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COMPLETE CHARACTERIZATION OF BRIDGE GRAPHS WITH LOCAL

ANTIMAGIC CHROMATIC NUMBER 2

An edge labeling of a connected graph G = (V,E) is said to be local antimagic if it is a bijection

f : E → {1, . . . , |E|} such that for any pair of adjacent vertices x and y, f+(x) 6= f+(y), where the

induced vertex label f+(x) =
∑

f(e), with e ranging over all the edges incident to x. The local antimagic

chromatic number of G, denoted by χla(G), is the minimum number of distinct induced vertex labels over

all local antimagic labelings of G. In this paper, we characterize s-bridge graphs with local antimagic

chromatic number 2.
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Introduction

In 1994, Hartsfield and Ringer [3] introduced the concept of antimagic labeling of a

graph G(V,E). A bijective edge labeling f : E → {1, . . . , |E|} is called an antimagic label-

ing of G if for any two distinct vertices u and v, w(u) 6= w(v), where w(u) =
∑

f(e) with e
ranging over all the edges incident to u. The most famous unsolved problems are the following

conjectures [3].

Conjecture 1. Every connected graph other than K2 is antimagic.

Conjecture 2. Every tree other than K2 is antimagic.

Arumugam et al. [1] introduced the concept of local antimagic labeling and local antimagic

chromatic number. A connected graph G is said to be local antimagic if it admits a local an-

timagic edge labeling, i. e., a bijection f : E → {1, . . . , |E|} such that the induced vertex labeling

f+ : V → Z given by f+(u) =
∑

f(e) (with e ranging over all the edges incident to u) has the

property that any two adjacent vertices have distinct induced vertex labels. Thus, f+ is a coloring

of G. Clearly, the order of G must be at least 3. The vertex label f+(u) is called the induced color

of u under f (the color of u, for short, if no ambiguous occurs). The number of distinct induced

colors under f is denoted by c(f), and is called the color number of f . The local antimagic

chromatic number of G, denoted by χla(G), is min{c(f) | f is a local antimagic labeling of G}.

Clearly, 2 ≤ χla(G) ≤ |V (G)|. In [4], Haslegrave proved that the local antimagic chromatic

number is well-defined for every connected graph except K2.

In [1], the authors determined the local antimagic chromatic number of many families of

standard graphs including paths, cycles, certain complete bipartite graphs and wheel graphs.

In [5], Lau et al. gave a sharp lower bound of χla(G ∨ On), where G ∨ On is the join product

of G and the null graph of order n. They also completely settled the local antimagic chromatic

number of wheels and complete bipartite graphs. In [6], the authors also determined the local

antimagic chromatic number of the join product of many cycle-related graphs. However, very

little is known about graphs with local antimagic chromatic number 2 (see [1, Theorem 2.11]

and [7, Theorem 2.4]).
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§ 1. Bridge graphs

A graph consisting of s paths joining two vertices is called an s-bridge graph, which is

denoted by θ(a1, . . . , as), where s ≥ 2 and 1 ≤ a1 ≤ a2 ≤ . . . ≤ as are the lengths of the s paths.

For convenience, we shall let θs = θ(a1, a2, . . . , as) if there is no confusion. In this paper, we

shall characterize θs with χla(θs) = 2.
The contrapositive of the following lemma in [6, Lemma 2.1] or [7, Lemma 2.3] gives a

sufficient condition for a bipartite graph G to have χla(G) ≥ 3.

Lemma 1.1 ( [7, Lemma 2.3]). Let G be a graph of size q. Suppose there is a local antimagic

labeling of G inducing a 2-coloring of G with colors x and y, where x < y. Let X and Y be the

sets of vertices colored x and y, respectively. Then G is a bipartite graph with bipartition (X, Y )

and |X| > |Y |. Moreover, x|X| = y|Y | = q(q+1)
2

.

Clearly, 2 ≤ χ(θ(a1, a2, . . . , as)) ≤ 3 and the lower bound holds if and only if a1 ≡ . . . ≡ as
(mod 2). By Lemma 1.1, we immediately have the following lemma.

Lemma 1.2. For s ≥ 2 and 1 ≤ i ≤ s, if χla

(

θ(a1, a2, . . . , as)
)

= 2, then ai ≡ 0 (mod 2).
Otherwise, χla

(

θ(a1, a2, . . . , as)
)

≥ 3.

Throughout this paper, we shall use a[n] to denote a sequence of length n in which all terms

are a, where n ≥ 2. For integers 1 ≤ a < b, we let [a, b] denote the set of integers from a
to b. Interested readers may refer to [2, 8, 9] for more results related to local antimagic chromatic

number of graphs.

§ 2. Main result

In this section, we assume χla(θs) = 2. So, by Lemma 1.2, θs = θ(a1, . . . , as) is bipartite

and all ai are even. When s = 2, θs is a cycle, whose local antimagic chromatic number is 3.

Thus, s ≥ 3.
For integers i and d and positive integer s, let As(i; d) be the arithmetic progression of length s

with common difference d and first term i. We first have two useful lemmas.

Lemma 2.1. Suppose s, d ∈ N.

(a) For i, j ∈ Z, the sum of the k-th term of As(i; d) and that of As(j;−d) is i+j for k ∈ [1, s];
and the sum of the k-th term of As(i; d) and the (k − 1)-st term of As(j;−d) is i + j + d
for k ∈ [2, s].

(b) If 0 < |i1 − i2| < d, then As(i1; d) ∩ As(i2,±d) = ∅.

P r o o f. It is easy to obtain (a). We prove the contrapositive of (b). Suppose As(i1; d) ∩
∩ As(i2,±d) 6= ∅. Let a ∈ As(i1; d) ∩ As(i2,±d). Now, a = i1 + j1d = i2 + j2d for some

integers j1, j2. Thus, |i1 − i2| = d|j2 − j1| ≥ d if j2 6= j1 or else |i1 − i2| = 0 if j2 = j1. �

Lemma 2.2. Suppose δ ∈ [0, n2] \ {2, n2 − 2} for some integer n ≥ 2. There is a subset B of

An(1; 2) such that the sum of integers in B is δ.

P r o o f. If δ = 0, then we may choose B = ∅. Suppose 1 ≤ δ ≤ 2n− 1 and δ 6= 2. If δ is odd,

then choose B = {δ}. If δ is even, then δ ≥ 4. We may choose B = {1, δ − 1}.

Suppose δ > 2n − 1, then we may choose the largest k such that κ =
n
∑

j=n−k+1

(2j − 1) ≤ δ.

Let τ = δ − κ. By the choice of k, 0 ≤ τ < 2n− 2k − 1. There are 3 cases.
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1. Suppose τ = 0. B = Ak(2n− 2k + 1; 2) is the required subset.

2. Suppose τ is odd. B = Ak(2n− 2k + 1; 2) ∪ {τ} is the required subset.

3. Suppose τ is even. If τ ≥ 4, then we may choose B = Ak(2n − 2k + 1; 2) ∪ {τ − 1, 1}.

If τ = 2, then 2 = τ < 2n − 2k − 1. We have k ≤ n − 2. If k ≤ n − 3, then choose

B = Ak−1(2n− 2k + 3; 2) ∪ {2n− 2k − 1, 3, 1}. If k = n− 2, then κ = n2 − 4 and hence

δ = n2 − 2 which is not a case. �

Let A1 and A2 be two sequences of length n. We combine these two sequences as a sequence

of length 2n, denoted A1 ⋄ A2, whose (2i− 1)-st term is the i-th term of A1 and the (2i)-th term

is the i-th term of A2, 1 ≤ i ≤ n.

Theorem 2.1. For s ≥ 3, χla(θs) = 2 if and only if θs = K2,s with even s ≥ 4 or the size m of θs
is greater than 2s+ 2 and θs is one of the following graphs:

(1) θ(4l[3l+2], (4l + 2)[l]), l ≥ 1;

(2a) θ(2l − 2, (4l− 2)[3l−1]), l ≥ 2;

(2b) θ(2, 4[3], 6); θ(4, 8[5], 10[2]); θ(6, 12[7], 14[3]);

(3a) θ(4l − 2− 2t, 2t, (4l − 4)[l], (4l − 2)[l−2]), 2 ≤ l ≤ t ≤ 5l−2
4

;

(3b) θ(4l − 2− 2t, 2t− 2, (4l− 4)[l−1], (4l − 2)[l−1]), 2 ≤ l ≤ t ≤ 5l
4
;

(4) θ(2t, 4s− 6− 2t, 2s− 4, (4s− 6)[s−3]), 2s−3
8

≤ t ≤ 6s−5
8

, s ≥ 4.

P r o o f. Note that K2,s = θ(2[s]). In [1, Theorems 2.11 and 2.12], the authors obtained

χla(K2,s) =

{

2, if s ≥ 4 is even,

3, otherwise.

We only consider θs 6= K2,s, s ≥ 3. Throughout the proof, we let u and v be the vertices of θs of

degree s. We shall call the 2s edges incident to u or else to v as end-edges. An integer labeled

to an end-edge is called an end-edge label. A path that starts at u and ends at v is called a

(u, v)-path.

Suppose χla(θs) = 2. Since each ai is even, θs has even size m =
s
∑

i=1

ai ≥ 2s+ 2 ≥ 8 edges

and order m − s + 2. Let f be a local antimagic labeling that induces a 2-coloring of θs with

colors x and y. Without lost of generality, we may assume f+(u) = f+(v) = y. Let X and Y be

the sets of vertices with colors x and y, respectively. It is easy to get that |Y | = m/2− s+2 and

|X| = m/2. By Lemma 1.1, we have x|X| = y|Y | = m(m+1)/2. Hence, x = m+1 ≥ 2s+3 ≥ 9
is odd, y = m(m+ 1)/(m− 2s+ 4) and y ≥ (1 + 2 + . . .+ 2s)/2 = (2s2 + s)/2.

