MATHEMATICS

2024. Vol. 34. Issue 3. Pp. 375-396.

MSC2020: 05C78, 05C15

(c) Gee-Choon Lau, Wai Chee Shiu, M. Nalliah, Ruixue Zhang, K. Premalatha

COMPLETE CHARACTERIZATION OF BRIDGE GRAPHS WITH LOCAL ANTIMAGIC CHROMATIC NUMBER 2

An edge labeling of a connected graph G = (V, E) is said to be local antimagic if it is a bijection $f: E \to \{1, \ldots, |E|\}$ such that for any pair of adjacent vertices x and y, $f^+(x) \neq f^+(y)$, where the induced vertex label $f^+(x) = \sum f(e)$, with e ranging over all the edges incident to x. The local antimagic chromatic number of G, denoted by $\chi_{la}(G)$, is the minimum number of distinct induced vertex labels over all local antimagic labelings of G. In this paper, we characterize s-bridge graphs with local antimagic chromatic number 2.

Keywords: local antimagic labeling, local antimagic chromatic number, s-bridge graphs.

DOI: 10.35634/vm240305

Introduction

In 1994, Hartsfield and Ringer [3] introduced the concept of antimagic labeling of a graph G(V, E). A bijective edge labeling $f: E \to \{1, \ldots, |E|\}$ is called an antimagic labeling of G if for any two distinct vertices u and v, $w(u) \neq w(v)$, where $w(u) = \sum f(e)$ with e ranging over all the edges incident to u. The most famous unsolved problems are the following conjectures [3].

Conjecture 1. Every connected graph other than K_2 is antimagic.

Conjecture 2. Every tree other than K_2 is antimagic.

Arumugam et al. [1] introduced the concept of local antimagic labeling and local antimagic chromatic number. A connected graph G is said to be *local antimagic* if it admits a *local antimagic edge labeling*, i. e., a bijection $f: E \to \{1, \ldots, |E|\}$ such that the induced vertex labeling $f^+: V \to \mathbb{Z}$ given by $f^+(u) = \sum f(e)$ (with e ranging over all the edges incident to u) has the property that any two adjacent vertices have distinct induced vertex labels. Thus, f^+ is a coloring of G. Clearly, the order of G must be at least 3. The vertex label $f^+(u)$ is called the *induced color* of u under f (the color of u, for short, if no ambiguous occurs). The number of distinct induced colors under f is denoted by c(f), and is called the *color number* of f. The *local antimagic chromatic number* of G, denoted by $\chi_{la}(G)$, is $\min\{c(f) \mid f$ is a local antimagic labeling of G}. Clearly, $2 \leq \chi_{la}(G) \leq |V(G)|$. In [4], Haslegrave proved that the local antimagic chromatic number is well-defined for every connected graph except K_2 .

In [1], the authors determined the local antimagic chromatic number of many families of standard graphs including paths, cycles, certain complete bipartite graphs and wheel graphs. In [5], Lau et al. gave a sharp lower bound of $\chi_{la}(G \vee O_n)$, where $G \vee O_n$ is the join product of G and the null graph of order n. They also completely settled the local antimagic chromatic number of wheels and complete bipartite graphs. In [6], the authors also determined the local antimagic chromatic number of the join product of many cycle-related graphs. However, very little is known about graphs with local antimagic chromatic number 2 (see [1, Theorem 2.11] and [7, Theorem 2.4]).

§1. Bridge graphs

A graph consisting of s paths joining two vertices is called an s-bridge graph, which is denoted by $\theta(a_1, \ldots, a_s)$, where $s \ge 2$ and $1 \le a_1 \le a_2 \le \ldots \le a_s$ are the lengths of the s paths. For convenience, we shall let $\theta_s = \theta(a_1, a_2, \ldots, a_s)$ if there is no confusion. In this paper, we shall characterize θ_s with $\chi_{la}(\theta_s) = 2$.

The contrapositive of the following lemma in [6, Lemma 2.1] or [7, Lemma 2.3] gives a sufficient condition for a bipartite graph G to have $\chi_{la}(G) \geq 3$.

Lemma 1.1 ([7, Lemma 2.3]). Let G be a graph of size q. Suppose there is a local antimagic labeling of G inducing a 2-coloring of G with colors x and y, where x < y. Let X and Y be the sets of vertices colored x and y, respectively. Then G is a bipartite graph with bipartition (X, Y) and |X| > |Y|. Moreover, $x|X| = y|Y| = \frac{q(q+1)}{2}$.

Clearly, $2 \le \chi(\theta(a_1, a_2, \dots, a_s)) \le 3$ and the lower bound holds if and only if $a_1 \equiv \dots \equiv a_s \pmod{2}$. By Lemma 1.1, we immediately have the following lemma.

Lemma 1.2. For $s \ge 2$ and $1 \le i \le s$, if $\chi_{la}(\theta(a_1, a_2, ..., a_s)) = 2$, then $a_i \equiv 0 \pmod{2}$. Otherwise, $\chi_{la}(\theta(a_1, a_2, ..., a_s)) \ge 3$.

Throughout this paper, we shall use $a^{[n]}$ to denote a sequence of length n in which all terms are a, where $n \ge 2$. For integers $1 \le a < b$, we let [a, b] denote the set of integers from a to b. Interested readers may refer to [2, 8, 9] for more results related to local antimagic chromatic number of graphs.

§2. Main result

In this section, we assume $\chi_{la}(\theta_s) = 2$. So, by Lemma 1.2, $\theta_s = \theta(a_1, \ldots, a_s)$ is bipartite and all a_i are even. When s = 2, θ_s is a cycle, whose local antimagic chromatic number is 3. Thus, $s \ge 3$.

For integers *i* and *d* and positive integer *s*, let $A_s(i; d)$ be the arithmetic progression of length *s* with common difference *d* and first term *i*. We first have two useful lemmas.

Lemma 2.1. Suppose $s, d \in \mathbb{N}$.

- (a) For $i, j \in \mathbb{Z}$, the sum of the k-th term of $A_s(i; d)$ and that of $A_s(j; -d)$ is i+j for $k \in [1, s]$; and the sum of the k-th term of $A_s(i; d)$ and the (k-1)-st term of $A_s(j; -d)$ is i+j+dfor $k \in [2, s]$.
- (b) If $0 < |i_1 i_2| < d$, then $A_s(i_1; d) \cap A_s(i_2, \pm d) = \emptyset$.

Proof. It is easy to obtain (a). We prove the contrapositive of (b). Suppose $A_s(i_1; d) \cap A_s(i_2, \pm d) \neq \emptyset$. Let $a \in A_s(i_1; d) \cap A_s(i_2, \pm d)$. Now, $a = i_1 + j_1 d = i_2 + j_2 d$ for some integers j_1, j_2 . Thus, $|i_1 - i_2| = d|j_2 - j_1| \ge d$ if $j_2 \ne j_1$ or else $|i_1 - i_2| = 0$ if $j_2 = j_1$. \Box

Lemma 2.2. Suppose $\delta \in [0, n^2] \setminus \{2, n^2 - 2\}$ for some integer $n \ge 2$. There is a subset B of $A_n(1; 2)$ such that the sum of integers in B is δ .

P r o o f. If $\delta = 0$, then we may choose $B = \emptyset$. Suppose $1 \le \delta \le 2n - 1$ and $\delta \ne 2$. If δ is odd, then choose $B = \{\delta\}$. If δ is even, then $\delta \ge 4$. We may choose $B = \{1, \delta - 1\}$.

Suppose $\delta > 2n - 1$, then we may choose the largest k such that $\kappa = \sum_{j=n-k+1}^{n} (2j-1) \le \delta$. Let $\tau = \delta - \kappa$. By the choice of $k, 0 \le \tau < 2n - 2k - 1$. There are 3 cases.

- 1. Suppose $\tau = 0$. $B = A_k(2n 2k + 1; 2)$ is the required subset.
- 2. Suppose τ is odd. $B = A_k(2n 2k + 1; 2) \cup \{\tau\}$ is the required subset.
- 3. Suppose τ is even. If $\tau \ge 4$, then we may choose $B = A_k(2n 2k + 1; 2) \cup \{\tau 1, 1\}$. If $\tau = 2$, then $2 = \tau < 2n - 2k - 1$. We have $k \le n - 2$. If $k \le n - 3$, then choose $B = A_{k-1}(2n - 2k + 3; 2) \cup \{2n - 2k - 1, 3, 1\}$. If k = n - 2, then $\kappa = n^2 - 4$ and hence $\delta = n^2 - 2$ which is not a case.

Let A_1 and A_2 be two sequences of length n. We combine these two sequences as a sequence of length 2n, denoted $A_1 \diamond A_2$, whose (2i - 1)-st term is the *i*-th term of A_1 and the (2i)-th term is the *i*-th term of A_2 , $1 \le i \le n$.

Theorem 2.1. For $s \ge 3$, $\chi_{la}(\theta_s) = 2$ if and only if $\theta_s = K_{2,s}$ with even $s \ge 4$ or the size m of θ_s is greater than 2s + 2 and θ_s is one of the following graphs:

- (1) $\theta(4l^{[3l+2]}, (4l+2)^{[l]}), l \ge 1;$
- (2a) $\theta(2l-2, (4l-2)^{[3l-1]}), l \ge 2;$
- (2b) $\theta(2, 4^{[3]}, 6); \theta(4, 8^{[5]}, 10^{[2]}); \theta(6, 12^{[7]}, 14^{[3]});$
- (3a) $\theta(4l-2-2t, 2t, (4l-4)^{[l]}, (4l-2)^{[l-2]}), 2 \le l \le t \le \frac{5l-2}{4};$
- (3b) $\theta(4l-2-2t, 2t-2, (4l-4)^{[l-1]}, (4l-2)^{[l-1]}), 2 \le l \le t \le \frac{5l}{4};$
- (4) $\theta(2t, 4s 6 2t, 2s 4, (4s 6)^{[s-3]}), \frac{2s-3}{8} \le t \le \frac{6s-5}{8}, s \ge 4.$

P r o o f. Note that $K_{2,s} = \theta(2^{[s]})$. In [1, Theorems 2.11 and 2.12], the authors obtained

$$\chi_{la}(K_{2,s}) = \begin{cases} 2, & \text{if } s \ge 4 \text{ is even,} \\ 3, & \text{otherwise.} \end{cases}$$

We only consider $\theta_s \neq K_{2,s}$, $s \geq 3$. Throughout the proof, we let u and v be the vertices of θ_s of degree s. We shall call the 2s edges incident to u or else to v as *end-edges*. An integer labeled to an end-edge is called an *end-edge label*. A path that starts at u and ends at v is called a (u, v)-path.

