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Introduction

In 1994, Hartsfield and Ringer [3] introduced the concept of antimagic labeling of a
graph G(V, E). A bijective edge labeling f: E — {1,...,|FE|} is called an antimagic label-
ing of G if for any two distinct vertices u and v, w(u) # w(v), where w(u) = > f(e) with e
ranging over all the edges incident to w. The most famous unsolved problems are the following
conjectures [3].

Conjecture 1. Every connected graph other than K is antimagic.
Conjecture 2. Every tree other than K is antimagic.

Arumugam et al. [1] introduced the concept of local antimagic labeling and local antimagic
chromatic number. A connected graph G is said to be local antimagic if it admits a local an-
timagic edge labeling, i.e., a bijection f: ' — {1,...,|E|} such that the induced vertex labeling
[tV — Z given by ft(u) =Y f(e) (with e ranging over all the edges incident to ) has the
property that any two adjacent vertices have distinct induced vertex labels. Thus, f* is a coloring
of G. Clearly, the order of G must be at least 3. The vertex label f*(u) is called the induced color
of u under f (the color of u, for short, if no ambiguous occurs). The number of distinct induced
colors under f is denoted by c(f), and is called the color number of f. The local antimagic
chromatic number of G, denoted by x;,(G), is min{c(f) | f is a local antimagic labeling of G}.
Clearly, 2 < x1u(G) < |[V(G)|. In [4], Haslegrave proved that the local antimagic chromatic
number is well-defined for every connected graph except K.

In [1], the authors determined the local antimagic chromatic number of many families of
standard graphs including paths, cycles, certain complete bipartite graphs and wheel graphs.
In [5], Lau et al. gave a sharp lower bound of x,,(G V O,,), where G V O, is the join product
of GG and the null graph of order n. They also completely settled the local antimagic chromatic
number of wheels and complete bipartite graphs. In [6], the authors also determined the local
antimagic chromatic number of the join product of many cycle-related graphs. However, very
little is known about graphs with local antimagic chromatic number 2 (see [1, Theorem 2.11]
and [7, Theorem 2.4]).
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§ 1. Bridge graphs

A graph consisting of s paths joining two vertices is called an s-bridge graph, which is
denoted by 6(ay, ..., as), where s > 2and 1 < a; < ay < ... < ay are the lengths of the s paths.
For convenience, we shall let ; = 0(ay, as, ..., as) if there is no confusion. In this paper, we
shall characterize 0, with x;,(0s) = 2.

The contrapositive of the following lemma in [6, Lemma 2.1] or [7, Lemma 2.3] gives a
sufficient condition for a bipartite graph G to have x;,(G) > 3.

Lemma 1.1 ( [7, Lemma 2.3]). Let G be a graph of size q. Suppose there is a local antimagic
labeling of G inducing a 2-coloring of G with colors x and y, where x < y. Let X and Y be the
sets of vertices colored x and vy, respectively. Then G is a bipartite graph with bipartition (X,Y)
and | X| > |Y|. Moreover, x| X| = y|Y| = q(q—;U.

Clearly, 2 < x(6(a1, as, ..., as)) < 3 and the lower bound holds if and only if a; = ... = a,
(mod 2). By Lemma 1.1, we immediately have the following lemma.

Lemma 1.2. For s > 2 and 1 < i < s, ifxla(ﬁ(al,@,...,as)) = 2, then a; = 0 (mod 2).
Otherwise, X1, (H(al, as, ..., as)) > 3.

Throughout this paper, we shall use al” to denote a sequence of length n in which all terms
are a, where n > 2. For integers 1 < a < b, we let [a,b] denote the set of integers from a
to b. Interested readers may refer to [2,8,9] for more results related to local antimagic chromatic
number of graphs.

§ 2. Main result

In this section, we assume x;,(0s) = 2. So, by Lemma 1.2, 6, = 6(aq,...,a,) is bipartite
and all a; are even. When s = 2, 6, is a cycle, whose local antimagic chromatic number is 3.
Thus, s > 3.

For integers ¢ and d and positive integer s, let A,(7; d) be the arithmetic progression of length s
with common difference d and first term 7. We first have two useful lemmas.

Lemma 2.1. Suppose s,d € N.

(@) Fori,j € Z, the sum of the k-th term of A4(i; d) and that of As(j; —d) is i+j for k € [1, s];
and the sum of the k-th term of As(i;d) and the (k — 1)-st term of As(j;—d) is i + j + d
Sor k € [2,s].

(b) IJIO < |’ll — 22| < d, then AS(’lhd) N AS(ZQ,:ECZ) = .

Proof It is easy to obtain (a). We prove the contrapositive of (b). Suppose As(iy;d) N
N Ag(i, £d) # @. Let a € Ag(ig;d) N Ag(ig, £d). Now, a = iy + j1d = iy + jod for some
integers j17j2- ThUS, |’ll — 22| = d|j2 — jl‘ > d 1fj2 7£ ,jl or else ‘Zl — Z2| =0 lsz = jl- O

Lemma 2.2. Suppose 6 € [0,n%] \ {2,n? — 2} for some integer n > 2. There is a subset B of
An(1;2) such that the sum of integers in B is 0.

Proof If§ =0, then we may choose B = &. Suppose 1 < § < 2n — 1 and § # 2. If § is odd,
then choose B = {d}. If 0 is even, then § > 4. We may choose B = {1,6 — 1}.
Suppose § > 2n — 1, then we may choose the largest k such that k = > (25— 1) <.

j=n—k+1
Let 7 = 6 — k. By the choice of k, 0 < 7 < 2n — 2k — 1. There are 3 cases.
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1. Suppose 7 = 0. B = Ay(2n — 2k + 1;2) is the required subset.
2. Suppose 7 is odd. B = Ag(2n — 2k + 1;2) U {7} is the required subset.

3. Suppose 7 is even. If 7 > 4, then we may choose B = Ay(2n — 2k + 1;2) U {7 — 1,1}.
Ifr=2,then2 =7 < 2n -2k —1. Wehave k < n — 2. If £ < n — 3, then choose
B=A,_1(2n—2k+3;2)U{2n — 2k —1,3,1}. If k = n — 2, then k = n? — 4 and hence
§ = n? — 2 which is not a case. O

Let A; and A, be two sequences of length n. We combine these two sequences as a sequence
of length 2n, denoted A; ¢ Ay, whose (2i — 1)-st term is the i-th term of A; and the (27)-th term
is the i-th term of Ay, 1 < i < n.

Theorem 2.1. For s > 3, x1.(0s) = 2 if and only if 05 = K, ; with even s > 4 or the size m of 0
is greater than 2s + 2 and 0 is one of the following graphs:

(1) 6
(2a) 6(21 — 2, (4 — 2)B1), 1 > 2;

4182 (41 +2)), 1> 1;

(2b) 6(2,481.6), (4,85 10, 0(6, 1217, 148]);

(3a) O(41 —2 —2t,2¢, (41 — )1 (41— 2)72), 2 <l <t < B2

(3b) (4] —2 —2t,2t — 2, (4l — )1 (4] —2)l-1), 2 <1 <t < 3

= 1>

(41
(
(
(
(
(

s—3 25—3 65—5
(4) 0(2t,4s — 6 — 2t,25 — 4, (4s — 6)1+73]), 2523 < < 655 5 > 4,

Pro o f Note that Ky, = 0(2*]). In [1, Theorems 2.11 and 2.12], the authors obtained

2, if s > 4is even,

Xla(KQ,s) = {

3, otherwise.

We only consider 0, # K55, s > 3. Throughout the proof, we let v and v be the vertices of 0, of
degree s. We shall call the 2s edges incident to w or else to v as end-edges. An integer labeled
to an end-edge is called an end-edge label. A path that starts at v and ends at v is called a
(u, v)-path.

Suppose xiq(fs) = 2. Since each a; is even, 6, has even size m = Z a; > 2s + 2 > 8 edges

=1
and order m — s + 2. Let f be a local antimagic labeling that mduces a 2-coloring of 6, with

colors = and y. Without lost of generality, we may assume f*(u) = f*(v) =y. Let X and Y be
the sets of vertices with colors = and y, respectively. It is easy to get that |Y| = m/2 — s+ 2 and
| X| = m/2. By Lemma 1.1, we have x| X| = y|Y'| = m(m+1)/2. Hence, x = m+1 > 25+3 > 9
isodd,y=m(m+1)/(m—2s+4)andy > (1+2+...4+25)/2 = (25> +s)/2.

Note that 6, has at least 2 adjacent non-end-edges. Suppose z12, is not an end-edge with
f(z122) = 1. Without loss of generality, we assume f*(z;) = x, f1(22) = y. Since 2125 is not
an end-edge, there is another vertex z3 such that z; 2523 forms a path. So, f(z223) =y — [. Since
1 <y—1<m,wehavel >y —m =y —x+ 1. Consequently, all integers in |1,y — x| must be
assigned to end-edges. So, y — = < 2s. Moreover, since | # y — [, we get | # y/2 so that y/2
must be an end-edge label when y is even.