Note that θs has at least 2 adjacent non-end-edges. Suppose z1z2 is not an end-edge with

f(z1z2) = l. Without loss of generality, we assume f+(z1) = x, f+(z2) = y. Since z1z2 is not

an end-edge, there is another vertex z3 such that z1z2z3 forms a path. So, f(z2z3) = y − l. Since

1 ≤ y − l ≤ m, we have l ≥ y −m = y − x+ 1. Consequently, all integers in [1, y − x] must be

assigned to end-edges. So, y − x ≤ 2s. Moreover, since l 6= y − l, we get l 6= y/2 so that y/2
must be an end-edge label when y is even.

Solving for m, we get m = 1
2
(y − 1±

√

y2 + 14y − 8ys+ 1). Hence, y2 + 14y − 8ys+ 1 =
= t2 ≥ 0, where t is a nonnegative integer. This gives (y + 7 − 4s)2 + 1 − (7 − 4s)2 = t2
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or (y + 7 − 4s − t)(y + 7 − 4s + t) = 8(s − 2)(2s − 3). By letting a = y + 7 − 4s − t and

b = y+7− 4s+ t, we have 2y+14− 8s = a+ b with ab = 8(2s2 − 7s+6) = 8(s− 2)(2s− 3).
Clearly, b ≥ a > 0. Since a, b must be of same parity, we have both a, b are even.

Recall that y − (2s2 + s)/2 ≥ 0. Now

y − (2s2 + s)/2 = 4s− 7 +
a+ b

2
−

2s2 + s

2

=
a + b

2
−

2s2 − 7s+ 6

2
− 4 =

a+ b

2
−

ab

16
− 4

=
8a+ 8b− ab− 64

16
= −

(a− 8)(b− 8)

16
. (2.1)

This implies that a ≤ 8.
We shall need the following claim which is easy to obtain. Throughout the proof, by symme-

try, we always assume α1 < βr.

Claim: Let φ be a labeling of a path P2r+1 = v1v2 . . . v2r+1 with φ(v2i−1v2i) = αi and

φ(v2iv2i+1) = βi for 1 ≤ i ≤ r. Suppose φ+(v2j) = x for 1 ≤ j ≤ r and φ+(v2k+1) = y
for 0 ≤ k ≤ r, where y > x. Then α1 + β1 = x, {α1, α2, . . . , αr} is an increasing sequence

with common difference y − x while {β1, β2, . . . , βr} is a decreasing sequence with common

difference y − x.

We shall consider 4 cases for a = 8, 6, 4, 2 respectively.

Case (1). Suppose a = 8. By (2.1) we have y = (2s2 + s)/2 which implies s is even.

Express t and y in terms of s. This gives (i) m = s2 − 3s/2 − 1 which implies s ≡ 2 (mod 4)
and x = s2 − 3s/2 or (ii) m = 2s. Since m ≥ 2s+ 2, (ii) is not a case. In (i), y − x = 2s so that

all integers in [1, 2s] are end-edge labels.

Let P be a (u, v)-path of θs with length 2r whose end-edges are labeled by integers in [1, 2s].
Suppose one of its end-edges is labeled by α1. By the claim, another end-edge is labeled by

βr = β1 − (r − 1)(y − x) = x− α1 − 2rs+ 2s ≤ 2s. So

2r ≥
x− α1

s
≥

s2 − 3s/2− 2s

s
= s−

7

2
.

Since s and 2r are even, 2r ≥ s− 2. Since βr ≥ 2, we have 2r ≤ 1
s
(x− α1 + 2s− 2) < s + 1

2
.

Thus, each (u, v)-path of θs is of length s or s − 2. Suppose θs has h path(s) of length s and

(s − h) path(s) of length s − 2. We now have sh + (s − h)(s − 2) = m (= s2 − 3s/2 − 1).
Therefore, h = (s− 2)/4. Thus, θs = θ

(

(s− 2)[(3s+2)/4], s[(s−2)/4]
)

for s ≡ 2 (mod 4).

Let s = 4l+2, l ≥ 1. We now show that θ
(

(s− 2)[(3s+2)/4], s[(s−2)/4]
)

=θ
(

(4l)[3l+2], (4l + 2)[l]
)

admits a local antimagic 2-coloring. Recall that m = 16l2 + 10l, x = 16l2 + 10l + 1,
y = 16l2 + 18l + 5 and y − x = 8l + 4.

Step 1: Label the edges of the path of length 4l+2, denoted Ri, 1 ≤ i ≤ l, by using the sequence

A2l+1(i; 8l+4)⋄A2l+1(x− i;−8l−4) in order. Note that, as a set A2l+1(x− i;−8l−4) =
= A2l+1(2l+1− i; 8l+4). So, by Lemma 2.1(b), A2l+1(i; 8l+4) ⋄A2l+1(x− i;−8l− 4)

for all i ∈ [1, l], denoted U1, form a partition of
2l
⋃

j=0

[(8l + 4)j + 1, (8l + 4)j + 2l]. By

Lemma 2.1(a), we see that all induced labels of internal vertices are x and y alternatively.

Now, integers in [1, 2l] are end-edge labels.

Step 2: Label the edges of the path of length 4l, denoted Qj, 1 ≤ j ≤ 3l + 2, by the se-

quence A2l(α; 8l + 4) ⋄ A2l(x− α;−8l − 4), where α is the j-th integer of the sequence

[3l + 1, 4l + 1] ∪ [4l + 3, 5l + 1] ∪ {5l + 3, 6l + 3} ∪ [7l + 5, 8l + 4], denoted U2, in
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order. Note again, A2l(α; 8l + 4) ⋄ A2l(x − α;−8l − 4) for all α ∈ U2 form a partition

of
2l−1
⋃

j=0

[(8l + 4)j + 2l + 1, (8l + 4)j + 8l + 4]. By Lemma 2.1(a), we see that all induced

labels of internal vertices are x and y alternatively. Now, integers in [2l + 1, 8l + 4] are

end-edge labels.

Step 3: We now merge the end-vertices with end-edge labels in U1 ∪ U2 to get the vertex u. We

then merge the other end-vertices with end-edge labels in [1, 8l+4] \ (U1∪U2) to get the

vertex v. Clearly, both u and v have induced vertex label y.

Note that

(

2l
⋃

j=0

[(8l+4)j+1, (8l+4)j+2l]

)

∪

(

2l−1
⋃

j=0

[(8l+4)j+2l+1, (8l+4)j+8l+4]

)

= [1, 16l2+10l].

So the labeling defined above is a local antimagic 2-coloring for θ((4l)[3l+2], (4l + 2)[l]).
Case (2). Suppose a = 6. Now, b = 4

3
(s− 2)(2s− 3). By (2.1), we have y = 2s(2s− 1)/3

and, hence, s ≡ 0, 2 (mod 3). Similar to Case (1), since m ≥ 2s + 2 ≥ 8, we must have

m = (4s2−8s)/3 and s ≥ 5. Now y−x = 2s−1. So integers in [1, 2s−1]∪{y/2 = (2s2−s)/3}
are end-edge labels.

Note that there are s− 1 paths in θs with both end-edges labeled with integers in [1, 2s− 1].
Suppose P2r+1 is one of these s − 1 paths. Since α1 < βr, we have α1 ∈ [1, 2s − 2]. Now,

βr = (x−α1)− (r−1)(y−x) ≤ 2s−1 = y−x. Since x = (4s2−8s+3)/3 and y−x = 2s−1,
we have that

(2s− 6)(2s− 1)/3 + 1 = (4s2 − 14s+ 9)/3 ≤ x− α1 ≤ r(y − x) = r(2s− 1).

Thus, r > (2s − 6)/3 ≥ 4
3
, i. e., r ≥ 2. Hence, βr−1 is labeled at a non-end-edge so that

βr−1 = (x− α1)− (r − 2)(y − x) ≥ 2s. Therefore,

(r− 2)(2s− 1) ≤ x− α1 − 2s ≤ (4s2 − 14s)/3 = (2s− 6)(2s− 1)/3− 2 < (2s− 6)(2s− 1)/3.

Consequently, r − 2 < (2s − 6)/3 = 2s/3 − 2, i. e., r < 2s/3. Combining the aboves, we have

2s/3 − 2 < r < 2s/3 so that 2s − 6 < 3r < 2s. This implies that 3r ∈ [2s − 5, 2s− 1]. Since

s 6≡ 1 (mod 3), we have the following two cases.

a) Consider s = 3l, l ≥ 2. Since 3r ≡ 0 (mod 3), we have 3r = 2s − 3, i. e., r = 2l − 1.
Thus, the s-th path must have length m − (3l − 1)(4l − 2) = 2l − 2. Consequently, θ3l =
= θ
(

2l − 2, (4l − 2)[3l−1]
)

.

We now show that θ3l = θ
(

2l − 2, (4l − 2)[3l−1]
)

admits a local antimagic 2-coloring. For

l = 2, θ6 = θ
(

2, 6[5]
)

with induced labels y = 44, x = 33 and the paths have vertex labels

22, 11; 1, 32, 12, 21, 23, 10; 3, 30, 14, 19, 25, 8;
4, 29, 15, 18, 26, 7; 5, 28, 16, 17, 27, 6; 9, 24, 20, 13, 31, 2.

All the left (respectively right) end vertices are merged to get the degree 6 vertex with induced

label 44.

For l ≥ 3, we apply the following steps.

Step 1: Label the edges of the path Ri of length 4l − 2 by the sequence A2l−1(i; 6l − 1) ⋄
⋄A2l−1((6l − 1)(2l − 1)− i;−6l + 1) in order, 1 ≤ i ≤ 3l − 1.
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Step 2: Label the path Q of length 2l − 2 by the sequence

Al−1(6l − 1; 6l − 1) ⋄ Al−1((6l − 1)(l − 2);−6l + 1)

in order. By Lemma 2.1, one may check that all integers in [1, 4l(3l−2)] are assigned

after the step.

Step 3: If we merge the end-vertices with end-edge labels in [1, 3l− 1]∪ {y/2} as u, then the

induced label of u is 1
2
(9l2 − 3l) + (6l2 − l) = 1

2
(21l2 − 5l). Clearly it is less than

y = 12l2 − 2l. The difference is δ = l
2
(3l + 1).

Step 4: Consider the set of differences of two end-edge labels in Ri, 1 ≤ i ≤ 3l − 1, which

is D = {1, 3, 5, . . . , 6l − 3} = A3l−1(1; 2). Clearly, 3 < δ < (3l − 1)2 − 3. By

Lemma 2.2, we have a subset B of D such that the sum of numbers in B is δ.

