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Let sets of functions Z and 2 on the time interval T be given, let there also be a multifunction (m/f) «
acting from () to Z and a finite set A of moments from T. The work deals with the following questions:
the first one is the connection between the possibility of stepwise construction (specified by A) of a
selector z of a(w) for an unknown step-by-step implemented argument w € ) and the existence of a
multiselector (m/s) 5 of the m/f  with a non-anticipatory property of special kind (we call it partially
or A-non-anticipated); the second question is when and how non-anticipated m/s could be expressed by
means of partially non-anticipated one; and the last question is how to build the above A-non-anticipated
m/s 3 for a given pair (o, A).

The consideration of these questions is motivated by the presence of such step-by-step procedures in
the differential game theory, for example, in the alternating integral method, in pursuit-evasion problems
posed with use of counter-strategies, and in the method of guide control.

It is shown that the step-by-step construction of the value z € a(w) can be carried out for any steps-
implemented argument w if and only if the above m/s /5 is non-empty-valued. The key point of the work
is the description of finite-step procedure for calculation of this A-non-anticipated m/s 5. Conditions are
given that guarantee the m/s 3 be a non-anticipative one. Illustrative examples are considered that include,
in particular, control problems with disturbance.
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Introduction

Let there be non-empty sets of functions Z and {2 defined on the interval T. Let there also
be a m/f S defined on () with values in Z and a set N C Z. We will interpret these objects as
an abstract control problem under conditions of uncertainty (namely, an abstract game problem
of retention): the uncontrolled factor w from the set €2, acting on the dynamics S of the system,
determines the bundle of possible trajectories S(w) C Z; the task of the control side is to select
the motion z € S(w) satisfying the phase constraints N: z € N.

Without additional informational requirements, the solution of the problem is built explicitly:
we put a(w) 2 NN S(w), w € Q; then the criterion for the solvability of the problem is the
non-emptiness of the m/f « values, and the solution is any of its selectors. So, if we knew the
current disturbance w € (), the retention problem would be solved by calling any trajectory z
of a(w).

At the same time, in most control problems, information about the acting disturbance is not
available at all. In the rest cases, the best that the control side can count on by the time 7 € T
is the knowledge of the disturbance on the interval [ty, 7 + ] with a small 6 > 0 (¢, is the initial
moment of the process). Such a prediction of disturbance behavior is admissible in certain control
problems, as well as in auxiliary control structures, due to properties of the system dynamics (the
mapping S) and restrictions describing the set of admissible disturbances ().

Thus, we suppose that the control side has the m/f « of global responses and the possibility
of a small time-ahead disturbance prediction. Under these conditions, the following step-by-step
scheme of the desired trajectory constructing naturally arises.
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Let T £ [to,9] and A, A C T, be a finite set of instants that splits T into a finite set of
half-intervals (control steps) of length shorter then the above value §: A 2 {t, =19 <7 < ...
. < Tay = U}, We call A the partition of T and the pair (a, A) will be called step-by-step
conditions. The procedure of step-by-step construction of the trajectory that meets the conditions
(e, A) and the unknown disturbance w € € works as follows:

— at the instant 7, by the found disturbance w; € 2 such that (w;|[70, 1)) = (©|[70,71)), the
control side chooses the trajectory h; € Z corresponding to the disturbance wy, i.e., such that
hy € a(wy); here, (f|C) is the restriction of a function f to the set C;

— at any instant 7; € A, i € 1..(na — 1), the control side finds a disturbance w;.; € €
reconstructing the unknown & up to the moment 7, 1:

(wit1][70, Tix1)) = (@|[70, Tit1));

and, so, w;; coincides with w; up to the moment 7;

(wit1l[m0, 7)) = (will[T0, 7))

At the previous steps of partition A, we have already supplied the desired trajectory h; for the
disturbance w;, i.e., h; € a(w;); taking this into account, the control side looks for the trajectory
hit1 € a(w;y1) corresponding to the disturbance w; 1, that also coincides with the choice at the
previous steps:

(his1l[r0, 7)) = (hil[T0, 72)).

The procedure is repeated for all moments of the partition A except the last one, 7,,. As a
result, we get the desired trajectory h,,, that corresponds to the unknown in advance disturbance
Wh, U

L =W

by € a(wn,) = a(w).
The possibility of realization the above step-by-step procedure in response to any admissible
disturbance w € 2 will be referred to as the feasibility of the conditions (a, A).

The work deals with two questions. The first one is the connection between the feasibility
of conditions («, A) and the existence of some special multi-selector of the m/f a. The second
question is the construction of this m/s for given conditions (o, A).

The motivation for the consideration was the above step-by-step scheme and similar ones,
which starting from the convergence problem [1, Sect. III] in theory of differential games arise,
for example, in the method of alternating integral [2], in pursuit-evasion problems using counter-
strategies [3-5], or in controlling with a guide under functional constraints on a disturbance
(see [6,7] and references). Besides game-theoretical problems, the above informational conditions
for control side can be found in the field of robotics: suppose a robot-manipulator extracts
from the container and submits for the further processing some parts poured into it. In this
case the disturbance/uncertainty is the arrangement of the parts in the container. It changes
(unpredictably as a rule) after the extraction of a part and remains practically constant/unchanged
during inactivity time. So, the disturbance can be effectively predicted.

It is clear that the non-anticipatory and non-emptiness of values of « or of its m/s implies
feasibility of (o, A) for any A. Thus, the conditions for the existence of non-anticipative m/s (see,
for example, [8-10]) are sufficient conditions for the feasibility property. Note that the existence
of a non-anticipative selector [11-13] is also closely related to the existence of a non-anticipati-
ve m/s.

In this paper, we show that the feasibility of the conditions («, A) is equivalent to the existence
of a partially non-anticipative and non-empty-valued m/s of the m/f a: the above step-by-step
process can be implemented by means of this partially non-anticipative m/s for any disturbance.
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Here, the property of partial non-anticipatory is understood as the classical non-anticipatory prop-
erty that is satisfied at moments from A only. This property is certainly weaker than the classical
one when it should be satisfied for all moments from T. Moreover, even the feasibility of the
conditions («, A) for any A does not in general ensure the existence of a non-anticipative non-
empty-valued m/s of a.

So, to implement the above step-by-step procedure under conditions («, A), we need this
partially non-anticipative and non-empty-valued m/s of .. Here arises the second question: how
to build such a partially non-anticipative m/s.

With the aim, for any instant 7 € T we introduce a “projection” operator acting on set
of all m/f with values in the set of all 7-non-anticipative m/f. Then, by means of a superpo-
sition of such “projections” (corresponding to all 7 € A), we get the required partially non-
anticipative m/s. The procedure is completed in n steps.

It seems the idea of constructing a non-anticipative m/s of a m/f by an iterative method in
order to obtain a direct solution of the dynamic optimization problem under conditions of an
uncertainty appeared in [14] (see also [8,9]). The obstacle for applications of such an iterative
procedure is that in the general case it requires infinite number of iterations. For some classes of
control problems (see, for example, [15, Ch. 5]), conditions are given that ensure the finiteness
of iterations required to construct the function of the optimal guaranteed result, a resolving set of
initial positions, or a resolving non-anticipative strategy.