Solving for m, we get m = %(y — 14 +/y2 + 14y — 8ys + 1). Hence, y? + 14y — Sys + 1 =
= t* > 0, where ¢ is a nonnegative integer. This gives (y + 7 — 4s)*> + 1 — (7 — 45)* = 2
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or (y+7—4s—t)(y+7—4s+1t) = 8(s —2)(2s — 3). By lettinga = y+ 7 — 4s —t and
b=1y+T7—4s+t, we have 2y + 14 — 8s = a + b with ab = 8(2s* — 7s +6) = 8(s — 2)(2s — 3).
Clearly, b > a > 0. Since a, b must be of same parity, we have both a, b are even.

Recall that y — (2s? + s)/2 > 0. Now

a+b 2s*°+s

y— (252 +8)/2=4s— T+

2 2
_a+b_232—75+6_4_a—|—b_a_b_4
2 2 92 16
—ab—64 — —
_8a+8h—ab—6 :_(a 8)(b 8). @1
16 16

This implies that a < 8.

We shall need the following claim which is easy to obtain. Throughout the proof, by symme-
try, we always assume o < [3,.

Claim: Let ¢ be a labeling of a path Ps..1 = v10s ... V341 With ¢(ve;_1vy;) = «; and
P(voiv9i41) = Bi for 1 < i < r. Suppose ¢ (ve;) = w for 1 < j < r and ¢t (vyt1) = ¥
for 0 < k < r, where y > x. Then oy + 1 = z, {1, Qa,...,.} is an increasing sequence
with common difference y — x while {1, o, ..., .} is a decreasing sequence with common
difference y — x.

We shall consider 4 cases for a = 8,6, 4, 2 respectively.

Case (1). Suppose a = 8. By (2.1) we have y = (2s? + s)/2 which implies s is even.
Express ¢ and y in terms of s. This gives (i) m = s* — 3s/2 — 1 which implies s = 2 (mod 4)
and x = s — 3s/2 or (ii) m = 2s. Since m > 2s + 2, (ii) is not a case. In (i), y — x = 2s so that
all integers in [1,2s| are end-edge labels.

Let P be a (u,v)-path of 6, with length 2r whose end-edges are labeled by integers in [1, 2s].
Suppose one of its end-edges is labeled by «;. By the claim, another end-edge is labeled by
Br=0—(r—1)(y—z)=2—0a; —2rs+2s < 2s. So

2r > > =5 —

S S

r—oap _ §*—3s/2—2s 7
5

Since s and 2r are even, 2r > s — 2. Since 3, > 2, we have 2r < %(x —ap+25—2)<s+ %
Thus, each (u,v)-path of 6, is of length s or s — 2. Suppose 6, has h path(s) of length s and
(s — h) path(s) of length s — 2. We now have sh + (s — h)(s — 2) = m (= s* — 3s5/2 — 1).
Therefore, h = (s — 2)/4. Thus, 0, = ((s — 2)[Gs+2/4] 5[=2/4]) for s = 2 (mod 4).

Let s = 41+2, [ > 1. We now show that 6((s — 2)[Gs+2/41 gl(s=2/41) = g ((41)B+2 (47 4 2)1T)
admits a local antimagic 2-coloring. Recall that m = 161> + 10l, * = 161> + 10l + 1,
y=161>+ 18/ +5and y — x = 8 + 4.

Step 1: Label the edges of the path of length 4/ + 2, denoted R;, 1 < < [, by using the sequence
Agp1(45814+4) 0 Ay 1 (x —i; —81 —4) in order. Note that, as a set Ay 1(z—1i; —81—4) =
= A21+1<21 +1-— ’l7 81+ 4) SO, by Lemma 21(b), A21+1(’i; 8+ 4) < A21+1(.T — ’l7 —8l — 4)

20
for all « € [1,[], denoted U;, form a partition of |J[(8] + 4)j + 1, (8] + 4)j + 2{]. By
=0

Lemma 2.1(a), we see that all induced labels of internal vertices are x and y alternatively.
Now, integers in [1, 2] are end-edge labels.

Step 2: Label the edges of the path of length 4[, denoted );,1 < j < 3l + 2, by the se-
quence Ag(av; 81+ 4) ¢ Ag(x — a; —81 — 4), where « is the j-th integer of the sequence
31+ 1,41+ 1] U [4l + 3,50 + 1] U {5l + 3,60 + 3} U [7l + 5,8l + 4], denoted Us, in
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order. Note again, Ay (a; 8] + 4) o Agy(x — a; =81 — 4) for all o € U, form a partition
201

of U I[(Bl+4)j+20+1,(80+4)5+ 8]+ 4]. By Lemma 2.1(a), we see that all induced
=0

labels of internal vertices are = and y alternatively. Now, integers in [2] + 1,8[ + 4] are
end-edge labels.

Step 3: We now merge the end-vertices with end-edge labels in U; U U, to get the vertex u. We
then merge the other end-vertices with end-edge labels in [1,8] + 4]\ (U; UU,) to get the
vertex v. Clearly, both u and v have induced vertex label y.

Note that

<LJK&44®j+1JSL%®j+2H)LJ(LJK&44®j+2L+L(&44®j+8L+Q> = [1,161%+101].

Jj=0 Jj=0

So the labeling defined above is a local antimagic 2-coloring for 6((41)B+2 (41 + 2)11).

Case (2). Suppose a = 6. Now, b = 3(s — 2)(2s — 3). By (2.1), we have y = 25(25 — 1)/3
and, hence, s = 0,2 (mod 3). Similar to Case (1), since m > 2s + 2 > 8, we must have
m = (4s*—8s)/3 and s > 5. Now y—z = 2s— 1. So integers in [1,2s—1|U{y/2 = (25> —s)/3}
are end-edge labels.

Note that there are s — 1 paths in §; with both end-edges labeled with integers in [1,2s — 1].
Suppose P, is one of these s — 1 paths. Since oy < [3,, we have a; € [1,2s — 2|. Now,
By=(r—a1)—(r—1)(y—z) <2s—1=y—uz. Since z = (45> —8s+3)/3and y —x = 25 — 1,
we have that

(25 —6)(2s —1)/3+1= (458> —145+9)/3< 2 —a; < r(y — x) = r(25 — 1).

Thus, r > (2s — 6)/3 > 3, i.e, r > 2. Hence, f,_; is labeled at a non-end-edge so that

Bro1=(x—ay) — (r—2)(y — x)"z 2s. Therefore,
(r—2)2s—1) <z —a; —2s5 < (45> —145)/3 = (25 —6)(25s — 1)/3 —2 < (25 — 6)(2s — 1) /3.

Consequently, 7 — 2 < (2s — 6)/3 = 2s/3 — 2, i.e., r < 2s/3. Combining the aboves, we have
2s/3 —2 < r < 2s/3 so that 2s — 6 < 3r < 2s. This implies that 3r € [2s — 5,2s — 1]. Since
s #1 (mod 3), we have the following two cases.

a) Consider s = 3[, [ > 2. Since 3r = 0 (mod 3), we have 3r = 2s — 3, i.e.,, r = 2] — 1.
Thus, the s-th path must have length m — (3] — 1)(4l — 2) = 2] — 2. Consequently, 65, =
=0(20 — 2, (41 — 2)B=1),

We now show that 65 = 0(2l -2, (41 — 2)[3l*1]) admits a local antimagic 2-coloring. For
=20 = 0(2, 6[5}) with induced labels y = 44, x = 33 and the paths have vertex labels

22,11; 3
2

1,32,12,21,23,10; 3,30, 14,19,25,8;
4,29,15,18,26,7; 5,281

2
8,16,17,27,6; 9,24,20,13,31,2.

All the left (respectively right) end vertices are merged to get the degree 6 vertex with induced
label 44.

For | > 3, we apply the following steps.

Step 1: Label the edges of the path R; of length 4/ — 2 by the sequence Ag_1(i;6] — 1) ©
o Ag1((60l —1)(20 — 1) —4;—61 4 1) in order, 1 < i < 31 — 1.
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b)

Step 2: Label the path @) of length 2/ — 2 by the sequence
A (6l =160 —1)0 A1 ((6l — 1)(1 — 2); =61 + 1)

in order. By Lemma 2.1, one may check that all integers in [1,4[(3] — 2)] are assigned
after the step.

Step 3: If we merge the end-vertices with end-edge labels in [1,3] — 1] U {y/2} as u, then the
induced label of w is (91 — 31) + (61> — ) = $(211? — 5l). Clearly it is less than
y = 121* — 21. The difference is § = £ (31 + 1).

Step 4: Consider the set of differences of two end-edge labels in R;, 1 < ¢ < 3] — 1, which
is D = {1,3,5,...,60l —3} = A3_1(1;2). Clearly, 3 < § < (3l —1)> — 3. By
Lemma 2.2, we have a subset B of D such that the sum of numbers in B is J.

Step 5: Label all end-edges incident to u by

([1,3%1]\{%\%3})%%|¢eB}u{612—z}.

We have a local antimagic 2-coloring for 65 = 6(20 — 2, (41 — 2)B'=1).

Consider s =3/ — 1,1 > 2. Now, 3r = 2s —4 or 2s — 1 so that r € {2[ — 2,2] — 1}. Note
that r > 2.