Suppose $\chi_{la}(\theta_s) = 2$. Since each a_i is even, θ_s has even size $m = \sum_{i=1}^s a_i \ge 2s + 2 \ge 8$ edges and order m - s + 2. Let f be a local antimagic labeling that induces a 2-coloring of θ_s with colors x and y. Without lost of generality, we may assume $f^+(u) = f^+(v) = y$. Let X and Y be the sets of vertices with colors x and y, respectively. It is easy to get that |Y| = m/2 - s + 2 and |X| = m/2. By Lemma 1.1, we have x|X| = y|Y| = m(m+1)/2. Hence, $x = m+1 \ge 2s+3 \ge 9$ is odd, y = m(m+1)/(m-2s+4) and $y \ge (1+2+\ldots+2s)/2 = (2s^2+s)/2$.

Note that θ_s has at least 2 adjacent non-end-edges. Suppose z_1z_2 is not an end-edge with $f(z_1z_2) = l$. Without loss of generality, we assume $f^+(z_1) = x$, $f^+(z_2) = y$. Since z_1z_2 is not an end-edge, there is another vertex z_3 such that $z_1z_2z_3$ forms a path. So, $f(z_2z_3) = y - l$. Since $1 \le y - l \le m$, we have $l \ge y - m = y - x + 1$. Consequently, all integers in [1, y - x] must be assigned to end-edges. So, $y - x \le 2s$. Moreover, since $l \ne y - l$, we get $l \ne y/2$ so that y/2 must be an end-edge label when y is even.

Solving for *m*, we get $m = \frac{1}{2}(y - 1 \pm \sqrt{y^2 + 14y - 8ys + 1})$. Hence, $y^2 + 14y - 8ys + 1 = t^2 \ge 0$, where *t* is a nonnegative integer. This gives $(y + 7 - 4s)^2 + 1 - (7 - 4s)^2 = t^2$

or (y + 7 - 4s - t)(y + 7 - 4s + t) = 8(s - 2)(2s - 3). By letting a = y + 7 - 4s - t and b = y + 7 - 4s + t, we have 2y + 14 - 8s = a + b with $ab = 8(2s^2 - 7s + 6) = 8(s - 2)(2s - 3)$. Clearly, $b \ge a > 0$. Since a, b must be of same parity, we have both a, b are even.

Recall that $y - (2s^2 + s)/2 \ge 0$. Now

$$y - (2s^{2} + s)/2 = 4s - 7 + \frac{a+b}{2} - \frac{2s^{2} + s}{2}$$

$$= \frac{a+b}{2} - \frac{2s^{2} - 7s + 6}{2} - 4 = \frac{a+b}{2} - \frac{ab}{16} - 4$$

$$= \frac{8a + 8b - ab - 64}{16} = -\frac{(a-8)(b-8)}{16}.$$
 (2.1)

This implies that $a \leq 8$.

We shall need the following claim which is easy to obtain. Throughout the proof, by symmetry, we always assume $\alpha_1 < \beta_r$.

Claim: Let ϕ be a labeling of a path $P_{2r+1} = v_1v_2 \dots v_{2r+1}$ with $\phi(v_{2i-1}v_{2i}) = \alpha_i$ and $\phi(v_{2i}v_{2i+1}) = \beta_i$ for $1 \le i \le r$. Suppose $\phi^+(v_{2j}) = x$ for $1 \le j \le r$ and $\phi^+(v_{2k+1}) = y$ for $0 \le k \le r$, where y > x. Then $\alpha_1 + \beta_1 = x$, $\{\alpha_1, \alpha_2, \dots, \alpha_r\}$ is an increasing sequence with common difference y - x while $\{\beta_1, \beta_2, \dots, \beta_r\}$ is a decreasing sequence with common difference y - x.

We shall consider 4 cases for a = 8, 6, 4, 2 respectively.

Case (1). Suppose a = 8. By (2.1) we have $y = (2s^2 + s)/2$ which implies s is even. Express t and y in terms of s. This gives (i) $m = s^2 - 3s/2 - 1$ which implies $s \equiv 2 \pmod{4}$ and $x = s^2 - 3s/2$ or (ii) m = 2s. Since $m \ge 2s + 2$, (ii) is not a case. In (i), y - x = 2s so that all integers in [1, 2s] are end-edge labels.

Let P be a (u, v)-path of θ_s with length 2r whose end-edges are labeled by integers in [1, 2s]. Suppose one of its end-edges is labeled by α_1 . By the claim, another end-edge is labeled by $\beta_r = \beta_1 - (r-1)(y-x) = x - \alpha_1 - 2rs + 2s \le 2s$. So

$$2r \ge \frac{x - \alpha_1}{s} \ge \frac{s^2 - 3s/2 - 2s}{s} = s - \frac{7}{2}.$$

Since s and 2r are even, $2r \ge s-2$. Since $\beta_r \ge 2$, we have $2r \le \frac{1}{s}(x-\alpha_1+2s-2) < s+\frac{1}{2}$. Thus, each (u, v)-path of θ_s is of length s or s-2. Suppose θ_s has h path(s) of length s and (s-h) path(s) of length s-2. We now have $sh + (s-h)(s-2) = m (= s^2 - 3s/2 - 1)$. Therefore, h = (s-2)/4. Thus, $\theta_s = \theta((s-2)^{[(3s+2)/4]}, s^{[(s-2)/4]})$ for $s \equiv 2 \pmod{4}$.

Let s = 4l+2, $l \ge 1$. We now show that $\theta((s-2)^{[(3s+2)/4]}, s^{[(s-2)/4]}) = \theta((4l)^{[3l+2]}, (4l+2)^{[l]})$ admits a local antimagic 2-coloring. Recall that $m = 16l^2 + 10l$, $x = 16l^2 + 10l + 1$, $y = 16l^2 + 18l + 5$ and y - x = 8l + 4.

- Step 1: Label the edges of the path of length 4l + 2, denoted R_i , $1 \le i \le l$, by using the sequence $A_{2l+1}(i; 8l+4) \diamond A_{2l+1}(x-i; -8l-4)$ in order. Note that, as a set $A_{2l+1}(x-i; -8l-4) = A_{2l+1}(2l+1-i; 8l+4)$. So, by Lemma 2.1(b), $A_{2l+1}(i; 8l+4) \diamond A_{2l+1}(x-i; -8l-4)$ for all $i \in [1, l]$, denoted U_1 , form a partition of $\bigcup_{j=0}^{2l} [(8l+4)j+1, (8l+4)j+2l]$. By Lemma 2.1(a), we see that all induced labels of internal vertices are x and y alternatively. Now, integers in [1, 2l] are end-edge labels.
- Step 2: Label the edges of the path of length 4l, denoted $Q_j, 1 \leq j \leq 3l+2$, by the sequence $A_{2l}(\alpha; 8l+4) \diamond A_{2l}(x-\alpha; -8l-4)$, where α is the *j*-th integer of the sequence $[3l+1, 4l+1] \cup [4l+3, 5l+1] \cup \{5l+3, 6l+3\} \cup [7l+5, 8l+4]$, denoted U_2 , in

order. Note again, $A_{2l}(\alpha; 8l + 4) \diamond A_{2l}(x - \alpha; -8l - 4)$ for all $\alpha \in U_2$ form a partition of $\bigcup_{j=0}^{2l-1} [(8l + 4)j + 2l + 1, (8l + 4)j + 8l + 4]$. By Lemma 2.1(a), we see that all induced labels of internal vertices are x and y alternatively. Now, integers in [2l + 1, 8l + 4] are end-edge labels.

Step 3: We now merge the end-vertices with end-edge labels in $U_1 \cup U_2$ to get the vertex u. We then merge the other end-vertices with end-edge labels in $[1, 8l + 4] \setminus (U_1 \cup U_2)$ to get the vertex v. Clearly, both u and v have induced vertex label y.

Note that

$$\left(\bigcup_{j=0}^{2l} [(8l+4)j+1, (8l+4)j+2l]\right) \cup \left(\bigcup_{j=0}^{2l-1} [(8l+4)j+2l+1, (8l+4)j+8l+4]\right) = [1, 16l^2 + 10l].$$

So the labeling defined above is a local antimagic 2-coloring for $\theta((4l)^{[3l+2]}, (4l+2)^{[l]})$.

Case (2). Suppose a = 6. Now, $b = \frac{4}{3}(s-2)(2s-3)$. By (2.1), we have y = 2s(2s-1)/3 and, hence, $s \equiv 0, 2 \pmod{3}$. Similar to Case (1), since $m \ge 2s+2 \ge 8$, we must have $m = (4s^2-8s)/3$ and $s \ge 5$. Now y-x = 2s-1. So integers in $[1, 2s-1] \cup \{y/2 = (2s^2-s)/3\}$ are end-edge labels.

Note that there are s - 1 paths in θ_s with both end-edges labeled with integers in [1, 2s - 1]. Suppose P_{2r+1} is one of these s - 1 paths. Since $\alpha_1 < \beta_r$, we have $\alpha_1 \in [1, 2s - 2]$. Now, $\beta_r = (x - \alpha_1) - (r - 1)(y - x) \le 2s - 1 = y - x$. Since $x = (4s^2 - 8s + 3)/3$ and y - x = 2s - 1, we have that

$$(2s-6)(2s-1)/3 + 1 = (4s^2 - 14s + 9)/3 \le x - \alpha_1 \le r(y-x) = r(2s-1).$$

Thus, $r > (2s - 6)/3 \ge \frac{4}{3}$, i.e., $r \ge 2$. Hence, β_{r-1} is labeled at a non-end-edge so that $\beta_{r-1} = (x - \alpha_1) - (r - 2)(y - x) \ge 2s$. Therefore,

$$(r-2)(2s-1) \le x - \alpha_1 - 2s \le (4s^2 - 14s)/3 = (2s-6)(2s-1)/3 - 2 < (2s-6)(2s-1)/3.$$

Consequently, r-2 < (2s-6)/3 = 2s/3 - 2, i.e., r < 2s/3. Combining the aboves, we have 2s/3 - 2 < r < 2s/3 so that 2s - 6 < 3r < 2s. This implies that $3r \in [2s - 5, 2s - 1]$. Since $s \neq 1 \pmod{3}$, we have the following two cases.

a) Consider $s = 3l, l \ge 2$. Since $3r \equiv 0 \pmod{3}$, we have 3r = 2s - 3, i.e., r = 2l - 1. Thus, the s-th path must have length m - (3l - 1)(4l - 2) = 2l - 2. Consequently, $\theta_{3l} = \theta(2l - 2, (4l - 2)^{[3l-1]})$.