The work is close to the problems considered in [7]; the constructions used are similar to those
from [10] and the results supplements the results announced in [16]. In simple cases, the connec-
tion of partially non-anticipative m/s with ordinary non-anticipative m/s was noted in the course
of the presentation, but is not covered in detail. The outline of the article is as follows: Sect. 1
contains basic notation and terms; in Sect. 2, a more detailed and meaningful description of the
step-by-step procedure for constructing an optimal trajectory, its formalization, and the definition
of the feasibility of the (a, A) conditions are given (see (2.3), (2.4)); in Sect. 3, the notion of a
partially non-anticipative m/f (m/s) is defined and the feasibility criterion (3.10) is formulated;
in Sect. 4, the above-mentioned “projection” operator on the set of all 7-non-anticipative m/f is
defined (see (4.1)); then, the definition of such “projection” operator on the set of m/f that are
non-anticipative for several such “moments” (see (4.18)) is given and the finite step procedure
for its constructing is provided (see Theorem 4.1); in Sect. 5, illustrative examples are given:
in Example 5.2, it is shown that the “projection” operators are not commutative; Example 5.3
provides the case when the feasibility of conditions («, A) for arbitrary A not allow, nevertheless,
a resolving non-anticipative strategy (a non-anticipative non-empty-valued m/s of «); in Exam-
ple 5.4, an ordinal resolving non-anticipative strategy is constructed on the base of parameterized
family of partially non-anticipative m/s; in Sect. 6, open formal questions and prospects for using
of provided approach are briefly discussed.

§ 1. Definitions and notation

In the following, set-theoretic symbolism is used (quantifiers, propositional connectives, etc.);
hereinafter @ is empty set, 2 is an equality by definition, & is the equivalency by definition; a
family is a set all of whose elements are sets.

Let P(X) and P'(X) denote respectively the families of all (Boolean of X') and of all non-
empty subsets of an arbitrary set X. If A and B are non-empty sets, then we denote by B* the
set of all mappings from A to B. If g € P(B)4, then by (DOM) [g] we denote the region where
the m/f g takes nonempty values: (DOM) [g] = {a € A | g(a) # @}. If f € B4 and C € P'(A),
then (f|C), where (f|C) € B, is the restriction of f to the set C: (f|C)(z) = f(z) Vz € C; in
the case when F' € P'(B4), we set (F/|C) £ {(f|C): f € F}.
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We call a pair (X, <) a partially ordered set (poset) if X is a non-empty set and < €
€ P(X x X) is a non-strict partial order relation on X. In particular, (P(X), C) is a poset on
Boolean of X with the inclusion relation C. For any poset (X, <) and arbitrary subset S € P(X)
we call S a chain if any elements of S are comparable: (z < y) V (y < z), Vz,y € S. If (X, <)
is a poset and M C X, denote by T, Ty € M, the greatest element of M, if it exists: z < Ty
forall x € M.

We fix non-empty sets X, Y and T, as well as non-empty sets Q € P'(Y?), Z € P'(X") and
the family 7 € P (P'(T)); in other words, 7 is a non-empty family of non-empty subsets of T.
In order to reveal the connection with dynamic optimization problems, we will assume that T is
a “time interval”: T £ [t, 9], to,¥ € R ; and T is a chain of the form 7 £ {[t,,7]: 7 € T}.
Then () is a set of admissible disturbances, Z is a set of possible system trajectories.

Let C be a partial order on the set mappings P(Z)*: Va, 8 € P(Z)®

def

(aCP) &S (a(w) C Blw) Yw € Q).
Forw € (2, z € Z and A € P'(T) we denote
QwlA) = {ne Q| (A) = (A},  Z(z[A) = {g € Z] (g]A4) = (z|A)}.

Note that the family of partitions ({Q(w|A) | w € Q) e forms a chain in the set of partitions
of () with an embedding relation (see, for example, [17, Sect. 3.1]), namely, for any A, A" € T,
we have

(AcC A) = (Qw|A") C Qw|A) Yw € Q).

Here by partition of a set M we call a family of its nonempty mutually disjont subsets that cover
the set.

In terms of the family 7" we define the basic notion of non-anticipatory. Denote by N7 the
set of all non-anticipative m/f from P(Z)":

N £ {z € P(2)? | (z(w) | A) = (z(w) | A) VA E T Vw € Q V' € Qw|A)}.
By N‘()T) we denote the subset of all nonempty-valued m/f:
Nir £ {z € N(7) | (DOM) [z] = Q}.
The most important are m/s of a given m/f: for o € P(Z)? we denote
Nipla] 2 {z €N |z C a}; (1.1)
then we define the subset of nonempty-valued m/s of m/f a:
N{pla] £ {z € N{p | 2 C o} (1.2)

Let us introduce (see [18, § 3, item V]) pointwise defined “union” and “intersection” of m/f
from P(Z)®. Let M be a subset of P(Z)?. We assume that the pointwise union \/,_,, z and the
pointwise intersection A, z, for each w € Q) are determined by:

\ z(w) £ | z(w), N z(w) £ ) z(w).

Note that in the form \/,_,,z and A,z we have, respectively, supremum and infimum of
the set M in the poset (P(Z)%,C). Unlike pointwise intersection, the result of pointwise union
inherits non-anticipatory property of operands (see Lemma 3.2 below).
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§ 2. Feasibility of step-by-step procedure

Let us define the property of feasibility in formal terms. Let A, A C T, be a finite set of
instants: A 2 {to =79 <7 < ... < T,y = U}. We will also refer to A as the partition of the
time interval T. Denote by Ha the subset of 7 of the form Ha = {H; £ [0, 7;]: i € 1.na}.

For partition A and a m/f o € P(Z)?, denote by Qa (Qa C Q72) and Za (Za C P(Z)"*) the
sets defined as follows (in expressions like )", where n € N, the number n is not considered as
a set):

Qa2 {(Wi)ictna € Q" | (wi|Hy) = (wi1|Hy), i € 1.na — 1}, 2.1)

Za 2 A{(Bicrna € P(Z2)" [ (B H)) = (Bisa | Hi), i € Lna — 1}, (2.2)
Conditions («, A) for the step-by-step procedure are called feasible if there exists a tuple of m/s
(gbi)iel..nA Of m/f a,

b; € P(Z)?, ¢ Ca, i€1l.na, 2.3)
such that the following inclusions are fulfilled:
(0i(wi))ie1.na € Za V(wi)ie1.na € Qa. (2.4)

This definition simply retells the above informal description of the step-by-step procedure
in mathematical terms. Namely, let given a tuple (¢;)ic1.n, satisfying (2.3), (2.4), then the
construction of a step-by-step response to an unknown disturbance w, due to the («, A) conditions,
can be realised like this:

— we find wy € Q such that (wy|H;) = (w|H;) and choose hy € Z that satisfies hy € ¢y (w1).
This can always be done, because by completing formally w; to an arbitrary tuple (wy, ..., wn,)
from QA (for example, by setting w,, = ... £ wy = w;), due to (2.2) and (2.4) we get the
inequality ¢1(w;) # @ which enables us to choose the desired trajectory hq;

— if there are (w;)ic1. 11 € Q¥ and hy € Z such that

(Wit [Hys1) = (@] Heta),
(wi+1|HZ~) = (wi|Hi), 1€ ]_k?, (25)
hl' S gzﬁl-(wi), 1€ 1]{Z, (26)

we choose hy,; from the condition

Piy1 € Grpr(Wig1) N Z(hy| Hy).