Let the path with an end-edge label y/2 = (2s*> — 5)/3 be of length 2q. Since y/2 ¢ [1,2s—1]
and we assume a; < f3,, this means 3, = (25> — s)/3 = (3l — 1)(20 — 1).

If ¢ = 1, then oy + 1 = x. This implies oy + (3] — 1)(2{ — 1) = (2 — 1)(6] — 5) and hence
a; = 61> — 111+ 4. Since a1 < 2s—1 =6 —3, we get 61> — 171 +7 = (21 —1)(3l = 7) < 0.
The only solution is [ = 2 so that s = 5. Note that ¢ = [ — 1.

Suppose ¢ > 2. Now o, + 5, = = and oy = oy + (¢ — 1)(y — x) implies that oy =
r—0;,—(q@g—1)2s—1) < (2s —1). Soz—f; < q(2s —1). In terms of I, we have
(20 = 1)(61 — 5) — (31 — 1)(20 — 1) < q(61 — 3). Thus, 3] — 4 < 3¢. This implies ¢ > [ — 1.
Also note that 8 = , + (25 — 1)(¢ — 1) < m = 3(4s® — 8s). In terms of | we will obtain
(6] — 3)q < 61> — 5. This implies ¢ < [ — -2 < I. Thus, ¢ <[ — 1. Combining the aboves,

61—3
we have ¢ =1 — 1, as in ¢ = 1 above.

Now, suppose there are k paths of length 4/ — 4 and 3] — 2 — k paths of length 4] — 2. We
then have (2 —2) + k(4] —4) + (3l —2 — k)(4l — 2) = 4(3l — 1)(I — 1) = m. Solving this,
we get k = 2/ — 1. Consequently, f3_; = 0(20 — 2, (41 — 4)2=1 (4] — 2)l=1) for I > 2.

Recall that y = 12[?> — 101 + 2, z = 1212 — 161 + 5, y — x = 6] — 3. Using the claim, we now
have the followings.

e Consider the [ — 1 path(s) of length 4/ — 2. We have oy =i < gy 1 =2z —i— (y — x) -
(20 —2)=2l—1—14. So 1 <i<1[—1. Thus, numbers in [1,/ — 1] must serve as «;
for these [ — 1 path(s). Hence, numbers in [I, 2] — 2] must serve as 3y _; for these [ — 1
path(s). Thus, numbers in [1, 2] — 2] are assigned to these [ — 1 paths.

e Consider the 2/ — 1 paths of length 4] — 4. We have 2l — 1 < a3 =1 < Py o =
=z—i—(y—2x)2l—3) =8l —4—1i. So2l—1 <1< 4]l—3. Thus, numbers in
[21 — 1,40 — 3] must serve as «; for these 2/ — 1 path(s). Hence, numbers in [4l — 1, 6] — 3]
must serve as [y_o for these 20 — 1 path(s). Thus, numbers in [2] — 1,61 — 3] \ {4l — 2}
are assigned to these 2/ — 1 paths.
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e Consider the path of length 2/ — 2. This path must have ay = 4l — 2 and 3, =
=6>—-51+1=y/2.

Since y/2 is assigned to an end-edge incident to w, say, at the path of length 2/ — 2, we have

-1 41-3
1
5@&”—%LHD:§:%%}:j+«ﬁ—6k+ngfﬂw%:mﬁ—lm+2

=1 j=2i-1
We get [ = 2, 3,4, which implies s = 5, 8, 11, respectively.

For s = 5, we get 05 = 0(2,40,6) with induced vertex labels y = 30, z = 21. The labels of
the paths are

15,6; 3,18,12,9; 4,17,13,8; 7,14,16,5 1,20,10,11,19,2.

For s = 8, we get 05 = 6(4,8), 101?)) with induced vertex labels y = 80, z = 65. The labels
of the paths are

40, 25, 55, 10; 5,60, 20,45, 35, 30, 50, 15; 6,59,21,44, 36,29, 51, 14;
7,58,22,43, 37, 28,52, 13; 8,57,23,42, 38, 27,53, 12; 11,54, 26, 39,41, 24, 56,9
1,64,16,49,31,34,46, 19,61, 4; 2,63,17,48,32, 33,47, 18,62, 3.

For s = 11, we get 61; = (6,127, 145)) with induced vertex labels y = 154, 2 = 133. The
labels of the paths are

77,56, 98, 35,119, 14; 7,126, 28,105, 49, 84, 70, 63, 91, 42, 112, 21;
8,125, 29,104, 50,83, 71, 62, 92, 41, 113, 20; 9,124, 30,103, 51,82, 72, 61, 93, 40, 114, 19;
10,123, 31,102, 52, 81,73, 60, 94, 39, 115, 18; 11,122, 32,101, 53, 80, 74, 59, 95, 38,116, 17;
12,121, 33,100, 54, 79, 75, 58, 96, 37, 117, 16; 13,120, 34,99, 55, 78,76, 57, 97, 36, 118, 15;

1,132,22, 111,43, 90, 64, 69, 85, 48,106, 27,127,6;  2,131,23, 110, 44,89, 65, 68, 86,47, 107, 26, 128, 5;
4,129, 25,108, 46,87, 67, 66, 88, 45, 109, 24, 130, 3.

Case (3). Suppose a = 4. In this case, b = 2(25* —7s+6) and 2y + 14 — 8s = 4s® — 145+ 16.
So y = 25> — 3s + 1. Similar to the previous cases, m = 2s> — 5s + 2 only. Hence s is
even, = 25> —5s+3 and y — v = 2s — 2. So, integers in [1,2s — 2| must be assigned
to 2s — 2 end-edges. Let the remaining two end-edges be labeled by ~; and .. We have
252

452 —6s +2 =2y = fr(u)+ fT(v) = D i+m +72 = (s—1)(2s—1) + 7 + 2. Thus,
i=1

Y+ Y =28 —3s+1=y.

Suppose 1 and v, are labeled at the end-edges of the same path of length 2¢g. Without loss of
generality, oy =, and §, =y sothaty = oy + 5, = oy + (v —a1) — (¢ — 1)(y — =). We have
q(y — x) = 0 which is impossible. Therefore, 7; and ~, are labeled at different paths. Thus, there
are s — 2 paths whose end-edges are labeled by integers in [1, 2s — 2] and exactly two paths, say
@Q; with an end-edge label in [1,2s — 2] and another end-edge label v; > 2s — 1,7 =1, 2.

Suppose P, is a path with both end-edges labeled with integers in [1,2s — 2|. By the
assumption 1 < o < 3, < 2s—2 and the claim, we have 3, = (z—a;) — (r—1)(y—z) < 2s5—2.
So,

(25 —2)(s—3) =25 -85+ 6 <25 —~Ts+5<a—0a; <r(y—x)=7r(25—2).

Thus, r > s—2 > 2. So (3,_; is labeled at a non-end-edge. Therefore, 5,1 = (r—ay) —(r — 2)-
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-(y —x) > 2s — 1. We have
(r—2)2s—2)<a—0a; —25+1<2s —Ts+3 <25 —65+4=(25s—2)(s —2).

So, r < s. Thus, r € {s — 2,5 — 1}.

Suppose @; is of length 2r; whose end-edges are labeled by o ; € [1,2s — 2] and £,,; = 7.
So, Bri =7 =x—ay;—(ri—1)(y—x). Since y1+72 = 2s*—3s+1is odd, 7o > %(252—33+2)
and 1 < $(2s* — 3s). Now

(ro—1)(2s —2) =2 — 12 — 72 §232—53+3—1—%(252—35+2)
= (282 —T754+2)/2=[(25 —2)(s —2) — s — 2]/2 < (25 — 2)(s — 2)/2.

We have 2r9 — 2 < s — 2 and hence 2ry < s — 2.
Nowy =m+7 =2r—a1;—a2—(r1+re—2)(y—x) or (r +7r—1)(25s —2) =
=(rm+ra—1)(y—z)=2—a11 — a1z Since oy 1,12 € [1,25 — 2],

(s—1)(25—2)>(s—1)28—2)—5—2=2s"—5s=a—3> (r; +7m —1)(25 — 2)
>x—(4s—5) =25 —9s+8=(5s—4)(25 —2) + 5> (s — 4)(25s — 2).

So, s >r;+ry>s—3o0r2r; +2ry € {25 — 2,25 —4}. Thus, 2ry +s—2 > 2r1 4+ 2ry > 25 — 4.
So, we have 2ry > s — 2 > 2ry. Since 2r; + 2ry < 2s — 2 and 2ry > 2, 21y < 25 — 4.

Without loss of generality, we may always assume that v is labeled at the end-edge of (),
incident to u. Since s > 4 and f*(u) = y, 72 must be labeled at the end-edge of (), incident
to v. Suppose there are k paths of length 2s — 4 and s — k — 2 paths of length 2s — 2. Therefore,
2(ry +1o) + k(25 —4) + (s — k — 2)(25s — 2) = 25* — 5s + 2. So, 2(r; +r9) = s — 2 + 2k. For
convenience, we write s = 2[ for [ > 2.