We now show that $\theta_{3l} = \theta(2l-2, (4l-2)^{[3l-1]})$ admits a local antimagic 2-coloring. For $l = 2, \theta_6 = \theta(2, 6^{[5]})$ with induced labels y = 44, x = 33 and the paths have vertex labels

$$22, 11; 1, 32, 12, 21, 23, 10; 3, 30, 14, 19, 25, 8; 4, 29, 15, 18, 26, 7; 5, 28, 16, 17, 27, 6; 9, 24, 20, 13, 31, 2.$$

All the left (respectively right) end vertices are merged to get the degree 6 vertex with induced label 44.

For $l \geq 3$, we apply the following steps.

Step 1: Label the edges of the path R_i of length 4l - 2 by the sequence $A_{2l-1}(i; 6l - 1) \diamond A_{2l-1}((6l - 1)(2l - 1) - i; -6l + 1)$ in order, $1 \le i \le 3l - 1$.

Step 2: Label the path Q of length 2l - 2 by the sequence

$$A_{l-1}(6l-1;6l-1) \diamond A_{l-1}((6l-1)(l-2);-6l+1)$$

in order. By Lemma 2.1, one may check that all integers in [1, 4l(3l-2)] are assigned after the step.

- Step 3: If we merge the end-vertices with end-edge labels in $[1, 3l 1] \cup \{y/2\}$ as u, then the induced label of u is $\frac{1}{2}(9l^2 3l) + (6l^2 l) = \frac{1}{2}(21l^2 5l)$. Clearly it is less than $y = 12l^2 2l$. The difference is $\delta = \frac{l}{2}(3l + 1)$.
- Step 4: Consider the set of differences of two end-edge labels in R_i , $1 \le i \le 3l 1$, which is $D = \{1, 3, 5, \dots, 6l - 3\} = A_{3l-1}(1; 2)$. Clearly, $3 < \delta < (3l - 1)^2 - 3$. By Lemma 2.2, we have a subset B of D such that the sum of numbers in B is δ .
- Step 5: Label all end-edges incident to u by

$$([1,3l-1] \setminus \{\frac{6l-1-i}{2} \mid i \in B\}) \cup \{\frac{6l-1+i}{2} \mid i \in B\} \cup \{6l^2-l\}.$$

We have a local antimagic 2-coloring for $\theta_{3l} = \theta (2l - 2, (4l - 2)^{[3l-1]}).$

b) Consider s = 3l - 1, $l \ge 2$. Now, 3r = 2s - 4 or 2s - 1 so that $r \in \{2l - 2, 2l - 1\}$. Note that $r \ge 2$.

Let the path with an end-edge label $y/2 = (2s^2 - s)/3$ be of length 2q. Since $y/2 \notin [1, 2s - 1]$ and we assume $\alpha_1 < \beta_q$, this means $\beta_q = (2s^2 - s)/3 = (3l - 1)(2l - 1)$.

If q = 1, then $\alpha_1 + \beta_1 = x$. This implies $\alpha_1 + (3l - 1)(2l - 1) = (2l - 1)(6l - 5)$ and hence $\alpha_1 = 6l^2 - 11l + 4$. Since $\alpha_1 \le 2s - 1 = 6l - 3$, we get $6l^2 - 17l + 7 = (2l - 1)(3l - 7) \le 0$. The only solution is l = 2 so that s = 5. Note that q = l - 1.

Suppose $q \ge 2$. Now $\alpha_q + \beta_q = x$ and $\alpha_q = \alpha_1 + (q-1)(y-x)$ implies that $\alpha_1 = x - \beta_q - (q-1)(2s-1) \le (2s-1)$. So $x - \beta_q \le q(2s-1)$. In terms of l, we have $(2l-1)(6l-5) - (3l-1)(2l-1) \le q(6l-3)$. Thus, $3l-4 \le 3q$. This implies $q \ge l-1$. Also note that $\beta_1 = \beta_q + (2s-1)(q-1) \le m = \frac{1}{3}(4s^2 - 8s)$. In terms of l we will obtain $(6l-3)q \le 6l^2 - 5l$. This implies $q \le l - \frac{2l}{6l-3} < l$. Thus, $q \le l-1$. Combining the aboves, we have q = l-1, as in q = 1 above.

Now, suppose there are k paths of length 4l - 4 and 3l - 2 - k paths of length 4l - 2. We then have (2l - 2) + k(4l - 4) + (3l - 2 - k)(4l - 2) = 4(3l - 1)(l - 1) = m. Solving this, we get k = 2l - 1. Consequently, $\theta_{3l-1} = \theta(2l - 2, (4l - 4)^{[2l-1]}, (4l - 2)^{[l-1]})$ for $l \ge 2$.

Recall that $y = 12l^2 - 10l + 2$, $x = 12l^2 - 16l + 5$, y - x = 6l - 3. Using the claim, we now have the followings.

- Consider the l − 1 path(s) of length 4l − 2. We have α₁ = i < β_{2l−1} = x − i − (y − x) · (2l − 2) = 2l − 1 − i. So 1 ≤ i ≤ l − 1. Thus, numbers in [1, l − 1] must serve as α₁ for these l − 1 path(s). Hence, numbers in [l, 2l − 2] must serve as β_{2l−1} for these l − 1 path(s). Thus, numbers in [1, 2l − 2] are assigned to these l − 1 paths.
- Consider the 2l 1 paths of length 4l 4. We have $2l 1 \le \alpha_1 = i < \beta_{2l-2} = x i (y x)(2l 3) = 8l 4 i$. So $2l 1 \le i \le 4l 3$. Thus, numbers in [2l 1, 4l 3] must serve as α_1 for these 2l 1 path(s). Hence, numbers in [4l 1, 6l 3] must serve as β_{2l-2} for these 2l 1 path(s). Thus, numbers in $[2l 1, 6l 3] \setminus \{4l 2\}$ are assigned to these 2l 1 paths.

• Consider the path of length 2l - 2. This path must have $\alpha_1 = 4l - 2$ and $\beta_{l-1} = 6l^2 - 5l + 1 = y/2$.

Since y/2 is assigned to an end-edge incident to w, say, at the path of length 2l - 2, we have

$$\frac{1}{2}(25l^2 - 25l + 6) = \sum_{i=1}^{l-1} i + \sum_{j=2l-1}^{4l-3} j + (6l^2 - 5l + 1) \le f^+(w) = 12l^2 - 10l + 2.$$

We get l = 2, 3, 4, which implies s = 5, 8, 11, respectively.

For s = 5, we get $\theta_5 = \theta(2, 4^{[3]}, 6)$ with induced vertex labels y = 30, x = 21. The labels of the paths are

15, 6; 3, 18, 12, 9; 4, 17, 13, 8; 7, 14, 16, 5; 1, 20, 10, 11, 19, 2.

For s = 8, we get $\theta_8 = \theta(4, 8^{[5]}, 10^{[2]})$ with induced vertex labels y = 80, x = 65. The labels of the paths are

For s = 11, we get $\theta_{11} = \theta(6, 12^{[7]}, 14^{[3]})$ with induced vertex labels y = 154, x = 133. The labels of the paths are

 $\begin{array}{l} 77, 56, 98, 35, 119, 14;\\ 8, 125, 29, 104, 50, 83, 71, 62, 92, 41, 113, 20;\\ 10, 123, 31, 102, 52, 81, 73, 60, 94, 39, 115, 18;\\ 12, 121, 33, 100, 54, 79, 75, 58, 96, 37, 117, 16;\\ 1, 132, 22, 111, 43, 90, 64, 69, 85, 48, 106, 27, 127, 6;\\ 4, 129, 25, 108, 46, 87, 67, 66, 88, 45, 109, 24, 130, 3. \end{array}$

 $\begin{array}{l} 7,126,28,105,49,84,70,63,91,42,112,21;\\ 9,124,30,103,51,82,72,61,93,40,114,19;\\ 11,122,32,101,53,80,74,59,95,38,116,17;\\ 13,120,34,99,55,78,76,57,97,36,118,15;\\ 2,131,23,110,44,89,65,68,86,47,107,26,128,5; \end{array}$

Case (3). Suppose a = 4. In this case, $b = 2(2s^2 - 7s + 6)$ and $2y + 14 - 8s = 4s^2 - 14s + 16$. So $y = 2s^2 - 3s + 1$. Similar to the previous cases, $m = 2s^2 - 5s + 2$ only. Hence s is even, $x = 2s^2 - 5s + 3$ and y - x = 2s - 2. So, integers in [1, 2s - 2] must be assigned to 2s - 2 end-edges. Let the remaining two end-edges be labeled by γ_1 and γ_2 . We have $4s^2 - 6s + 2 = 2y = f^+(u) + f^+(v) = \sum_{i=1}^{2s-2} i + \gamma_1 + \gamma_2 = (s - 1)(2s - 1) + \gamma_1 + \gamma_2$. Thus, $\gamma_1 + \gamma_2 = 2s^2 - 3s + 1 = y$.

Suppose γ_1 and γ_2 are labeled at the end-edges of the same path of length 2q. Without loss of generality, $\alpha_1 = \gamma_1$ and $\beta_q = \gamma_2$ so that $y = \alpha_1 + \beta_q = \alpha_1 + (x - \alpha_1) - (q - 1)(y - x)$. We have q(y - x) = 0 which is impossible. Therefore, γ_1 and γ_2 are labeled at different paths. Thus, there are s - 2 paths whose end-edges are labeled by integers in [1, 2s - 2] and exactly two paths, say Q_i with an end-edge label in [1, 2s - 2] and another end-edge label $\gamma_i \ge 2s - 1$, i = 1, 2.

Suppose P_{2r+1} is a path with both end-edges labeled with integers in [1, 2s - 2]. By the assumption $1 \le \alpha_1 < \beta_r \le 2s - 2$ and the claim, we have $\beta_r = (x - \alpha_1) - (r - 1)(y - x) \le 2s - 2$. So,

$$(2s-2)(s-3) = 2s^2 - 8s + 6 < 2s^2 - 7s + 5 \le x - \alpha_1 \le r(y-x) = r(2s-2).$$

Thus, $r \ge s-2 \ge 2$. So β_{r-1} is labeled at a non-end-edge. Therefore, $\beta_{r-1} = (x - \alpha_1) - (r - 2)$.