Such a choice is possible: the tuple (wi,...,wrr1) can be completed (see (2.5), (2.1)) to a
tuple (wi,...,wn,) from Qa (for example, by setting w,, = ... = Wiyo = Wey1). Then, by
virtue of (2.2), (2.4), we get the equality

(Prr1(Wry1) [ Hi) = (n(wr)| Hi),

from which, taking into account (2.6), we get ¢(wrr1) N Z(hy|Hr) # @. Hence, the choice
is possible to undertake. So, by induction, the step-by-step procedure can be continued up
tok+1=na.

It is clear that the non-emptiness of values and non-anticipatory property of « (that is,
when a € N((]T)) or, in general, the existence of a non-empty-valued non-anticipative m/s 3
of m/f o implies the feasibility of the conditions (o, A) for any partition A. Indeed, then it
suffices to put ¢; = 3, where 3 € N((]T) [a]. At the same time, it can be seen from Example 5.3
that the feasibility of the conditions («, A) even for all partitions A does not imply existence of
non-anticipative and non-empty-valued m/s of a.. In following sections, we consider the property
of partial non-anticipatory of a m/f that is equivalent to the feasibility property.



D. A. Serkov 415

§ 3. Partially non-anticipative mappings: basic properties
For an arbitrary A € 7T, we introduce the notion of A-non-anticipative m/f: a mapping
z € P(Z)" is called A-non-anticipative if the implication

((wi]A) = (w2[ A)) = ((z(w1) | A) = (z(w2) | A))

is true for all wy,w, € €2. The subset of all A-non-anticipative m/f we denote by N;4;). The
subset of all non-empty-valued and A-non-anticipative m/f we denote by N?{ Ap'

N{ay = {z € N(gay | (DOM) [z] = Q}.

Let # € P'(T). We call a m/f from P(Z)” H-non-anticipative if the m/f is A-non-anticipative
for all A € H. The set of all H-non-anticipative (non-empty-valued and H-non-anticipative) m/f
we denote by Ny, (N(()H)):

Nog = () Nqap NGy =[] Nipay)-
AeH AeH

For any o € P(Z)% and H € P'(T), designations N3 [a] and N((]H) [a] are defined similarly to
those in (1.1) and (1.2), respectively.

Note two relations which we obtain immediately from the definitions: for arbitrary o € P(Z)%
and H,H' € P(T)

(M CH') = (N [o] € Ny [o]) & (N [a] € Ny, [a]), (3.1)
(N [] = Ny [a] N Naey la]) & (Niyu [o] = Ny [a] NNy [o]) -

The following definitions and result of Lemma 3.1 is close to the idea of a monotonicity of
non-anticipatory m/fs (see [12, Remark 2.8]). Denote by sq(w,w’) € P(T) the set of the form

(see [7, (3.1), (3.6)])
so(w,o) E{H €T | (w|H) = (J[H)}, wwe
define the mapping S (-, -) € T given by Sq(w,w’) = |J H, for all w,w’ € Q and the
Hesgq(w,w')
set T, Ta = {8a(w,w'): w,w’ € O}
The following lemma indicates (see (3.2)) cases of coincidence of sets of non-anticipative and
partially non-anticipative m/s. Thus, in particular, for a finite set of disturbances, the problem of

constructing a non-anticipative m/s can be reduced to constructing a partially non-anticipative m/s
with a finite set of test moments.

Lemma 3.1. Let the inclusions be fulfilled:
So(w,w) € sq(w,w), Vw,w' € Q. (3.2)
Then for any o € P(Z)% the equality is true:
Nnla] = N, o] . (3.3)
In particular, condition (3.2) is fulfilled when elements of §) are continuous from the left:

lim w(r) =w(t) Vt € T Yw € Q.

T—t—
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Proof. By definitions (see (1.1), Sect. 3, (3.1)) the inclusion N)[a] C N7, [] is ful-
filled. On the other hand, suppose 5 € N7, [a] and (w,w’, H) € QxQxT. If (w|H) = ('|H),
then H € sq(w,w’), Sq(w,w’) € T, and

H C sq(w,w"). (3.4)

Due to (3.2), we have (w[So(w,w’)) = (W'[Sq(w,w’)) and by the property of 7g-non-anticipatory
of /3, the relation is fulfilled: (5(w) |Sq(w,w’)) = (B(w') |Sq(w,w’)). Wherefrom (see (3.4)) we
obtain the equality (5(w) | H) = (5(w') | H). Since the choice of (w,w’, H) was arbitrary, we
have the inclusion § € N(p[a], i.e., N(7,) [a] C N¢[a]. Then, the equality (3.3) is true. O

Due to the arbitrary choice of o, we also have the equality
N7 = N7).

The following is definitions and some properties of point-wise operations on non-anticipative m/f.

Lemma 3.2. Let o € P(Z)*, H C T and M € P'(N ) []). Then,

\/ z € Ngyla], (3.5)
zeM
(VwéQEIzEM:z(w)#@) = (\/ZEN((]H) [a]), (3.6)
zeM
TNl =\ 2 (3.7)
zEN(H)[a]

Proof.
1. It is clear that

(o) peee)

We show that the mapping \/,_, z inherits the property of {-non-anticipatory of elements from
M: letw,w’ € Q, A€ H, (wA) = (W'|A) and v € (V,cp 2(w) | A). Then, there are z € M and
h € z(w) such that v = (h|A). Therefore, taking into account the relation z € N4 [, we have
the inclusion v € (zZ(w') | A). Hence, there exists i’ € z(w’) such that v = (h'|A), whence we
obtain the inclusion 2’ € \/, ., z(w’) and, as a consequence, the inclusion v € (\/,.; z(w’) | A).
Since vy was chosen arbitrarily, we have the relation (\/, .., z(w) | A) C (/o 2(w') | A). Hence,
due to symmetry of considerations and an arbitrary choice of w, w’, the implication follows:
(w]A) = (W'A)) = (V,em z2(w) | A) = (Ve 2(w') | A) for all w,w’ € Q. Due to the implica-
tion, taking into account the arbitrary choice of A, we have

\/ z € Ny, (3.9)

zeM

Relations (3.8), (3.9) together give the desired inclusion (3.5).

2. Premise in (3.6) implies the equality (DOM) [\/,.,,z] = €, which in combination
with (3.5) gives the desired assertion.

3. By construction, the expression on the right side (3.7) C-majorizes each element of the
set N3 [a], while (3.5) for M = N4, [a] implies the inclusion Vaeng o 2 € Ny [ol.

The lemma is proven. l
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Theorem 3.1. For a m/f o € P(Z) and a partition A of interval T, the conditions (o, A) are
feasible if and only if m/f o has a non-empty-valued and H a-non-anticipative m/s:

((ar, A) — feasible) < (N(()HA) [a] # @) . (3.10)

Proof LetA={ty=7<7 <...<T,, =9} Remind that Hp = {H; = [r, 7]:
i € 1.na}. The definitions (2.1), (2.2) imply the equalities

QA = {(wi)ielnm e qQna | (wZ|Hg) = (w]|HE), 1,] € 1..TLA}, (3.11)
Za = {(zi)ic1.na € P(2)" | (2i| H) = (25| Hy), i,j € 1.na}, (3.12)

where ij = min{i, j} for all i, j € 1..na.

