
VESTNIK UDMURTSKOGO UNIVERSITETA. MATEMATIKA. MEKHANIKA. KOMP’YUTERNYE NAUKI

MATHEMATICS 2024. Vol. 34. Issue 3. Pp. 410–434.

MSC2020: 49N70, 54C65

© D. A. Serkov

ON THE CONSTRUCTION OF PARTIALLY NON-ANTICIPATIVE MULTISELECTOR

AND ITS APPLICATION TO DYNAMIC OPTIMIZATION PROBLEMS

Let sets of functions Z and Ω on the time interval T be given, let there also be a multifunction (m/f) α

acting from Ω to Z and a finite set ∆ of moments from T. The work deals with the following questions:

the first one is the connection between the possibility of stepwise construction (specified by ∆) of a

selector z of α(ω) for an unknown step-by-step implemented argument ω ∈ Ω and the existence of a

multiselector (m/s) β of the m/f α with a non-anticipatory property of special kind (we call it partially

or ∆-non-anticipated); the second question is when and how non-anticipated m/s could be expressed by

means of partially non-anticipated one; and the last question is how to build the above ∆-non-anticipated

m/s β for a given pair (α,∆).

The consideration of these questions is motivated by the presence of such step-by-step procedures in

the differential game theory, for example, in the alternating integral method, in pursuit–evasion problems

posed with use of counter-strategies, and in the method of guide control.

It is shown that the step-by-step construction of the value z ∈ α(ω) can be carried out for any steps-

implemented argument ω if and only if the above m/s β is non-empty-valued. The key point of the work

is the description of finite-step procedure for calculation of this ∆-non-anticipated m/s β. Conditions are

given that guarantee the m/s β be a non-anticipative one. Illustrative examples are considered that include,

in particular, control problems with disturbance.
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Introduction

Let there be non-empty sets of functions Z and Ω defined on the interval T. Let there also

be a m/f S defined on Ω with values in Z and a set N ⊂ Z. We will interpret these objects as

an abstract control problem under conditions of uncertainty (namely, an abstract game problem

of retention): the uncontrolled factor ω from the set Ω, acting on the dynamics S of the system,

determines the bundle of possible trajectories S(ω) ⊂ Z; the task of the control side is to select

the motion z ∈ S(ω) satisfying the phase constraints N : z ∈ N .

Without additional informational requirements, the solution of the problem is built explicitly:

we put α(ω) , N ∩ S(ω), ω ∈ Ω; then the criterion for the solvability of the problem is the

non-emptiness of the m/f α values, and the solution is any of its selectors. So, if we knew the

current disturbance ω̄ ∈ Ω, the retention problem would be solved by calling any trajectory z
of α(ω̄).

At the same time, in most control problems, information about the acting disturbance is not

available at all. In the rest cases, the best that the control side can count on by the time τ ∈ T
is the knowledge of the disturbance on the interval [t0, τ + δ] with a small δ > 0 (t0 is the initial

moment of the process). Such a prediction of disturbance behavior is admissible in certain control

problems, as well as in auxiliary control structures, due to properties of the system dynamics (the

mapping S) and restrictions describing the set of admissible disturbances Ω.

Thus, we suppose that the control side has the m/f α of global responses and the possibility

of a small time-ahead disturbance prediction. Under these conditions, the following step-by-step

scheme of the desired trajectory constructing naturally arises.

https://doi.org/10.35634/vm240307
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Let T , [t0, ϑ] and ∆, ∆ ⊂ T, be a finite set of instants that splits T into a finite set of

half-intervals (control steps) of length shorter then the above value δ: ∆ , {t0 = τ0 < τ1 < . . .
. . . < τn∆

= ϑ}. We call ∆ the partition of T and the pair (α,∆) will be called step-by-step

conditions. The procedure of step-by-step construction of the trajectory that meets the conditions

(α,∆) and the unknown disturbance ω̄ ∈ Ω works as follows:

— at the instant τ0, by the found disturbance ω1 ∈ Ω such that (ω1|[τ0, τ1)) = (ω̄|[τ0, τ1)), the

control side chooses the trajectory h1 ∈ Z corresponding to the disturbance ω1, i. e., such that

h1 ∈ α(ω1); here, (f |C) is the restriction of a function f to the set C;

— at any instant τi ∈ ∆, i ∈ 1..(n∆ − 1), the control side finds a disturbance ωi+1 ∈ Ω
reconstructing the unknown ω̄ up to the moment τi+1:

(ωi+1|[τ0, τi+1)) = (ω̄|[τ0, τi+1));

and, so, ωi+1 coincides with ωi up to the moment τi

(ωi+1|[τ0, τi)) = (ωi|[τ0, τi)).

At the previous steps of partition ∆, we have already supplied the desired trajectory hi for the

disturbance ωi, i. e., hi ∈ α(ωi); taking this into account, the control side looks for the trajectory

hi+1 ∈ α(ωi+1) corresponding to the disturbance ωi+1, that also coincides with the choice at the

previous steps:

(hi+1|[τ0, τi)) = (hi|[τ0, τi)).

The procedure is repeated for all moments of the partition ∆ except the last one, τn∆
. As a

result, we get the desired trajectory hn∆
that corresponds to the unknown in advance disturbance

ωn∆
= ω̄:

hn∆
∈ α(ωn∆

) = α(ω̄).

The possibility of realization the above step-by-step procedure in response to any admissible

disturbance ω ∈ Ω will be referred to as the feasibility of the conditions (α,∆).
The work deals with two questions. The first one is the connection between the feasibility

of conditions (α,∆) and the existence of some special multi-selector of the m/f α. The second

question is the construction of this m/s for given conditions (α,∆).
The motivation for the consideration was the above step-by-step scheme and similar ones,

which starting from the convergence problem [1, Sect. III] in theory of differential games arise,

for example, in the method of alternating integral [2], in pursuit–evasion problems using counter-

strategies [3–5], or in controlling with a guide under functional constraints on a disturbance

(see [6,7] and references). Besides game-theoretical problems, the above informational conditions

for control side can be found in the field of robotics: suppose a robot-manipulator extracts

from the container and submits for the further processing some parts poured into it. In this

case the disturbance/uncertainty is the arrangement of the parts in the container. It changes

(unpredictably as a rule) after the extraction of a part and remains practically constant/unchanged

during inactivity time. So, the disturbance can be effectively predicted.

It is clear that the non-anticipatory and non-emptiness of values of α or of its m/s implies

feasibility of (α,∆) for any ∆. Thus, the conditions for the existence of non-anticipative m/s (see,

for example, [8–10]) are sufficient conditions for the feasibility property. Note that the existence

of a non-anticipative selector [11–13] is also closely related to the existence of a non-anticipati-

ve m/s.

In this paper, we show that the feasibility of the conditions (α,∆) is equivalent to the existence

of a partially non-anticipative and non-empty-valued m/s of the m/f α: the above step-by-step

process can be implemented by means of this partially non-anticipative m/s for any disturbance.
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Here, the property of partial non-anticipatory is understood as the classical non-anticipatory prop-

erty that is satisfied at moments from ∆ only. This property is certainly weaker than the classical

one when it should be satisfied for all moments from T. Moreover, even the feasibility of the

conditions (α,∆) for any ∆ does not in general ensure the existence of a non-anticipative non-

empty-valued m/s of α.

So, to implement the above step-by-step procedure under conditions (α,∆), we need this

partially non-anticipative and non-empty-valued m/s of α. Here arises the second question: how

to build such a partially non-anticipative m/s.

With the aim, for any instant τ ∈ T we introduce a “projection” operator acting on set

of all m/f with values in the set of all τ -non-anticipative m/f. Then, by means of a superpo-

sition of such “projections” (corresponding to all τ ∈ ∆), we get the required partially non-

anticipative m/s. The procedure is completed in n∆ steps.

It seems the idea of constructing a non-anticipative m/s of a m/f by an iterative method in

order to obtain a direct solution of the dynamic optimization problem under conditions of an

uncertainty appeared in [14] (see also [8, 9]). The obstacle for applications of such an iterative

procedure is that in the general case it requires infinite number of iterations. For some classes of

control problems (see, for example, [15, Ch. 5]), conditions are given that ensure the finiteness

of iterations required to construct the function of the optimal guaranteed result, a resolving set of

initial positions, or a resolving non-anticipative strategy.