 $(y-x) \ge 2s-1$. We have

$$(r-2)(2s-2) \le x - \alpha_1 - 2s + 1 \le 2s^2 - 7s + 3 < 2s^2 - 6s + 4 = (2s-2)(s-2) \le 2s^2 - 6s + 4 \le 2s^2 - 6s + 2s^2 - 2s^2 - 6s + 2s^2 - 2s^2 -$$

So, r < s. Thus, $r \in \{s - 2, s - 1\}$.

Suppose Q_i is of length $2r_i$ whose end-edges are labeled by $\alpha_{1,i} \in [1, 2s - 2]$ and $\beta_{r_i,i} = \gamma_i$. So, $\beta_{r_i,i} = \gamma_i = x - \alpha_{1,i} - (r_i - 1)(y - x)$. Since $\gamma_1 + \gamma_2 = 2s^2 - 3s + 1$ is odd, $\gamma_2 \ge \frac{1}{2}(2s^2 - 3s + 2)$ and $\gamma_1 \le \frac{1}{2}(2s^2 - 3s)$. Now

$$(r_2 - 1)(2s - 2) = x - \alpha_{1,2} - \gamma_2 \le 2s^2 - 5s + 3 - 1 - \frac{1}{2}(2s^2 - 3s + 2)$$

= $(2s^2 - 7s + 2)/2 = [(2s - 2)(s - 2) - s - 2]/2 < (2s - 2)(s - 2)/2.$

We have $2r_2 - 2 < s - 2$ and hence $2r_2 \le s - 2$.

Now $y = \gamma_1 + \gamma_2 = 2x - \alpha_{1,1} - \alpha_{1,2} - (r_1 + r_2 - 2)(y - x)$ or $(r_1 + r_2 - 1)(2s - 2) = (r_1 + r_2 - 1)(y - x) = x - \alpha_{1,1} - \alpha_{1,2}$. Since $\alpha_{1,1}, \alpha_{1,2} \in [1, 2s - 2]$,

$$(s-1)(2s-2) > (s-1)(2s-2) - s - 2 = 2s^2 - 5s = x - 3 \ge (r_1 + r_2 - 1)(2s - 2)$$

$$\ge x - (4s - 5) = 2s^2 - 9s + 8 = (s - 4)(2s - 2) + s > (s - 4)(2s - 2).$$

So, $s > r_1 + r_2 > s - 3$ or $2r_1 + 2r_2 \in \{2s - 2, 2s - 4\}$. Thus, $2r_1 + s - 2 \ge 2r_1 + 2r_2 \ge 2s - 4$. So, we have $2r_1 \ge s - 2 \ge 2r_2$. Since $2r_1 + 2r_2 \le 2s - 2$ and $2r_2 \ge 2$, $2r_1 \le 2s - 4$.

Without loss of generality, we may always assume that γ_1 is labeled at the end-edge of Q_1 incident to u. Since $s \ge 4$ and $f^+(u) = y$, γ_2 must be labeled at the end-edge of Q_2 incident to v. Suppose there are k paths of length 2s - 4 and s - k - 2 paths of length 2s - 2. Therefore, $2(r_1 + r_2) + k(2s - 4) + (s - k - 2)(2s - 2) = 2s^2 - 5s + 2$. So, $2(r_1 + r_2) = s - 2 + 2k$. For convenience, we write s = 2l for $l \ge 2$.

(a) Suppose $2r_1 + 2r_2 = 4l - 2$. Now, k = l and $\theta_{2l} = \theta (4l - 2 - 2r_1, 2r_1, (4l - 4)^{[l]}, (4l - 2)^{[l-2]})$ for $l \le r_1 \le 2l - 2$. Since $l - 1 \ge r_2 = 2l - 1 - r_1$, $r_1 \ge l$. Rewriting r_1 as t, we have $\theta_{2l} = \theta (4l - 2 - 2t, 2t, (4l - 4)^{[l]}, (4l - 2)^{[l-2]})$ for $l \le t \le 2l - 2$. Here Q_2 and Q_1 are (u, v)-paths of length 4l - 2 - 2t and 2t, respectively.

Next, we consider all (u, v)-paths of θ_s . Let the (u, v)-paths of length 4l - 4 be R_i , $1 \le i \le l$, and the (u, v)-path(s) of length 4l - 2 be T_j , $1 \le j \le l - 2$. Let T_{l-1} be the path obtained from Q_2 and Q_1 by merging the vertex v of Q_2 and the vertex u of Q_1 . Hence, T_{l-1} is a (u, v)-path of length 4l - 2. Under the labeling f, the end-edge labels are in [1, 4l - 2] and the induced vertex labels of all internal vertices of T_{l-1} are x and y alternatively.

(b) Suppose $2r_1 + 2r_2 = 4l - 4$. Now, $2r_1 = 4l - 4 - 2r_2 \le 4l - 6$ so that k = l - 1 and $\theta_{2l} = \theta \left(4l - 4 - 2r_1, 2r_1, (4l - 4)^{[l-1]}, (4l - 2)^{[l-1]}\right)$ for $l - 1 \le r_1 \le 2l - 3$. Rewriting r_1 as t - 1, we have $\theta_{2l} = \theta \left(4l - 2 - 2t, 2t - 2, (4l - 4)^{[l-1]}, (4l - 2)^{[l-1]}\right)$ for $l \le t \le 2l - 2$. Here Q_2 and Q_1 are (u, v)-paths of length 4l - 2 - 2t and 2t - 2, respectively.

Next, we consider all (u, v)-paths of θ_s . Let the path(s) of length 4l - 4 be R_i , $1 \le i \le l - 1$, and the path(s) of length 4l - 2 be T_j , $1 \le j \le l - 2$. Let R_l be the path obtained from Q_2 and Q_1 by merging the vertex v of Q_2 and the vertex u of Q_1 . Hence R_l is a (u, v)-path of length 4l - 4. Under the labeling f, the end-edge labels are in [1, 4l - 2] and the induced vertex labels of all internal vertices of R_l are x and y alternatively.

For each case, after the merging, we have l paths R_i of length 4l - 4, $1 \le i \le l$ and l - 1 paths T_j of length 4l - 2, $1 \le j \le l - 1$, where $l \ge 2$. All the end-edge labels are in [1, 4l - 2] under

the labeling f. Consider the (u, v)-path R_i of length 2s - 4 = 4l - 4. Suppose $x_i = \alpha_1$ is an end-edge label, then another end-edge label is $\beta_{s-2} = (x - \alpha_1) - (s - 3)(2s - 2) \le 2s - 2$. We have $\alpha_1 \ge s - 1$. By symmetry, $\beta_{s-2} \ge s - 1$. So, all the l paths R_i have their end-edges labeled by integers in [2l - 1, 4l - 2]. Thus, all (u, v)-paths T_j have their end-edges labeled by integers in [1, 2l - 2].

Let the label assigned to the end-edge of T_i incident to u be y_i .

(a) For the case $\theta_{2l} = \theta \left(4l - 2 - 2t, 2t, (4l - 4)^{[l]}, (4l - 2)^{[l-2]} \right), 2 \le l \le t \le 2l - 2, \gamma_1$ is the (4l - 2 - 2t + 1)-st edge label of T_{l-1} so that $\gamma_1 = y_{l-1} + (2l - 1 - t)(4l - 2)$. Hence,

$$(4l-1)(2l-1) = f^{+}(u) = \gamma_{1} + \sum_{j=1}^{l-1} y_{j} + \sum_{i=1}^{l} x_{i} = y_{l-1} + (2l-1-t)(4l-2) + \sum_{j=1}^{l-1} y_{j} + \sum_{i=1}^{l} x_{i}.$$

We have

$$(2l-1-t)(4l-2) = (4l-1)(2l-1) - y_{l-1} - \sum_{j=1}^{l-1} y_j - \sum_{i=1}^{l} x_i$$

$$\geq (4l-1)(2l-1) - (2l-2) - \frac{(l-1)(3l-2)}{2} - \frac{l(7l-3)}{2}$$

$$= 3l^2 - 4l + 2.$$

This means

$$t(4l-2) \le 2(2l-1)^2 - (3l^2 - 4l + 2) = 5l^2 - 4l = \frac{1}{4}[(5l-1)(4l-2) - 2l - 2] < \frac{1}{4}(5l-1)(4l-2).$$

Therefore, $t < \frac{5l-1}{4}$, i. e., $t \le \frac{5l-2}{4}$. Thus, $l \le t \le \frac{5l-2}{4}$.

(b) For the case $\theta_{2l} = \theta (4l - 2 - 2t, 2t - 2, (4l - 4)^{[l-1]}, (4l - 2)^{[l-1]})$ for $2 \le l \le t \le 2l - 2$, similarly, we have

$$(2l-1-t)(4l-2) = (4l-1)(2l-1) - x_l - \sum_{j=1}^{l-1} y_j - \sum_{i=1}^{l} x_i$$

$$\geq (4l-1)(2l-1) - (4l-2) - \frac{(l-1)(3l-2)}{2} - \frac{l(7l-3)}{2}$$

$$= 3l^2 - 6l + 2.$$

This means

$$t(4l-2) \leq 2(2l-1)^2 - (3l^2 - 6l + 2) = 5l^2 - 2l = \frac{1}{4}[(5l+1)(4l-2) - 2l + 2] < \frac{1}{4}(5l+1)(4l-2).$$

Therefore, $t < \frac{5l+1}{4}$, i. e., $t \leq \frac{5l}{4}$. Thus, $l \leq t \leq \frac{5l}{4}$.

Consequently, we have the following two cases.

- (a) $\theta_{2l} = \theta \left(4l 2 2t, 2t, (4l 4)^{[l]}, (4l 2)^{[l-2]} \right)$ for $2 \le l \le t \le \frac{5l-2}{4}$, or else
- (b) $\theta_{2l} = \theta \left(4l 2 2t, 2t 2, (4l 4)^{[l-1]}, (4l 2)^{[l-1]} \right)$ for $2 \le l \le t \le \frac{5l}{4}$.

Now, we are going to find a local antimagic 2-coloring for the above graphs.