I. Let N, [a] # @ and 5 € N, [a]. Consider a tuple (¢:)ic1.n, of the form ¢; £ 3,
i € 1..na. By definition, it satisfies the equalities (DOM) [¢;] = €2, i € 1..na, and the conditions
¢; E B C a,i € 1..na. This implies the fulfillment of the condition (2.3).

Let us check (2.4). Suppose a tuple (w;)ic1.n, is such that (w;)ic1.., € Q. Then, taking
into account the H a-non-anticipatory property of 3, from the equalities (wy|H) = (wm|Hzm),
we get the equalities

(Pr(wi) | Hi) = (B(wi) | Hi) = (B(wm) | Hg) = (fmlwm) | Hyy) - kym € 1ona.

Since (w;)ie1..n,» k and m were chosen arbitrarily, for the tuple (¢;);c1..,, condition (2.4) is met.
We have shown that the left side of (3.10) follows from the right side.

2. Let us show that the right side of (3.10) follows from the left side. Assume that the
conditions («, A) are feasible. Then (see Sect. 2) there exists a tuple (¢;);c1.,, of the form (2.3)
such that for any tuple (w;)ic1.n., € Qa (see (3.11), (3.12)):

(0i(wi))ie1.ma € Za. (3.13)

Let m/f ¢, be defined by ¢, = #,,. Then we have the comparison ¢, = « and equality
(DOM) [¢o] = Q (indeed, from (3.12), (3.13), follow the inclusions ¢,(w) € P'(Z) for all
w € ). To show that ¢, is Ha-non-anticipative, suppose w,w’ € 2 and m € 1..na are such that

(W|Hp) = (W'[Hp). (3.14)
We put
€ 1.
w; 2w, i€ l.na, = “ Z €L,
W, i€ (m+1).na.

For the tuple (w;)ic1..n,, We Obviously have the inclusion (w;)ic1.n, € Qa-
Show the inclusion (w));c1.n, € Qa. For the tuple (w))ic1.n, and any i, j € 1..na, we have:
if m <1 < j, then

(wilHz;) = (W'|Hg) = (wj|Hz);

if 1 < m < j, then (see (3.14))
(wilH3) = (wH) = (w]H;) = (W'[H;) = (W) Hy) = (wj| Hy);

if i < j < m, then
(Wil H) = (w|Hz) = (wj| Hy).

Thus (see (3.11)), the inclusion (w});c1.n, € 2a takes place.
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Therefore, due to (3.13), the inclusions

(i(ws))ict.ma € Zn, (¢i(w)))ict..na € Za,

considered (see (3.12)) under ¢« = m and j = na, imply the equalities

((bm(wm) ‘ Hm) = ((bnA (WHA) | HW)7 ((bm(wan) | HW) = ((bnA (M;A) ‘ Hm) (315)

Moreover, from the definitions of w/, and w,,, we have w;, = w,, = w and hence the equalities

(‘bm(wm) | HW) = (‘bm(w) | Hm) = (‘bm(wq/n) | HW) (316)

From the given equalities and the definition of ¢, we obtain (the second and the fourth equalities
follow from (3.12) and (3.15), the third follows from (3.16)):

(¢a(w) | [7_07 7_m]) - (¢TLA (wnA) | [7_07 TW]) = (¢M(wm) | [7_07 Tm]) =
= (gbm(w;n) | [7_07 TW]) = (¢nA (W;LA) | [7_07 TW]) = (¢a(wl) | [7_07 Tm])-

Since m, w and w’ were chosen arbitrarily, from the last equalitics we obtain the property of
‘H a-non-anticipatory of m/f ¢,. Taking into account the indicated properties of ¢, we have the
inclusion ¢, € N(()HA) [a], i.e., the right side of (3.10) is fulfilled.

The proof is complete. O

§ 4. A construction of the partially non-anticipative multiselector

In this section, we give a description of partially non-anticipative m/s in terms of explicitly
defined operators that mapping a m/f to its m/s non-anticipative at a given point of T. In gen-
eral, such description is certainly non-constructive. Meanwhile, when applied to step-by-step
procedures, due to the finiteness of operations, the description allows to construct and analyze
corresponding partially non-anticipative m/s (see examples).

For an arbitrary A € T, denote by (-)4 the operator that transforms the set P(Z)* and is
given by:

(a)a(w) = {h € a(w) | (hA) € ﬂ (a(w) | A)} Va € P(Z)%, Yw € Q. 4.1)
w'eN(w]A)

It immediately follows that (-) 4 is non-expansive and isotonic as an operator in the poset
(P(Z)%,E): for arbitrary A € T, a, 3 € P(Z)%,
()4 C o, 4.2)

(@ B)= ({(a)a E (B)a). (4.3)
We also note (see Subsection 5.1) that in the general case the mapping 7 2 A — (a)4 € P(Z)%
is not isotonic as a mapping from poset (7, C) to poset (P(Z)%, C).
Regarding the non-emptyness of values of m/f («) 4, note the equivalence

((a)A(w) ” @) = ( N () A)) Vo € P(2)%, Yw € Q. (4.4)
W €Q(w|A)

Lemma 4.1. For any A € T and any m/f o € P(Z)%:
(i) the set of values of the operator (-) 5 equals to the set of all A-non-anticipative m/f, as well
as to the set of fixed points of operator (-) 4:

(P(Z)™) 4 = Nay) = Fix((-) a); (4.5)
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(ii) the m/f () 4 is the C-greatest A-non-anticipative m/s of m/f a:
()4 = TNy Lol (4.6)
(iii) the operator (-) 4 is idempotent, i. e., for any o € P(Z)%, the equality takes place:
{(a)a)a = {(a)a. (4.7)

Proof 1. Let3 = (a)s. We show that 8 € N{ay) [a]. Due to (4.2), we have 3 C a. It
remains to verify the A-non-anticipatory property of 3.
Let w,w’ € Q) be such that (w|A) = (w'|A) and £ € (5(w) | A). Then (see (4.1))

e (] (a@)]A). (4.8)

DEQ(w|A)

By the choice of w’, we have w’ € Q(w|A) and hence (see (4.8)) £ € (a(w’)| A). Then, there
exists ' € a(w’) such that (h'|A) = £. From the equality (w|A) = (w'|A), it also follows that
Q(w'|A) = Q(w|A) and, therefore,

(N @@= (] (a@)]A.

WEQ(w|A) HEQ(W'|A)
As a result, i/ satisfies relations

Weaw) (WA e () (a@)]A)

BEQ(W!'|A)
i.e., (see (4.1)), B € (a)a(w'). Then & € (5(w') | A). Since £ was chosen arbitrarily, we have
(B(w) | A) C (B(w)]A).

From the inclusion, due to an arbitrary choice of w, w’ and to symmetry of them in the consider-
ations, we obtain the desired A-non-anticipatory of [3.
So, taking into account the definition of 3, we have the inclusions

(a)a € N(qay) [a] C Ngay). (4.9)
Due to the arbitrary choice of «, (4.9) implies an embedding
(P(Z)") 4 C N{ayp)- (4.10)
2. Let us verify that (a) 4 is the C-greatest m/f in N4y [a]. Let
€ Ny la], (4.11)
@ € Qand h € 3(©). Then (4.11) implies that
(h]A) € (B(w) | A) C (a(w) | A4) Vw € Q|A).