Step 5: Label all end-edges incident to u by

([1, 3l− 1] \ {
6l − 1− i

2
| i ∈ B}) ∪ {

6l − 1 + i

2
| i ∈ B} ∪ {6l2 − l}.

We have a local antimagic 2-coloring for θ3l = θ
(

2l − 2, (4l− 2)[3l−1]
)

.

b) Consider s = 3l − 1, l ≥ 2. Now, 3r = 2s − 4 or 2s − 1 so that r ∈ {2l − 2, 2l − 1}. Note

that r ≥ 2.

Let the path with an end-edge label y/2 = (2s2−s)/3 be of length 2q. Since y/2 /∈ [1, 2s−1]
and we assume α1 < βq, this means βq = (2s2 − s)/3 = (3l − 1)(2l − 1).

If q = 1, then α1 + β1 = x. This implies α1 + (3l − 1)(2l − 1) = (2l − 1)(6l − 5) and hence

α1 = 6l2 − 11l+ 4. Since α1 ≤ 2s− 1 = 6l− 3, we get 6l2 − 17l+7 = (2l− 1)(3l− 7) ≤ 0.
The only solution is l = 2 so that s = 5. Note that q = l − 1.

Suppose q ≥ 2. Now αq + βq = x and αq = α1 + (q − 1)(y − x) implies that α1 =
x − βq − (q − 1)(2s − 1) ≤ (2s − 1). So x − βq ≤ q(2s − 1). In terms of l, we have

(2l − 1)(6l − 5)− (3l − 1)(2l − 1) ≤ q(6l − 3). Thus, 3l − 4 ≤ 3q. This implies q ≥ l − 1.
Also note that β1 = βq + (2s − 1)(q − 1) ≤ m = 1

3
(4s2 − 8s). In terms of l we will obtain

(6l − 3)q ≤ 6l2 − 5l. This implies q ≤ l − 2l
6l−3

< l. Thus, q ≤ l − 1. Combining the aboves,

we have q = l − 1, as in q = 1 above.

Now, suppose there are k paths of length 4l − 4 and 3l − 2 − k paths of length 4l − 2. We

then have (2l − 2) + k(4l − 4) + (3l − 2 − k)(4l − 2) = 4(3l − 1)(l − 1) = m. Solving this,

we get k = 2l − 1. Consequently, θ3l−1 = θ
(

2l − 2, (4l − 4)[2l−1], (4l − 2)[l−1]
)

for l ≥ 2.

Recall that y = 12l2 − 10l + 2, x = 12l2 − 16l + 5, y − x = 6l− 3. Using the claim, we now

have the followings.

• Consider the l − 1 path(s) of length 4l− 2. We have α1 = i < β2l−1 = x− i− (y − x) ·
· (2l − 2) = 2l − 1 − i. So 1 ≤ i ≤ l − 1. Thus, numbers in [1, l − 1] must serve as α1

for these l − 1 path(s). Hence, numbers in [l, 2l − 2] must serve as β2l−1 for these l − 1
path(s). Thus, numbers in [1, 2l − 2] are assigned to these l − 1 paths.

• Consider the 2l − 1 paths of length 4l − 4. We have 2l − 1 ≤ α1 = i < β2l−2 =
= x − i − (y − x)(2l − 3) = 8l − 4 − i. So 2l − 1 ≤ i ≤ 4l − 3. Thus, numbers in

[2l−1, 4l−3] must serve as α1 for these 2l−1 path(s). Hence, numbers in [4l−1, 6l−3]
must serve as β2l−2 for these 2l− 1 path(s). Thus, numbers in [2l− 1, 6l− 3] \ {4l− 2}
are assigned to these 2l − 1 paths.
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• Consider the path of length 2l − 2. This path must have α1 = 4l − 2 and βl−1 =
= 6l2 − 5l + 1 = y/2.

Since y/2 is assigned to an end-edge incident to w, say, at the path of length 2l − 2, we have

1

2
(25l2 − 25l + 6) =

l−1
∑

i=1

i+
4l−3
∑

j=2l−1

j + (6l2 − 5l + 1) ≤ f+(w) = 12l2 − 10l + 2.

We get l = 2, 3, 4, which implies s = 5, 8, 11, respectively.

For s = 5, we get θ5 = θ(2, 4[3], 6) with induced vertex labels y = 30, x = 21. The labels of

the paths are

15, 6; 3, 18, 12, 9; 4, 17, 13, 8; 7, 14, 16, 5; 1, 20, 10, 11, 19, 2.

For s = 8, we get θ8 = θ
(

4, 8[5], 10[2]
)

with induced vertex labels y = 80, x = 65. The labels

of the paths are

40, 25, 55, 10; 5, 60, 20, 45, 35, 30, 50, 15; 6, 59, 21, 44, 36, 29, 51, 14;
7, 58, 22, 43, 37, 28, 52, 13; 8, 57, 23, 42, 38, 27, 53, 12; 11, 54, 26, 39, 41, 24, 56, 9;
1, 64, 16, 49, 31, 34, 46, 19, 61, 4; 2, 63, 17, 48, 32, 33, 47, 18, 62, 3.

For s = 11, we get θ11 = θ
(

6, 12[7], 14[3]
)

with induced vertex labels y = 154, x = 133. The

labels of the paths are

77, 56, 98, 35, 119, 14; 7, 126, 28, 105, 49, 84, 70, 63, 91, 42, 112, 21;
8, 125, 29, 104, 50, 83, 71, 62, 92, 41, 113, 20; 9, 124, 30, 103, 51, 82, 72, 61, 93, 40, 114, 19;
10, 123, 31, 102, 52, 81, 73, 60, 94, 39, 115, 18; 11, 122, 32, 101, 53, 80, 74, 59, 95, 38, 116, 17;
12, 121, 33, 100, 54, 79, 75, 58, 96, 37, 117, 16; 13, 120, 34, 99, 55, 78, 76, 57, 97, 36, 118, 15;
1, 132, 22, 111, 43, 90, 64, 69, 85, 48, 106, 27, 127, 6; 2, 131, 23, 110, 44, 89, 65, 68, 86, 47, 107, 26, 128, 5;
4, 129, 25, 108, 46, 87, 67, 66, 88, 45, 109, 24, 130, 3.

Case (3). Suppose a = 4. In this case, b = 2(2s2−7s+6) and 2y+14−8s = 4s2−14s+16.
So y = 2s2 − 3s + 1. Similar to the previous cases, m = 2s2 − 5s + 2 only. Hence s is

even, x = 2s2 − 5s + 3 and y − x = 2s − 2. So, integers in [1, 2s − 2] must be assigned

to 2s − 2 end-edges. Let the remaining two end-edges be labeled by γ1 and γ2. We have

4s2 − 6s + 2 = 2y = f+(u) + f+(v) =
2s−2
∑

i=1

i + γ1 + γ2 = (s − 1)(2s − 1) + γ1 + γ2. Thus,

γ1 + γ2 = 2s2 − 3s+ 1 = y.

Suppose γ1 and γ2 are labeled at the end-edges of the same path of length 2q. Without loss of

generality, α1 = γ1 and βq = γ2 so that y = α1 + βq = α1 + (x− α1)− (q − 1)(y − x). We have

q(y−x) = 0 which is impossible. Therefore, γ1 and γ2 are labeled at different paths. Thus, there

are s− 2 paths whose end-edges are labeled by integers in [1, 2s− 2] and exactly two paths, say

Qi with an end-edge label in [1, 2s− 2] and another end-edge label γi ≥ 2s− 1, i = 1, 2.

Suppose P2r+1 is a path with both end-edges labeled with integers in [1, 2s − 2]. By the

assumption 1 ≤ α1 < βr ≤ 2s−2 and the claim, we have βr = (x−α1)−(r−1)(y−x) ≤ 2s−2.
So,

(2s− 2)(s− 3) = 2s2 − 8s+ 6 < 2s2 − 7s+ 5 ≤ x− α1 ≤ r(y − x) = r(2s− 2).

Thus, r ≥ s−2 ≥ 2. So βr−1 is labeled at a non-end-edge. Therefore, βr−1 = (x−α1)− (r − 2) ·
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· (y − x) ≥ 2s− 1. We have

(r − 2)(2s− 2) ≤ x− α1 − 2s+ 1 ≤ 2s2 − 7s+ 3 < 2s2 − 6s+ 4 = (2s− 2)(s− 2).

So, r < s. Thus, r ∈ {s− 2, s− 1}.

Suppose Qi is of length 2ri whose end-edges are labeled by α1,i ∈ [1, 2s− 2] and βri,i = γi.
So, βri,i = γi = x−α1,i−(ri−1)(y−x). Since γ1+γ2 = 2s2−3s+1 is odd, γ2 ≥

1
2
(2s2−3s+2)

and γ1 ≤
1
2
(2s2 − 3s). Now

(r2 − 1)(2s− 2) = x− α1,2 − γ2 ≤ 2s2 − 5s+ 3− 1−
1

2
(2s2 − 3s+ 2)

= (2s2 − 7s+ 2)/2 = [(2s− 2)(s− 2)− s− 2]/2 < (2s− 2)(s− 2)/2.

We have 2r2 − 2 < s− 2 and hence 2r2 ≤ s− 2.
Now y = γ1 + γ2 = 2x − α1,1 − α1,2 − (r1 + r2 − 2)(y − x) or (r1 + r2 − 1)(2s − 2) =

= (r1 + r2 − 1)(y − x) = x− α1,1 − α1,2. Since α1,1, α1,2 ∈ [1, 2s− 2],

(s− 1)(2s− 2) > (s− 1)(2s− 2)− s− 2 = 2s2 − 5s = x− 3 ≥ (r1 + r2 − 1)(2s− 2)

≥ x− (4s− 5) = 2s2 − 9s+ 8 = (s− 4)(2s− 2) + s > (s− 4)(2s− 2).

