 and
Theorem 3.1 are equivalent for dynamics that are admissible for both theorems.

Conclusion

The problem of bringing the trajectory to the neighborhood of zero under the influence of a
disturbance is considered in terms of a differential pursuit game in which the dynamics is de-
scribed by a nonlinear autonomous system of differential equations of the second order. The con-
trol takes place on a finite interval, during which the pursuer needs to ensure that the system can
be brought to any predetermined neighborhood of zero, regardless of the disturbance. To con-
struct the control the pursuer knows only phase coordinates and velocity value at some discrete
moments of time and the choice of the disturbance control is unknown. Conditions for the exis-
tence of a set of initial positions from each point of which a capture in the specified sense occurs
are obtained. Moreover, this set contains some neighborhood of zero. The winning control is built
constructively and can be constructed with a fixed time interval partitioning step. In addition, an
estimate of the time to bring the velocity from one given point to the neighborhood of another
given point under disturbance conditions is obtained. In this case, the time estimation does not
depend on the radius of the selected neighborhood. Additionally, a comparison with previous
results with less general dynamics is performed, which shows the identity of the results for the
same dynamics.
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K. A. Hlenuxos

(0] 3agavue ynpaBJ/ICHUSA HEeJUHENHOH chucTeMoil BTOPOro mopsiAka moCcpeacTrBoM AMCKPETHOrO yrnpas-
JICHUA B YCJI0BUAX BO3}]€ﬁCTBHﬂ IoOMEXH

Kniouegvie crosa: mudpdepennaibHas urpa, HeIMHEHHbIE IWHAMUYECKHUE CHCTEMBI, YIpaBleHHe, TTOMeXa.
YIK 517.977
DOI: 10.35634/vm240308

PaccmarpuBaercs 3amada npuBEeICHUS TPACKTOPUU B OKPECTHOCTh HYJSl B YCJIOBUSX BO3JACHCTBUS IIOMEXU
B TepMUHax AudepeHnnansHON UTPpBl IpecieqoBanus. JJuHaMUKa ONMCHIBACTCS HETMHEHHOW aBTOHOMHOM
cucteMoil g epeHINaTbHBIX YPaBHEHUI BTOPOTO MOpAaKka. MHOXXECTBO 3HAYEHUH YIIpaBIeHUN Mpeciie-
JoBaTelsl SIBISIECTCS KOHEUHBIM, yOeraromero (momMexu) — KoMmakT. Llenbio ympaBieHus, TO eCTh LeJbio
TpecienoBaTens, SBISETCS MPHUBEICHNE, B PaMKaX KOHEYHOTO BPEMEHH, TPAeKTOPHH B JIIOOYIO Harepen
3aJIaHHYI0 OKPECTHOCTb HYJISl BHE 3aBUCUMOCTHU OT JEHUCTBUIN MOMeXHU. JIIs MOCTPOEHUs yIPaBICHUS IIpe-
CIIEIOBATENI0 M3BECTHBHI TOJBKO (pa30BbIe KOOPAMHATHI M 3HAYEHHWE CKOPOCTH B HEKOTOpHIC IMCKPETHHIE
MOMEHTHI BpeMEHH W HEM3BECTEH BBIOOp ympaBieHus momexu. [lodydeHbl ycnoBus CyIIecTBOBaHUS MHO-
JKECTBA HAYaJIbHBIX IOJOXKCHUM, U3 KaXJA0H TOYKHU KOTOPOTO IIPOMCXOAUT IOMMKA B YKa3aHHOM CMBICIE.
[IpuyeM 3TO MHOXECTBO CONEP)KUT HEKOTOPYIO OKPECTHOCTh HYJsl. BBIMIPBINIHOE yIIpaBJIEHUE CTPOUTCS
KOHCTPYKTMBHO U MMEET JONOJIHHUTENbHOE CBONCTBO, yKa3aHHOE B TeopeMe. Kpome Toro, moiydeHa OIeH-
Ka BPEMEHU IPUBEICHUS CKOPOCTH U3 OJHOW 33aJJaHHOW TOYKHM B OKPECTHOCTh APYrod 3alaHHOM TOUKH
B YCIIOBUSIX BO3JEHCTBUS IIOMEXU.

duHaHcupoBaHue. VccnenoBanue BEITIOIHEHO 3a cdeT rpaHTa Poccuiickoro HaygHoro ¢onma Ne 23-71-
01032.
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