(a) Suppose 2r| +2ry = 41 —2. Now, k = [ and 6 = 0(41 —2—2ry, 2ry, (41— 4)1, (41— 2)[=%)
for{ <ry <2[—2. Sincel—1>ry=2—1—ry, ry > [. Rewriting r, as t, we have
O = 0(41 — 2 — 2t,2¢t, (4 — 41 (41 — 2)!=2) for | < ¢ < 20 — 2. Here @, and Q) are
(u, v)-paths of length 4] — 2 — 2¢ and 2t, respectively.

Next, we consider all (u, v)-paths of ;. Let the (u, v)-paths of length 4] —4 be R;, 1 < i <,
and the (u,v)-path(s) of length 4l —2 be 73, 1 < j <[ — 2. Let 7;_; be the path obtained
from ()5 and (); by merging the vertex v of ()> and the vertex u of ();. Hence, T;_; is a
(u, v)-path of length 4/ — 2. Under the labeling f, the end-edge labels are in [1,4] — 2] and
the induced vertex labels of all internal vertices of 7;_; are x and y alternatively.

(b) Suppose 2ry + 2ro = 4l — 4. Now, 2r; = 4l —4 —2ry < 4l — 6 so that k = [ — 1 and
O = 0(4l — 4 — 2ry, 27y, (41 — 4)71 (41 — 2)871) for [ — 1 < ry < 20 — 3. Rewriting 1 as
t —1, we have 0y = (4l — 2 — 2,2t — 2, (41 — 4)!=1 (41 — 2)=1) for | <t < 21 — 2. Here
Q- and Q) are (u,v)-paths of length 4] — 2 — 2¢ and 2t — 2, respectively.
Next, we consider all (u, v)-paths of ;. Let the path(s) of length 4/ —4 be R;, 1 <i <[ —1,
and the path(s) of length 4/ — 2 be T}, 1 < j <[ — 2. Let I, be the path obtained from ),
and Q1 by merging the vertex v of ()5 and the vertex u of ();. Hence R; is a (u, v)-path of
length 41 — 4. Under the labeling f, the end-edge labels are in [1,4] — 2] and the induced
vertex labels of all internal vertices of R; are x and y alternatively.

For each case, after the merging, we have [ paths R; of length 4/ —4, 1 <+¢ <!l and [ —1 paths T}
of length 4] — 2, 1 < j <1 — 1, where [ > 2. All the end-edge labels are in [1,4] — 2] under
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the labeling f. Consider the (u,v)-path R; of length 2s — 4 = 4] — 4. Suppose x; = a4 is an
end-edge label, then another end-edge label is B0 = (z —ay) — (s — 3)(25s — 2) < 25 — 2. We
have a; > s — 1. By symmetry, 5,_o > s — 1. So, all the [ paths R; have their end-edges labeled
by integers in [2] — 1,4l — 2|. Thus, all (u, v)-paths T} have their end-edges labeled by integers
in [1,20 — 2.

Let the label assigned to the end-edge of 7 incident to u be y;.

(a) For the case 0y = 0(41 — 2 — 2¢,2t, (41 — )1, (41 — 2)l=2), 2 <1 < ¢ < 21 — 2, 7 is the
(4l — 2 — 2t + 1)-st edge label of 7;_; so that v; = y;1 + (2] — 1 — ¢)(4] — 2). Hence,

-1 l -1 l
W=1)@-1) = fr ) =y+Y y+> wi=ya+@—-1-)A-2)+) y+ >z

j=1 i=1 j=1 i=1
We have

(20 — 1 — ) (4] — 2) = (41 — 1)(2[—1)—yl1—iyj—2xi

> (41— 1)(20 — 1) — (21 — 2) — (I-1)@Bl—-2) I(Tl-3)

2 2
=312 — 41 + 2.

This means
1 1
t(41—2) < 2(20—1)*— (31> —41+2) = 51°—4l = Z[<5l_1)<4l_2)_2l_2] < Z(5l_1)(4l_2)'

Therefore, t < 34, ie., t < 322, Thus, | <t < 32,

(b) For the case Oy = (41 — 2 — 2t,2t — 2, (41 — 4)V=1 (4l — 2)l=1) for 2 < 1 <t < 20— 2,
similarly, we have

-1 l
@I-1-t)A-2)=A-1)R-1) -z — > y— > _

> (41— 1)(20 — 1) — (41 — 2) — (—1El-=2) (7 —3)

2 2
=312 -6l + 2.

This means
1 1
t(41—2) < 2(20—1)*—(31>—61+2) = 51>—2] = Z[<5l+1)(4l_2)_2l+2] < Z(5l+1)(41—2).

Therefore, ¢t < 22, i e, ¢ < 2. Thus, [ < ¢ < 2.
Consequently, we have the following two cases.
(@) O = 0(4l — 2 —2t,2t, (41 — 41 (41 — 2)77) for 2 < 1 <t < 32 or else
(b) O =0(4l —2 —2t,2t — 2, (41 — 471 (40 = 2)=1) for2 <1 <t < 2L

Now, we are going to find a local antimagic 2-coloring for the above graphs.
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(a)

(b)

O = 0(41 — 2 — 2¢,2t, (41 — )11, (41 — 2)I=2)) for 2 <1 < ¢ < 32,

Step 1: Label the edges of T; by the sequence Ag_1(I —1+ ;41 —2) 0 Ay 1(z — 1+ 1 — j;
—4l+2),1 < j <1l-—1. Note that we choose vy = | — 1 + j. This gives
Por—1 =1—j. So,asaset Ay (v — (I —1+47); =4l +2) = Ay 1 (I — j;41 — 2).
Thus, integers in [1,2] — 2] are end-edge labels of all path(s) 7; and integers in
-1
Ul =14l —2)+1,(j —1)(4l —2) + (21 — 2)] are assigned.
j=1
Step 2: Label the edges of the (u,v)-path R; by the sequence Ay o(20 — 2 + 054l — 2) ¢
oAy o(x—204+2—1i;—41+2), 1 <14 <. Note that we choose a; = 2/ —2+ 1. This
gives fBg_o = 61—3—(21—2+1) = 4l—1—1i. So, as a set Agy_o(x—214+2—i; —41+2) =
= Ay o(4l —1—14;4l — 2). Thus, integers in [2] — 1,4[ — 2] are end-edge labels of

all path(s) R; and integers in U [(1—1)(4l—2)+ (20 —1),(: —1)(4l — 2) + (4l — 2)]

are a551gned The set of dlfference between the two end-edge labels of a path R; is
={1,3,...,2l — 1} = A;(1;2).

Step 3: Pick the (u, v)-path T;_; and separate it into two paths. Note that the end-edge labels

of T)_; are 2] — 2 and 1. The first 4/ — 2 — 2¢ edges form a (u,v)-path )5 and the

remaining 2¢ edges form a (u, v)-path ;. Note that the label of (4] — 1 — 2¢)-th edge

Thus, the above labeling is a local antimagic labeling. Under this labeling, the induced vertex
label of u is

-1 l
SU=1+5)+) (2A-2+i)+m
=1 i=1

:<l_>;3l_2) l<5l 3 @1 - —2)+ (21— 2)

= 1202 + 2t — 101 —4lt+ 1.

The difference from Y= 812 —6l+11s (t) = 4lt+4l—41* -2t = (41—2)(t—1) +21. Clearly,
2 < §(t) < (41 — 2)52 + 21 < 1. Suppose §(t) = [> — 2, then t = 42 :?T*?jt(li

-2 2041-2)"
Since t < %, 2<1<6. Sincet € Z, | = 6 and, hence, t = 7. Thus, by Lemma 2.2, we
may choose B C D, to obtain a local antimagic 2-coloring of 0(4l — 2 —2t,2t, (41 — 41,
(41 —2)-7) for 2 <1 < t < 222 and (I,t) # (6,7). We shall provide a local antimagic
2-coloring for the special case ([,t) = (6,7) in Example 3.3(a)(ii).

O = 0(40 —2 —2t,2t — 2, (4l — )11 (41 — 2)l71) for2 <1 <t < 2

Step 1: Label the edges of 7, by the sequence Ay_;(j;4l — 2) o Ay_q(x — j; —4l + 2),
1 < 5 <1 —1. The set of difference between the last label and the first label of a
paths T;’s is Dy = {1,3,...,2l — 3} = A;_1(1;2).

Step 2: Label the edges of R; by the sequence Ay o(3l —2+1;4l—2)0 Ag_o(x — 31 + 2 — 4;
— 41+ 2), 1 <i <. The set of difference between the last label and the first label
ofapaths R;’s, 1 <i<l—1,is Dy ={—1,-3,...,—(2l = 3)} = A4_1(—1; -2).

Step 3: Pick the (u,v)-path R; and separate it into two paths. Note that the end-edge labels
of Ry are 4] — 2 and 2] — 1. The first 4] — 2 — 2¢ edges form a (u, v)-path ), and the
remaining 2t — 2 edges form a (u, v)-path ¢);. Note that the label of (4] — 1 — 2¢)-th
edge of Ry isv1 = (21 — 1 —¢)(4l — 2) + (41 — 2).
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Similar to the previous case, the above labeling is a local antimagic labeling. Under this
labeling, the induced vertex label of u is

-1 l
S -2ty = T oy -2 @y

= 1212 + 2t — 61 — 4lt.