The work is close to the problems considered in [7]; the constructions used are similar to those

from [10] and the results supplements the results announced in [16]. In simple cases, the connec-

tion of partially non-anticipative m/s with ordinary non-anticipative m/s was noted in the course

of the presentation, but is not covered in detail. The outline of the article is as follows: Sect. 1

contains basic notation and terms; in Sect. 2, a more detailed and meaningful description of the

step-by-step procedure for constructing an optimal trajectory, its formalization, and the definition

of the feasibility of the (α,∆) conditions are given (see (2.3), (2.4)); in Sect. 3, the notion of a

partially non-anticipative m/f (m/s) is defined and the feasibility criterion (3.10) is formulated;

in Sect. 4, the above-mentioned “projection” operator on the set of all τ -non-anticipative m/f is

defined (see (4.1)); then, the definition of such “projection” operator on the set of m/f that are

non-anticipative for several such “moments” (see (4.18)) is given and the finite step procedure

for its constructing is provided (see Theorem 4.1); in Sect. 5, illustrative examples are given:

in Example 5.2, it is shown that the “projection” operators are not commutative; Example 5.3

provides the case when the feasibility of conditions (α,∆) for arbitrary ∆ not allow, nevertheless,

a resolving non-anticipative strategy (a non-anticipative non-empty-valued m/s of α); in Exam-

ple 5.4, an ordinal resolving non-anticipative strategy is constructed on the base of parameterized

family of partially non-anticipative m/s; in Sect. 6, open formal questions and prospects for using

of provided approach are briefly discussed.

§ 1. Definitions and notation

In the following, set-theoretic symbolism is used (quantifiers, propositional connectives, etc.);

hereinafter ∅ is empty set, , is an equality by definition,
def
⇔ is the equivalency by definition; a

family is a set all of whose elements are sets.

Let P(X) and P
′(X) denote respectively the families of all (Boolean of X) and of all non-

empty subsets of an arbitrary set X . If A and B are non-empty sets, then we denote by BA the

set of all mappings from A to B. If g ∈ P(B)A, then by (DOM) [g] we denote the region where

the m/f g takes nonempty values: (DOM) [g] , {a ∈ A | g(a) 6= ∅}. If f ∈ BA and C ∈ P
′(A),

then (f |C), where (f |C) ∈ BC , is the restriction of f to the set C: (f |C)(x) , f(x) ∀x ∈ C; in

the case when F ∈ P
′(BA), we set (F |C) , {(f |C) : f ∈ F}.
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We call a pair (X,≺) a partially ordered set (poset) if X is a non-empty set and ≺ ∈
∈ P(X ×X) is a non-strict partial order relation on X . In particular, (P(X),⊂) is a poset on

Boolean of X with the inclusion relation ⊂. For any poset (X,≺) and arbitrary subset S ∈ P(X)
we call S a chain if any elements of S are comparable: (x ≺ y) ∨ (y ≺ x), ∀x, y ∈ S. If (X,≺)
is a poset and M ⊂ X , denote by ⊤M , ⊤M ∈M , the greatest element of M , if it exists: x ≺ ⊤M

for all x ∈M .

We fix non-empty sets X, Y and T, as well as non-empty sets Ω ∈ P
′(YT), Z ∈ P

′(XT) and

the family T ∈ P
′(P′(T)); in other words, T is a non-empty family of non-empty subsets of T.

In order to reveal the connection with dynamic optimization problems, we will assume that T is

a “time interval”: T , [t0, ϑ], t0, ϑ ∈ R ; and T is a chain of the form T , {[t0, τ ] : τ ∈ T}.

Then Ω is a set of admissible disturbances, Z is a set of possible system trajectories.

Let ⊑ be a partial order on the set mappings P(Z)Ω: ∀α, β ∈ P(Z)Ω

(α ⊑ β)
def
⇔ (α(ω) ⊂ β(ω) ∀ω ∈ Ω).

For ω ∈ Ω, z ∈ Z and A ∈ P
′(T) we denote

Ω(ω|A) , {η ∈ Ω | (η|A) = (ω|A)}, Z(z|A) , {g ∈ Z | (g|A) = (z|A)}.

Note that the family of partitions ({Ω(ω|A) | ω ∈ Ω)A∈T forms a chain in the set of partitions

of Ω with an embedding relation (see, for example, [17, Sect. 3.1]), namely, for any A,A′ ∈ T ,

we have

(A ⊂ A′) ⇒ ((Ω(ω|A′) ⊂ Ω(ω|A) ∀ω ∈ Ω).

Here by partition of a set M we call a family of its nonempty mutually disjont subsets that cover

the set.

In terms of the family T we define the basic notion of non-anticipatory. Denote by N(T ) the

set of all non-anticipative m/f from P(Z)Ω:

N(T ) ,
{

z ∈ P(Z)Ω | (z(ω) |A) = (z(ω′) |A) ∀A ∈ T ∀ω ∈ Ω ∀ω′ ∈ Ω(ω|A)
}

.

By N
0
(T ) we denote the subset of all nonempty-valued m/f:

N
0
(T ) , {z ∈ N(T ) | (DOM) [z] = Ω}.

The most important are m/s of a given m/f: for α ∈ P(Z)Ω we denote

N(T )[α] , {z ∈ N(T ) | z ⊑ α}; (1.1)

then we define the subset of nonempty-valued m/s of m/f α:

N
0
(T )[α] , {z ∈ N

0
(T ) | z ⊑ α}. (1.2)

Let us introduce (see [18, § 3, item V]) pointwise defined “union” and “intersection” of m/f

from P(Z)Ω. Let M be a subset of P(Z)Ω. We assume that the pointwise union
∨

z∈M z and the

pointwise intersection
∧

z∈M z, for each ω ∈ Ω are determined by:

∨

z∈M

z(ω) ,
⋃

z∈M

z(ω),
∧

z∈M

z(ω) ,
⋂

z∈M

z(ω).

Note that in the form
∨

z∈M z and
∧

z∈M z we have, respectively, supremum and infimum of

the set M in the poset (P(Z)Ω,⊑). Unlike pointwise intersection, the result of pointwise union

inherits non-anticipatory property of operands (see Lemma 3.2 below).
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§ 2. Feasibility of step-by-step procedure

Let us define the property of feasibility in formal terms. Let ∆, ∆ ⊂ T, be a finite set of

instants: ∆ , {t0 = τ0 < τ1 < . . . < τn∆
= ϑ}. We will also refer to ∆ as the partition of the

time interval T. Denote by H∆ the subset of T of the form H∆ , {Hi , [τ0, τi] : i ∈ 1..n∆}.

For partition ∆ and a m/f α ∈ P(Z)Ω, denote by Ω∆ (Ω∆ ⊂ Ωn∆) and Z∆ (Z∆ ⊂ P(Z)n∆) the

sets defined as follows (in expressions like Qn, where n ∈ N, the number n is not considered as

a set):

Ω∆ , {(ωi)i∈1..n∆
∈ Ωn∆ | (ωi|Hi) = (ωi+1|Hi), i ∈ 1..n∆ − 1}, (2.1)

Z∆ , {(βi)i∈1..n∆
∈ P

′(Z)
n∆ | (βi |Hi) = (βi+1 |Hi), i ∈ 1..n∆ − 1}. (2.2)

Conditions (α,∆) for the step-by-step procedure are called feasible if there exists a tuple of m/s

(φi)i∈1..n∆
of m/f α,

φi ∈ P(Z)Ω, φi ⊑ α, i ∈ 1..n∆, (2.3)

such that the following inclusions are fulfilled:

(φi(ωi))i∈1..n∆
∈ Z∆ ∀(ωi)i∈1..n∆

∈ Ω∆. (2.4)

This definition simply retells the above informal description of the step-by-step procedure

in mathematical terms. Namely, let given a tuple (φi)i∈1..n∆
satisfying (2.3), (2.4), then the

construction of a step-by-step response to an unknown disturbance ω̄, due to the (α,∆) conditions,

can be realised like this:

— we find ω1 ∈ Ω such that (ω1|H1) = (ω̄|H1) and choose h1 ∈ Z that satisfies h1 ∈ φ1(ω1).
This can always be done, because by completing formally ω1 to an arbitrary tuple (ω1, . . . , ωn∆

)
from Ω∆ (for example, by setting ωn∆

, . . . , ω2 , ω1), due to (2.2) and (2.4) we get the

inequality φ1(ω1) 6= ∅ which enables us to choose the desired trajectory h1;
— if there are (ωi)i∈1..k+1 ∈ Ωk+1 and hk ∈ Z such that

(ωk+1|Hk+1) = (ω̄|Hk+1),

(ωi+1|Hi) = (ωi|Hi), i ∈ 1..k, (2.5)

hi ∈ φi(ωi), i ∈ 1..k, (2.6)

we choose hk+1 from the condition

hk+1 ∈ φk+1(ωk+1) ∩ Z(hk|Hk).