So, h satisfies the relations

hep@ca@), (e [ Bl () (aw)]A),

weQ(@|A) we(@|A)
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i.e., (see (4.1)), h € (B)(w) and h € {(a)4(w). Since w and h were chosen arbitrarily, we have
comparisons

BE(B)a, (4.12)
BT (a)a (4.13)

Comparing (4.13), due to arbitrary choice of (3, gives the equality (4.6).

3. Relation (4.12) and the non-expansion property of (-)4 (see (4.2)) imply the equality
B = {(B)a. Hence, due to arbitrary choice of 3, we obtain for any a € P(Z)% the em-
bedding N(4}) [¢] C Fix({-)4). For a of the form a(w) £ Z, w € €2, we obviously have
Nayp) [@] = Ngay). So the following inclusion is correct:

Ngay C Fix((-)a)- (4.14)

For any ( € Fix((-) 1), by the definition of a fixed point, the equality 5 = (/3) 4 is satisfied, i.e.,
(3 lies in the image of the set P(Z) under the mapping (-) 4. Then the next inclusion is fulfilled:

Fix({-)4) C (P(Z)?) 4. (4.15)

From relations (4.10), (4.14) and (4.15), we get the equalities (4.5).
4. Equalities (4.5) imply the equality (4.7).
The lemma is proven. l

From the lemma, we immediately obtain a corollary that allows us to filter out m/f’s that do
not have a non-empty-valued and non-anticipative m/s.

Corollary 4.1. For o € P(Z)* and H € P'(T), the following implications hold:

(8 € Noy [a]) = <6 C A <a>A>, (4.16)

AceH

N {@)a

AcH

((DOM)

4 Q) = (N0 0] = 2) = (Npla] =2) . (417)

Proof 1. Let [ satisfy the premise of (4.16). Then, from the relations
B e N({A}) [a] , VA e H,

and (4.6), we have
B C ()4, VA € H,

which implies the conclusion of (4.16).
2. From (4.16) and (3.1), the implications (4.17) follow.
The corollary is proven. O

Since, for arbitrary H € P'(T) and a € P(Z)%, there exists the greatest (unique) ele-
ment T, o) (see Lemma 3.2), then we introduce an operator (-)3: P(Z)" — P(Z)? of the
form

(@) = Tngyla, @€ P(2). (4.18)

For H C T, we denote by Fy the family of operators defined by Fy, = {(:)4 | A € H}. By
Fix(F) we refer to the set of joint fixed points of the family Fy;: Fix(Fy) £ M o5 Fix({-) a).
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Remark 4.1. It follows from the definition of N and the equality (4.5) that the joint fixed
points of the family F, are H-non-anticipative mappings: Fix(Fy) = N(y). Thus, in the case
when H is a singleton (H = {A}, A € T), we get the equality (see (4.6)) (-)(a} = (-)a.

We turn to the representation of the operator (-) in terms of superposition of operators
from F4. As already was noted, the representation of non-anticipative m/s in the form of fixed
points of non-expansive isotonic operators in a poset and, as a consequence, in the form of limits
of their iterative sequences, was proposed and studied in [8,9, 14]. The iterative process in some
cases turns out to be finite (see, for example, [15, Ch. 5]), which makes it possible to obtain
efficient solutions to problems.

In this paper, despite the fact that the operators from F4 are in general non-commutative (see
Subsection 5.2), a finite-step construction of the operator (-)3 is given in Theorem 4.1 for all
cases when the set H is finite. To this end, we give some definitions and auxiliary results.

Lemma 4.2. Let H|,H, € T, a € P(Z)%, T € P'(Q) and K € P((Z | H,)) are such that

H, C Hy, (4.19)
(a(w) | Hs) = (a(W) | Hy), Vw,w' € T. (4.20)

Then, for 3 € P(Z)% of the form

s J{h€a(w) | (h|H) € K}, weT,
flw) = {a(w), we\T, *2D
the equalities (4.20) are also satisfied:
(B(w) | Ha) = (B(W)[H),  Vww €T. (4.22)

Proof Letw,w € Y and~ € (8(w) | Hy). Then, by the choice of , there exists h € a(w)
such that
(h|H2) =, (4.23)

and at the same time (see (4.21))
(h|H,) € K. (4.24)

From (4.20) and the choice of w, w’, it follows that there is A’ € a(w’) satisfying the equality
(W'|Hz) = (h|H). (4.25)
From (4.23), (4.25), we have
(W|Hs) = 7. (4.26)
In addition, (4.24), (4.25), and (4.19) imply

(W|H;) € K. (4.27)

From the inclusion of A’ € a(w’), (4.27) and the definition of § (see (4.21)), we get b’ € f(w),
whence, taking into account (4.26), we have v € (8(w’) | Hs). Then, due to the arbitrary choice
of v, we have (5(w) | Hy) C (B(w’) | H2). From here, in view of the symmetry of the occurrence
of w, W', the desired equality (4.22) is extracted. The proof is complete. 0

In particular, if (4.19) is true, the application of (), to Hy-non-anticipative m/f o does not
violate this property.
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Corollary 4.2. For any Hy, Hy € T such that (4.19) is true, and any « from P(Z)%, the implica-
tion is fulfilled:
(o € Niy)) = (@), € Noy))-

Proof. Indeed, let Hy, Hy € T satisfy (4.19), @ € Ng,), and w € Q is fixed. Let us
define K and Y from Lemma 4.2 as follows:

K& (] (a@)]H), T2QwH,)
e (w|H)
Then, all conditions of Lemma 4.2 are satisfied and m/f 3 specified in (4.21) satisfies the equalities

(see (4.1)) forallw € T = Q(w|H>):

B@) & {hea@) | (hH)e Ky &{hea@) ]| (hH)e [ (a@)]|H)}=

weQ(w|H1)

={hea@) |(H)e [] (a@)|H)}= (@)n (@)

weQ(@|Hy)

Using the last relations and (4.22), we obtain:
()i, (W) [ Ho) = (B(w") | Ho) = (B(w') | Ha) = ((a)m, (') | Ho) VW', w" €. (4.28)

Due to arbitrary choice of w, relations (4.28) are true for all W', w” € Q(w|H3) and all w € €,
i.e., we have inclusion (o) i, € N(g,). The proof is complete. O

The following statement provides for a finite chain ‘H and for an arbitrary m/f « a representa-
tion of greatest H-non-anticipative m/s of « as a finite superposition of operators from Fy,. The
provided construction inherits the features of the backward recurrent procedures [2,19,20] on the
one hand, and of the method of programmed iterations of A.G. Chentsov, on the other hand.

Theorem 4.1. Let o € P(Z)* and H = {H; € T | i € 1.k, k € N} be a finite chain: (i < j) &
& (H; C Hj) Vi, j € 1..k. Then the equality is fulfilled:

That is, the expression on the left side gives (see (4.18)) the greatest H-non-anticipative m/s of
m/f a.