- (a) $\theta_{2l} = \theta \left(4l 2 2t, 2t, (4l 4)^{[l]}, (4l 2)^{[l-2]} \right)$ for $2 \le l \le t \le \frac{5l-2}{4}$.
 - Step 1: Label the edges of T_j by the sequence $A_{2l-1}(l-1+j; 4l-2) \diamond A_{2l-1}(x-l+1-j; -4l+2), 1 \leq j \leq l-1$. Note that we choose $\alpha_1 = l-1+j$. This gives $\beta_{2l-1} = l-j$. So, as a set $A_{2l-1}(x-(l-1+j); -4l+2) = A_{2l-1}(l-j; 4l-2)$. Thus, integers in [1, 2l-2] are end-edge labels of all path(s) T_j and integers in $\bigcup_{j=1}^{l-1} [(j-1)(4l-2)+1, (j-1)(4l-2)+(2l-2)]$ are assigned.
 - Step 2: Label the edges of the (u, v)-path R_i by the sequence $A_{2l-2}(2l-2+i; 4l-2) \diamond \\ \diamond A_{2l-2}(x-2l+2-i; -4l+2), 1 \leq i \leq l$. Note that we choose $\alpha_1 = 2l-2+i$. This gives $\beta_{2l-2} = 6l-3-(2l-2+i) = 4l-1-i$. So, as a set $A_{2l-2}(x-2l+2-i; -4l+2) = \\ = A_{2l-2}(4l-1-i; 4l-2)$. Thus, integers in [2l-1, 4l-2] are end-edge labels of all path(s) R_i and integers in $\bigcup_{i=1}^{l} [(i-1)(4l-2)+(2l-1), (i-1)(4l-2)+(4l-2)]$ are assigned. The set of difference between the two end-edge labels of a path R_i is $D_2 = \{1, 3, \dots, 2l-1\} = A_l(1; 2)$.
 - Step 3: Pick the (u, v)-path T_{l-1} and separate it into two paths. Note that the end-edge labels of T_{l-1} are 2l - 2 and 1. The first 4l - 2 - 2t edges form a (u, v)-path Q_2 and the remaining 2t edges form a (u, v)-path Q_1 . Note that the label of (4l - 1 - 2t)-th edge of T_{l-1} is $\gamma_1 = (2l - 1 - t)(4l - 2) + (2l - 2)$.

Thus, the above labeling is a local antimagic labeling. Under this labeling, the induced vertex label of u is

$$\sum_{j=1}^{l-1} (l-1+j) + \sum_{i=1}^{l} (2l-2+i) + \gamma_1$$

= $\frac{(l-1)(3l-2)}{2} + \frac{l(5l-3)}{2} + (2l-1-t)(4l-2) + (2l-2)$
= $12l^2 + 2t - 10l - 4lt + 1.$

The difference from $y = 8l^2 - 6l + 1$ is $\delta(t) = 4lt + 4l - 4l^2 - 2t = (4l - 2)(t - l) + 2l$. Clearly, $2 < \delta(t) \le (4l - 2)\frac{l-2}{4} + 2l \le l^2$. Suppose $\delta(t) = l^2 - 2$, then $t = \frac{5l^2 - 4l - 2}{4l - 2} = \frac{5l - 2}{4} + \frac{l - 6}{2(4l - 2)}$. Since $t \le \frac{5l-2}{4}$, $2 \le l \le 6$. Since $t \in \mathbb{Z}$, l = 6 and, hence, t = 7. Thus, by Lemma 2.2, we may choose $B \subset D_2$ to obtain a local antimagic 2-coloring of $\theta(4l - 2 - 2t, 2t, (4l - 4)^{[l]}, (4l - 2)^{[l-2]})$ for $2 \le l \le t \le \frac{5l-2}{4}$ and $(l, t) \ne (6, 7)$. We shall provide a local antimagic 2-coloring for the special case (l, t) = (6, 7) in Example 3.3(a)(ii).

- (b) $\theta_{2l} = \theta \left(4l 2 2t, 2t 2, (4l 4)^{[l-1]}, (4l 2)^{[l-1]} \right)$ for $2 \le l \le t \le \frac{5l}{4}$.
 - Step 1: Label the edges of T_j by the sequence $A_{2l-1}(j; 4l-2) \diamond A_{2l-1}(x-j; -4l+2)$, $1 \leq j \leq l-1$. The set of difference between the last label and the first label of a paths T_j 's is $D_1 = \{1, 3, \dots, 2l-3\} = A_{l-1}(1; 2)$.
 - Step 2: Label the edges of R_i by the sequence $A_{2l-2}(3l-2+i;4l-2) \diamond A_{2l-2}(x-3l+2-i; -4l+2)$, $1 \le i \le l$. The set of difference between the last label and the first label of a paths R_i 's, $1 \le i \le l-1$, is $D_2 = \{-1, -3, \dots, -(2l-3)\} = A_{l-1}(-1; -2)$.
 - Step 3: Pick the (u, v)-path R_l and separate it into two paths. Note that the end-edge labels of R_l are 4l - 2 and 2l - 1. The first 4l - 2 - 2t edges form a (u, v)-path Q_2 and the remaining 2t - 2 edges form a (u, v)-path Q_1 . Note that the label of (4l - 1 - 2t)-th edge of R_l is $\gamma_1 = (2l - 1 - t)(4l - 2) + (4l - 2)$.

Similar to the previous case, the above labeling is a local antimagic labeling. Under this labeling, the induced vertex label of u is

$$\sum_{j=1}^{l-1} j + \sum_{i=1}^{l} (3l-2+i) + \gamma_1 = \frac{(l-1)l}{2} + \frac{l(7l-3)}{2} + (2l-1-t)(4l-2) + (4l-2)$$
$$= 12l^2 + 2t - 6l - 4lt.$$

The difference from $y = 8l^2 - 6l + 1$ is $\delta(t) = -4l^2 - 2t + 4lt + 1$. Clearly, $\delta(t)$ is an increasing function of t. It is easy to show that $3 \leq 2l - 1 \leq \delta(t) \leq l^2 - \frac{5l}{2} + 1 \leq (l-1)^2 - 1$ when $l + 1 \leq t \leq \frac{5l}{4}$. We need to show that $\delta(t) \neq (l-1)^2 - 2$. Now $\delta((5l-1)/4)) = \frac{2l^2 - 7l + 3}{2} = (l-1)^2 - \frac{3l-1}{2} < (l-1)^2 - 2$. If $\frac{5l}{4} \in \mathbb{Z}$, then $l \geq 4$. So, $\delta(5l/4) = \frac{2l^2 - 5l + 1}{2} = (l-2)^2 - \frac{l+1}{2} < (l-1)^2 - 2$. Thus, $3 \leq \delta(t) \leq l^2 - \frac{5l}{2} + 1 \leq (l-1)^2 - 2$ when $l + 1 \leq t \leq \frac{5l}{4}$. By Lemma 2.2, we may choose $B \subset D_1$ and then we obtain a local antimagic 2-coloring for $\theta(4l - 2 - 2t, 2t - 2, (4l - 4)^{[l-1]}, (4l - 2)^{[l-1]})$ for $l + 1 \leq t \leq \frac{5l}{4}$.

The remaining case is t = l. For this case, $\delta(l) = -2l + 1$. If $l \neq 3$, then we may choose $B = \{-(2l-3), -3, 1\} \subset D_1 \cup D_2$. When l = 3, we have t = 3. This is a special case with solution given in Example 3.4(b).

Case (4). Suppose a = 2. In this case, $b = 4(2s^2 - 7s + 6)$ and $2y + 14 - 8s = 8s^2 - 28s + 26$. So, $y = 4s^2 - 10s + 6$. Similar to the previous cases we have $m = 4s^2 - 12s + 8$. Hence, $x = 4s^2 - 12s + 9$.

Suppose s = 3. We get m = 8, x = 9 and y = 12. Thus, $\theta_3 = \theta(2, 2, 4)$. The sequences we can use are 3, 6; 1, 8 and 4, 5, 7, 2 or else 3, 6; 1, 8, 4, 5 and 7, 2, both of which give no solution. We now assume $s \ge 4$.

Note that y - x = 2s - 3, y is even and y/2 > 2s - 3. Recall that if y is even, then y/2 is an end-edge label. Thus, integers in $[1, 2s - 3] \cup \{y/2\}$ are end-edge labels.

There are only 3 end-edge labels greater than 2s - 3. So, there are at least s - 3 paths with both end-edges labeled by integers in [1, 2s - 3]. Suppose P_{2r+1} is one of these s - 3 paths. Keep the notation defined in the claim and the assumption $\alpha_1 < \beta_r$. So, $\alpha_1 \in [1, 2s - 4]$.

Now $\beta_r = (x - \alpha_1) - (r - 1)(y - x) \le 2s - 3$. Since $x = 4s^2 - 12s + 9$ and y - x = 2s - 3, we have

$$(2s-3)(2s-4) < 4s^2 - 14s + 13 \le x - \alpha_1 \le r(y-x) = r(2s-3)$$

Thus, $r \geq 2s - 3$.

Since $r \ge 4$, β_{r-1} is labeled at a non-end-edge. So, $\beta_{r-1} = (x - \alpha_1) - (r - 2)(y - x) \ge 2s - 2$ so that

$$(r-2)(2s-3) \le x - \alpha_1 - 2s + 2 \le 4s^2 - 14s + 10 < (2s-3)(2s-4).$$

So, $r-2 \le 2s-5$ or $r \le 2s-3$. Thus, r=2s-3. Note that $\beta_{2s-3}=2s-3-\alpha_1$.

Suppose $y/2 = 2s^2 - 5s + 3$ is labeled at an end-edge of a path Q. Let the length of Q be 2q. So, we have $\alpha_1 \leq 2s - 3$, $\beta_q = y/2$ and $\beta_1 = y/2 + (q - 1)(2s - 3)$. Now $x = \alpha_1 + \beta_1 = \alpha_1 + y/2 + (q - 1)(y - x)$ so that 2x > y + (2q - 2)(y - x). We have $(2s - 3)^2 = x > (2q - 1)(y - x) = (2q - 1)(2s - 3)$. Thus, 2q - 1 < 2s - 3, i.e., $q \leq s - 2$.

On the other hand, $2x = 2\alpha_1 + y + (2q - 2)(y - x) \le 2(2s - 3) + y + (2q - 2)(y - x) = y + 2q(y - x)$ so that $(2s - 3)^2 = x \le (2q + 1)(y - x) = (2q + 1)(2s - 3)$. This means $2q + 1 \ge 2s - 3$, i.e., $q \ge s - 2$. Thus, q = s - 2. Consequently, θ_s contains a path of length 2s - 4 with an end-edge label $\beta_{s-2} = 2s^2 - 5s + 3 = y/2$ so that $\alpha_i = i(2s - 3)$ and $\beta_i = 4s^2 - 14s + 12 - (i - 1)(2s - 3) = (2s - 3)(2s - 3 - i) \ge (2s - 3)(s - 1)$ for $1 \le i \le s - 2$.