Such a choice is possible: the tuple (ω1, . . . , ωk+1) can be completed (see (2.5), (2.1)) to a

tuple (ω1, . . . , ωn∆
) from Ω∆ (for example, by setting ωn∆

, . . . , ωk+2 , ωk+1). Then, by

virtue of (2.2), (2.4), we get the equality

(φk+1(ωk+1)|Hk) = (φk(ωk)|Hk),

from which, taking into account (2.6), we get φ(ωk+1) ∩ Z(hk|Hk) 6= ∅. Hence, the choice

is possible to undertake. So, by induction, the step-by-step procedure can be continued up

to k + 1 = n∆.

It is clear that the non-emptiness of values and non-anticipatory property of α (that is,

when α ∈ N
0
(T )) or, in general, the existence of a non-empty-valued non-anticipative m/s β

of m/f α implies the feasibility of the conditions (α,∆) for any partition ∆. Indeed, then it

suffices to put φi , β, where β ∈ N
0
(T )[α]. At the same time, it can be seen from Example 5.3

that the feasibility of the conditions (α,∆) even for all partitions ∆ does not imply existence of

non-anticipative and non-empty-valued m/s of α. In following sections, we consider the property

of partial non-anticipatory of a m/f that is equivalent to the feasibility property.
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§ 3. Partially non-anticipative mappings: basic properties

For an arbitrary A ∈ T , we introduce the notion of A-non-anticipative m/f: a mapping

z ∈ P(Z)Ω is called A-non-anticipative if the implication

((ω1|A) = (ω2|A)) ⇒ ((z(ω1) |A) = (z(ω2) |A))

is true for all ω1, ω2 ∈ Ω. The subset of all A-non-anticipative m/f we denote by N({A}). The

subset of all non-empty-valued and A-non-anticipative m/f we denote by N
0
({A}):

N
0
({A}) , {z ∈ N({A}) | (DOM) [z] = Ω}.

Let H ∈ P
′(T ). We call a m/f from P(Z)Ω H-non-anticipative if the m/f is A-non-anticipative

for all A ∈ H. The set of all H-non-anticipative (non-empty-valued and H-non-anticipative) m/f

we denote by N(H) (N0
(H)):

N(H) =
⋂

A∈H

N({A})

(

N
0
(H) =

⋂

A∈H

N
0
({A})

)

.

For any α ∈ P(Z)Ω and H ∈ P
′(T ), designations N(H) [α] and N

0
(H) [α] are defined similarly to

those in (1.1) and (1.2), respectively.

Note two relations which we obtain immediately from the definitions: for arbitrary α ∈ P(Z)Ω

and H,H′ ∈ P(T )

(H ⊂ H′) ⇒
(

N
0
(H′) [α] ⊂ N

0
(H) [α]

)

&
(

N
0
(H′) [α] ⊂ N

0
(H) [α]

)

, (3.1)

(

N(H∪H′) [α] = N(H) [α] ∩N(H′) [α]
)

&
(

N
0
(H∪H′) [α] = N

0
(H) [α] ∩N

0
(H′) [α]

)

.

The following definitions and result of Lemma 3.1 is close to the idea of a monotonicity of

non-anticipatory m/fs (see [12, Remark 2.8]). Denote by sΩ(ω, ω
′) ∈ P(T ) the set of the form

(see [7, (3.1), (3.6)])

sΩ(ω, ω
′) , {H ∈ T | (ω|H) = (ω′|H)}, ω, ω′ ∈ Ω;

define the mapping sΩ(·, ·) ∈ T Ω×Ω given by sΩ(ω, ω
′) ,

⋃

H∈sΩ(ω,ω′)

H , for all ω, ω′ ∈ Ω and the

set TΩ, TΩ , {sΩ(ω, ω
′) : ω, ω′ ∈ Ω}.

The following lemma indicates (see (3.2)) cases of coincidence of sets of non-anticipative and

partially non-anticipative m/s. Thus, in particular, for a finite set of disturbances, the problem of

constructing a non-anticipative m/s can be reduced to constructing a partially non-anticipative m/s

with a finite set of test moments.

Lemma 3.1. Let the inclusions be fulfilled:

sΩ(ω, ω
′) ∈ sΩ(ω, ω

′), ∀ω, ω′ ∈ Ω. (3.2)

Then for any α ∈ P(Z)Ω the equality is true:

N(T )[α] = N(TΩ) [α] . (3.3)

In particular, condition (3.2) is fulfilled when elements of Ω are continuous from the left:

lim
τ→t−

ω(τ) = ω(t) ∀t ∈ T ∀ω ∈ Ω.
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P r o o f. By definitions (see (1.1), Sect. 3, (3.1)) the inclusion N(T )[α] ⊂ N(TΩ) [α] is ful-

filled. On the other hand, suppose β ∈ N(TΩ) [α] and (ω, ω′, H) ∈ Ω×Ω×T . If (ω|H) = (ω′|H),
then H ∈ sΩ(ω, ω

′), sΩ(ω, ω
′) ∈ TΩ, and

H ⊂ sΩ(ω, ω
′). (3.4)

Due to (3.2), we have (ω|sΩ(ω, ω
′)) = (ω′|sΩ(ω, ω

′)) and by the property of TΩ-non-anticipatory

of β, the relation is fulfilled: (β(ω) | sΩ(ω, ω
′)) = (β(ω′) | sΩ(ω, ω

′)). Wherefrom (see (3.4)) we

obtain the equality (β(ω) |H) = (β(ω′) |H). Since the choice of (ω, ω′, H) was arbitrary, we

have the inclusion β ∈ N(T )[α], i. e., N(TΩ) [α] ⊂ N(T )[α]. Then, the equality (3.3) is true. �

Due to the arbitrary choice of α, we also have the equality

N(T ) = N(TΩ).

The following is definitions and some properties of point-wise operations on non-anticipative m/f.

Lemma 3.2. Let α ∈ P(Z)Ω, H ⊂ T and M ∈ P
′(N(H) [α]). Then,

∨

z∈M

z ∈ N(H) [α] , (3.5)

(

∀ω ∈ Ω ∃z ∈ M : z(ω) 6= ∅

)

⇒

(

∨

z∈M

z ∈ N
0
(H) [α]

)

, (3.6)

⊤N(H)[α] =
∨

z∈N(H)[α]

z. (3.7)

P r o o f.

1. It is clear that
(

∨

z∈M

z ⊑ α

)

&

(

∧

z∈M

z ⊑ α

)

. (3.8)

We show that the mapping
∨

z∈M z inherits the property of H-non-anticipatory of elements from

M: let ω, ω′ ∈ Ω, A ∈ H, (ω|A) = (ω′|A) and γ ∈ (
∨

z∈M z(ω) |A). Then, there are z̄ ∈ M and

h ∈ z̄(ω) such that γ = (h|A). Therefore, taking into account the relation z̄ ∈ N(H) [α], we have

the inclusion γ ∈ (z̄(ω′) |A). Hence, there exists h′ ∈ z̄(ω′) such that γ = (h′|A), whence we

obtain the inclusion h′ ∈
∨

z∈M z(ω′) and, as a consequence, the inclusion γ ∈ (
∨

z∈M z(ω′) |A).

Since γ was chosen arbitrarily, we have the relation (
∨

z∈M z(ω) |A) ⊂ (
∨

z∈M z(ω′) |A). Hence,

due to symmetry of considerations and an arbitrary choice of ω, ω′, the implication follows:

((ω|A) = (ω′|A)) ⇒ (
∨

z∈M z(ω) |A) = (
∨

z∈M z(ω′) |A) for all ω, ω′ ∈ Ω. Due to the implica-

tion, taking into account the arbitrary choice of A, we have

∨

z∈M

z ∈ N(H). (3.9)

Relations (3.8), (3.9) together give the desired inclusion (3.5).

2. Premise in (3.6) implies the equality (DOM)
[
∨

z∈M z
]

= Ω, which in combination

with (3.5) gives the desired assertion.

3. By construction, the expression on the right side (3.7) ⊑-majorizes each element of the

set N(H) [α], while (3.5) for M , N(H) [α] implies the inclusion
∨

z∈N(H)[α]
z ∈ N(H) [α].

The lemma is proven. �
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Theorem 3.1. For a m/f α ∈ P(Z)Ω and a partition ∆ of interval T, the conditions (α,∆) are

feasible if and only if m/f α has a non-empty-valued and H∆-non-anticipative m/s:

((α,∆)− feasible) ⇔
(

N
0
(H∆) [α] 6= ∅

)

. (3.10)

P r o o f. Let ∆ , {t0 = τ0 < τ1 < . . . < τn∆
= ϑ}. Remind that H∆ , {Hi , [τ0, τi] :

i ∈ 1..n∆}. The definitions (2.1), (2.2) imply the equalities

Ω∆ = {(ωi)i∈1..n∆
∈ Ωn∆ | (ωi|Hij) = (ωj|Hij), i, j ∈ 1..n∆}, (3.11)

Z∆ = {(zi)i∈1..n∆
∈ P

′(Z)
n∆ | (zi |Hij) = (zj |Hij), i, j ∈ 1..n∆}, (3.12)

where ij , min{i, j} for all i, j ∈ 1..n∆.