So, s > r1+ r2 > s− 3 or 2r1 +2r2 ∈ {2s− 2, 2s− 4}. Thus, 2r1+ s− 2 ≥ 2r1+2r2 ≥ 2s− 4.
So, we have 2r1 ≥ s− 2 ≥ 2r2. Since 2r1 + 2r2 ≤ 2s− 2 and 2r2 ≥ 2, 2r1 ≤ 2s− 4.

Without loss of generality, we may always assume that γ1 is labeled at the end-edge of Q1

incident to u. Since s ≥ 4 and f+(u) = y, γ2 must be labeled at the end-edge of Q2 incident

to v. Suppose there are k paths of length 2s− 4 and s− k − 2 paths of length 2s− 2. Therefore,

2(r1 + r2) + k(2s− 4) + (s− k − 2)(2s− 2) = 2s2 − 5s+ 2. So, 2(r1 + r2) = s− 2 + 2k. For

convenience, we write s = 2l for l ≥ 2.

(a) Suppose 2r1+2r2 = 4l−2. Now, k = l and θ2l = θ
(

4l−2−2r1, 2r1, (4l−4)[l], (4l−2)[l−2]
)

for l ≤ r1 ≤ 2l − 2. Since l − 1 ≥ r2 = 2l − 1 − r1, r1 ≥ l. Rewriting r1 as t, we have

θ2l = θ
(

4l − 2 − 2t, 2t, (4l − 4)[l], (4l − 2)[l−2]
)

for l ≤ t ≤ 2l − 2. Here Q2 and Q1 are

(u, v)-paths of length 4l − 2− 2t and 2t, respectively.

Next, we consider all (u, v)-paths of θs. Let the (u, v)-paths of length 4l−4 be Ri, 1 ≤ i ≤ l,
and the (u, v)-path(s) of length 4l − 2 be Tj , 1 ≤ j ≤ l − 2. Let Tl−1 be the path obtained

from Q2 and Q1 by merging the vertex v of Q2 and the vertex u of Q1. Hence, Tl−1 is a

(u, v)-path of length 4l − 2. Under the labeling f , the end-edge labels are in [1, 4l − 2] and

the induced vertex labels of all internal vertices of Tl−1 are x and y alternatively.

(b) Suppose 2r1 + 2r2 = 4l − 4. Now, 2r1 = 4l − 4 − 2r2 ≤ 4l − 6 so that k = l − 1 and

θ2l = θ
(

4l− 4− 2r1, 2r1, (4l− 4)[l−1], (4l− 2)[l−1]
)

for l− 1 ≤ r1 ≤ 2l− 3. Rewriting r1 as

t− 1, we have θ2l = θ
(

4l− 2− 2t, 2t− 2, (4l− 4)[l−1], (4l− 2)[l−1]
)

for l ≤ t ≤ 2l− 2. Here

Q2 and Q1 are (u, v)-paths of length 4l − 2− 2t and 2t− 2, respectively.

Next, we consider all (u, v)-paths of θs. Let the path(s) of length 4l− 4 be Ri, 1 ≤ i ≤ l− 1,
and the path(s) of length 4l − 2 be Tj , 1 ≤ j ≤ l − 2. Let Rl be the path obtained from Q2

and Q1 by merging the vertex v of Q2 and the vertex u of Q1. Hence Rl is a (u, v)-path of

length 4l − 4. Under the labeling f , the end-edge labels are in [1, 4l − 2] and the induced

vertex labels of all internal vertices of Rl are x and y alternatively.

For each case, after the merging, we have l paths Ri of length 4l−4, 1 ≤ i ≤ l and l−1 paths Tj

of length 4l − 2, 1 ≤ j ≤ l − 1, where l ≥ 2. All the end-edge labels are in [1, 4l − 2] under
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the labeling f . Consider the (u, v)-path Ri of length 2s − 4 = 4l − 4. Suppose xi = α1 is an

end-edge label, then another end-edge label is βs−2 = (x− α1)− (s− 3)(2s− 2) ≤ 2s− 2. We

have α1 ≥ s− 1. By symmetry, βs−2 ≥ s− 1. So, all the l paths Ri have their end-edges labeled

by integers in [2l − 1, 4l − 2]. Thus, all (u, v)-paths Tj have their end-edges labeled by integers

in [1, 2l − 2].
Let the label assigned to the end-edge of Tj incident to u be yj .

(a) For the case θ2l = θ
(

4l − 2 − 2t, 2t, (4l − 4)[l], (4l − 2)[l−2]
)

, 2 ≤ l ≤ t ≤ 2l − 2, γ1 is the

(4l − 2− 2t+ 1)-st edge label of Tl−1 so that γ1 = yl−1 + (2l − 1− t)(4l − 2). Hence,

(4l−1)(2l−1) = f+(u) = γ1+
l−1
∑

j=1

yj+
l
∑

i=1

xi = yl−1+(2l−1− t)(4l−2)+
l−1
∑

j=1

yj+
l
∑

i=1

xi.

We have

(2l − 1− t)(4l − 2) = (4l − 1)(2l − 1)− yl−1 −
l−1
∑

j=1

yj −
l
∑

i=1

xi

≥ (4l − 1)(2l − 1)− (2l − 2)−
(l − 1)(3l− 2)

2
−

l(7l − 3)

2
= 3l2 − 4l + 2.

This means

t(4l−2) ≤ 2(2l−1)2−(3l2−4l+2) = 5l2−4l =
1

4
[(5l−1)(4l−2)−2l−2] <

1

4
(5l−1)(4l−2).

Therefore, t < 5l−1
4

, i. e., t ≤ 5l−2
4

. Thus, l ≤ t ≤ 5l−2
4

.

(b) For the case θ2l = θ
(

4l − 2 − 2t, 2t − 2, (4l − 4)[l−1], (4l − 2)[l−1]
)

for 2 ≤ l ≤ t ≤ 2l − 2,
similarly, we have

(2l − 1− t)(4l − 2) = (4l − 1)(2l − 1)− xl −

l−1
∑

j=1

yj −

l
∑

i=1

xi

≥ (4l − 1)(2l − 1)− (4l − 2)−
(l − 1)(3l− 2)

2
−

l(7l − 3)

2
= 3l2 − 6l + 2.

This means

t(4l−2) ≤ 2(2l−1)2−(3l2−6l+2) = 5l2−2l =
1

4
[(5l+1)(4l−2)−2l+2] <

1

4
(5l+1)(4l−2).

Therefore, t < 5l+1
4

, i. e., t ≤ 5l
4
. Thus, l ≤ t ≤ 5l

4
.

Consequently, we have the following two cases.

(a) θ2l = θ
(

4l − 2− 2t, 2t, (4l− 4)[l], (4l− 2)[l−2]
)

for 2 ≤ l ≤ t ≤ 5l−2
4

, or else

(b) θ2l = θ
(

4l − 2− 2t, 2t− 2, (4l − 4)[l−1], (4l − 2)[l−1]
)

for 2 ≤ l ≤ t ≤ 5l
4
.

Now, we are going to find a local antimagic 2-coloring for the above graphs.
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(a) θ2l = θ
(

4l − 2− 2t, 2t, (4l− 4)[l], (4l − 2)[l−2]
)

for 2 ≤ l ≤ t ≤ 5l−2
4

.

Step 1: Label the edges of Tj by the sequence A2l−1(l− 1+ j; 4l− 2) ⋄A2l−1(x− l + 1− j;
− 4l + 2), 1 ≤ j ≤ l − 1. Note that we choose α1 = l − 1 + j. This gives

β2l−1 = l − j. So, as a set A2l−1(x − (l − 1 + j);−4l + 2) = A2l−1(l − j; 4l − 2).
Thus, integers in [1, 2l − 2] are end-edge labels of all path(s) Tj and integers in
l−1
⋃

j=1

[(j − 1)(4l − 2) + 1, (j − 1)(4l − 2) + (2l − 2)] are assigned.

Step 2: Label the edges of the (u, v)-path Ri by the sequence A2l−2(2l − 2 + i; 4l − 2) ⋄
⋄A2l−2(x−2l+2− i;−4l+2), 1 ≤ i ≤ l. Note that we choose α1 = 2l−2+ i. This

gives β2l−2 = 6l−3−(2l−2+i) = 4l−1−i. So, as a set A2l−2(x−2l+2−i;−4l+2) =
= A2l−2(4l − 1 − i; 4l − 2). Thus, integers in [2l − 1, 4l − 2] are end-edge labels of

all path(s) Ri and integers in
l
⋃

i=1

[(i− 1)(4l− 2)+ (2l− 1), (i− 1)(4l− 2)+ (4l− 2)]

are assigned. The set of difference between the two end-edge labels of a path Ri is

D2 = {1, 3, . . . , 2l − 1} = Al(1; 2).

Step 3: Pick the (u, v)-path Tl−1 and separate it into two paths. Note that the end-edge labels

of Tl−1 are 2l − 2 and 1. The first 4l − 2 − 2t edges form a (u, v)-path Q2 and the

remaining 2t edges form a (u, v)-path Q1. Note that the label of (4l−1−2t)-th edge

of Tl−1 is γ1 = (2l − 1− t)(4l − 2) + (2l − 2).

Thus, the above labeling is a local antimagic labeling. Under this labeling, the induced vertex

label of u is

l−1
∑

j=1

(l − 1 + j) +
l
∑

i=1

(2l − 2 + i) + γ1

=
(l − 1)(3l − 2)

2
+

l(5l − 3)

2
+ (2l − 1− t)(4l − 2) + (2l − 2)

= 12l2 + 2t− 10l − 4lt + 1.

The difference from y = 8l2−6l+1 is δ(t) = 4lt+4l−4l2−2t = (4l−2)(t−l)+2l. Clearly,

2 < δ(t) ≤ (4l − 2) l−2
4

+ 2l ≤ l2. Suppose δ(t) = l2 − 2, then t = 5l2−4l−2
4l−2

= 5l−2
4

+ l−6
2(4l−2)

.

Since t ≤ 5l−2
4

, 2 ≤ l ≤ 6. Since t ∈ Z, l = 6 and, hence, t = 7. Thus, by Lemma 2.2, we

may choose B ⊂ D2 to obtain a local antimagic 2-coloring of θ
(

4l − 2 − 2t, 2t, (4l − 4)[l],

(4l − 2)[l−2]
)

for 2 ≤ l ≤ t ≤ 5l−2
4

and (l, t) 6= (6, 7). We shall provide a local antimagic

2-coloring for the special case (l, t) = (6, 7) in Example 3.3(a)(ii).