Proof 1. Denote ¢ = (...{(a)p,...)u,. Then, successively applying the opera-
tors (-)r,.,. - - »(-) o, to the m/f o and using the property (4.2), we arrive at the inequality

o C (4.30)
also applying successively the operators (-)g,,...,(-)x, to the inequality (a)y C « taking into
account isotonicity (see (4.3)), we get the ratio

() C 6. (431)

Therefore (see (ii) of Lemma 4.1), the assertion will be proven if we establish the H-non-anti-

cipatory property of ¢.
2. Let’s show that, for all 7 € 1..k, m/f ¢ holds the property (4.32) of H;-non-anticipatory:

(P(w) [ H) = (¢(') | H),  Vw,w' €Q, ' € Qw|H,). (4.32)
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Case i = k. M/f (o), is Hj-non-anticipative by construction (see (i) of Lemma 4.1):
() i, () [ Hi) = ()i, (W) [ Hi),  Vw,w' € Q, ' € Q(w|Hy). (4.33)

Since H is a chain and hence H; _; C Hy, taking into account Corollary 4.2, from (4.33), we get
the property of Hj-non-anticipatory of m/f ({(a)p, ) m, .-

((Ym, )i, (W) | Hy) = (&) ) g, (W) | Hi), Vw,w' € Q, W' € Q(w|Hy). (4.34)

Due to relations (4.34) we can apply the reasoning to m/f ((a)y, ), , and operator (-)p, ,.
Continuing these arguments up to the application of the operator (-)y, inclusively, we obtain the
property of Hj-non-anticipatory for the m/f ¢, 1. e., we prove statement (4.32) for the case ¢ = k.

Case i € 1..(k — 1). Consider m/f¢) = (... (a)p, ...)u,. Since the operator {-);, was used
last, by virtue of item (i) of Lemma 4.1, ) is a H;-non-anticipative m/f. Further, repeating the
arguments from the case i = & for the operators (-)z;, j € 1..(i — 1), we conclude that these
operators, applied to m/f ¢ when constructing m/f ¢, preserve the H;-non-anticipatory property
of m/f ). Namely, for all j € 1..(i — 1) the equalities are true:

o @iy Vi, | HY = (@i, Y, | H),  Vw,w € Qo € Qw|H,).

In particular, for j = 1, we have (4.32) for i € 1..(k — 1). So, m/f ¢ is H;-non-anticipative for
all v € 1..k:
¢ € Ny [a]. (4.35)

From the relations (4.30), (4.35) and item (ii) of Lemma 4.1, the relation ¢ T (a)y follows.
Together with (4.31), the relation gives us equality ¢ = (a)4, i.e., the required equality (4.29) is
true. The proof is complete. 0

Remark 4.2. Lemma 4.2 and Theorem 4.1 remain true in general case of sets T and 7, i.e.,
when T is a set and 7 is a chain in poset (P'(T), C).

Let us return to step-by-step finding the selector under the conditions («, A). Theorem 4.1
specifies a way to construct m/f ()4, that is the C-greatest H A-non-anticipative m/s of «v. If this
m/s turns out to be non-empty-valued, then, by virtue of Theorem 3.1, the step-by-step procedure
can be implemented by means of (), for any disturbance w € 2 (see Examples 5.3, 5.4).
At the same time, as in Example 5.3, an ordinary non-anticipative m/s of m/f o may be absent
(NP la] = 2).

In the case, when for some w € ) the value of the m/s is empty ((o)3, (w) = @) due to
C-majority of (a)s, in N(3,) [a], we obtain the fact of unrealizability (Theorem 3.1) of step by
step procedure under the conditions (o, A) and, as a consequence (see (3.1)), under any other
conditions (a, A") where A C A'.

§ 5. Examples
5.1. Example 1

Let T = [0,3], 7T = {[0,7] | 7 € T} and Y = X = R. The sets  and Z are shown in
Figure 1. Let m/f 3 be of the form

{hl,hg}, w = w1,
5(&)) - {h17 h?a h3}7 W = Wy,
{hg,hg}, W = Ws.
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Q
Wy — {hl, hg}
Wy > {h17h2>h3}
w3 = {h2, h3}
0 1 2 3
Z
ha
hy
hs
0 1 2 3
Fig. 1. Example 1
For this m/f, using definition (4.1), we get:
{h17h2}7 W = Wi, {h17h2}7 W = Wi,
Bhoyw) =< {1, ha}, w=uws, (Bhoz(w) = § {ha, ha}, w=ws,
{h’2}7 W = ws, {hQ, hg}, W = Ws.

It is clear that the inequalities (53)(0,1) £ (B)[0,21» (B)10,2 & (B)0,1) are fulfilled. That is, in general,
the mapping 7 > H — (8)py € P(2)", considered as a mapping from poset (7, C) in poset
(P(2), ) does not posses the isotonic property.

5.2. Example 2

The example shows that the operators (-)z, H € T, can be non-commutative. Let T = [0, 3],
T2{0,7]]7€T}and Y =R, X = X; x X, = R% Denote

wij(t) £ (1) max{0,t — j}, hy(t) = a; (1 +max{0,t —j}), i€l.4, j€0.2, te]|0,3],

where a; = (1,0), ay = (0,1), az = (—1,0), ay = (0, —1). Put (see Figure 2; for reasons of
symmetry of Z, the projection onto the plane T x X, is only shown)

Q= {wj|i,7€1.2}, Z={hy|i€l.4,je0.2}.
Thus, all elements in (2 and Z are distinct. Moreover, if & = i, then

(wra[[0, min{l, j}]) = (wi|[0, min{Z, j}]), (Al [0, min{Z, j}]) = (Ri;|[0, min{l, j}]).



D. A. Serkov 425

Wop > {h307 hs1, hag, hi2, hot, h41}
Wog > {h40, Ity haz, hag, hoa, h31}

Wig {h20, hot, haa, b, haa, h42}
w11 = {hlo, hiv, hig, hot, haa, h41}

hag ho1

h107 hll h127 h30 h317 h’32

h42

0 1 Moy g

Fig. 2. Example 2

Let m/f o be given by

Oé(wn) £ {h10, hi1, hig, hot,s haa, h41}7 a(w21) £ {h307 hs1, haa, hia, ho, h41}7
Ot(wm) = {h20, h21, h22, h11, h32, h42}, Oé(w22) = {h40, h41, h42, h12, h22, h31}-

Let H; £ [0,1]. Then Q = Q(w|H;) for all w € €; hence, by definition (4.1), we have the
equalities

(@) i, (wi1) = {ha1, haz, hot, hag, hut },
(@) i, (wi2) = {hat, hag, Ry, hag, hus b,
<Q>H1 (w21) = {h31, h3a, hi, hot, h41},
(@) 11, (W22) = {hat, haz, hag, hao, Ra1 }.

Let H2 é [0,2] Then Q(W11|Hg) = {wu}, Q(W21|H2) = {CUQl}, Q(W12|HQ) = Q(W22|H2) =
= {w12, wae}; and, by virtue of (4.1), we get

< > ( ) - {h107h117h127h217h327h41}7
(), (wi2) = {haa, has},
()i, (wa1) = {hso, ha, haz, hao, hot, Pt}
(@), (wa2) = {hag, haot.
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Then, for m/f ((«)y, ), we have

() ) s (wi1) {ha1, hag, hoy,s haa, hun b
() )y (wi2) = {hoo, has},
(@) m)m(wa1) = {hai, haz, hiz, hoy, hus },
(@) my)mp(wWo2) = {haz, hoo}.

() m)m(win) = {hor, hai},
() m)m(wiz) = {hoo, hao},
() ) iy (wor) = {hor, har },
() m,) i (wa2) = {hao, hao}.

It is easy to see that there is an inequality (()m,)m, # ((@)u,)n, indicating that the opera-
tors (-)y, and (), are not commutative.

Since the composition ((-)g,)n, corresponds to the order specified in Theorem 4.1, the re-
sult — ((a) g, ) g, — presents an { H1, H, }-non-anticipative m/s of .