1. Let N0
(H∆) [α] 6= ∅ and β ∈ N

0
(H∆) [α]. Consider a tuple (φi)i∈1..n∆

of the form φi , β,

i ∈ 1..n∆. By definition, it satisfies the equalities (DOM) [φi] = Ω, i ∈ 1..n∆, and the conditions

φi ⊑ β ⊑ α, i ∈ 1..n∆. This implies the fulfillment of the condition (2.3).

Let us check (2.4). Suppose a tuple (ωi)i∈1..n∆
is such that (ωi)i∈1..n∆

∈ Ω∆. Then, taking

into account the H∆-non-anticipatory property of β, from the equalities (ωk|Hkm) = (ωm|Hkm),
we get the equalities

(φk(ωk) |Hkm) = (β(ωk) |Hkm) = (β(ωm) |Hkm) = (φm(ωm) |Hkm) k,m ∈ 1..n∆.

Since (ωi)i∈1..n∆
, k and m were chosen arbitrarily, for the tuple (φi)i∈1..n∆

condition (2.4) is met.

We have shown that the left side of (3.10) follows from the right side.

2. Let us show that the right side of (3.10) follows from the left side. Assume that the

conditions (α,∆) are feasible. Then (see Sect. 2) there exists a tuple (φi)i∈1..n∆
of the form (2.3)

such that for any tuple (ωi)i∈1..n∆
∈ Ω∆ (see (3.11), (3.12)):

(φi(ωi))i∈1..n∆
∈ Z∆. (3.13)

Let m/f φα be defined by φα , φn∆
. Then we have the comparison φα ⊑ α and equality

(DOM) [φα] = Ω (indeed, from (3.12), (3.13), follow the inclusions φα(ω) ∈ P
′(Z) for all

ω ∈ Ω). To show that φα is H∆-non-anticipative, suppose ω, ω′ ∈ Ω and m ∈ 1..n∆ are such that

(ω|Hm) = (ω′|Hm). (3.14)

We put

ωi , ω, i ∈ 1..n∆, ω′
i ,

{

ω, i ∈ 1..m,

ω′, i ∈ (m+ 1)..n∆.

For the tuple (ωi)i∈1..n∆
, we obviously have the inclusion (ωi)i∈1..n∆

∈ Ω∆.

Show the inclusion (ω′
i)i∈1..n∆

∈ Ω∆. For the tuple (ω′
i)i∈1..n∆

and any i, j ∈ 1..n∆, we have:

if m < i 6 j, then

(ω′
i|Hij) = (ω′|Hij) = (ω′

j|Hij);

if i 6 m < j, then (see (3.14))

(ω′
i|Hij) = (ω|Hij) = (ω|Hi) = (ω′|Hi) = (ω′

j |Hi) = (ω′
j |Hij);

if i 6 j 6 m, then

(ω′
i|Hij) = (ω|Hij) = (ω′

j|Hij).

Thus (see (3.11)), the inclusion (ω′
i)i∈1..n∆

∈ Ω∆ takes place.
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Therefore, due to (3.13), the inclusions

(φi(ωi))i∈1..n∆
∈ Z∆, (φi(ω

′
i))i∈1..n∆

∈ Z∆,

considered (see (3.12)) under i = m and j = n∆, imply the equalities

(φm(ωm) |Hmn∆
) = (φn∆

(ωn∆
) |Hmn∆

), (φm(ω
′
m) |Hmn∆

) = (φn∆
(ω′

n∆
) |Hmn∆

). (3.15)

Moreover, from the definitions of ω′
m and ωm, we have ω′

m = ωm = ω and hence the equalities

(φm(ωm) |Hmn∆
) = (φm(ω) |Hm) = (φm(ω

′
m) |Hmn∆

). (3.16)

From the given equalities and the definition of φα we obtain (the second and the fourth equalities

follow from (3.12) and (3.15), the third follows from (3.16)):

(φα(ω) | [τ0, τm]) = (φn∆
(ωn∆

) | [τ0, τmn∆
]) = (φm(ωm) | [τ0, τmn∆

]) =

= (φm(ω
′
m) | [τ0, τmn∆

]) = (φn∆
(ω′

n∆
) | [τ0, τmn∆

]) = (φα(ω
′) | [τ0, τm]).

Since m, ω and ω′ were chosen arbitrarily, from the last equalities we obtain the property of

H∆-non-anticipatory of m/f φα. Taking into account the indicated properties of φα, we have the

inclusion φα ∈ N
0
(H∆) [α], i.e., the right side of (3.10) is fulfilled.

The proof is complete. �

§ 4. A construction of the partially non-anticipative multiselector

In this section, we give a description of partially non-anticipative m/s in terms of explicitly

defined operators that mapping a m/f to its m/s non-anticipative at a given point of T. In gen-

eral, such description is certainly non-constructive. Meanwhile, when applied to step-by-step

procedures, due to the finiteness of operations, the description allows to construct and analyze

corresponding partially non-anticipative m/s (see examples).

For an arbitrary A ∈ T , denote by 〈·〉A the operator that transforms the set P(Z)Ω and is

given by:

〈α〉A(ω) ,
{

h ∈ α(ω)
∣

∣ (h|A) ∈
⋂

ω′∈Ω(ω|A)

(α(ω′) |A)
}

∀α ∈ P(Z)Ω, ∀ω ∈ Ω. (4.1)

It immediately follows that 〈·〉A is non-expansive and isotonic as an operator in the poset

(P(Z)Ω,⊑): for arbitrary A ∈ T , α, β ∈ P(Z)Ω,

〈α〉A ⊑ α, (4.2)

(α ⊑ β) ⇒ (〈α〉A ⊑ 〈β〉A) . (4.3)

We also note (see Subsection 5.1) that in the general case the mapping T ∋ A 7→ 〈α〉A ∈ P(Z)Ω

is not isotonic as a mapping from poset (T ,⊂) to poset (P(Z)Ω,⊑).
Regarding the non-emptyness of values of m/f 〈α〉A, note the equivalence

(

〈α〉A(ω) 6= ∅

)

⇔
(

⋂

ω′∈Ω(ω|A)

(α(ω′) |A)
)

∀α ∈ P(Z)Ω, ∀ω ∈ Ω. (4.4)

Lemma 4.1. For any A ∈ T and any m/f α ∈ P(Z)Ω :
(i) the set of values of the operator 〈·〉A equals to the set of all A-non-anticipative m/f, as well

as to the set of fixed points of operator 〈·〉A :

〈P(Z)Ω〉A = N({A}) = Fix(〈·〉A); (4.5)
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(ii) the m/f 〈α〉A is the ⊑-greatest A-non-anticipative m/s of m/f α :

〈α〉A = ⊤N({A})[α]; (4.6)

(iii) the operator 〈·〉A is idempotent, i. e., for any α ∈ P(Z)Ω, the equality takes place:

〈〈α〉A〉A = 〈α〉A. (4.7)

P r o o f. 1. Let β , 〈α〉A. We show that β ∈ N({A}) [α]. Due to (4.2), we have β ⊑ α. It

remains to verify the A-non-anticipatory property of β.

Let ω, ω′ ∈ Ω be such that (ω|A) = (ω′|A) and ξ ∈ (β(ω) |A). Then (see (4.1))

ξ ∈
⋂

ω̄∈Ω(ω|A)

(α(ω̄) |A). (4.8)

By the choice of ω′, we have ω′ ∈ Ω(ω|A) and hence (see (4.8)) ξ ∈ (α(ω′) |A). Then, there

exists h′ ∈ α(ω′) such that (h′|A) = ξ. From the equality (ω|A) = (ω′|A), it also follows that

Ω(ω′|A) = Ω(ω|A) and, therefore,

⋂

ω̄∈Ω(ω|A)

(α(ω̄) |A) =
⋂

ω̄∈Ω(ω′|A)

(α(ω̄) |A).

As a result, h′ satisfies relations

h′ ∈ α(ω′), (h′|A) ∈
⋂

ω̄∈Ω(ω′|A)

(α(ω̄) |A),

i. e., (see (4.1)), h′ ∈ 〈α〉A(ω
′). Then ξ ∈ (β(ω′) |A). Since ξ was chosen arbitrarily, we have

(β(ω) |A) ⊂ (β(ω′) |A).