(b) θ2l = θ
(

4l − 2− 2t, 2t− 2, (4l − 4)[l−1], (4l − 2)[l−1]
)

for 2 ≤ l ≤ t ≤ 5l
4
.

Step 1: Label the edges of Tj by the sequence A2l−1(j; 4l − 2) ⋄ A2l−1(x − j;−4l + 2),
1 ≤ j ≤ l − 1. The set of difference between the last label and the first label of a

paths Tj’s is D1 = {1, 3, . . . , 2l − 3} = Al−1(1; 2).

Step 2: Label the edges of Ri by the sequence A2l−2(3l−2+ i; 4l−2)⋄A2l−2(x− 3l + 2− i;
− 4l + 2), 1 ≤ i ≤ l. The set of difference between the last label and the first label

of a paths Ri’s, 1 ≤ i ≤ l − 1, is D2 = {−1,−3, . . . ,−(2l − 3)} = Al−1(−1;−2).

Step 3: Pick the (u, v)-path Rl and separate it into two paths. Note that the end-edge labels

of Rl are 4l− 2 and 2l− 1. The first 4l− 2− 2t edges form a (u, v)-path Q2 and the

remaining 2t− 2 edges form a (u, v)-path Q1. Note that the label of (4l− 1− 2t)-th
edge of Rl is γ1 = (2l − 1− t)(4l − 2) + (4l − 2).
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Similar to the previous case, the above labeling is a local antimagic labeling. Under this

labeling, the induced vertex label of u is

l−1
∑

j=1

j +

l
∑

i=1

(3l − 2 + i) + γ1 =
(l − 1)l

2
+

l(7l − 3)

2
+ (2l − 1− t)(4l − 2) + (4l − 2)

= 12l2 + 2t− 6l − 4lt.

The difference from y = 8l2 − 6l + 1 is δ(t) = −4l2 − 2t + 4lt + 1. Clearly, δ(t) is an

increasing function of t. It is easy to show that 3 ≤ 2l − 1 ≤ δ(t) ≤ l2 − 5l
2
+ 1 ≤

≤ (l − 1)2 − 1 when l + 1 ≤ t ≤ 5l
4
. We need to show that δ(t) 6= (l − 1)2 − 2. Now

δ((5l − 1)/4)) = 2l2−7l+3
2

= (l − 1)2 − 3l−1
2

< (l − 1)2 − 2. If 5l
4
∈ Z, then l ≥ 4. So,

δ(5l/4) = 2l2−5l+1
2

= (l−2)2− l+1
2

< (l−1)2−2. Thus, 3 ≤ δ(t) ≤ l2− 5l
2
+1 ≤ (l−1)2−2

when l + 1 ≤ t ≤ 5l
4
. By Lemma 2.2, we may choose B ⊂ D1 and then we obtain a local

antimagic 2-coloring for θ(4l − 2− 2t, 2t− 2, (4l − 4)[l−1], (4l − 2)[l−1]) for l + 1 ≤ t ≤ 5l
4
.

The remaining case is t = l. For this case, δ(l) = −2l + 1. If l 6= 3, then we may choose

B = {−(2l − 3),−3, 1} ⊂ D1 ∪D2. When l = 3, we have t = 3. This is a special case with

solution given in Example 3.4(b).

Case (4). Suppose a = 2. In this case, b = 4(2s2−7s+6) and 2y+14−8s = 8s2−28s+26.
So, y = 4s2 − 10s + 6. Similar to the previous cases we have m = 4s2 − 12s + 8. Hence,

x = 4s2 − 12s+ 9.
Suppose s = 3. We get m = 8, x = 9 and y = 12. Thus, θ3 = θ(2, 2, 4). The sequences we

can use are 3, 6; 1, 8 and 4, 5, 7, 2 or else 3, 6; 1, 8, 4, 5 and 7, 2, both of which give no solution.

We now assume s ≥ 4.
Note that y − x = 2s− 3, y is even and y/2 > 2s− 3. Recall that if y is even, then y/2 is an

end-edge label. Thus, integers in [1, 2s− 3] ∪ {y/2} are end-edge labels.

There are only 3 end-edge labels greater than 2s − 3. So, there are at least s − 3 paths with

both end-edges labeled by integers in [1, 2s−3]. Suppose P2r+1 is one of these s−3 paths. Keep

the notation defined in the claim and the assumption α1 < βr. So, α1 ∈ [1, 2s− 4].
Now βr = (x−α1)− (r− 1)(y− x) ≤ 2s− 3. Since x = 4s2 − 12s+9 and y− x = 2s− 3,

we have

(2s− 3)(2s− 4) < 4s2 − 14s+ 13 ≤ x− α1 ≤ r(y − x) = r(2s− 3)

Thus, r ≥ 2s− 3.
Since r ≥ 4, βr−1 is labeled at a non-end-edge. So, βr−1 = (x−α1)− (r−2)(y−x) ≥ 2s−2

so that

(r − 2)(2s− 3) ≤ x− α1 − 2s+ 2 ≤ 4s2 − 14s+ 10 < (2s− 3)(2s− 4).

So, r − 2 ≤ 2s− 5 or r ≤ 2s− 3. Thus, r = 2s− 3. Note that β2s−3 = 2s− 3− α1.

Suppose y/2 = 2s2− 5s+3 is labeled at an end-edge of a path Q. Let the length of Q be 2q.
So, we have α1 ≤ 2s − 3, βq = y/2 and β1 = y/2 + (q − 1)(2s − 3). Now x = α1 + β1 =
= α1 + y/2 + (q − 1)(y − x) so that 2x > y + (2q − 2)(y − x). We have (2s − 3)2 = x >
> (2q − 1)(y − x) = (2q − 1)(2s− 3). Thus, 2q − 1 < 2s− 3, i. e., q ≤ s− 2.

On the other hand, 2x = 2α1 + y + (2q − 2)(y − x) ≤ 2(2s − 3) + y + (2q − 2)(y − x) =
= y + 2q(y − x) so that (2s − 3)2 = x ≤ (2q + 1)(y − x) = (2q + 1)(2s − 3). This means

2q + 1 ≥ 2s − 3, i. e., q ≥ s − 2. Thus, q = s − 2. Consequently, θs contains a path of

length 2s − 4 with an end-edge label βs−2 = 2s2 − 5s + 3 = y/2 so that αi = i(2s − 3) and

βi = 4s2−14s+12− (i−1)(2s−3) = (2s−3)(2s−3− i) ≥ (2s−3)(s−1) for 1 ≤ i ≤ s−2.
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Let the remaining two end-edge labels be γ1 and γ2. Thus, 2y = f+(u) + f+(v) = γ1 + γ2 +
+ y/2 + (2s− 3)(s− 1). So, γ1 + γ2 = 4s2 − 10s+ 6 = y.

Suppose γ1 and γ2 are labeled at the same path of length 2q. By a similar proof of Case (3),

we have 4s2−10s+6 = γ1+γ2 = γ1+(x−γ1)−(q−1)(y−x) = 4s2−12s+9−(q−1)(2s−3)
which is impossible.

As a conclusion, there are exactly s − 3 paths of length 4s− 6 whose end-edges are labeled

by integers in [1, 2s − 4], one path of length 2s − 4 whose end-edges are labeled by 2s − 3
and y/2, two paths Qi of length si whose end-edges are labeled by α1,i ∈ [1, 2s − 4] and γi,
i = 1, 2. By counting the number of edges of the graph, we have s1 + s2 = 4s − 6. Thus,

θs = θ
(

2t, 4s− 6− 2t, 2s− 4, (4s− 6)[s−3]
)

for some t ≥ 1.

Let us rename all (u, v)-paths.

• Let R1, . . .Rs−3 be the (u, v)-paths in θs of length 4s − 6. Let the end-edge label of Ri

incident to u be xi, 1 ≤ i ≤ s− 3.

• Let P be the (u, v)-path of length 2s−4 whose end-edge labels are 2s−3 and (s−1)(2s−3).

• Let Q1 be (u, v)-path of length 4s − 6 − 2t whose end-edge labels are γ1 and xs−1. Let

Q2 be (u, v)-path of length 2t whose end-edge labels are xs−2 and γ2. Without loss of

generality, we may assume that γ1 < γ2. Since γ1 + γ2 = y, γ1 < y/2 < γ2. Also, without

loss of generality, we may always assume that γ1 is labeled at the end-edge incident to u.

Thus, xs−2 is labeled at the end-edge of Q2 incident to u.

Let Rs−2 be the labeled (u, v)-path obtained from Q2 and Q1 by merging the end vertex v
of Q2 with the end vertex u of Q1. Therefore, Rs−2 satisfies the assumption of the Claim.

Thus, xs−2 is labeled at the end-edge of Rs−2 incident to u. Now γ1 = t(2s− 3) + xs−2.

Suppose 2s− 3 is labeled at the end-edge of P incident to u, then

2(s− 1)(2s− 3) = f+(u) =
s−3
∑

i=1

xi + (2s− 3) + xs−2 + γ1

=
s−2
∑

i=1

xi + (2s− 3) + [t(2s− 3) + xs−2] =
s−2
∑

i=1

xi + (t+ 1)(2s− 3) + xs−2.

This means (2s− t− 3)(2s− 3) = xs−2 +
s−2
∑

i=1

xi ≤ (2s− 4) + (s−2)(3s−5)
2

. Since 1 ≤ t ≤ s− 2,

(s− 1)(2s− 3) ≤ (2s− 4) + (s−2)(3s−5)
2

= 3s2−7s+2
2

which is impossible. Thus, (s − 1)(2s− 3)
must be a label of the end-edge of P incident to u. Consequently, we have

2(s− 1)(2s− 3) = f+(u) =

s−3
∑

i=1

xi + (s− 1)(2s− 3) + xs−2 + γ1

=

s−2
∑

i=1

xi + (s− 1)(2s− 3) + [t(2s− 3) + xs−2] =

s−2
∑

i=1

xi + (s− 1 + t)(2s− 3) + xs−2.