Let the remaining two end-edge labels be γ_1 and γ_2 . Thus, $2y = f^+(u) + f^+(v) = \gamma_1 + \gamma_2 + y/2 + (2s - 3)(s - 1)$. So, $\gamma_1 + \gamma_2 = 4s^2 - 10s + 6 = y$.

Suppose γ_1 and γ_2 are labeled at the same path of length 2q. By a similar proof of Case (3), we have $4s^2 - 10s + 6 = \gamma_1 + \gamma_2 = \gamma_1 + (x - \gamma_1) - (q - 1)(y - x) = 4s^2 - 12s + 9 - (q - 1)(2s - 3)$ which is impossible.

As a conclusion, there are exactly s - 3 paths of length 4s - 6 whose end-edges are labeled by integers in [1, 2s - 4], one path of length 2s - 4 whose end-edges are labeled by 2s - 3and y/2, two paths Q_i of length s_i whose end-edges are labeled by $\alpha_{1,i} \in [1, 2s - 4]$ and γ_i , i = 1, 2. By counting the number of edges of the graph, we have $s_1 + s_2 = 4s - 6$. Thus, $\theta_s = \theta (2t, 4s - 6 - 2t, 2s - 4, (4s - 6)^{[s-3]})$ for some $t \ge 1$.

Let us rename all (u, v)-paths.

- Let R₁,...R_{s-3} be the (u, v)-paths in θ_s of length 4s − 6. Let the end-edge label of R_i incident to u be x_i, 1 ≤ i ≤ s − 3.
- Let P be the (u, v)-path of length 2s-4 whose end-edge labels are 2s-3 and (s-1)(2s-3).
- Let Q₁ be (u, v)-path of length 4s − 6 − 2t whose end-edge labels are γ₁ and x_{s-1}. Let Q₂ be (u, v)-path of length 2t whose end-edge labels are x_{s-2} and γ₂. Without loss of generality, we may assume that γ₁ < γ₂. Since γ₁ + γ₂ = y, γ₁ < y/2 < γ₂. Also, without loss of generality, we may always assume that γ₁ is labeled at the end-edge incident to u. Thus, x_{s-2} is labeled at the end-edge of Q₂ incident to u.

Let R_{s-2} be the labeled (u, v)-path obtained from Q_2 and Q_1 by merging the end vertex v of Q_2 with the end vertex u of Q_1 . Therefore, R_{s-2} satisfies the assumption of the Claim. Thus, x_{s-2} is labeled at the end-edge of R_{s-2} incident to u. Now $\gamma_1 = t(2s - 3) + x_{s-2}$.

Suppose 2s - 3 is labeled at the end-edge of P incident to u, then

$$2(s-1)(2s-3) = f^+(u) = \sum_{i=1}^{s-3} x_i + (2s-3) + x_{s-2} + \gamma_1$$
$$= \sum_{i=1}^{s-2} x_i + (2s-3) + [t(2s-3) + x_{s-2}] = \sum_{i=1}^{s-2} x_i + (t+1)(2s-3) + x_{s-2}.$$

This means $(2s - t - 3)(2s - 3) = x_{s-2} + \sum_{i=1}^{s-2} x_i \le (2s - 4) + \frac{(s-2)(3s-5)}{2}$. Since $1 \le t \le s - 2$, $(s - 1)(2s - 3) \le (2s - 4) + \frac{(s-2)(3s-5)}{2} = \frac{3s^2 - 7s + 2}{2}$ which is impossible. Thus, (s - 1)(2s - 3) must be a label of the end-edge of P incident to u. Consequently, we have

$$2(s-1)(2s-3) = f^+(u) = \sum_{i=1}^{s-3} x_i + (s-1)(2s-3) + x_{s-2} + \gamma_1$$
$$= \sum_{i=1}^{s-2} x_i + (s-1)(2s-3) + [t(2s-3) + x_{s-2}] = \sum_{i=1}^{s-2} x_i + (s-1+t)(2s-3) + x_{s-2}.$$

This means $(s-t-1)(2s-3) = x_{s-2} + \sum_{i=1}^{s-2} x_i \ge 1 + \frac{(s-2)(s-1)}{2} = \frac{s^2 - 3s + 4}{2} = \frac{(2s-3)^2}{8} + \frac{7}{8} > \frac{(2s-3)^2}{8}$. Solving this inequality, we have $t < \frac{6s-5}{8}$. Similarly, we have $(s - t - 1)(2s - 3) = x_{s-2} + \sum_{i=1}^{s-2} x_i \le \frac{3s^2 - 7s + 2}{2} = \frac{(6s - 5)(2s - 3)}{8} - \frac{7}{8} < \frac{(6s - 5)(2s - 3)}{8}$. $< \frac{(6s - 5)(2s - 3)}{8}$. Solving this inequality, we have $t > \frac{2s - 3}{8}$. Hence,

$$t \in \begin{cases} [2j-1,6j-4], & \text{if } s = 8j-4; \\ [2j-1,6j-3], & \text{if } s = 8j-3; \\ [2j,6j-3], & \text{if } s = 8j-2; \\ [2j,6j-2], & \text{if } s = 8j-1; \\ [2j,6j-1], & \text{if } s = 8j; \\ [2j,6j], & \text{if } s = 8j+1; \\ [2j,6j], & \text{if } s = 8j+1; \\ [2j+1,6j], & \text{if } s = 8j+2; \\ [2j+1,6j+1], & \text{if } s = 8j+3; \end{cases} \longleftrightarrow t \in \begin{cases} [k,3k-1], & \text{if } s = 4k; \\ [k,3k], & \text{if } s = 4k+1; \\ [k+1,3k], & \text{if } s = 4k+2; \\ [k+1,3k+1], & \text{if } s = 4k+3; \end{cases}$$

where $j, k \ge 1$.

We now show that $\theta_s = \theta(2t, 4s - 6 - 2t, 2s - 4, (4s - 6)^{[s-3]})$, for $s \ge 4$ and $\frac{2s-3}{8} < t < \frac{6s-5}{8}$, admits a local antimagic 2-coloring. We keep the notation defined above. Following is a general approach:

- Step 1: Label the edges of the path R_j of length 4s 6 by the sequence $A_{2s-3}(j; 2s 3) \diamond A_{2s-3}(x j; -(2s 3))$ in order, for $1 \le j \le s 2$.
- Step 2: For convenience, write $x_{s-2} = \alpha$. Separate R_{s-2} into two paths. The first 2t edges form the path Q_2 and the rest form the path Q_1 . So α and γ_1 are labeled at the end-edges incident to u. Recall that $\gamma_1 = t(2s-3) + \alpha$.
- Step 3: Label the edges of the (u, v)-path P of length 2s 4 by the reverse of the sequence $A_{s-2}(2s 3; 2s 3) \diamond A_{s-2}((2s 3)(2s 4); -2s + 3)$, i.e., $A_{s-2}((s 1)(2s 3); 2s 3) \diamond A_{s-2}((s 2)(2s 3); -2s + 3)$.

Clearly, by the construction above, it induces a local antimagic labeling for $\theta(2t, 4s - 6 - 2t, 2s - 4, (4s - 6)^{[s-3]})$. Under this labeling, the induced vertex label for u is

$$(s-1)(2s-3) + \sum_{i=1}^{s-2} i + \gamma_1 = (2s-3)(s-1+t) + \frac{s^2 - 3s + 2}{2} + \alpha.$$

The difference from y = (2s - 3)(2s - 2) is $\delta(t) = (2s - 3)(s - 1 - t) - \frac{s^2 - 3s + 2}{2} - \alpha$. Clearly, $\delta(t)$ is a decreasing function of t.

Now, if we choose $\alpha = 1$, then $\delta(t) = \frac{3s^2 - 7s - 4st + 6t + 2}{2}$, where $\frac{2s - 3}{8} < t < \frac{6s - 5}{8}$. So,

$$\begin{cases} 16k^2 - 11k + 1\\ 16k^2 - k - 1\\ 16^2 + k - 1\\ 16k^2 + 11k + 1 \end{cases} \ge \delta(t) \ge \begin{cases} 3k - 2, & \text{if } s = 4k;\\ k - 1, & \text{if } s = 4k + 1;\\ 7k, & \text{if } s = 4k + 2;\\ 5k + 1, & \text{if } s = 4k + 3. \end{cases}$$

The set of differences of two end-edge labels in R_j , $2 \le j \le s-2$, is $D = \{1, 3, 5, ..., 2s - 7\} = A_{s-3}(1; 2)$.

Clearly, $\delta(t) = 2$ only when (s, t) = (13, 9). Also the maximum value of $\delta(t)$ for each case of s is greater than $(s - 3)^2$. Let us look at the second and third largest values δ_2 and δ_3 of $\delta(t)$ if any:

$$\delta_{2} = \begin{cases} 16k^{2} - 19k + 4, & \text{if } s = 4k; \\ 16k^{2} - 9k, & \text{if } s = 4k + 1; \\ 16k^{2} - 7k - 2, & \text{if } s = 4k + 2; \\ 16k^{2} + 3k - 2, & \text{if } s = 4k + 3; \end{cases} \qquad \delta_{3} = \begin{cases} 16k^{2} - 27k + 7, & \text{if } s = 4k; \\ 16k^{2} - 17k + 1, & \text{if } s = 4k + 1; \\ 16k^{2} - 15k - 3, & \text{if } s = 4k + 2; \\ 16k^{2} - 5k - 5, & \text{if } s = 4k + 3. \end{cases}$$

Clearly, $0 \le \delta_3 < (s-3)^2 - 2$. So, by Lemma 2.2, there is a subset *B* of *D* such that the sum of integers in *B* is $\delta(t)$ when $\frac{2s-3}{8} + 2 < t < \frac{6s-5}{8}$ except the case (s,t) = (13,9). Similar to Case (2), we find a local antimagic 2-coloring for $\theta(2t, 4s-6-2t, 2s-4, (4s-6)^{[s-3]})$ according to the above range of *t*.

For the case (s,t) = (13,9), y = 552. Under the proposed labeling, we can see that the induced label for u is $549 + \alpha$. So, we may choose a = 3.