From the inclusion, due to an arbitrary choice of ω, ω′ and to symmetry of them in the consider-

ations, we obtain the desired A-non-anticipatory of β.

So, taking into account the definition of β, we have the inclusions

〈α〉A ∈ N({A}) [α] ⊂ N({A}). (4.9)

Due to the arbitrary choice of α, (4.9) implies an embedding

〈P(Z)Ω〉A ⊂ N({A}). (4.10)

2. Let us verify that 〈α〉A is the ⊑-greatest m/f in N({A}) [α]. Let

β ∈ N({A}) [α] , (4.11)

ω̄ ∈ Ω and h̄ ∈ β(ω̄). Then (4.11) implies that

(h̄|A) ∈ (β(ω) |A) ⊂ (α(ω) |A) ∀ω ∈ Ω(ω̄|A).

So, h̄ satisfies the relations

h̄ ∈ β(ω̄) ⊂ α(ω̄), (h̄|A) ∈
⋂

ω∈Ω(ω̄|A)

(β(ω) |A) ⊂
⋂

ω∈Ω(ω̄|A)

(α(ω) |A),
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i. e., (see (4.1)), h̄ ∈ 〈β〉A(ω̄) and h̄ ∈ 〈α〉A(ω̄). Since ω̄ and h̄ were chosen arbitrarily, we have

comparisons

β ⊑ 〈β〉A, (4.12)

β ⊑ 〈α〉A. (4.13)

Comparing (4.13), due to arbitrary choice of β, gives the equality (4.6).

3. Relation (4.12) and the non-expansion property of 〈·〉A (see (4.2)) imply the equality

β = 〈β〉A. Hence, due to arbitrary choice of β, we obtain for any α ∈ P(Z)Ω the em-

bedding N({A}) [α] ⊂ Fix(〈·〉A). For α of the form α(ω) , Z, ω ∈ Ω, we obviously have

N({A}) [α] = N({A}). So the following inclusion is correct:

N({A}) ⊂ Fix(〈·〉A). (4.14)

For any β ∈ Fix(〈·〉A), by the definition of a fixed point, the equality β = 〈β〉A is satisfied, i. e.,

β lies in the image of the set P(Z)Ω under the mapping 〈·〉A. Then the next inclusion is fulfilled:

Fix(〈·〉A) ⊂ 〈P(Z)Ω〉A. (4.15)

From relations (4.10), (4.14) and (4.15), we get the equalities (4.5).

4. Equalities (4.5) imply the equality (4.7).

The lemma is proven. �

From the lemma, we immediately obtain a corollary that allows us to filter out m/f’s that do

not have a non-empty-valued and non-anticipative m/s.

Corollary 4.1. For α ∈ P(Z)Ω and H ∈ P
′(T ), the following implications hold:

(

β ∈ N(H) [α]
)

⇒

(

β ⊑
∧

A∈H

〈α〉A

)

, (4.16)

(

(DOM)

[

∧

A∈H

〈α〉A

]

6= Ω

)

⇒
(

N
0
(H) [α] = ∅

)

⇒
(

N
0
(T )[α] = ∅

)

. (4.17)

P r o o f. 1. Let β satisfy the premise of (4.16). Then, from the relations

β ∈ N({A}) [α] , ∀A ∈ H,

and (4.6), we have

β ⊑ 〈α〉A, ∀A ∈ H,

which implies the conclusion of (4.16).

2. From (4.16) and (3.1), the implications (4.17) follow.

The corollary is proven. �

Since, for arbitrary H ∈ P
′(T ) and α ∈ P(Z)Ω, there exists the greatest (unique) ele-

ment ⊤N(H)[α] (see Lemma 3.2), then we introduce an operator 〈·〉H : P(Z)Ω 7→ P(Z)Ω of the

form

〈α〉H , ⊤N(H)[α], α ∈ P(Z)Ω. (4.18)

For H ⊂ T , we denote by FH the family of operators defined by FH , {〈·〉A | A ∈ H}. By

Fix(FH) we refer to the set of joint fixed points of the family FH: Fix(FH) ,
⋂

A∈H Fix(〈·〉A).
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Remark 4.1. It follows from the definition of N(H) and the equality (4.5) that the joint fixed

points of the family FH are H-non-anticipative mappings: Fix(FH) = N(H). Thus, in the case

when H is a singleton (H = {A}, A ∈ T ), we get the equality (see (4.6)) 〈·〉{A} = 〈·〉A.

We turn to the representation of the operator 〈·〉H in terms of superposition of operators

from FH. As already was noted, the representation of non-anticipative m/s in the form of fixed

points of non-expansive isotonic operators in a poset and, as a consequence, in the form of limits

of their iterative sequences, was proposed and studied in [8, 9, 14]. The iterative process in some

cases turns out to be finite (see, for example, [15, Ch. 5]), which makes it possible to obtain

efficient solutions to problems.

In this paper, despite the fact that the operators from FH are in general non-commutative (see

Subsection 5.2), a finite-step construction of the operator 〈·〉H is given in Theorem 4.1 for all

cases when the set H is finite. To this end, we give some definitions and auxiliary results.

Lemma 4.2. Let H1, H2 ∈ T , α ∈ P(Z)Ω, Υ ∈ P
′(Ω) and K ∈ P((Z |H1)) are such that

H1 ⊂ H2, (4.19)

(α(ω) |H2) = (α(ω′) |H2), ∀ω, ω′ ∈ Υ. (4.20)

Then, for β ∈ P(Z)Ω of the form

β(ω) ,

{

{h ∈ α(ω) | (h|H1) ∈ K}, ω ∈ Υ,

α(ω), ω ∈ Ω \Υ,
(4.21)

the equalities (4.20) are also satisfied:

(β(ω) |H2) = (β(ω′) |H2), ∀ω, ω′ ∈ Υ. (4.22)

P r o o f. Let ω, ω′ ∈ Υ and γ ∈ (β(ω) |H2). Then, by the choice of γ, there exists h ∈ α(ω)
such that

(h|H2) = γ, (4.23)

and at the same time (see (4.21))

(h|H1) ∈ K. (4.24)

From (4.20) and the choice of ω, ω′, it follows that there is h′ ∈ α(ω′) satisfying the equality

(h′|H2) = (h|H2). (4.25)

From (4.23), (4.25), we have

(h′|H2) = γ. (4.26)

In addition, (4.24), (4.25), and (4.19) imply

(h′|H1) ∈ K. (4.27)

From the inclusion of h′ ∈ α(ω′), (4.27) and the definition of β (see (4.21)), we get h′ ∈ β(ω′),
whence, taking into account (4.26), we have γ ∈ (β(ω′) |H2). Then, due to the arbitrary choice

of γ, we have (β(ω) |H2) ⊂ (β(ω′) |H2). From here, in view of the symmetry of the occurrence

of ω, ω′, the desired equality (4.22) is extracted. The proof is complete. �

In particular, if (4.19) is true, the application of 〈·〉H1 to H2-non-anticipative m/f α does not

violate this property.
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Corollary 4.2. For any H1, H2 ∈ T such that (4.19) is true, and any α from P(Z)Ω, the implica-

tion is fulfilled:

(α ∈ N(H2)) ⇒ (〈α〉H1 ∈ N(H2)).

P r o o f. Indeed, let H1, H2 ∈ T satisfy (4.19), α ∈ N(H2), and ω ∈ Ω is fixed. Let us

define K and Υ from Lemma 4.2 as follows:

K ,
⋂

ω̄∈Ω(ω|H1)

(α(ω̄) |H1), Υ , Ω(ω|H2).

Then, all conditions of Lemma 4.2 are satisfied and m/f β specified in (4.21) satisfies the equalities

(see (4.1)) for all ω̃ ∈ Υ = Ω(ω|H2):

β(ω̃) , {h ∈ α(ω̃) | (h|H1) ∈ K} , {h ∈ α(ω̃) | (h|H1) ∈
⋂

ω̄∈Ω(ω|H1)

(α(ω̄) |H1)} =

= {h ∈ α(ω̃) | (h|H1) ∈
⋂

ω̄∈Ω(ω̃|H1)

(α(ω̄) |H1)} , 〈α〉H1(ω̃).

Using the last relations and (4.22), we obtain:

(〈α〉H1(ω
′′) |H2) = (β(ω′′) |H2) = (β(ω′) |H2) = (〈α〉H1(ω

′) |H2) ∀ω′, ω′′ ∈ Υ. (4.28)

Due to arbitrary choice of ω, relations (4.28) are true for all ω′, ω′′ ∈ Ω(ω|H2) and all ω ∈ Ω,

i. e., we have inclusion 〈α〉H1 ∈ N(H2). The proof is complete. �

The following statement provides for a finite chain H and for an arbitrary m/f α a representa-

tion of greatest H-non-anticipative m/s of α as a finite superposition of operators from FH. The

provided construction inherits the features of the backward recurrent procedures [2,19,20] on the

one hand, and of the method of programmed iterations of A. G. Chentsov, on the other hand.