This means (s− t−1)(2s−3) = xs−2+
s−2
∑

i=1

xi ≥ 1+ (s−2)(s−1)
2

= s2−3s+4
2

= (2s−3)2

8
+ 7

8
> (2s−3)2

8
.

Solving this inequality, we have t < 6s−5
8

.
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Similarly, we have (s − t − 1)(2s − 3) = xs−2 +
s−2
∑

i=1

xi ≤ 3s2−7s+2
2

= (6s−5)(2s−3)
8

− 7
8
<

< (6s−5)(2s−3)
8

. Solving this inequality, we have t > 2s−3
8

.

Hence,

t ∈



























































[2j − 1, 6j − 4], if s = 8j − 4;

[2j − 1, 6j − 3], if s = 8j − 3;

[2j, 6j − 3], if s = 8j − 2;

[2j, 6j − 2], if s = 8j − 1;

[2j, 6j − 1], if s = 8j;

[2j, 6j], if s = 8j + 1;

[2j + 1, 6j], if s = 8j + 2;

[2j + 1, 6j + 1], if s = 8j + 3;

⇐⇒ t ∈



















[k, 3k − 1], if s = 4k;

[k, 3k], if s = 4k + 1;

[k + 1, 3k], if s = 4k + 2;

[k + 1, 3k + 1], if s = 4k + 3;

where j, k ≥ 1.

We now show that θs = θ
(

2t, 4s−6−2t, 2s−4, (4s−6)[s−3]
)

, for s ≥ 4 and 2s−3
8

< t < 6s−5
8

,

admits a local antimagic 2-coloring. We keep the notation defined above. Following is a general

approach:

Step 1: Label the edges of the path Rj of length 4s − 6 by the sequence A2s−3(j; 2s − 3) ⋄
⋄ A2s−3(x− j;− (2s− 3)) in order, for 1 ≤ j ≤ s− 2.

Step 2: For convenience, write xs−2 = α. Separate Rs−2 into two paths. The first 2t edges form

the path Q2 and the rest form the path Q1. So α and γ1 are labeled at the end-edges

incident to u. Recall that γ1 = t(2s− 3) + α.

Step 3: Label the edges of the (u, v)-path P of length 2s − 4 by the reverse of the sequence

As−2(2s − 3; 2s − 3) ⋄ As−2((2s − 3)(2s − 4);−2s + 3), i. e., As−2((s − 1)(2s − 3);
2s− 3) ⋄ As−2((s− 2)(2s− 3);−2s+ 3).

Clearly, by the construction above, it induces a local antimagic labeling for θ
(

2t, 4s − 6 − 2t,

2s− 4, (4s− 6)[s−3]
)

. Under this labeling, the induced vertex label for u is

(s− 1)(2s− 3) +
s−2
∑

i=1

i+ γ1 = (2s− 3)(s− 1 + t) +
s2 − 3s+ 2

2
+ α.

The difference from y = (2s− 3)(2s− 2) is δ(t) = (2s− 3)(s− 1 − t)− s2−3s+2
2

− α. Clearly,

δ(t) is a decreasing function of t.

Now, if we choose α = 1, then δ(t) = 3s2−7s−4st+6t+2
2

, where 2s−3
8

< t < 6s−5
8

. So,

16k2 − 11k + 1
16k2 − k − 1
162 + k − 1

16k2 + 11k + 1















≥ δ(t) ≥



















3k − 2, if s = 4k;

k − 1, if s = 4k + 1;

7k, if s = 4k + 2;

5k + 1, if s = 4k + 3.

The set of differences of two end-edge labels in Rj , 2 ≤ j ≤ s−2, is D = {1, 3, 5, . . . , 2s− 7} =
= As−3(1; 2).
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Clearly, δ(t) = 2 only when (s, t) = (13, 9). Also the maximum value of δ(t) for each case

of s is greater than (s− 3)2. Let us look at the second and third largest values δ2 and δ3 of δ(t)
if any:

δ2 =



















16k2 − 19k + 4, if s = 4k;

16k2 − 9k, if s = 4k + 1;

16k2 − 7k − 2, if s = 4k + 2;

16k2 + 3k − 2, if s = 4k + 3;

δ3 =



















16k2 − 27k + 7, if s = 4k;

16k2 − 17k + 1, if s = 4k + 1;

16k2 − 15k − 3, if s = 4k + 2;

16k2 − 5k − 5, if s = 4k + 3.

Clearly, 0 ≤ δ3 < (s − 3)2 − 2. So, by Lemma 2.2, there is a subset B of D such that the sum

of integers in B is δ(t) when 2s−3
8

+ 2 < t < 6s−5
8

except the case (s, t) = (13, 9). Similar to

Case (2), we find a local antimagic 2-coloring for θ
(

2t, 4s−6−2t, 2s−4, (4s−6)[s−3]
)

according

to the above range of t.

For the case (s, t) = (13, 9), y = 552. Under the proposed labeling, we can see that the

induced label for u is 549 + α. So, we may choose a = 3.

The remaining cases are when 2s−3
8

< t ≤ 2s−3
8

+2. When s = 4, we have δ2 = 1 and δ3 does

not exist. We shall modify our proposed labeling. Now, we choose α = 2s− 4. In this case, 1 is

not labeled at the end-edge incident to u so that the set of labels of the end-edges incident to u
is {(s − 1)(2s− 3), γ1} ∪ [2, s− 2] ∪ {2s− 4}. Thus, the sum is (s − 1)(2s − 3) + (2s− 4) +

+
s−2
∑

i=2

i + γ1 = (2s − 3)(s − 1 + t) + s2+5s−16
2

. The difference from y = (2s − 3)(2s − 2) is

δ∗(t) = 3s2−15s−4st+6t+22
2

. One may easily check that 3 ≤ δ∗(t) ≤ (s − 3)2 − 3 for 2s−3
8

< t ≤
≤ 2s−3

8
+2, except (s, t) = (4, 2), (5, 2), (6, 3), (7, 3). Thus, we have a local antimagic 2-coloring

for θ
(

2t, 4s− 6− 2t, 2s− 4, (4s− 6)[s−3]
)

when 2s−3
8

< t ≤ 2s−3
8

+ 2.

For those exceptional cases, we have

1. (s, t) = (4, 2). Now δ(2) = 1. We may apply the original approach.

2. (s, t) = (5, 2), θ5 = θ(4, 6, 10, 14, 14) with edge labels

39, 10, 46, 3;
7, 42, 14, 35, 21, 28;
4, 45, 11, 38, 18, 31, 25, 24, 32, 17;
1, 48, 8, 41, 15, 34, 22, 27, 29, 20, 36, 13, 43, 6;
5, 44, 12, 37, 19, 30, 26, 23, 33, 16, 40, 9, 47, 2.

3. (s, t) = (6, 3). Now δ(3) = 7 < 32. We may apply the original approach.

4. (s, t) = (7, 3). Now x = 121, y = 132, θ7 = θ(6, 10, 16, 22, 22, 22, 22) with sequences

4, 117, 15, 106, 26, 95;
66, 55, 77, 44, 88, 33, 99, 22, 110, 11;
37, 84, 48, 73, 59, 62, 70, 51, 81, 40, 92, 29, 103, 18, 114, 7;
2, 119, 13, 108, 24, 97, 35, 86, 46, 75, 57, 64, 68, 53, 79, 42, 90, 31, 101, 20, 112, 9;
5, 116, 16, 105, 27, 94, 38, 83, 49, 72, 60, 61, 71, 50, 82, 39, 93, 28, 104, 17, 115, 6;
8, 113, 19, 102, 30, 91, 41, 80, 52, 69, 63, 58, 74, 47, 85, 36, 96, 25, 107, 14, 118, 3;
10, 111, 21, 100, 32, 89, 43, 78, 54, 67, 65, 56, 76, 45, 87, 34, 98, 23, 109, 12, 120, 1.

So we have a local antimagic 2-coloring for θ(2t, 4s−6−2t, 2s−4, (4s−6)[s−3]) when s ≥ 4
and 2s−3

8
< t < 6s−5

8
.

Note that, one may see from each case that m > 2s+ 2. This completes the proof. �
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§ 3. Examples

In this section, we shall provide example(s) to illustrate the construction of each case and also

provide solutions for the exceptional cases raised in the proof of Theorem 2.1.

Example 3.1. The aim of this example is to illustrate the construction showed in Case (1).

Take s = 6 (i. e., k = 1), we have θ6 = θ(4, 4, 4, 4, 4, 6) with m = 26, x = 27, y = 39,
U1 = {1}, U2 = {4, 5, 8, 9, 12}, [1, 12] \ (U1 ∪ U2) = {2, 3, 6, 7, 10, 11}.

A3(1; 12) = (1, 13, 25) and A3(26;−12) = (26, 14, 2). So, A3(1; 12) ⋄ A3(26;−12) =
= (1, 26, 13, 14, 25, 2).

Similarly, A2(4; 12) = (4, 16) and A2(23,−12) = (23, 11), A2(5; 12) = (5, 17) and

A2(22;−12) = (22, 10), A2(8; 12) = (8, 20) and A2(19;−12) = (19, 7), A2(9; 12) = (9, 21)
and A2(18;−12) = (18, 6), A2(12; 12) = (12, 24) and A2(15;−12) = (15, 3).

So, the paths of length 4 and 6 have edge labels

4, 23, 16, 11; 5, 22, 17, 10; 8, 19, 20, 7; 9, 18, 21, 6; 12, 15, 24, 3; 1, 26, 13, 14, 25, 2.

All the left (respectively right) end vertices are merged to get the degree 6 vertex with induced

label 39. �

Example 3.2. The aim of this example is to illustrate the construction showed in Case (2).

Take s = 9 (i. e., l = 3), we get θ
(

4, 10[8]
)

with y = 102, x = 85. Keep the notation defined

in Lemma 2.2 and the proof of Theorem 2.1. Since δ = 15, n = 8, we choose κ = 15 with τ = 0.
By Lemma 2.2, we have B = {15}. So we replace 1 by 16 as a label of end-edge incident to u.