The difference from y = 81 — 61 + 1 is §(t) = —41*> — 2t + 41t + 1. Clearly, §(¢) is an
increasing function of t. It is easy to show that 3 < 21 — 1 < () < I — %l +1 <
< (—1)2—1wheni+1 <t < 2. We need to show that §() # (I — 1)> — 2. Now
5((51 — 1)/4)) = 22508 — (1 —1)2 - 3L < (1~ 1) — 2. If & € Z, then | > 4. So,
O(51/4) = DL — (1 9)2 UL < (] —1)2 -2 Thus, 3 < §(t) <P -2 41 < (1-1)2—2
whenl+1 <t < %l. By Lemma 2.2, we may choose B C D; and then we obtain a local
antimagic 2-coloring for 6(41 — 2 — 2¢,2¢ — 2, (4l — 4)I=1 (41 — 2)l=1) for [+ 1 < ¢ < 2L,

The remaining case is ¢ = [. For this case, §(I) = —20 + 1. If [ # 3, then we may choose
B ={—(21—-3),-3,1} C Dy UD,y. When [ = 3, we have ¢t = 3. This is a special case with
solution given in Example 3.4(b).

Case (4). Suppose a = 2. In this case, b = 4(25*> —7s+6) and 2y + 14 — 8s = 8s? — 285+ 26.
So, y = 45> — 10s + 6. Similar to the previous cases we have m = 4s* — 12s + 8. Hence,
x =45 — 125 +9.

Suppose s = 3. We get m = 8, z = 9 and y = 12. Thus, 63 = 6(2,2,4). The sequences we
can use are 3,6; 1,8 and 4,5,7,2 or else 3,6; 1,8,4,5 and 7,2, both of which give no solution.
We now assume s > 4.

Note that y — x = 2s — 3, y is even and y/2 > 2s — 3. Recall that if y is even, then y/2 is an
end-edge label. Thus, integers in [1,2s — 3] U {y/2} are end-edge labels.

There are only 3 end-edge labels greater than 2s — 3. So, there are at least s — 3 paths with
both end-edges labeled by integers in [1, 2s — 3]. Suppose P»,11 is one of these s — 3 paths. Keep
the notation defined in the claim and the assumption ay < 3,.. So, a1 € [1,2s — 4].

Now 3, = (x —a;) — (r—1)(y —x) <2s—3. Since v = 45> — 12s + 9 and y — x = 25 — 3,
we have

(25 —3)(2s —4) <4 —l4s+13<z—a; <r(y—2) =1r(25 — 3)

Thus, » > 2s — 3.
Since r > 4, B,_; is labeled at a non-end-edge. So, 5,1 = (r—ay) — (r—2)(y—x) > 25 —2
so that

(r—2)2s—3)<ax—a; —2s+2<4s* — 145+ 10 < (25 — 3)(2s — 4).

So,7—2<2s—5orr <2s—3. Thus, r = 2s — 3. Note that fy,_3 = 25 — 3 — .

Suppose y/2 = 2s®> — 5s + 3 is labeled at an end-edge of a path ). Let the length of @ be 2.
So, we have a; < 2s—3, 5, =y/2and B; = y/2+ (¢ —1)(2s —3). Now = = a; + (1 =
= a; +y/2+ (¢ —1)(y — x) so that 2z > y + (2¢ — 2)(y — x). We have (2s — 3)?> = = >
>2¢—1)(y—x)=(2¢—1)(2s —3). Thus,2¢ — 1 < 2s —3,i.e,q¢<s—2.

On the other hand, 2z = 20y +y+ (2¢ —2)(y — ) <2(2s —3)+y+ (2¢ — 2)(y — z) =
=y +2q(y — z) so that (2s — 3)> =z < (2¢+ 1)(y — x) = (2¢ + 1)(2s — 3). This means
2¢+1 > 2s — 3, i.e., ¢q > s — 2. Thus, ¢ = s — 2. Consequently, 6, contains a path of
length 25 — 4 with an end-edge label B,_, = 2s*> — 5s + 3 = /2 so that a; = i(2s — 3) and
Bi =45 —14s+12—(i—1)(2s —3) = (25 —3)(2s —3—1i) > (2s—3)(s—1) for 1 <i < s —2.
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Let the remaining two end-edge labels be v; and 75. Thus, 2y = f(u) + fT(v) =91 + 2 +
+y/2+ (25 —3)(s —1). So, 71 + 72 = 45> — 10s + 6 = y.

Suppose 7; and v, are labeled at the same path of length 2¢. By a similar proof of Case (3),
we have 45> —10s+6 = v+ =71+ (@ —7)—(g—1)(y—z) = 45> —12s+9—(¢—1)(2s — 3)
which is impossible.

As a conclusion, there are exactly s — 3 paths of length 4s — 6 whose end-edges are labeled
by integers in [1,2s — 4], one path of length 2s — 4 whose end-edges are labeled by 2s — 3
and y/2, two paths @); of length s; whose end-edges are labeled by a;; € [1,2s — 4] and 7;,
¢t = 1,2. By counting the number of edges of the graph, we have s; + sy = 4s — 6. Thus,
0, =0(2t,45s — 6 — 2t,2s — 4, (45 — 6)=7) for some t > 1.

Let us rename all (u, v)-paths.

o Let Ry,...Rs_3 be the (u,v)-paths in 0, of length 4s — 6. Let the end-edge label of R;
incidenttou be z;, 1 <7 < s — 3.

e Let P be the (u, v)-path of length 2s—4 whose end-edge labels are 2s—3 and (s—1)(2s—3).

e Let () be (u,v)-path of length 4s — 6 — 2¢ whose end-edge labels are v, and x, ;. Let
()2 be (u,v)-path of length 2¢ whose end-edge labels are x5 and .. Without loss of
generality, we may assume that v; < . Since v + 72 = y, 71 < /2 < 2. Also, without
loss of generality, we may always assume that v, is labeled at the end-edge incident to u.
Thus, x,_5 is labeled at the end-edge of (- incident to w.

Let R, 5 be the labeled (u, v)-path obtained from () and @); by merging the end vertex v
of () with the end vertex u of ();. Therefore, R, 5 satisfies the assumption of the Claim.
Thus, =, is labeled at the end-edge of R,_» incident to u. Now ~; = t(2s — 3) + z5_o.

Suppose 2s — 3 is labeled at the end-edge of P incident to u, then

2(s—1)(2s —3) = Zx, (2s —=3)+ x50+

s—2

=Y z;+(25s=3)+[t(25s —3) + z5_0) = Zx, (t+1)(2s —3) + x5_0.

5—2
This means (2s — ¢ — 3)(25 — 3) = 2,5 + Zjlx < (25 —4) 4 LB Since 1 <t < s -2,
(s —1)(25 — 3) < (25 — 4) + &= 2)(33 5 — 382_278+2 which is impossible. Thus, (s — 1)(2s — 3)
must be a label of the end-edge of P incident to u. Consequently, we have

2(s—1)(2s —3) = Zx, (s=1)2s—3)+x520+m

—2
Z (s —1)(2s —3) + [t(2s — 3) + x5_2] = Zx, + (s —14+1)(25s —3) + x5_0.

This means (s —t—1)(2s—3) = z,_ 2+ZZ:1 x> 14 8= 2)(5 D — 82—§5+4 — (25;3)2 +% > —(2:3)2.

Solving this inequality, we have ¢ < T
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s—2 5
Similarly, we have (s — ¢t — 1)(2s — 3) = z5_2 + ;xl < SeoTehd o (63*5)8(23*3) -I<
< (0s79)@79) " Solving this inequality, we have ¢ > 2573,
Hence,
(25 — 1,65 — 4], ifs=8j—4;
2] — 1,65 — 3], ifs=28j—3;
(27,65 — 3], if s =85 —2; [k, 3k — 1], if s = 4k;
27,67 — 2 if s =87 —1; k,3k if s =4k +1;
e J123,67 2], ifs =8 g e ) (R3] if s + 1
(27,67 — 1], if s = 8j; [k + 1, 3k], if s =4k + 2;
124, 671, if s = 8§+ 1; k+1,3k+1], ifs=dk+3;
[27 + 1,67], if s =85+ 2;
[[27 + 1,65 +1], if s =85+ 3;
where 7, k > 1.

We now show that 0, = 0(2t,4s—6—2t,2s—4, (4s—6)*"9), for s > 4 and 23 <t < 2,
admits a local antimagic 2-coloring. We keep the notation defined above. Following is a general
approach:

Step 1: Label the edges of the path R; of length 4s — 6 by the sequence Ass_3(j;2s5 — 3) ©
o Ags—3(x —7; — (2s — 3)) in order, for 1 < j < s—2.

Step 2: For convenience, write x5_s = «. Separate R, , into two paths. The first 2¢ edges form
the path (); and the rest form the path );. So « and ~; are labeled at the end-edges
incident to u. Recall that v; = ¢t(2s — 3) + «.