5.3. Example 3

In this example, we consider an approaching game problem in which the m/f of optimal
trajectories does not have any non-empty-valued and non-anticipative m/s, that is, the problem
is not solvable in the class of non-anticipative strategies built on the base of usual (not relaxed)
controls. At the same time, the m/f of optimal trajectories has the property of feasibility for all
partitions of the interval T; i.e., the step-by-step procedure can be fulfilled for any partition and
any disturbance.

Let the trajectories of the controlled system be given by solutions of the following Cauchy
problem:

#(t) = u(t) —o(t), teT=]0,2] 5.1)
z(0) =0 € R, ueUveV, '
U £ {u,; | i € N}, V 2 {v; | i € N}, (5.2)
a0 telo,1], s O, tel0, 141/, ,
ul(t)_{1—1/z’, te (1,2, Ul(t)_{l, te(1+1/i,2], rel 69

For system (5.1)-(5.3), consider the problem of meeting its trajectories z(-) with the set
M 2 {(2,7) € T xR | z > 0} by choosing programmed control u(-) € U for any possible
disturbances v(-) € V. Denote by z(-,u,v), where z(-,u,v) € C(T,R), the solution of the
Cauchy problem (5.1)—(5.3) where a control v € U and a disturbance v € V are given. Denote
U2 {u |ieN}, V=2{v;|iecN} (see Figure 3)

t t
u;(t) £ / ui(s)ds, vi(t) = / v;i(s) ds, 1eN, teT.
0 0
It is easy to verify that, for z;;(-) £ z(-, u;, v;), the equalities (see (5.2), (5.3))

1
ri(t) = wi(t) —v;(t), w(2)=vi(2)=1--, i,jeN,teT,
7
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A\Y
0 1
U
w
us
U2
u;
0 1 T 2

Fig. 3. Example 3

and, consequently, the equalities

1 1
i 2) = - R .7 . S Na
ij(2) I L7
are fulfilled. Hence, given a disturbance v;(-) € V and a control v;(-), the meeting criterion can
be written as the inequality ¢ > j. Therefore, for any disturbance v;(-) € V, denoting by a(v;(-))

the set of all controls in U that solve the meeting problem, we can write
a(vj) = {uj ujpr, .. .} ={u; € Ui = j}. (5.4)

That is, in (5.4) we have the m/f of optimal answers. The family of subsets 7, implementing
“flow of time”, has its usual form: 7 = {[0,7] | 7 € T}.

We choose a finite partition A C T and show that conditions («, A) are feasible. To this end,
for Ha € T, we construct using (4.29) H a-non-anticipative m/s of « and verify that its values be
non-empty. Thus, by virtue of (3.10), the feasibility of step-by-step procedure under conditions
(v, A) will be proven for arbitrary finite partition A.

1. Denote H, = [0, 7]. Then

QW|H,) =V, T€[0,1], v eV,

By ) < .7 ]- ]- ..
Qvs|Hr) = tv o} IS T € <1+ . 1+—.] ., i,j €N.
{v;}, j >, + 1
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Hence, by direct calculation (see (4.1), (5.4)), we obtain the representation of m/f (a) g :

(a)y, = a, T € [0,1], (5.5)
_Ja(v), g <, 1 1 -
(@) m, (v;) = {a(vj% isi T S (1 el ;} , i,jeN. (5.6)

From the equalities (5.5) and (5.6), the relations follow:

(DOM) [(a)r.] =Q,  vreT. (5.7)

T

Moreover, it is not difficult to check that the representations (5.5) and (5.6) hold for a wider set
of m/f, namely, for any /5 C «, the formulas take place:

<6>H72ﬁ, T E [0,1],

and, for any 3 of the form 3 £ (a) He» § € T, the equalities are true:

(B)m, (v) = {B(Uj), i<i T € (1 oLt ﬂ , i,j €N, (5.8)

2. Using presentations (5.5)—(5.8) in accordance with (4.29), we finally obtain the equality

() s = (@) [0,min{an(1,2]}]-

Since A is finite and A N (1,2] # @, we have (a)y, = («a)py,. for same H- € Ha. Then, in
view of (5.7), we receive non-emptiness of values of m/f () ,. That is, non-emptiness of the
set N(()HA) [a] of all non-empty-valued and H-non-anticipative m/s of a. Hence, taking into
account Theorem 3.1, we conclude that conditions («, A) are feasible.

3. Let us show that the problem has no solution in the class of non-anticipative strategies
(quasi-strategies), that is, m/f o (5.4) does not have non-empty-valued non-anticipative m/s:
N(()T) la] = .

Let’s say the contrary that is m/f 8 € N{[a] was found. Then (3.1) implies that N{/) [o] C
C NPy [a], where H £ {H, | k € N} and H;, £ [0,1+ 1/k]. Let’s use the implication (4.16);
by assumption, we have 8 € N{ [a] C N, [a], hence, 8 € A,cy(@)n,. Then, taking into
account (5.6) and (5.4), for each 5 € N we obtain

Bus(-) € (V@ (v3() = [ alwr() = 2.

keN k>j
So, (DOM) [] = & and relation 3 € N{[a] is impossible. Then, we have N{[a] = @.

5.4. Example 4

Consider an example from [7, § 5]. We consider a construction of optimal non-anticipative
strategy [7, (5.3)] by means of partially non-anticipative m/s.
As in previous example, the controlled system is given by solutions of the following Cauchy
problem:
(t) =u(t) +ov(t), teT=]0,3], z(0)=0,

where x(t) € R, the control v and disturbance v are Borel measurable functions subject to the
instantaneous constraints u(t) € P = [-1,1], v(t) € Q = {-1,0,1},t € T.
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Denote by z(-, u,v), where z(-, u,v) € C(T,R), the solution of the Cauchy problem where a
control v € U and a disturbance v € V are given.

Suppose that the set V of admissible disturbances consists of two functions, V £ {v1, 12},
where:

if t 1 2 if ¢ 1
Ul(t) A 0, 1 S [07 ]U( 73]7 Ug(t) A 0, 1 S [0, ],
1, ifte(1,2], -1, ift e (1,3].

Since the set of disturbances is continuous from the left, the condition (3.2) is satisfied. Then,
taking into account the finite number of disturbances and by virtue of Lemma 3.1, we have
(see (3.3)), for any m/f a, a € P'(U)V, the equalities:

N la] =N [o] - (5.9)

So, the class of non-anticipative strategies in this problem coincides with the set of all [0, 1]-
non-anticipative m/f (from P'(U)V); here U is the set of all possible realizations of control.
The control minimizes the following cost functional:

J(u,v) £ —[z(3;u,0)], welU, veV.

Namely, the goal of control is to minimize the guaranteed result in the class of non-anticipative
strategies from P'(U)V.

Since we are considering a guaranteed state of the problem, denote by p (yet unknown)
optimal (minimal) guaranteed result. Let us compose the m/f a, € P(U)V, which describes the
p-optimal control responses to the realized disturbance.

Taking into account the obvious inequality p < 0, we write the values of «, depending on p:

0, (v) = {u cU| /Og(u(s) T o(s)) ds

>—p}, veE V.