Thus u is incident to end-edge labels in {16, 2, 3, 4, 5, 6, 7, 8, 51}. The paths labels are

51, 34, 68, 17: A2(51; 17) ⋄ A2(34;−17);
16, 69, 33, 52, 50, 35, 67, 18, 84, 1: the reverse of A5(1; 17) ⋄ A5(84;−17);
2, 83, 19, 66, 36, 49, 53, 32, 70, 15: A5(2; 17) ⋄ A5(83;−17);
3, 82, 20, 65, 37, 48, 54, 31, 71, 14: A5(3; 17) ⋄ A5(82;−17);
4, 81, 21, 64, 38, 47, 55, 30, 72, 13: A5(4; 17) ⋄ A5(81;−17);
5, 80, 22, 63, 39, 46, 56, 29, 73, 12: A5(5; 17) ⋄ A5(80;−17);
6, 79, 23, 62, 40, 45, 57, 28, 74, 11: A5(6; 17) ⋄ A5(79;−17);
7, 78, 24, 61, 41, 44, 58, 27, 75, 10: A5(7; 17) ⋄ A5(78;−17);
8, 77, 25, 60, 42, 43, 59, 26, 76, 9: A5(8; 17) ⋄ A5(77;−17).

Using s = 12 (i. e., l = 4), we get θ(6, 14[11]) with y = 184, x = 161. Since δ = 26. We

choose κ = 21 (i. e., k = 1) with τ = 5. By Lemma 2.2, we have B = {21, 5}. So, we replace 1

by 22 and 9 by 14 as labels of end-edges incident to u. Thus, u is incident to end-edge labels in

{22, 2, 3, 4, 5, 6, 7, 8, 14, 10, 11, 92}. The paths labels are

92, 69, 115, 46, 138, 23: A3(92; 23) ⋄ A3(69;−23);
22, 139, 45, 116, 68, 93, 91, 70, 114, 47, 137, 24, 160, 1: the reverse of A7(1; 23) ⋄ A7(160;−23);
2, 159, 25, 136, 48, 113, 71, 90, 94, 67, 117, 44, 140, 21: A7(2; 23) ⋄ A7(159;−23);
3, 158, 26, 135, 49, 112, 72, 89, 95, 66, 118, 43, 141, 20: A7(3; 23) ⋄ A7(158;−23);
4, 157, 27, 134, 50, 111, 73, 88, 96, 65, 119, 42, 142, 19: A7(4; 23) ⋄ A7(157;−23);
5, 156, 28, 133, 51, 110, 74, 87, 97, 64, 120, 41, 143, 18: A7(5; 23) ⋄ A7(156;−23);
6, 155, 29, 132, 52, 109, 75, 86, 98, 63, 121, 40, 144, 17: A7(6; 23) ⋄ A7(155;−23);
7, 154, 30, 131, 53, 108, 76, 85, 99, 62, 122, 39, 145, 16: A7(7; 23) ⋄ A7(154;−23);
8, 153, 31, 130, 54, 107, 77, 84, 100, 61, 123, 38, 146, 15: A7(8; 23) ⋄ A7(153;−23);
14, 147, 37, 124, 60, 101, 83, 78, 106, 55, 129, 32, 152, 9: the reverse of A7(9; 23) ⋄A7(152;−23);
10, 151, 33, 128, 56, 105, 79, 82, 102, 59, 125, 37, 148, 13: A7(10; 23) ⋄ A7(151;−23);
11, 150, 34, 127, 57, 104, 80, 81, 103, 58, 126, 36, 149, 12: A7(11; 23) ⋄ A7(150;−23). �
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Example 3.3. The aim of this example is to illustrate the construction showed in Case (3) and

provide a local antimagic 2-coloring for the exceptional case (l, t) = (6, 7).
Let s = 12, i. e., l = 6. Now, x = 231 and y = 253.

(a) The graph is θ12 = θ
(

22− 2t, 2t, 20[6], 22[4]
)

, where t = 6, 7. Begin with the sequences
A11(6; 22) ⋄A11(225;−22): 6, 225, 28, 203, 50, 181, 72, 159, 94, 137, 116, 115, 138, 93, 160, 71, 182, 49, 204, 27, 226, 5
A11(7; 22) ⋄A11(224;−22): 7, 224, 29, 202, 51, 180, 73, 158, 95, 136, 117, 114, 139, 92, 161, 70, 183, 48, 205, 26, 227, 4
A11(8; 22) ⋄A11(223;−22): 8, 223, 30, 201, 52, 179, 74, 157, 96, 135, 118, 113, 140, 91, 162, 69, 184, 47, 206, 25, 228, 3
A11(9; 22) ⋄A11(222;−22): 9, 222, 31, 200, 53, 178, 75, 156, 97, 134, 119, 112, 141, 90, 163, 68, 185, 46, 207, 24, 229, 2
A11(10; 22) ⋄ A11(221;−22): 10, 221, 32, 199, 54, 177, 76, 155, 98, 133, 120, 111, 142, 89, 164, 67, 186, 45, 208, 23,
230, 1

A10(11; 22) ⋄A10(220;−22): 11, 220, 33, 198, 55, 176, 77, 154, 99, 132, 121, 110, 143, 88, 165, 66, 187, 44, 209, 22

A10(12; 22) ⋄A10(219;−22): 12, 219, 34, 197, 56, 175, 78, 153, 100, 131, 122, 109, 144, 87, 166, 65, 188, 43, 210, 21

A10(13; 22) ⋄A10(218;−22): 13, 218, 35, 196, 57, 174, 79, 152, 101, 130, 123, 108, 145, 86, 167, 64, 189, 42, 211, 20

A10(14; 22) ⋄A10(217;−22): 14, 217, 36, 195, 58, 173, 80, 151, 102, 129, 124, 107, 146, 85, 168, 63, 190, 41, 212, 19

A10(15; 22) ⋄A10(216;−22): 15, 216, 37, 194, 59, 172, 81, 150, 103, 128, 125, 106, 147, 84, 169, 62, 191, 40, 213, 18

A10(16; 22) ⋄A10(215;−22): 16, 215, 38, 193, 60, 171, 82, 149, 104, 127, 126, 105, 148, 83, 170, 61, 192, 39, 214, 17

Now the difference sets are D1 = A5(−1;−2) and D2 = A6(1; 2).

i) t = 6. So, θ12 = θ
(

10, 12, 20[6], 22[4]
)

. Initially, we use the first five sequences above

to label the (u, v)-paths Tj and the last six sequences above to label the (u, v)-paths Ri.

We then break T5 into two parts such that the first 10 edges form the (u, v)-path Q2 and

the remaining 12 edges form the (u, v)-path Q1. Now, the induced vertex label for u is
16
∑

j=6

j + 120 = 241. Thus, δ(6) = 12. So, we choose B = {1, 11} ⊂ D2. Therefore, the

actual assignment for each (u, v)-path is to label:

T1 by A11(6; 22) ⋄ A11(225;−22); T2 by A11(7; 22) ⋄ A11(224;−22); T3 by A11(8; 22) ⋄
⋄ A11(223;−22); T4 by A11(9; 22) ⋄ A11(222;−22);
Q2 by 10, 221, 32, 199, 54, 177, 76, 155, 98, 133;

Q1 by 120, 111, 142, 89, 164, 67, 186, 45, 208, 23, 230, 1;

R1 by the reverse of A10(11; 22)⋄A10(220;−22); R2 by A10(12; 22)⋄A10(219;−22); R3

by A10(13; 22) ⋄A10(218;−22); R4 by A10(14; 22) ⋄A10(217;−22); R5 by A10(15; 22) ⋄
⋄ A10(216;−22); R6 by the reverse of A10(16; 22) ⋄ A10(215;−22).
Thus,

f+(u) = 6 + 7 + 8 + 9 + 10 + 120 + 22 + 12 + 13 + 14 + 15 + 17 = 253.

ii) t = 7. So, θ12 = θ
(

8, 14, 20[6], 22[4]
)

. Initially, we use the first five sequences above

to label the (u, v)-paths Tj and the last six sequences above to label the (u, v)-paths Ri.

We then break T5 into two parts such that the first 8 edges form the (u, v)-path Q2 and

the remaining 14 edges form the (u, v)-path Q1. Now, the induced vertex label for u

is
16
∑

j=6

j + 98 = 219. Thus, δ(7) = 34. For this case, we do not have B ⊂ D2. So,

we choose B = {−1, 3, 5, 7, 9, 11} ⊂ D1 ∪ D2. Thus the actual assignment for each

(u, v)-path is to label:

T1 by the reverse of A11(6; 22) ⋄ A11(225;−22); T2 by A11(7; 22) ⋄ A11(224;−22); T3

by A11(8; 22) ⋄ A11(223;−22); T4 by A11(9; 22) ⋄ A11(222;−22);
Q2 by 10, 221, 32, 199, 54, 177, 76, 155;

Q1 by 98, 133, 120, 111, 142, 89, 164, 67, 186, 45, 208, 23, 230, 1;

R1 by the reverse of A10(11; 22) ⋄ A10(220;−22); R2 by the reverse of A10(12; 22) ⋄
A10(219;−22); R3 by the reverse of A10(13; 22) ⋄ A10(218;−22); R4 by the reverse of
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A10(14; 22) ⋄ A10(217;−22); R5 by the reverse of A10(15; 22) ⋄ A10(216;−22); R6 by

A10(16; 22) ⋄ A10(215;−22).
Thus,

f+(u) = 5 + 7 + 8 + 9 + 10 + 98 + 22 + 21 + 20 + 19 + 18 + 16 = 253.

(b) The graph is θ12 = θ
(

22−2t, 2t−2, 20[5], 22[5]
)

, where t = 6, 7. We begin with the following

sequences that are the reverse of the initial sequences in Case (a):

A11(1; 22) ⋄ A11(230;−22), A11(2; 22) ⋄ A11(229;−22), A11(3; 22) ⋄ A11(228;−22),
A11(4; 22) ⋄ A11(227;−22), A11(5; 22) ⋄ A11(226;−22), A10(17; 22) ⋄ A10(214;−22),
A10(18; 22) ⋄ A10(213;−22), A10(19; 22) ⋄ A10(212;−22), A10(20; 22) ⋄ A10(211;−22),
A10(21; 22) ⋄ A10(210;−22), A10(22; 22) ⋄ A10(209;−22).