The remaining cases are when $\frac{2s-3}{8} < t \le \frac{2s-3}{8} + 2$. When s = 4, we have $\delta_2 = 1$ and δ_3 does not exist. We shall modify our proposed labeling. Now, we choose $\alpha = 2s - 4$. In this case, 1 is not labeled at the end-edge incident to u so that the set of labels of the end-edges incident to u is $\{(s-1)(2s-3), \gamma_1\} \cup [2, s-2] \cup \{2s-4\}$. Thus, the sum is $(s-1)(2s-3) + (2s-4) + \sum_{i=2}^{s-2} i + \gamma_1 = (2s-3)(s-1+t) + \frac{s^2+5s-16}{2}$. The difference from y = (2s-3)(2s-2) is $\delta^*(t) = \frac{3s^2-15s-4st+6t+22}{2}$. One may easily check that $3 \le \delta^*(t) \le (s-3)^2 - 3$ for $\frac{2s-3}{8} < t \le \frac{2s-3}{8} + 2$, except (s,t) = (4,2), (5,2), (6,3), (7,3). Thus, we have a local antimagic 2-coloring for $\theta(2t, 4s - 6 - 2t, 2s - 4, (4s - 6)^{[s-3]})$ when $\frac{2s-3}{8} < t \le \frac{2s-3}{8} + 2$.

For those exceptional cases, we have

- 1. (s,t) = (4,2). Now $\delta(2) = 1$. We may apply the original approach.
- 2. $(s,t) = (5,2), \theta_5 = \theta(4,6,10,14,14)$ with edge labels 39, 10, 46, 3; 7, 42, 14, 35, 21, 28; 4, 45, 11, 38, 18, 31, 25, 24, 32, 17; 1, 48, 8, 41, 15, 34, 22, 27, 29, 20, 36, 13, 43, 6; 5, 44, 12, 37, 19, 30, 26, 23, 33, 16, 40, 9, 47, 2.
- 3. (s,t) = (6,3). Now $\delta(3) = 7 < 3^2$. We may apply the original approach.

4. (s,t) = (7,3). Now x = 121, y = 132, $\theta_7 = \theta(6, 10, 16, 22, 22, 22, 22)$ with sequences 4, 117, 15, 106, 26, 95; 66, 55, 77, 44, 88, 33, 99, 22, 110, 11; 37, 84, 48, 73, 59, 62, 70, 51, 81, 40, 92, 29, 103, 18, 114, 7; 2, 119, 13, 108, 24, 97, 35, 86, 46, 75, 57, 64, 68, 53, 79, 42, 90, 31, 101, 20, 112, 9; 5, 116, 16, 105, 27, 94, 38, 83, 49, 72, 60, 61, 71, 50, 82, 39, 93, 28, 104, 17, 115, 6; 8, 113, 19, 102, 30, 91, 41, 80, 52, 69, 63, 58, 74, 47, 85, 36, 96, 25, 107, 14, 118, 3; 10, 111, 21, 100, 32, 89, 43, 78, 54, 67, 65, 56, 76, 45, 87, 34, 98, 23, 109, 12, 120, 1.

So we have a local antimagic 2-coloring for $\theta(2t, 4s-6-2t, 2s-4, (4s-6)^{[s-3]})$ when $s \ge 4$ and $\frac{2s-3}{8} < t < \frac{6s-5}{8}$.

Note that, one may see from each case that m > 2s + 2. This completes the proof.

§3. Examples

In this section, we shall provide example(s) to illustrate the construction of each case and also provide solutions for the exceptional cases raised in the proof of Theorem 2.1.

Example 3.1. The aim of this example is to illustrate the construction showed in Case (1).

Take s = 6 (i. e., k = 1), we have $\theta_6 = \theta(4, 4, 4, 4, 4, 6)$ with m = 26, x = 27, y = 39, $U_1 = \{1\}, U_2 = \{4, 5, 8, 9, 12\}, [1, 12] \setminus (U_1 \cup U_2) = \{2, 3, 6, 7, 10, 11\}.$

 $A_3(1;12) = (1,13,25)$ and $A_3(26;-12) = (26,14,2)$. So, $A_3(1;12) \diamond A_3(26;-12) = (1,26,13,14,25,2)$.

Similarly, $A_2(4; 12) = (4, 16)$ and $A_2(23, -12) = (23, 11)$, $A_2(5; 12) = (5, 17)$ and $A_2(22; -12) = (22, 10)$, $A_2(8; 12) = (8, 20)$ and $A_2(19; -12) = (19, 7)$, $A_2(9; 12) = (9, 21)$ and $A_2(18; -12) = (18, 6)$, $A_2(12; 12) = (12, 24)$ and $A_2(15; -12) = (15, 3)$.

So, the paths of length 4 and 6 have edge labels

 $4, 23, 16, 11; \quad 5, 22, 17, 10; \quad 8, 19, 20, 7; \quad 9, 18, 21, 6; \quad 12, 15, 24, 3; \quad 1, 26, 13, 14, 25, 2.$

All the left (respectively right) end vertices are merged to get the degree 6 vertex with induced label 39.

Example 3.2. The aim of this example is to illustrate the construction showed in Case (2).

Take s = 9 (i. e., l = 3), we get $\theta(4, 10^{[8]})$ with y = 102, x = 85. Keep the notation defined in Lemma 2.2 and the proof of Theorem 2.1. Since $\delta = 15$, n = 8, we choose $\kappa = 15$ with $\tau = 0$. By Lemma 2.2, we have $B = \{15\}$. So we replace 1 by 16 as a label of end-edge incident to u. Thus u is incident to end-edge labels in $\{16, 2, 3, 4, 5, 6, 7, 8, 51\}$. The paths labels are 51, 34, 68, 17: $A_2(51; 17) \diamond A_2(34; -17)$;

16, 69, 33, 52, 50, 35, 67, 18, 84, 1: the reverse of $A_5(1; 17) \diamond A_5(84; -17)$;

 $2, 83, 19, 66, 36, 49, 53, 32, 70, 15: A_5(2; 17) \diamond A_5(83; -17);$

3, 82, 20, 65, 37, 48, 54, 31, 71, 14: $A_5(3; 17) \diamond A_5(82; -17);$

4, 81, 21, 64, 38, 47, 55, 30, 72, 13: $A_5(4; 17) \diamond A_5(81; -17);$

 $5, 80, 22, 63, 39, 46, 56, 29, 73, 12: A_5(5; 17) \diamond A_5(80; -17);$

 $6, 79, 23, 62, 40, 45, 57, 28, 74, 11: A_5(6; 17) \diamond A_5(79; -17);$

7, 78, 24, 61, 41, 44, 58, 27, 75, 10: $A_5(7; 17) \diamond A_5(78; -17);$

8, 77, 25, 60, 42, 43, 59, 26, 76, 9: $A_5(8; 17) \diamond A_5(77; -17)$.

Using s = 12 (i. e., l = 4), we get $\theta(6, 14^{[11]})$ with y = 184, x = 161. Since $\delta = 26$. We choose $\kappa = 21$ (i. e., k = 1) with $\tau = 5$. By Lemma 2.2, we have $B = \{21, 5\}$. So, we replace 1 by 22 and 9 by 14 as labels of end-edges incident to u. Thus, u is incident to end-edge labels in $\{22, 2, 3, 4, 5, 6, 7, 8, 14, 10, 11, 92\}$. The paths labels are

```
92, 69, 115, 46, 138, 23: A_3(92; 23) \diamond A_3(69; -23);
```

```
22, 139, 45, 116, 68, 93, 91, 70, 114, 47, 137, 24, 160, 1: the reverse of A_7(1; 23) \diamond A_7(160; -23);
```

2, 159, 25, 136, 48, 113, 71, 90, 94, 67, 117, 44, 140, 21: $A_7(2; 23) \diamond A_7(159; -23)$;

3, 158, 26, 135, 49, 112, 72, 89, 95, 66, 118, 43, 141, 20: $A_7(3; 23) \diamond A_7(158; -23);$ 4, 157, 27, 134, 50, 111, 73, 88, 96, 65, 119, 42, 142, 19: $A_7(4; 23) \diamond A_7(157; -23);$

 $5, 156, 28, 133, 51, 110, 74, 87, 97, 64, 120, 41, 143, 18: A_7(5; 23) \diamond A_7(156; -23);$

```
6, 155, 29, 132, 52, 109, 75, 86, 98, 63, 121, 40, 144, 17: A_7(6; 23) \diamond A_7(155; -23);
```

7, 154, 30, 131, 53, 108, 76, 85, 99, 62, 122, 39, 145, 16: $A_7(7; 23) \diamond A_7(154; -23);$

8, 153, 31, 130, 54, 107, 77, 84, 100, 61, 123, 38, 146, 15: $A_7(8; 23) \diamond A_7(153; -23)$;

14, 147, 37, 124, 60, 101, 83, 78, 106, 55, 129, 32, 152, 9: the reverse of $A_7(9; 23) \diamond A_7(152; -23)$;

 $10, 151, 33, 128, 56, 105, 79, 82, 102, 59, 125, 37, 148, 13: A_7(10; 23) \diamond A_7(151; -23);$

 $11, 150, 34, 127, 57, 104, 80, 81, 103, 58, 126, 36, 149, 12: A_7(11; 23) \diamond A_7(150; -23).$

Example 3.3. The aim of this example is to illustrate the construction showed in Case (3) and provide a local antimagic 2-coloring for the exceptional case (l, t) = (6, 7).

Let s = 12, i. e., l = 6. Now, x = 231 and y = 253.