Then we get the equalities

a,(v) = {u cU| (/Ogu(s)ds <p- 1) v (—p— 1< /Ogu(s)ds)}, (5.10)
o, (vs) = {ue U (/Ogu(s)dsgp—i—Q) v (—p+2 < /Ogu(s)ds)}. 5.11)

It is clear that the set of values of the parameter p for which «, has a non-empty-valued and
non-anticipative m/s is bounded. That is, the set has infimum p, which is the optimal result of the
control side in the class of non-anticipative strategies. So, keeping in mind (5.9), we can write:

5= min {p € R| (DOM) [TN(T)[Q,J}] = V} =min {p € R | (DOM) [(a,)qo3] = V} -
(5.12)
The m/f (o) (0,17 is defined by (see (4.1)):

o) 2 {uca,) @b e () ()01}, veV.

(v’1[0,1])=(v|[0,1])
v eV

Due to this definition and (4.4) the condition (DOM) [{(a,)(1;] = V is equivalent to the
inequality

N (e [[0.1) # 2. (5.13)

v e{vi,v2}



430 On the construction of partially non-anticipative multiselector

Thus, to find out the value of optimal result p (5.12), we have to calculate the minimum of p
for which inequality (5.13) is true. To this end we express the sets (a,(v’) | [0, 1]) in terms of
a,(v'), v € V: in accordance with (5.10), (5.11) we have

u'eU

vV </01u(s)ds> —p—l—ygg/jw(S)dS)},

(,(v2) ][0, 1]) = {u ceU ) <p+ 2 — min /13 ' (s)ds > /Olu(s) ds)

(a,(v1) | [0, 1]) = {u cu| (p ~ 1~ min /13 W(s)ds > /Olu(s) ds)

u'eU

([ ueraz g2 [ an) |

Then the inequality (5.13) is true if and only if the sets (c,(v1) | [0, 1]) and (,(v2) | [0, 1]) have
common elements or, in other words, there exists u € U for which the following statement is true:

<(p+1>/01u(s)ds>\/(/Olu(s)dSZ—p—?)))
& ((p+4>/01u(3)d5)\/(/0

Solving the minimization problem (5.12) with the constraints (5.14) leads us to the variant
(see (upper-right)&(lower-left) braces in (5.14)):

1

u(s)ds > —,0)). (5.14)

1
ﬁ:min{peR\{u€U|p+4>/ u(s)ds}—p—?)};é@}
0

that implies p+4 > —p —3 or p > —3.5.

So, for the value p of optimal guarantee in the class of non-anticipative strategies, we have
the equality p = —3.5 (= I' from [7, §5]); the greatest [0, 1]-non-anticipative m/s of «; is
non-empty-valued and given by the decision of minimization problem (5.12), (5.14):

u(t), u € U([0,1]70_5), t e [0, ]_],
1 = argmax,.pw, te€(1,3],

(g (vr)(t) = {

u(t), u € U([071},0.5), te [0, ]_],
—1 = argmin,,cpw, t€ (1,3,

(o (v2)(t) £ {
where

Ugoaron 2 {ue U@, 1) e () (ap)] 0,1} =

ve{v1,va}
1
= {u€U|/ u(s)ds:ﬁ+4:—ﬁ—3:0.5}.
0

In accordance with (ii) from Lemma 4.6, for the optimal non-anticipative strategy oy
from [7, § 5], we have the inclusion ay & (a;)(0,1).
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§ 6. Conclusion

Since the topic of the paper is at the initial stage of development, many details and even
essential issues remain unexplored. Here, we make some remarks on them. Expression (4.29),
in view of the maximality properties of (4.6) and (4.18), gives hope for new results on existence
of a m/f non-anticipative m/s. Concerning applications, an interesting question arises about the
convergence of guaranteed results for H A-non-anticipatory m/s of a m/f « to the guaranteed result
of the non-anticipative m/s of « as the step of the partition A tends to zero. Another question is
the implementation of the proposed constructions in a solution of dynamic optimization problem.
Namely, we need a systematic approach to resolving of the mathematical programming and the
parametric optimization problems that arise when “calculating” partially non-anticipatory m/s (see
the last example).
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BECTHUK YIMYPTCKOI'O YHUBEPCUTETA. MATEMATUKA. MEXAHUKA. KOMIIbIOTEPHBIE HAYKHN

MATEMATHUKA 2024. T. 34. Bem. 3. C. 410-434.

. A. Cepkoes

(0] MOCTPOCHUH YACTUYHO HCYNPEKIAIICTI0 MYJIbTUCCICKTOPA U €ro HCIOJIb30BaHUM B 3ajlavax Ju-
HAMHYECKOH ONTHUMHU3AIUT

Kniouesvie cnosa: HeynpexJarole MyJIbTUCEICKTOPbl, MHOTO3HAYHbIE CTPATErUH, ONTUMHU3aLUs TapaHTU-
POBaHHOTO pe3yJybTara.

YIK 517.977
DOI: 10.35634/vm240307

B KoHTeKcTe 3a/1a4 TapaHTHPOBAHHOTO YIPABJICHHS PAaCCMATPUBAIOTCS CIEAYIOIIUE BOMPOCHI: CBS3b BO3-
MOXKHOCTH TTOLIAroBOro (Ha 3aJaHHOM pa30ueHun A) BBIYMCICHHS CeIeKTopa MyAbTHOYHKINU (M/D) cv st
HEM3BECTHOTO, BOCCTAHABIMBAEMOTO MO IaraMm /A, apryMeHTa C CyNIeCTBOBAHHEM Y (v MYJBTHUCEJICKTOPA
(M/c) co crienManbHbIM CBOMCTBOM (Ha3BaHBIM 3/1eCh A-HEYIPEKIAEMOCTBIO WIIM YaCTHYHOM Heynpexae-
MOCTBIO); BTOPOii BOIIPOC — CIOCOGHI MOCTPOCHUE TAKOTO M/C TSl TIPOU3BOJIBHON Tapsl (<v, A); 1 mocien-
HUI — MOUCK 3(P(PEKTUBHO MPOBEPSIEMbIX YCIOBHH, 00SCIICYMBAIONIMX COBIAICHUE A-HEYIPEKIAIOLIETO
M/C C HEYITPEIKIAIOTITHIM.

MOTHBOM K PacCMOTPEHHUIO ATUX BOMPOCOB MOCIYKUJIA CXeMa YIPABJICHUs, BO3HHKAIOIIAs, HApUMeEp,
B METOJIE aJbTEPHHUPOBAHHOTO HMHTETpasia, NPH HCIOIBb30BAHUM B YNPABICHHHM KOHTPCTpAaTeruii, Wik B
HEKOTOPBIX 3aJla4ax MpPHU UCIOIb30BAHUU METOJA YIPABICHHUS C MTOBOJBIPEM.

B pabote moka3zaHo, 4T0 paccMaTpuBaeMas MOIIaroBasi cxema ynpaBlieHHs pean3yeMa TOra U TOJIBKO
Torna, Korna M/¢ o uMeer A-HeynpeKJaroNMid 1 HelyCTO3HAaYHbI M/c. JlaHa KOHEeUHOIIaroBas nporeaypa
MTOCTPOEHUS TaKoro M/C. YkazaHbl 3(h()EeKTHBHO TIPOBEpsSIEMbIE YCIOBHsI, 00ECIICUHBAIONINE HEYIIPEKIac-
MOCTB YaCTHYHO HEYNPEeXIAroIero M/c. PaccMoTpeHs! MILTIOCTPpUPYIOLIIE TPHUMEPHI.
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