Step 3: Label the edges of the (u,v)-path P of length 2s — 4 by the reverse of the sequence
As 9(25 — 3;2s8 — 3) 0 Ag_2((2s — 3)(2s — 4); —2s + 3), i.e., As o((s — 1)(2s — 3);
25 —3) 0 As_o((s —2)(2s — 3); =25 + 3).

Clearly, by the construction above, it induces a local antimagic labeling for 0(21&, 4s — 6 — 2t,
25 — 4, (4s — 6)1*=31). Under this labeling, the induced vertex label for u is

s—2 2
3542
(3—1)(23—3)+Zz’+%:(23—3)(5—1+t)+%+a.
=1

The difference from y = (2s — 3)(2s —2) is §(t) = (2s = 3)(s — 1 —¢) — HTS” — a. Clearly,
d(t) is a decreasing function of ¢.
Now, if we choose a = 1, then §(t) = 3°=Ts=1stt6642 | yhere 258 ¢ < 8525 Qo

16k2 — 11k + 1 3k —2, ifs=4k;
16k2 —k —1 E—1, ifs=4k+1:
>(5t > ) )
1621 k-1 (2002 7k, if s = 4k + 2

2
16k2 + 11k + 1 Sk+1, ifs—4k+3.

The set of differences of two end-edge labels in R;, 2 < j < s—2,is D = {1,3,5,...,2s — 7} =
= As—3(1; 2)
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Clearly, §(t) = 2 only when (s,t) = (13,9). Also the maximum value of §(¢) for each case
of s is greater than (s — 3)?. Let us look at the second and third largest values d, and d3 of §(¢)
if any:

16k% — 19k + 4, if s = 4k; 16k? — 27k + 7, if s = 4k;

5, = 16k* — 9k, if s =4k +1; 5y = 16k — 17k +1, ifs=4k+1;
16k — Tk —2, ifs=4k+2; 16k? — 15k — 3, if s = 4k + 2;
16k% + 3k — 2, if s = 4k + 3; 16k* — 5k — 5, if s = 4k + 3.

Clearly, 0 < 63 < (s — 3)? — 2. So, by Lemma 2.2, there is a subset B of D such that the sum
of integers in B is 6(¢) when 222 + 2 < t < %5 except the case (s,t) = (13,9). Similar to
Case (2), we find a local antimagic 2-coloring for 6 (2t, 4s—6—2t,2s—4, (4s— 6)[8_3}) according
to the above range of ¢.

For the case (s,t) = (13,9), y = 552. Under the proposed labeling, we can see that the
induced label for u is 549 + «. So, we may choose a = 3.

The remaining cases are when 252 < ¢ < 25342, When s = 4, we have 0, = 1 and 65 does
not exist. We shall modify our proposed labeling. Now, we choose a@ = 2s — 4. In this case, 1 is
not labeled at the end-edge incident to u so that the set of labels of the end-edges incident to
is {(s—1)(2s —3),1} U[2,s — 2] U {2s — 4}. Thus, the sum is (s — 1)(2s — 3) + (2s — 4) +

s—2 9

Sid+m = (2s —3)(s — 1 +1t) + =210 The difference from y = (2s — 3)(2s — 2) is
i=2

§*(t) = 3LosAsti0l+22 | One may easily check that 3 < 6*(t) < (s — 3)% — 3 for 2% < ¢ <
< 2523 42, except (s,t) = (4,2), (5,2), (6,3),(7,3). Thus, we have a local antimagic 2-coloring
for 6(2t,4s — 6 — 2t,2s — 4, (4s — 6)1*73) when 23 < ¢ < 2553 4 2,

For those exceptional cases, we have

1. (s,t) = (4,2). Now 6(2) = 1. We may apply the original approach.

2. (s,t) =(5,2), 05 = 0(4,6, 10, 14, 14) with edge labels
39, 10, 46, 3;
7,42, 14, 35,21, 28;
4,45,11,38,18,31,25,24, 32, 17;
1,48,8,41, 15, 34, 22, 27, 29, 20, 36, 13, 43, 6;
0,44,12,37,19, 30, 26, 23, 33, 16,40, 9,47, 2.

3. (s,t) = (6,3). Now §(3) = 7 < 3%. We may apply the original approach.

4. (s,t) =(7,3). Now z = 121, y = 132, 6; = 0(6, 10, 16, 22, 22, 22, 22) with sequences
4,117,15,106, 26, 95;
66, 55,77,44,88,33,99,22,110, 11;
37,84,48,73,59,62,70,51,81,40,92,29,103, 18, 114, 7;
2,119,13, 108, 24,97, 35, 86,46, 75, 57,64, 68, 53,79,42,90, 31, 101, 20, 112, 9;
5,116, 16, 105, 27, 94, 38, 83, 49, 72, 60, 61, 71, 50, 82, 39, 93, 28. 104, 17, 115, 6
8.113,19,102, 30,91, 41,80, 52, 69, 63, 58, 74, 47, 85, 36,96, 25. 107, 14, 118, 3;
10,111, 21, 100, 32, 89,43, 78, 54, 67,65, 56, 76, 45, 87, 34, 98, 23,109, 12, 120, 1.

So we have a local antimagic 2-coloring for 0(2t, 4s —6 —2t, 2s — 4, (45— 6)*~3) when s > 4
and 222 <t < 85,
Note that, one may see from each case that m > 2s + 2. This completes the proof. U



Gee-Choon Lau, Wai Chee Shiu, M. Nalliah, Ruixue Zhang, K. Premalatha 389

§ 3. Examples

In this section, we shall provide example(s) to illustrate the construction of each case and also
provide solutions for the exceptional cases raised in the proof of Theorem 2.1.

Example 3.1. The aim of this example is to illustrate the construction showed in Case (1).

Take s = 6 (i.e., k = 1), we have 05 = 0(4,4,4,4,4,6) with m = 26, z = 27, y = 39,
Uy = {1}, Uy = {4,5,8,9,12}, [1,12] \ (U, UU,) = {2,3,6,7,10,11}.

Ag(1;12) = (1,13,25) and A(26;—12) = (26,14,2). So, A3(1;12) o A5(26;—12) =
= (1,26,13,14, 25, 2).

Similarly, A5(4:12) = (4,16) and A5(23,-12) = (23,11), Ay(5;12) = (5,17) and
Ay(22;—12) = (22,10), A(8:12) = (8,20) and A5(19;—12) = (19,7), A(9;12) = (9,21)
and A,(18; —12) = (18,6), Ay(12;12) = (12,24) and A5(15; —12) = (15, 3).

So, the paths of length 4 and 6 have edge labels

4,23,16,11; 5,22,17,10; 8,19,20,7; 9,18,21,6; 12,15,24,3; 1,26,13,14,25,2.

All the left (respectively right) end vertices are merged to get the degree 6 vertex with induced
label 39. |

Example 3.2. The aim of this example is to illustrate the construction showed in Case (2).

Take s =9 (i.e., [ = 3), we get 0(4, 10[8]) with y = 102, x = 85. Keep the notation defined
in Lemma 2.2 and the proof of Theorem 2.1. Since 6 = 15, n = 8, we choose x = 15 with 7 = 0.
By Lemma 2.2, we have B = {15}. So we replace 1 by 16 as a label of end-edge incident to w.
Thus u is incident to end-edge labels in {16, 2,3,4,5,6,7,8,51}. The paths labels are
51,34,68,17: Ay(51;17) o Ay(34; —17);
16,69, 33, 52, 50, 35,67, 18, 84, 1: the reverse of A5(1;17) o A5(84; —17);

2,83,19,66, 36,49, 53, 32,70, 15: A5(2;17) o A5(83; —17);
3,82, 20,65, 37,48, 54,31, 71, 14: A5(3:17) o A5(82; —17);
4,81,21,64,38,47,55,30,72, 13: A5(4;17) o As(81; —17);
5,80, 22, 63,39, 46, 56, 29, 73, 12: A5(5; 17) o A5(80; —17);
6,79, 23,62, 40,45, 57,28, 74,11: A5(6:17) o A5(79; —17);
7,78,24,61,41,44, 58,27, 75,10: A5(7:17) o A5(78; —17);
8,77,25,60,42,43,59,26,76,9: As5(8:17) o As(77; —17).