Theorem 4.1. Let α ∈ P(Z)Ω and H = {Hi ∈ T | i ∈ 1..k, k ∈ N} be a finite chain: (i 6 j) ⇔
⇔ (Hi ⊂ Hj) ∀i, j ∈ 1..k. Then the equality is fulfilled:

〈. . . 〈α〉Hk
. . .〉H1 = 〈α〉H. (4.29)

That is, the expression on the left side gives (see (4.18)) the greatest H-non-anticipative m/s of

m/f α.

P r o o f. 1. Denote φ , 〈. . . 〈α〉Hk
. . .〉H1 . Then, successively applying the opera-

tors 〈·〉Hk
,. . . ,〈·〉H1 to the m/f α and using the property (4.2), we arrive at the inequality

φ ⊑ α; (4.30)

also applying successively the operators 〈·〉Hk
,. . . ,〈·〉H1 to the inequality 〈α〉H ⊑ α taking into

account isotonicity (see (4.3)), we get the ratio

〈α〉H ⊑ φ. (4.31)

Therefore (see (ii) of Lemma 4.1), the assertion will be proven if we establish the H-non-anti-

cipatory property of φ.

2. Let’s show that, for all i ∈ 1..k, m/f φ holds the property (4.32) of Hi-non-anticipatory:

(φ(ω) |Hi) = (φ(ω′) |Hi), ∀ω, ω′ ∈ Ω, ω′ ∈ Ω(ω|Hi). (4.32)
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Case i = k. M/f 〈α〉Hk
is Hk-non-anticipative by construction (see (i) of Lemma 4.1):

(〈α〉Hk
(ω) |Hk) = (〈α〉Hk

(ω′) |Hk), ∀ω, ω′ ∈ Ω, ω′ ∈ Ω(ω|Hk). (4.33)

Since H is a chain and hence Hk−1 ⊂ Hk, taking into account Corollary 4.2, from (4.33), we get

the property of Hk-non-anticipatory of m/f 〈〈α〉Hk
〉Hk−1

:

(〈〈α〉Hk
〉Hk−1

(ω) |Hk) = (〈〈α〉Hk
〉Hk−1

(ω′) |Hk), ∀ω, ω′ ∈ Ω, ω′ ∈ Ω(ω|Hk). (4.34)

Due to relations (4.34) we can apply the reasoning to m/f 〈〈α〉Hk
〉Hk−1

and operator 〈·〉Hk−2
.

Continuing these arguments up to the application of the operator 〈·〉H1 inclusively, we obtain the

property of Hk-non-anticipatory for the m/f φ, i. e., we prove statement (4.32) for the case i = k.

Case i ∈ 1..(k − 1). Consider m/f ψ , 〈. . . 〈α〉Hk
. . .〉Hi

. Since the operator 〈·〉Hi
was used

last, by virtue of item (i) of Lemma 4.1, ψ is a Hi-non-anticipative m/f. Further, repeating the

arguments from the case i = k for the operators 〈·〉Hj
, j ∈ 1..(i− 1), we conclude that these

operators, applied to m/f ψ when constructing m/f φ, preserve the Hi-non-anticipatory property

of m/f ψ. Namely, for all j ∈ 1..(i− 1) the equalities are true:

(〈. . . 〈ψ(ω)〉Hi−1
. . .〉Hj

|Hi) = (〈. . . 〈ψ(ω′)〉Hi−1
. . .〉Hj

|Hi), ∀ω, ω′ ∈ Ω, ω′ ∈ Ω(ω|Hi).

In particular, for j = 1, we have (4.32) for i ∈ 1..(k − 1). So, m/f φ is Hi-non-anticipative for

all i ∈ 1..k:

φ ∈ N(H) [α] . (4.35)

From the relations (4.30), (4.35) and item (ii) of Lemma 4.1, the relation φ ⊑ 〈α〉H follows.

Together with (4.31), the relation gives us equality φ = 〈α〉H, i. e., the required equality (4.29) is

true. The proof is complete. �

Remark 4.2. Lemma 4.2 and Theorem 4.1 remain true in general case of sets T and T , i. e.,

when T is a set and T is a chain in poset (P′(T),⊂).

Let us return to step-by-step finding the selector under the conditions (α,∆). Theorem 4.1

specifies a way to construct m/f 〈α〉H∆
that is the ⊑-greatest H∆-non-anticipative m/s of α. If this

m/s turns out to be non-empty-valued, then, by virtue of Theorem 3.1, the step-by-step procedure

can be implemented by means of 〈α〉H∆
for any disturbance ω ∈ Ω (see Examples 5.3, 5.4).

At the same time, as in Example 5.3, an ordinary non-anticipative m/s of m/f α may be absent

(N0
(T )[α] = ∅).

In the case, when for some ω ∈ Ω the value of the m/s is empty (〈α〉H∆
(ω) = ∅) due to

⊑-majority of 〈α〉H∆
in N(H∆) [α], we obtain the fact of unrealizability (Theorem 3.1) of step by

step procedure under the conditions (α,∆) and, as a consequence (see (3.1)), under any other

conditions (α,∆′) where ∆ ⊂ ∆′.

§ 5. Examples

5.1. Example 1

Let T , [0, 3], T , {[0, τ ] | τ ∈ T} and Y = X = R. The sets Ω and Z are shown in

Figure 1. Let m/f β be of the form

β(ω) =











{h1, h2}, ω = ω1,

{h1, h2, h3}, ω = ω2,

{h2, h3}, ω = ω3.
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0 1 2 3

ω1 7→ {h1, h2}

ω2 7→ {h1, h2, h3}

ω3 7→ {h2, h3}

0 1 2 3

h1

h2

h3

Ω

Z

Fig. 1. Example 1

For this m/f, using definition (4.1), we get:

〈β〉[0,1](ω) =











{h1, h2}, ω = ω1,

{h1, h2}, ω = ω2,

{h2}, ω = ω3,

〈β〉[0,2](ω) =











{h1, h2}, ω = ω1,

{h2, h3}, ω = ω2,

{h2, h3}, ω = ω3.

It is clear that the inequalities 〈β〉[0,1] 6⊑ 〈β〉[0,2], 〈β〉[0,2] 6⊑ 〈β〉[0,1] are fulfilled. That is, in general,

the mapping T ∋ H 7→ 〈β〉H ∈ P(Z)Ω, considered as a mapping from poset (T ,⊂) in poset

(P(Z)Ω,⊑) does not posses the isotonic property.

5.2. Example 2

The example shows that the operators 〈·〉H , H ∈ T , can be non-commutative. Let T , [0, 3],
T , {[0, τ ] | τ ∈ T} and Y = R, X = X1 ×X2 = R

2. Denote

ωij(t) , (−1)i max{0, t− j}, hij(t) , ai (1 + max{0, t− j}) , i ∈ 1..4, j ∈ 0..2, t ∈ [0, 3],

where a1 , (1, 0), a2 , (0, 1), a3 , (−1, 0), a4 , (0,−1). Put (see Figure 2; for reasons of

symmetry of Z, the projection onto the plane T×X2 is only shown)

Ω , {ωij | i, j ∈ 1..2}, Z , {hij | i ∈ 1..4, j ∈ 0..2}.

Thus, all elements in Ω and Z are distinct. Moreover, if k = i, then

(ωkl|[0,min{l, j}]) = (ωij |[0,min{l, j}]), (hkl|[0,min{l, j}]) = (hij |[0,min{l, j}]).
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0 1 2 3

ω11 7→ {h10, h11, h12, h21, h32, h41}

ω12 7→ {h20, h21, h22, h11, h32, h42}

ω21 7→ {h30, h31, h32, h12, h21, h41}

ω22 7→ {h40, h41, h42, h12, h22, h31}

0 1 2 3

h10, h11 h12, h30 h31, h32

h20

h40

h21

h41

h22

h42

Ω

Z

Fig. 2. Example 2

Let m/f α be given by

α(ω11) , {h10, h11, h12, h21, h32, h41}, α(ω21) , {h30, h31, h32, h12, h21, h41},

α(ω12) , {h20, h21, h22, h11, h32, h42}, α(ω22) , {h40, h41, h42, h12, h22, h31}.