Now, the difference sets are D1 = A5(1; 2) and D2 = A6(−1,−2).

i) t = 6. So θ12 = θ
(

10, 10, 20[5], 22[5]
)

. Initially, we use the first five sequences above

to label the (u, v)-paths Tj and the last six sequences above to label the (u, v)-paths Ri.

We then break R6 into two parts such that the first 10 edges form the (u, v)-path Q2 and

the remaining 10 edges form the (u, v)-path Q1. Now, the induced vertex label of u is
5
∑

j=1

j +
22
∑

i=17

i+ 132 = 264. So, we choose B = {−9,−3, 1} ⊂ D1 ∪D2.

Thus the actual assignment for each (u, v)-path is to label:

T1 by A11(1; 22) ⋄ A11(230;−22); T2 by A11(2; 22) ⋄ A11(229;−22); T3 by A11(3; 22) ⋄
⋄ A11(228;−22); T4 by A11(4; 22) ⋄ A11(227;−22); T5 by the reverse of A11(5; 22) ⋄
⋄A11(226;−22);
R1 by A10(17; 22)⋄A10(214;−22); R2 by the reverse of A10(18; 22)⋄A10(213;−22); R3

by A10(19; 22) ⋄ A10(212;−22); R4 by A10(20; 22) ⋄ A10(211;−22); R5 by the reverse

of A10(21; 22) ⋄ A10(210;−22);
Q2 by 22, 209, 44, 187, 66, 165, 88, 143, 110, 121;

Q1 by 132, 99, 154, 77, 176, 55, 198, 33, 220, 11.

Thus,

f+(u) = 1 + 2 + 3 + 4 + 6 + 17 + 15 + 19 + 20 + 12 + 22 + 132 = 253.

ii) t = 7. So θ12 = θ(8, 12, 20[5], 22[5]). Initially, we use the first five sequences above to

label the (u, v)-paths Tj and the last six sequences above to label the (u, v)-paths Ri.

We then break R6 into two parts such that the first 8 edges form the (u, v)-path Q2 and

the remaining 12 edges form the (u, v)-path Q1. Now, the induced vertex label of u is
5
∑

j=1

j +
22
∑

i=17

i+ 110 = 242. Now δ(6) = 11. So, we may choose B = {1, 3, 7}.

Thus the actual assignment for each (u, v)-path is to label:

T1 by A11(1; 22) ⋄ A11(230;−22); T2 by the reverse of A11(2; 22) ⋄ A11(229;−22); T3

by A11(3; 22) ⋄ A11(228;−22); T4 by the reverse of A11(4; 22) ⋄ A11(227;−22); T5 by

the reverse of A11(5; 22) ⋄ A11(226;−22);
R1 by A10(17; 22) ⋄ A10(214;−22); R2 by A10(18; 22) ⋄ A10(213;−22);
R3 by A10(19; 22) ⋄ A10(212;−22); R4 by A10(20; 22) ⋄ A10(211;−22);
R5 by A10(21; 22) ⋄ A10(210;−22);
Q2 by 22, 209, 44, 187, 66, 165, 88, 143;

Q1 by 110, 121, 132, 99, 154, 77, 176, 55, 198, 33, 220, 11.
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Thus,

f+(u) = 1 + 9 + 3 + 7 + 6 + 17 + 18 + 19 + 20 + 21 + 22 + 110 = 253.

�

Example 3.4. The aim of this example is to illustrate the construction showed in Case (3) and

provide a local antimagic 2-coloring for the exceptional case (l, t) = (3, 3). Let s = 6, i. e., l = 3.
Now, x = 45 and y = 55. The sequences are

A5(1; 10) ⋄A5(44;−10): 1, 44, 11, 34, 21, 24, 31, 14, 41, 4

A5(2; 10) ⋄A5(43;−10): 2, 43, 12, 33, 22, 23, 32, 13, 42, 3

A4(5; 10) ⋄A4(40;−10): 5, 40, 15, 30, 25, 20, 35, 10

A4(6; 10) ⋄A4(39;−10): 6, 39, 16, 29, 26, 19, 36, 9

A4(7; 10) ⋄A4(38;−10): 7, 38, 17, 28, 27, 18, 37, 8

(a) t = l = 3. So θ6 = θ(4, 6, 8[3], 10).

(u, v)-path T1 is labeled by 4, 41, 14, 31; 24, 21, 34, 11, 44, 1. So

(u, v)-path Q2 is labeled by 4, 41, 14, 31 and

(u, v)-path Q1 is labeled by 24, 21, 34, 11, 44, 1.

(u, v)-path T2 is labeled by 3, 42, 13, 32, 23, 22, 33, 12, 43, 2.

(u, v)-path R1 is labeled by 10, 35, 20, 25, 30, 15, 40, 5.

(u, v)-path R3 is labeled by 8, 37, 18, 27, 28, 17, 38, 7.

(u, v)-path R2 is labeled by 6, 39, 16, 29, 26, 19, 36, 9

Thus, f+(u) = 4 + 24 + 3 + 10 + 8 + 6 = 55.

(b) t = l = 3. So θ6 = θ(4, 4, 8[2], 10[2]).

(u, v)-path Q2 is labeled by 8, 37, 18, 27.

(u, v)-path Q1 is labeled by 28, 17, 38, 7.

(u, v)-path R1 is labeled by 6, 39, 16, 29, 26, 19, 36, 9.

(u, v)-path R2 is labeled by 10, 35, 20, 25, 30, 15, 40, 5.

(u, v)-path T1 is labeled by 1, 44, 11, 34, 21, 24, 31, 14, 41, 4.

(u, v)-path T2 is labeled by 2, 43, 12, 33, 22, 23, 32, 13, 42, 3.

Thus, f+(u) = 8 + 28 + 6 + 10 + 1 + 2 = 55. �

Example 3.5. The aim of this example is to illustrate the construction given in Case (4). Take

s = 7 so that θ7 = θ(2t, 22−2t, 10, 22[4]), 2 ≤ t ≤ 4. We have x = 121, y = 132 and y−x = 11.
A11(1; 11) ⋄ A11(120;−11) = 1, 120, 12, 109, 23, 98, 34,87, 45, 76, 56, 65, 67, 54, 78, 43, 89, 32, 100, 21, 111, 10;

A11(2; 11) ⋄ A11(119;−11) = 2, 119, 13, 108, 24, 97, 35, 86, 46, 75, 57, 64, 68, 53, 79, 42, 90, 31, 101, 20, 112, 9; [7]

A11(3; 11) ⋄ A11(118;−11) = 3, 118, 14, 107, 25, 96, 36, 85, 47, 74, 58, 63, 69, 52, 80, 41, 91, 30, 102, 19, 113, 8; [5]

A11(4; 11) ⋄ A11(117;−11) = 4, 117, 15, 106, 26, 95, 37, 84, 48, 73, 59, 62, 70, 51, 81, 40, 92, 29, 103, 18, 114, 7; [3]

A11(5; 11) ⋄ A11(116;−11) = 5, 116, 16, 105, 27, 94, 38, 83, 49, 72, 60, 61, 71, 50, 82, 39, 93, 28, 104, 17, 115, 6. [1]

A5(66; 11) ⋄A5(55;−11) = 66, 55, 77, 44, 88, 33, 99, 22, 110, 11← this sequence is for the (u, v)-path P .

Note that (s − 3)2 = 16. The number with a bracket behind the sequence is the difference

between the last and the first terms. Hence, D = {1, 3, 5, 7}.
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1. When t = 4. We have δ(4) = 6 < 16. First, we separate A11(1; 11) ⋄ A11(120;−11) into two

sequences: 1, 120, 12, 109, 23, 98, 34, 87; and 45, 76, 56, 65, 67, 54, 78, 43, 89, 32, 100, 21,

111, 10. Since δ(4) < 7, by Lemma 2.2, we choose B = {1, 5}. So, we reverse the order of

A11(5; 11) ⋄A11(116;−11) and A11(3; 11) ⋄A11(118;−11), i. e., the end-edge labels for u are

1, 45 = γ1, 2, 8, 4, 6, 66.

2. When t = 3. We have δ(3) = 17 > 16 and δ∗(3) = −1. We must use an ad hoc method which

is shown in the proof.

3. When t = 2. We have δ(2) = 28 > 16. δ∗(2) = 10 < 16. First, we separate the reverse of

A11(1; 11) ⋄ A11(120;−11) into two sequences: 10, 111, 21, 100; and 32, 89, 43, 78, 54, 67,

65, 56, 76 45, 87, 34, 98, 23, 109, 12, 120, 1. Since δ∗(2) = 10, we choose B = {7, 3}. So,

we reverse the order of A11(2; 11) ⋄ A11(119;−11) and A11(4; 11) ⋄ A11(117;−11), i. e., the

end-edge labels for u are 10, 32 = γ1, 9, 3, 7, 5, 66. �

§ 4. Conjecture and Open Problem

We have completely characterized s-bridge graphs θs with χla(θs) = 2. We note that the only

other known results on s-bridge graphs are (i) χla(θ(a, b)) = 3 for a, b ≥ 1 and a + b ≥ 3; and

(ii) θ(2[s]) = 3 for odd s ≥ 3. We end with the following conjecture and open problem.

Conjecture 3. If θs is not a graph in Theorem 2.1, then χla(θs) = 3.

Problem 4.1. Characterize graph G with χla(G) = 2.
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Полная характеризация мостовых графов с локальным антимагическим хроматическим чис-

лом 2
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ло, s-мостовые графы.
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Разметка ребер связного графа G = (V,E) называется локальной антимагической, если она явля-

ется биекцией f : E → {1, . . . , |E|} такой, что для любой пары смежных вершин x и y выполнено

f+(x) 6= f+(y), где f+(x) =
∑

f(e) — индуцированная метка вершины, а e пробегает все ребра,

инцидентные x. Локальное антимагическое хроматическое число графа G, обозначаемое χla(G), —

это минимальное число различных индуцированных меток вершин среди всех локальных антимаги-

ческих разметок G. В данной статье мы охарактеризуем s-мостовые графы с локальным антимаги-

ческим хроматическим числом 2.
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