Using s = 12 (i.e., | = 4), we get 0(6,14/'l) with y = 184, x = 161. Since 6 = 26. We
choose k = 21 (i.e., k = 1) with 7 = 5. By Lemma 2.2, we have B = {21,5}. So, we replace 1
by 22 and 9 by 14 as labels of end-edges incident to . Thus, u is incident to end-edge labels in
{22,2,3,4,5,6,7,8,14,10,11,92}. The paths labels are
92,69, 115,46, 138, 23: A3(92;23) o A3(69; —23);
22,139,45,116,68,93,91,70,114,47,137,24, 160, 1: the reverse of A;(1;23) ¢ A;(160; —23);

2,159, 25, 136, 48, 113, 71,90, 94, 67, 117, 44, 140, 21: A7(2 23) o A7(159; —23);
3,158,26, 135,49, 112, 72, 89, 95, 66, 118, 43, 141, 20: A7(3;23) o A7(158; —23);
4,157,27,134, 50, 111, 73, 88, 96, 65, 119, 42, 142, 19: A7 (4;23) o A7(157; —23);
5,156, 28, 133,51, 110, 74, 87,97, 64, 120, 41, 143, 18: A+(5;23) o A7(156; —23);
6, 155, 29, 132, 52, 109, 75, 86, 98, 63, 121, 40, 144, 17: A-(6;23) o A7(155; —23),
7,154, 30,131, 53, 108, 76, 85, 99, 62, 122, 39, 145, 16: A-(7;23) o A7(154; —

23);
8,153,31,130, 54, 107, 77, 84, 100, 61, 123, 38, 146, 15: A-(8;23) o A(153; —23);
14,147,37,124, 60, 101, 83, 78, 106, 55, 129, 32, 152, 9: the reverse of A7(9; 23) o A7(152; —23);
10,151, 33, 128, 56, 105, 79, 82, 102, 59, 125, 37, 148, 13: A7(10;23) o A7(151; —23);
11,150, 34, 127, 57, 104, 80, 81, 103, 58, 126, 36, 149, 12: A7(11;23) o A;(150; —23). |
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Example 3.3. The aim of this example is to illustrate the construction showed in Case (3) and
provide a local antimagic 2-coloring for the exceptional case (/,t) = (6, 7).
Let s =12,1.e., [ = 6. Now, x = 231 and y = 253.

(a) The graph is 615 = 6(22 — 2¢,2t,201%, 22141), where ¢ = 6, 7. Begin with the sequences

AuE
Ann
A
An
A

Ao
Ao
A1o
A1o
Ao
Ao

~ A~ o~~~

11;22
12;22
13;22
14; 22
15;22
16; 22

6; 22§<>A11E225; —22%: 6, 225, 28, 203, 50, 181, 72, 159, 94, 137, 116, 115, 138, 93, 160, 71, 182, 49, 204, 27, 226, 5
7;22

8; 22§<>A11E223; —22%: 8,223, 30, 201, 52, 179, 74, 157, 96, 135, 118, 113, 140, 91, 162, 69, 184, 47, 206, 25, 228, 3
9;22

10; 22) o A11(221; —22): 10, 221, 32, 199, 54, 177, 76, 155, 98, 133, 120, 111, 142, 89, 164, 67, 186, 45, 208, 23,
230, 1

o A11(224; —22): 7, 224, 29, 202, 51, 180, 73, 158, 95, 136, 117, 114, 139, 92, 161, 70, 183, 48, 205, 26, 227, 4

o A11(222; —22): 9, 222, 31, 200, 53, 178, 75, 156, 97, 134, 119, 112, 141, 90, 163, 68, 185, 46, 207, 24, 229, 2

o A10(220; —22): 11, 220, 33, 198, 55, 176, 77, 154, 99, 132, 121, 110, 143, 88, 165, 66, 187, 44, 209, 22

o A10(219; —22): 12, 219, 34, 197, 56, 175, 78, 153, 100, 131, 122, 109, 144, 87, 166, 65, 188, 43, 210, 21
o A10(218; —22): 13, 218, 35, 196, 57, 174, 79, 152, 101, 130, 123, 108, 145, 86, 167, 64, 189, 42, 211, 20
o A1o(217; —22): 14, 217, 36, 195, 58, 173, 80, 151, 102, 129, 124, 107, 146, 85, 168, 63, 190, 41, 212, 19
o A10(216; —22): 15, 216, 37, 194, 59, 172, 81, 150, 103, 128, 125, 106, 147, 84, 169, 62, 191, 40, 213, 18
(

o A10(215; —22): 16, 215, 38, 193, 60, 171, 82, 149, 104, 127, 126, 105, 148, 83, 170, 61, 192, 39, 214, 17

—_ D — — — —

Now the difference sets are D; = As5(—1; —2) and Dy = Ag(1;2).

i)

t = 6. So, 61 = 6(10,12,2001 2214). Initially, we use the first five sequences above
to label the (u, v)-paths 7); and the last six sequences above to label the (u, v)-paths R;.
We then break T} into two parts such that the first 10 edges form the (u, v)-path (), and
the remaining 12 edges form the (u,v)-path (). Now, the induced vertex label for u is
16

> j+ 120 = 241. Thus, 6(6) = 12. So, we choose B = {1,11} C D,. Therefore, the
j=6

actual assignment for each (u,v)-path is to label:

Ty by A11(6;22) o A11(225; —22); To by A11(7;22) o A11(224; —22); T3 by A11(8;22) o
o A11(223; —22); Ty by A11(9;22) o Ay1(222; —22);

@, by 10, 221, 32, 199, 54, 177, 76, 155, 98, 133;

@, by 120, 111, 142, 89, 164, 67, 186, 45, 208, 23, 230, 1,

R, by the reverse of Ajp(11;22)0A19(220; —22); Ry by A19(12;22) 0 A19(219; —22); R
by A19(13;22) 0 A1(218; —22); Ry by A19(14;22) 0 A15(217; —22); Rs by A19(15;22) 0
o A19(216; —22); Rg by the reverse of A;0(16;22) o A19(215; —22).

Thus,

ff(w)=64+T7+8+9+10+120+22+ 12+ 13+ 14+ 15+ 17 = 253.

t = 7. So, B, = 60(8,14,200,22M) . Initially, we use the first five sequences above
to label the (u, v)-paths 7); and the last six sequences above to label the (u,v)-paths R;.
We then break 75 into two parts such that the first 8 edges form the (u,v)-path Q)2 and

the remaining 14 edges form the (u,v)-path ();. Now, the induced vertex label for u
16

is Z] + 98 = 219. Thus, §(7) = 34. For this case, we do not have B C D,. So,

we choose B ={-1,3,5,7,9,11} C D; U Dy. Thus the actual assignment for each
(u, v)-path is to label:

T; by the reverse of Aj;(6;22) o A11(225; —22); Ty by A11(7;22) o Ay1(224; —22); T;
by A11(8;22) o A11(223; —22); Ty by A11(9;22) o A11(222; —22);

Q2 by 10, 221, 32, 199, 54, 177, 76, 155;

@1 by 98, 133, 120, 111, 142, 89, 164, 67, 186, 45, 208, 23, 230, 1;

Ry by the reverse of A;o(11;22) o A19(220; —22); Ry by the reverse of A;(12;22) ¢
A10(219; —22); R3 by the reverse of Ajp(13;22) ¢ A19(218; —22); R4 by the reverse of
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A19(14;22) o A1p(217; —22); Rs by the reverse of A1o(15;22) o A10(216; —22); Rg by
Ai10(16522) 0 Ayp(215; —22).
Thus,

ffu)=5+7+8+9+10+98+ 22+ 21 + 20 + 19 + 18 + 16 = 253.

(b) The graph is 615 = 6(22 —2t, 2t — 2, 201%), 221°), where ¢ = 6, 7. We begin with the following
sequences that are the reverse of the initial sequences in Case (a):
All(l; 22) < A11(230; —22), A11(2; 22) < A11(229; —22), A11(3; 22) < A11(228; —22),
Aq1(4;22) 0 A11(227; —22), A11(5;22) © A11(226; —22), A10(17;22) © A1p(214; —22),
A1p(18;22) o A19(213; —22), A10(19;22) o A19(212; —22), A19(20;22) o Ayo(211; —22),
A10(21522) 0 A10(210; —22), A10(22;22) o A10(209; —22).

Now, the difference sets are D; = A5(1;2) and Dy = Ag(—1, —2).

i) t = 6. So 61 = 6(10,10,200),225). Initially, we use the first five sequences above
to label the (u, v)-paths T} and the last six sequences above to label the (u,v)-paths R;.
We then break Rg into two parts such that the first 10 edges form the (u, v)-path @)y and
the remaining 10 edges form the (u,v)-path ();. Now, the induced vertex label of u is

5 22
> 7+ > i+ 132 =264. So, we choose B = {—9,—3,1} C D; U D».
j=1 i=17

Thus the actual assignment for each (u, v)-path is to label:

Ty by A11(1;22) o A11(230; —22); To by A11(2;22) o A11(229; —22); T3 by A11(3;22) o
o A11(228; —22); Ty by Ay1(4;22) o A11(227; —22); T5 by the reverse of Aj;(5;22) ©
< A11(226; —22);

Ry by A1p(17;22)0 A10(214; —22); R, by the reverse of A;o(18;22)0 A19(213; —22); R
by A10(19;22) ¢ A19(212; —22); Ry by A1(20;22) o Ayo(211; —22); R5 by the reverse
of A10(21;22) o A(210; —22);

Q2 by 22,209, 44, 187, 66, 165, 88, 143, 110, 121;

@1 by 132,99, 154, 77, 176, 55, 198, 33, 220, 11.