Let H1 , [0, 1]. Then Ω = Ω(ω|H1) for all ω ∈ Ω; hence, by definition (4.1), we have the

equalities

〈α〉H1(ω11) = {h11, h12, h21, h32, h41},

〈α〉H1(ω12) = {h21, h22, h11, h32, h42},

〈α〉H1(ω21) = {h31, h32, h12, h21, h41},

〈α〉H1(ω22) = {h41, h42, h12, h22, h31}.

Let H2 , [0, 2]. Then Ω(ω11|H2) = {ω11}, Ω(ω21|H2) = {ω21}, Ω(ω12|H2) = Ω(ω22|H2) =
= {ω12, ω22}; and, by virtue of (4.1), we get

〈α〉H2(ω11) = {h10, h11, h12, h21, h32, h41},

〈α〉H2(ω12) = {h22, h42},

〈α〉H2(ω21) = {h30, h31, h32, h12, h21, h41},

〈α〉H2(ω22) = {h42, h22}.
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Then, for m/f 〈〈α〉H1〉H2 we have

〈〈α〉H1〉H2(ω11) = {h11, h12, h21, h32, h41},

〈〈α〉H1〉H2(ω12) = {h22, h42},

〈〈α〉H1〉H2(ω21) = {h31, h32, h12, h21, h41},

〈〈α〉H1〉H2(ω22) = {h42, h22}.

Finally, for the m/f 〈〈α〉H2〉H1 we have the relations:

〈〈α〉H2〉H1(ω11) = {h21, h41},

〈〈α〉H2〉H1(ω12) = {h22, h42},

〈〈α〉H2〉H1(ω21) = {h21, h41},

〈〈α〉H2〉H1(ω22) = {h42, h22}.

It is easy to see that there is an inequality 〈〈α〉H2〉H1 6= 〈〈α〉H1〉H2 indicating that the opera-

tors 〈·〉H1 and 〈·〉H2 are not commutative.

Since the composition 〈〈·〉H2〉H1 corresponds to the order specified in Theorem 4.1, the re-

sult — 〈〈α〉H2〉H1 — presents an {H1, H2}-non-anticipative m/s of α.

5.3. Example 3

In this example, we consider an approaching game problem in which the m/f of optimal

trajectories does not have any non-empty-valued and non-anticipative m/s, that is, the problem

is not solvable in the class of non-anticipative strategies built on the base of usual (not relaxed)

controls. At the same time, the m/f of optimal trajectories has the property of feasibility for all

partitions of the interval T; i. e., the step-by-step procedure can be fulfilled for any partition and

any disturbance.

Let the trajectories of the controlled system be given by solutions of the following Cauchy

problem:
{

ẋ(t) = u(t)− v(t), t ∈ T , [0, 2],

x(0) = 0 ∈ R, u ∈ U, v ∈ V,
(5.1)

U , {ui | i ∈ N}, V , {vi | i ∈ N}, (5.2)

ui(t) ,

{

0, t ∈ [0, 1],

1− 1/i, t ∈ (1, 2],
vi(t) ,

{

0, t ∈ [0, 1 + 1/i],

1, t ∈ (1 + 1/i, 2],
i ∈ N. (5.3)

For system (5.1)–(5.3), consider the problem of meeting its trajectories x(·) with the set

M , {(2, x) ∈ T × R | x > 0} by choosing programmed control u(·) ∈ U for any possible

disturbances v(·) ∈ V. Denote by x(·, u, v), where x(·, u, v) ∈ C(T,R), the solution of the

Cauchy problem (5.1)–(5.3) where a control u ∈ U and a disturbance v ∈ V are given. Denote

Ū , {ui | i ∈ N}, V̄ , {vi | i ∈ N} (see Figure 3)

ui(t) ,

∫ t

0

ui(s) ds, vi(t) ,

∫ t

0

vi(s) ds, i ∈ N, t ∈ T.

It is easy to verify that, for xij(·) , x(·, ui, vj), the equalities (see (5.2), (5.3))

xij(t) = ui(t)− vj(t), ui(2) = vi(2) = 1−
1

i
, i, j ∈ N, t ∈ T,
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0 1 τ 2
v1

v2

v3

v4
··
····
·

0 1 τ 2
u1

u2

u3

u4
··
····
·

V̄

Ū

Fig. 3. Example 3

and, consequently, the equalities

xij(2) =
1

j
−

1

i
, i, j ∈ N,

are fulfilled. Hence, given a disturbance vj(·) ∈ V and a control ui(·), the meeting criterion can

be written as the inequality i > j. Therefore, for any disturbance vj(·) ∈ V, denoting by α(vj(·))
the set of all controls in U that solve the meeting problem, we can write

α(vj) = {uj, uj+1, . . .} = {ui ∈ U | i > j}. (5.4)

That is, in (5.4) we have the m/f of optimal answers. The family of subsets T , implementing

“flow of time”, has its usual form: T , {[0, τ ] | τ ∈ T}.

We choose a finite partition ∆ ⊂ T and show that conditions (α,∆) are feasible. To this end,

for H∆ ∈ T , we construct using (4.29) H∆-non-anticipative m/s of α and verify that its values be

non-empty. Thus, by virtue of (3.10), the feasibility of step-by-step procedure under conditions

(α,∆) will be proven for arbitrary finite partition ∆.

1. Denote Hτ , [0, τ ]. Then

Ω(v|Hτ ) = V, τ ∈ [0, 1], v ∈ V;

Ω(vj |Hτ ) =

{

{vi, . . . , v1}, j 6 i,

{vj}, j > i,
τ ∈

(

1 +
1

i+ 1
, 1 +

1

i

]

, i, j ∈ N.
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Hence, by direct calculation (see (4.1), (5.4)), we obtain the representation of m/f 〈α〉Hτ :

〈α〉Hτ = α, τ ∈ [0, 1], (5.5)

〈α〉Hτ (vj) =

{

α(vi), j 6 i,

α(vj), j > i,
τ ∈

(

1 +
1

i+ 1
, 1 +

1

i

]

, i, j ∈ N. (5.6)

From the equalities (5.5) and (5.6), the relations follow:

(DOM) [〈α〉Hτ ] = Ω, ∀τ ∈ T. (5.7)

Moreover, it is not difficult to check that the representations (5.5) and (5.6) hold for a wider set

of m/f, namely, for any β ⊑ α, the formulas take place:

〈β〉Hτ = β, τ ∈ [0, 1],

and, for any β of the form β , 〈α〉Hξ
, ξ ∈ T, the equalities are true:

〈β〉Hτ (vj) =

{

β(vi), i > j,

β(vj), i < j,
τ ∈

(

1 +
1

i+ 1
, 1 +

1

i

]

, i, j ∈ N. (5.8)

2. Using presentations (5.5)–(5.8) in accordance with (4.29), we finally obtain the equality

〈α〉H∆
= 〈α〉[0,min{∆∩(1,2]}].

Since ∆ is finite and ∆ ∩ (1, 2] 6= ∅, we have 〈α〉H∆
= 〈α〉Hτ̄ for same Hτ̄ ∈ H∆. Then, in

view of (5.7), we receive non-emptiness of values of m/f 〈α〉H∆
. That is, non-emptiness of the

set N0
(H∆) [α] of all non-empty-valued and H∆-non-anticipative m/s of α. Hence, taking into

account Theorem 3.1, we conclude that conditions (α,∆) are feasible.

3. Let us show that the problem has no solution in the class of non-anticipative strategies

(quasi-strategies), that is, m/f α (5.4) does not have non-empty-valued non-anticipative m/s:

N
0
(T )[α] = ∅.

Let’s say the contrary that is m/f β ∈ N
0
(T )[α] was found. Then (3.1) implies that N0

(T ) [α] ⊂

⊂ N
0
(H) [α], where H , {Hk | k ∈ N} and Hk , [0, 1 + 1/k]. Let’s use the implication (4.16);

by assumption, we have β ∈ N
0
(T ) [α] ⊂ N

0
(H) [α], hence, β ∈

∧

k∈N〈α〉Hk
. Then, taking into

account (5.6) and (5.4), for each j ∈ N we obtain

β(vj(·)) ⊂
⋂

k∈N

〈α〉Hk
(vj(·)) =

⋂

k>j

α(vk(·)) = ∅.

So, (DOM) [β] = ∅ and relation β ∈ N
0
(T )[α] is impossible. Then, we have N

0
(T )[α] = ∅.

5.4. Example 4

Consider an example from [7, § 5]. We consider a construction of optimal non-anticipative

strategy [7, (5.3)] by means of partially non-anticipative m/s.