Thus,

ffu)=1+2+3+4+6+17+ 15+ 19+ 20 + 12 + 22 + 132 = 253.

ii) ¢t = 7. So 61, = 6(8,12,200, 22P1). Initially, we use the first five sequences above to
label the (u,v)-paths 7; and the last six sequences above to label the (u,v)-paths R;.
We then break Rj into two parts such that the first 8 edges form the (u, v)-path @2 and
the remaining 12 edges form the (u, v)-path ();. Now, the induced vertex label of u is

5 22
Y7+ > i+ 110 = 242. Now §(6) = 11. So, we may choose B = {1,3,7}.
j=1 i=17

Thus the actual assignment for each (u, v)-path is to label:

T1 by A11(1;22) o A11(230; —22); T, by the reverse of Aq1(2;22) o A11(229; —22); T3
by A11(3;22) o A11(228; —22); T}, by the reverse of Ai;(4;22) o Ay1(227; —22); T5 by
the reverse of A;1(5;22) ¢ A11(226; —22);

Ry by Ajp(17;22) o Aj(214; —22); Ry by Aj(18;22) o A10(213; —22);

Rs by A19(19;22) o A19(212; —22); Ry by A19(20;22) o Ajp(211; —22);

Rs by A19(21;22) 0 A1o(210; —22);

Q2 by 22,209, 44, 187, 66, 165, 88, 143;

@, by 110, 121, 132, 99, 154, 77, 176, 55, 198, 33, 220, 11.
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Thus,

ffu)=1+9+3+7+6+17+ 18+ 19+ 20+ 21 + 22 + 110 = 253.

Example 3.4. The aim of this example is to illustrate the construction showed in Case (3) and
provide a local antimagic 2-coloring for the exceptional case (/,t) = (3,3). Let s = 6, i.e., [ = 3.

Now, x = 45 and y = 55. The sequences are

A5(1;10) © A5(44; —10): 1, 44, 11, 34, 21, 24, 31, 14, 41, 4
A5(2;10) © A5(43; —10): 2, 43, 12, 33, 22, 23,32, 13,42, 3
Ay(5;10) 0 A4(40; —10): 5, 40, 15, 30, 25, 20, 35, 10
A4(6;10) © A4(39; —10): 6, 39, 16, 29, 26, 19, 36, 9
Ay(7;10) © Ay(38; —10): 7, 38, 17, 28, 27, 18, 37, 8

(a) t =1 =3. So 05 = H(4,6,85, 10).

(u,v)-path T is labeled by 4, 41, 14, 31; 24, 21, 34, 11, 44, 1. So
u, v)-path @), is labeled by 4, 41, 14, 31 and
u,v)-path Q); is labeled by 24, 21, 34, 11, 44, 1.

(
(
(u,v)-path Ty is labeled by 3, 42, 13, 32, 23, 22, 33, 12, 43, 2.
(u,v)-path Ry is labeled by 10, 35, 20, 25, 30, 15, 40, 5.
(u,v)-path Ry is labeled by 8, 37, 18, 27, 28, 17, 38, 7.
(u,v)-path R, is labeled by 6, 39, 16, 29, 26, 19, 36, 9

Thus, fT(u) =4+244+3+ 10+ 8+ 6 = 55.

t=1=3.So0 0= 0(4,4,82 108,

(u,v)-path @), is labeled by 8, 37, 18, 27.

(u,v)-path @) is labeled by 28, 17, 38, 7.

(u,v)-path R; is labeled by 6, 39, 16, 29, 26, 19, 36, 9.

(u,v)-path R, is labeled by 10, 35, 20, 25, 30, 15, 40, 5.

(u,v)-path T7 is labeled by 1, 44, 11, 34, 21, 24, 31, 14, 41, 4.

(u,v)-path Ty is labeled by 2, 43, 12, 33, 22, 23, 32, 13, 42, 3.

Thus, f*(u) =8+ 28+ 6+ 10 + 1 + 2 = 55. m

Example 3.5. The aim of this example is to illustrate the construction given in Case (4). Take
s = 7 so that 0; = 6(2t,22—2t,10,22%),2 < ¢ < 4. Wehave v = 121,y = 132 and y —z = 11.

A11(1;11) 0 Ag1(120; —11) = 1,120, 12,109, 23, 98, 34,87, 45, 76, 56, 65, 67, 54, 78, 43, 89, 32, 100, 21, 111, 10;

Ap1(2;11) 0 Ap(119; —11) = 2,119, 13,108, 24, 97, 35, 86, 46, 75, 57, 64, 68, 53, 79, 42, 90, 31, 101, 20, 112, 9; [7]
Ap1(3;11) 0 Ay (118; —11) = 3,118, 14, 107, 25, 96, 36, 85, 47, 74, 58, 63, 69, 52, 80, 41, 91, 30, 102, 19, 113, 8; [5]
A11(4;11) 0 A1 (117; —11) = 4,117, 15,106, 26, 95, 37, 84, 48, 73, 59, 62, 70, 51, 81, 40, 92, 29, 103, 18, 114, 7; (3]
A11(5;11) 0 A1 (116; —11) = 5,116, 16, 105, 27, 94, 38, 83, 49, 72, 60, 61, 71, 50, 82, 39, 93, 28,104, 17, 115, 6. (1]

As(66;11) o A5(55; —11) = 66, 55, 77,44, 88, 33,99, 22,110, 11 <+ this sequence is for the (u,v)-path P.
Note that (s — 3)? = 16. The number with a bracket behind the sequence is the difference

between the last and the first terms. Hence, D = {1,3,5,7}.
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1. When t = 4. We have §(4) = 6 < 16. First, we separate Aj;(1;11) o Ay;(120; —11) into two
sequences: 1, 120, 12, 109, 23, 98, 34, 87; and 45, 76, 56, 65, 67, 54, 78, 43, 89, 32, 100, 21,
111, 10. Since §(4) < 7, by Lemma 2.2, we choose B = {1,5}. So, we reverse the order of
Aq1(5;11) © A11(116; —11) and Aq1(3;11) © A33(118; —11), i.e., the end-edge labels for u are
1,45 =, 2, 8, 4, 6, 66.

2. When t = 3. We have §(3) = 17 > 16 and 6*(3) = —1. We must use an ad hoc method which
is shown in the proof.

3. When t = 2. We have §(2) = 28 > 16. 6*(2) = 10 < 16. First, we separate the reverse of
Ap1(1:11) o Ay (120; —11) into two sequences: 10, 111, 21, 100; and 32, 89, 43, 78, 54, 67,
65, 56, 76 45, 87, 34, 98, 23, 109, 12, 120, 1. Since 6*(2) = 10, we choose B = {7,3}. So,
we reverse the order of Aq1(2;11) o Ay1(119; —11) and Ay;(4;11) o A11(117;—11), i.e., the
end-edge labels for u are 10, 32 =4, 9, 3, 7, 5, 66. [ |

§4. Conjecture and Open Problem

We have completely characterized s-bridge graphs 6, with x;,(6s) = 2. We note that the only
other known results on s-bridge graphs are (i) x;,(f(a,b)) = 3 for a,b > 1 and a + b > 3; and
(i) A(2*)) = 3 for odd s > 3. We end with the following conjecture and open problem.

Conjecture 3. If 0, is not a graph in Theorem 2.1, then x;,(6;) = 3.
Problem 4.1. Characterize graph G with y;,(G) = 2.
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BECTHUK YIMYPTCKOI'O YHUBEPCUTETA. MATEMATUKA. MEXAHUKA. KOMIIbIOTEPHBIE HAYKHN

MATEMATUKA 2024. T. 34. Bem. 3. C. 375-396.

-4, Jlay, B. 4. llluy, M. Hannua, K. Uxcan, K. Ilpemanamxa

IosiHasi XapaKkTepu3anus MOCTOBBIX TPag)oB € JOKAJBHBIM AHTUMATHYeCKHM XPOMATHYECKHM YHC-
JoM 2

Knrouesvie cnosa: mokanbHas aHTUMarndeckasi pa3MeTKa, JIOKAIbHOE aHTUMAarn4ecKoe XpoMaTHIeCKOe YHC-
JI0, S-MOCTOBBIC TpadbI.

VIIK 519.17
DOI: 10.35634/vm240305

Pa3merka pebep cssnoro rpadpa G = (V, E) Ha3bIBacTCs JOKAIBHOW aHTHMArn4ecKoi, €Cu OHa SBIIS-
ercst omekuueit f: E — {1,...,|FE|} Tako#i, uTo s 000ii Mapbl CMEXHBIX BEPIINH T M Y BBIIOIHEHO
fr(x) # f(y), me fT(x) = > f(e) — uHayuMpoBaHHas MeTKa BEPLIMHBI, a ¢ MpoberaeT Bce pedpa,
MHIUIEHTHBIE 2. JIOKaJIbHOE aHTHMArk4eckoe XpoMarnueckoe ucio rpada G, oboznasaemoe Yo (G), —
3TO MUHMMAJILHOE YUCIIO Pa3jIMUHbIX HHIYIIMPOBAHHBIX METOK BEPIIMH CPEIU BCEX JIOKAIBHBIX aHTUMATH-
4eckux pasMeTok GG. B JIaHHOM CTaThe Mbl 0XapaKTEPU3YeEM S-MOCTOBBIE Ipadbl ¢ JOKAIBHBIM aHTHMAru-
YECKUM XPOMATHYECKHM YHCIIOM 2.
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