As in previous example, the controlled system is given by solutions of the following Cauchy

problem:

ẋ(t) = u(t) + v(t), t ∈ T , [0, 3], x(0) = 0,

where x(t) ∈ R, the control u and disturbance v are Borel measurable functions subject to the

instantaneous constraints u(t) ∈ P , [−1, 1], v(t) ∈ Q , {−1, 0, 1}, t ∈ T.
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Denote by x(·, u, v), where x(·, u, v) ∈ C(T,R), the solution of the Cauchy problem where a

control u ∈ U and a disturbance v ∈ V are given.

Suppose that the set V of admissible disturbances consists of two functions, V , {v1, v2},

where:

v1(t) ,

{

0, if t ∈ [0, 1] ∪ (2, 3],

1, if t ∈ (1, 2],
v2(t) ,

{

0, if t ∈ [0, 1],

−1, if t ∈ (1, 3].

Since the set of disturbances is continuous from the left, the condition (3.2) is satisfied. Then,

taking into account the finite number of disturbances and by virtue of Lemma 3.1, we have

(see (3.3)), for any m/f α, α ∈ P
′(U)V, the equalities:

N(T )[α] = N([0,1]) [α] . (5.9)

So, the class of non-anticipative strategies in this problem coincides with the set of all [0, 1]-
non-anticipative m/f (from P

′(U)V); here U is the set of all possible realizations of control.

The control minimizes the following cost functional:

J(u, v) , −|x(3; u, v)|, u ∈ U, v ∈ V.

Namely, the goal of control is to minimize the guaranteed result in the class of non-anticipative

strategies from P
′(U)V.

Since we are considering a guaranteed state of the problem, denote by ρ (yet unknown)

optimal (minimal) guaranteed result. Let us compose the m/f αρ ∈ P(U)V, which describes the

ρ-optimal control responses to the realized disturbance.

Taking into account the obvious inequality ρ 6 0, we write the values of αρ depending on ρ:

αρ(v) =

{

u ∈ U |

∣

∣

∣

∣

∫ 3

0

(

u(s) + v(s)
)

ds

∣

∣

∣

∣

> −ρ

}

, v ∈ V.

Then we get the equalities

αρ(v1) =

{

u ∈ U |

(
∫ 3

0

u(s) ds 6 ρ− 1

)

∨

(

−ρ− 1 6

∫ 3

0

u(s) ds

)}

, (5.10)

αρ(v2) =

{

u ∈ U |

(
∫ 3

0

u(s) ds 6 ρ+ 2

)

∨

(

−ρ+ 2 6

∫ 3

0

u(s) ds

)}

. (5.11)

It is clear that the set of values of the parameter ρ for which αρ has a non-empty-valued and

non-anticipative m/s is bounded. That is, the set has infimum ρ̄, which is the optimal result of the

control side in the class of non-anticipative strategies. So, keeping in mind (5.9), we can write:

ρ̄ = min
{

ρ ∈ R | (DOM)
[

⊤N(T )[αρ]

]

= V

}

= min
{

ρ ∈ R | (DOM)
[

〈αρ〉{[0,1]}
]

= V
}

.

(5.12)

The m/f 〈αρ〉{[0,1]} is defined by (see (4.1)):

〈αρ〉[0,1](v) ,
{

u ∈ αρ(v)
∣

∣

∣
(u|[0, 1]) ∈

⋂

(v′|[0,1])=(v|[0,1])

v′∈V

(αρ(v
′) | [0, 1])

}

, v ∈ V.

Due to this definition and (4.4) the condition (DOM)
[

〈αρ〉{[0,1]}
]

= V is equivalent to the

inequality
⋂

v′∈{v1,v2}

(αρ(v
′) | [0, 1]) 6= ∅. (5.13)
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Thus, to find out the value of optimal result ρ̄ (5.12), we have to calculate the minimum of ρ
for which inequality (5.13) is true. To this end we express the sets (αρ(v

′) | [0, 1]) in terms of

αρ(v
′), v′ ∈ V: in accordance with (5.10), (5.11) we have

(αρ(v1) | [0, 1]) =

{

u ∈ U

∣

∣

∣

(

ρ− 1− min
u′∈U

∫ 3

1

u′(s) ds >

∫ 1

0

u(s) ds

)

∨

(
∫ 1

0

u(s) ds > −ρ− 1−max
u′∈U

∫ 3

1

u′(s) ds

)

}

,

(αρ(v2) | [0, 1]) =

{

u ∈ U

∣

∣

∣

(

ρ+ 2− min
u′∈U

∫ 3

1

u′(s) ds >

∫ 1

0

u(s) ds

)

∨

(
∫ 1

0

u(s) ds > −ρ+ 2−max
u′∈U

∫ 3

1

u′(s) ds

)

}

.

Then the inequality (5.13) is true if and only if the sets (αρ(v1) | [0, 1]) and (αρ(v2) | [0, 1]) have

common elements or, in other words, there exists u ∈ U for which the following statement is true:

(

(

ρ+ 1 >

∫ 1

0

u(s) ds
)

∨
(

∫ 1

0

u(s) ds > −ρ− 3
)

)

&

(

(

ρ+ 4 >

∫ 1

0

u(s) ds
)

∨
(

∫ 1

0

u(s) ds > −ρ
)

)

. (5.14)

Solving the minimization problem (5.12) with the constraints (5.14) leads us to the variant

(see (upper-right)&(lower-left) braces in (5.14)):

ρ̄ = min

{

ρ ∈ R |

{

u ∈ U | ρ+ 4 >

∫ 1

0

u(s) ds > −ρ− 3

}

6= ∅

}

that implies ρ+ 4 > −ρ− 3 or ρ > −3.5.
So, for the value ρ̄ of optimal guarantee in the class of non-anticipative strategies, we have

the equality ρ̄ = −3.5 (= Γ from [7, § 5]); the greatest [0, 1]-non-anticipative m/s of αρ̄ is

non-empty-valued and given by the decision of minimization problem (5.12), (5.14):

〈αρ̄〉[0,1](v1)(t) ,

{

u(t), u ∈ U([0,1],0.5), t ∈ [0, 1],

1 = argmaxw∈P w, t ∈ (1, 3],

〈αρ̄〉[0,1](v2)(t) ,

{

u(t), u ∈ U([0,1],0.5), t ∈ [0, 1],

−1 = argminw∈P w, t ∈ (1, 3],

where

U([0,1],0.5) ,
{

u ∈ U | (u|[0, 1]) ∈
⋂

v∈{v1,v2}

(αρ̄(v) | [0, 1])
}

=

=
{

u ∈ U |

∫ 1

0

u(s) ds = ρ̄+ 4 = −ρ̄− 3 = 0.5
}

.

In accordance with (ii) from Lemma 4.6, for the optimal non-anticipative strategy α0

from [7, § 5], we have the inclusion α0 ⊑ 〈αρ̄〉[0,1].
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§ 6. Conclusion

Since the topic of the paper is at the initial stage of development, many details and even

essential issues remain unexplored. Here, we make some remarks on them. Expression (4.29),

in view of the maximality properties of (4.6) and (4.18), gives hope for new results on existence

of a m/f non-anticipative m/s. Concerning applications, an interesting question arises about the

convergence of guaranteed results for H∆-non-anticipatory m/s of a m/f α to the guaranteed result

of the non-anticipative m/s of α as the step of the partition ∆ tends to zero. Another question is

the implementation of the proposed constructions in a solution of dynamic optimization problem.

Namely, we need a systematic approach to resolving of the mathematical programming and the

parametric optimization problems that arise when “calculating” partially non-anticipatory m/s (see

the last example).
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О построении частично неупреждающего мультиселектора и его использовании в задачах ди-
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В контексте задач гарантированного управления рассматриваются следующие вопросы: связь воз-

можности пошагового (на заданном разбиении ∆) вычисления селектора мультифункции (м/ф) α для

неизвестного, восстанавливаемого по шагам ∆, аргумента с существованием у α мультиселектора

(м/с) со специальным свойством (названым здесь ∆-неупреждаемостью или частичной неупреждае-

мостью); второй вопрос — способы построение такого м/с для произвольной пары (α,∆); и послед-

ний — поиск эффективно проверяемых условий, обеспечивающих совпадение ∆-неупреждающего

м/с с неупреждающим.

Мотивом к рассмотрению этих вопросов послужила схема управления, возникающая, например,

в методе альтернированного интеграла, при использовании в управлении контрстратегий, или в

некоторых задачах при использовании метода управления с поводырём.

В работе показано, что рассматриваемая пошаговая схема управления реализуема тогда и только

тогда, когда м/ф α имеет ∆-неупреждающий и непустозначный м/с. Дана конечношаговая процедура

построения такого м/с. Указаны эффективно проверяемые условия, обеспечивающие неупреждае-

мость частично неупреждающего м/с. Рассмотрены иллюстрирующие примеры.
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