(a) The graph is $\theta_{12} = \theta(22 - 2t, 2t, 20^{[6]}, 22^{[4]})$, where t = 6, 7. Begin with the sequences $A_{11}(6; 22) \diamond A_{11}(225; -22)$: 6, 225, 28, 203, 50, 181, 72, 159, 94, 137, 116, 115, 138, 93, 160, 71, 182, 49, 204, 27, 226, 5 $A_{11}(7; 22) \diamond A_{11}(224; -22)$: 7, 224, 29, 202, 51, 180, 73, 158, 95, 136, 117, 114, 139, 92, 161, 70, 183, 48, 205, 26, 227, 4 $A_{11}(8; 22) \diamond A_{11}(223; -22)$: 8, 223, 30, 201, 52, 179, 74, 157, 96, 135, 118, 113, 140, 91, 162, 69, 184, 47, 206, 25, 228, 3 $A_{11}(9; 22) \diamond A_{11}(222; -22)$: 9, 222, 31, 200, 53, 178, 75, 156, 97, 134, 119, 112, 141, 90, 163, 68, 185, 46, 207, 24, 229, 2 $A_{11}(10; 22) \diamond A_{11}(221; -22)$: 10, 221, 32, 199, 54, 177, 76, 155, 98, 133, 120, 111, 142, 89, 164, 67, 186, 45, 208, 23, 230, 1

$$\begin{split} &A_{10}(11;22) \diamond A_{10}(220;-22): \ 11,\ 220,\ 33,\ 198,\ 55,\ 176,\ 77,\ 154,\ 99,\ 132,\ 121,\ 110,\ 143,\ 88,\ 165,\ 66,\ 187,\ 44,\ 209,\ 22\\ &A_{10}(12;22) \diamond A_{10}(219;-22):\ 12,\ 219,\ 34,\ 197,\ 56,\ 175,\ 78,\ 153,\ 100,\ 131,\ 122,\ 109,\ 144,\ 87,\ 166,\ 65,\ 188,\ 43,\ 210,\ 21\\ &A_{10}(13;22) \diamond A_{10}(218;-22):\ 13,\ 218,\ 35,\ 196,\ 57,\ 174,\ 79,\ 152,\ 101,\ 130,\ 123,\ 108,\ 145,\ 86,\ 167,\ 64,\ 189,\ 42,\ 211,\ 20\\ &A_{10}(14;22) \diamond A_{10}(217;-22):\ 14,\ 217,\ 36,\ 195,\ 58,\ 173,\ 80,\ 151,\ 102,\ 129,\ 124,\ 107,\ 146,\ 85,\ 168,\ 63,\ 190,\ 41,\ 212,\ 19\\ &A_{10}(15;22) \diamond A_{10}(216;-22):\ 15,\ 216,\ 37,\ 194,\ 59,\ 172,\ 81,\ 150,\ 103,\ 128,\ 125,\ 106,\ 147,\ 84,\ 169,\ 62,\ 191,\ 40,\ 213,\ 18\\ &A_{10}(16;22) \diamond A_{10}(215;-22):\ 16,\ 215,\ 38,\ 193,\ 60,\ 171,\ 82,\ 149,\ 104,\ 127,\ 126,\ 105,\ 148,\ 83,\ 170,\ 61,\ 192,\ 39,\ 214,\ 17\\ \end{split}$$

Now the difference sets are $D_1 = A_5(-1; -2)$ and $D_2 = A_6(1; 2)$.

i) t = 6. So, θ₁₂ = θ(10, 12, 20^[6], 22^[4]). Initially, we use the first five sequences above to label the (u, v)-paths T_j and the last six sequences above to label the (u, v)-paths R_i. We then break T₅ into two parts such that the first 10 edges form the (u, v)-path Q₂ and the remaining 12 edges form the (u, v)-path Q₁. Now, the induced vertex label for u is ∑¹⁶_{j=6} j + 120 = 241. Thus, δ(6) = 12. So, we choose B = {1,11} ⊂ D₂. Therefore, the actual assignment for each (u, v)-path is to label: T₁ by A₁₁(6; 22) ◊ A₁₁(225; -22); T₂ by A₁₁(7; 22) ◊ A₁₁(224; -22); T₃ by A₁₁(8; 22) ◊ ◊ A₁₁(223; -22); T₄ by A₁₁(9; 22) ◊ A₁₁(222; -22); Q₂ by 10, 221, 32, 199, 54, 177, 76, 155, 98, 133; Q₁ by 120, 111, 142, 89, 164, 67, 186, 45, 208, 23, 230, 1; R₁ by the reverse of A₁₀(11; 22) ◊ A₁₀(220; -22); R₂ by A₁₀(12; 22) ◊ A₁₀(219; -22); R₃

 R_1 by the reverse of $A_{10}(11; 22) \diamond A_{10}(220; -22)$; R_2 by $A_{10}(12; 22) \diamond A_{10}(219; -22)$; R_3 by $A_{10}(13; 22) \diamond A_{10}(218; -22)$; R_4 by $A_{10}(14; 22) \diamond A_{10}(217; -22)$; R_5 by $A_{10}(15; 22) \diamond A_{10}(216; -22)$; R_6 by the reverse of $A_{10}(16; 22) \diamond A_{10}(215; -22)$. Thus,

$$f^+(u) = 6 + 7 + 8 + 9 + 10 + 120 + 22 + 12 + 13 + 14 + 15 + 17 = 253.$$

ii) t = 7. So, $\theta_{12} = \theta(8, 14, 20^{[6]}, 22^{[4]})$. Initially, we use the first five sequences above to label the (u, v)-paths T_j and the last six sequences above to label the (u, v)-paths R_i . We then break T_5 into two parts such that the first 8 edges form the (u, v)-path Q_2 and the remaining 14 edges form the (u, v)-path Q_1 . Now, the induced vertex label for uis $\sum_{j=6}^{16} j + 98 = 219$. Thus, $\delta(7) = 34$. For this case, we do not have $B \subset D_2$. So, we choose $B = \{-1, 3, 5, 7, 9, 11\} \subset D_1 \cup D_2$. Thus the actual assignment for each (u, v)-path is to label: T_1 by the reverse of $A_{11}(6; 22) \diamond A_{11}(225; -22); T_2$ by $A_{11}(7; 22) \diamond A_{11}(224; -22); T_3$ by $A_{11}(8; 22) \diamond A_{11}(223; -22); T_4$ by $A_{11}(9; 22) \diamond A_{11}(222; -22);$ Q_2 by 10, 221, 32, 199, 54, 177, 76, 155; Q_1 by 98, 133, 120, 111, 142, 89, 164, 67, 186, 45, 208, 23, 230, 1; R_1 by the reverse of $A_{10}(11; 22) \diamond A_{10}(220; -22); R_2$ by the reverse of $A_{10}(12; 22) \diamond$

 $A_{10}(219; -22); R_3$ by the reverse of $A_{10}(13; 22) \diamond A_{10}(218; -22); R_4$ by the reverse of

 $A_{10}(14;22) \diamond A_{10}(217;-22); R_5$ by the reverse of $A_{10}(15;22) \diamond A_{10}(216;-22); R_6$ by $A_{10}(16;22) \diamond A_{10}(215;-22).$ Thus,

 $f^+(u) = 5 + 7 + 8 + 9 + 10 + 98 + 22 + 21 + 20 + 19 + 18 + 16 = 253.$

(b) The graph is $\theta_{12} = \theta (22 - 2t, 2t - 2, 20^{[5]}, 22^{[5]})$, where t = 6, 7. We begin with the following sequences that are the reverse of the initial sequences in Case (a): $A_{11}(1; 22) \diamond A_{11}(230; -22), A_{11}(2; 22) \diamond A_{11}(229; -22), A_{11}(3; 22) \diamond A_{11}(228; -22),$ $A_{11}(4; 22) \diamond A_{11}(227; -22), A_{11}(5; 22) \diamond A_{11}(226; -22), A_{10}(17; 22) \diamond A_{10}(214; -22),$ $A_{10}(18; 22) \diamond A_{10}(213; -22), A_{10}(19; 22) \diamond A_{10}(212; -22), A_{10}(20; 22) \diamond A_{10}(211; -22),$ $A_{10}(21; 22) \diamond A_{10}(210; -22), A_{10}(22; 22) \diamond A_{10}(209; -22).$

Now, the difference sets are $D_1 = A_5(1;2)$ and $D_2 = A_6(-1,-2)$.

i) t = 6. So $\theta_{12} = \theta(10, 10, 20^{[5]}, 22^{[5]})$. Initially, we use the first five sequences above to label the (u, v)-paths T_j and the last six sequences above to label the (u, v)-paths R_i . We then break R_6 into two parts such that the first 10 edges form the (u, v)-path Q_2 and the remaining 10 edges form the (u, v)-path Q_1 . Now, the induced vertex label of u is $\sum_{j=1}^{5} j + \sum_{i=17}^{22} i + 132 = 264$. So, we choose $B = \{-9, -3, 1\} \subset D_1 \cup D_2$.

Thus the actual assignment for each (u, v)-path is to label:

 T_1 by $A_{11}(1;22) \diamond A_{11}(230;-22)$; T_2 by $A_{11}(2;22) \diamond A_{11}(229;-22)$; T_3 by $A_{11}(3;22) \diamond A_{11}(228;-22)$; T_4 by $A_{11}(4;22) \diamond A_{11}(227;-22)$; T_5 by the reverse of $A_{11}(5;22) \diamond A_{11}(226;-22)$;

 R_1 by $A_{10}(17; 22) \diamond A_{10}(214; -22)$; R_2 by the reverse of $A_{10}(18; 22) \diamond A_{10}(213; -22)$; R_3 by $A_{10}(19; 22) \diamond A_{10}(212; -22)$; R_4 by $A_{10}(20; 22) \diamond A_{10}(211; -22)$; R_5 by the reverse of $A_{10}(21; 22) \diamond A_{10}(210; -22)$;

 Q_2 by 22, 209, 44, 187, 66, 165, 88, 143, 110, 121; Q_1 by 132, 99, 154, 77, 176, 55, 198, 33, 220, 11. Thus,

$$f^+(u) = 1 + 2 + 3 + 4 + 6 + 17 + 15 + 19 + 20 + 12 + 22 + 132 = 253.$$

- ii) t = 7. So $\theta_{12} = \theta(8, 12, 20^{[5]}, 22^{[5]})$. Initially, we use the first five sequences above to label the (u, v)-paths T_j and the last six sequences above to label the (u, v)-paths R_i . We then break R_6 into two parts such that the first 8 edges form the (u, v)-path Q_2 and the remaining 12 edges form the (u, v)-path Q_1 . Now, the induced vertex label of u is $\sum_{j=1}^{5} j + \sum_{i=17}^{22} i + 110 = 242$. Now $\delta(6) = 11$. So, we may choose $B = \{1, 3, 7\}$. Thus the actual assignment for each (u, v)-path is to label: T_1 by $A_{11}(1; 22) \diamond A_{11}(230; -22)$; T_2 by the reverse of $A_{11}(2; 22) \diamond A_{11}(229; -22)$; T_3 by $A_{11}(3; 22) \diamond A_{11}(228; -22)$; T_4 by the reverse of $A_{11}(4; 22) \diamond A_{11}(227; -22)$; T_5 by the reverse of $A_{10}(17; 22) \diamond A_{10}(214; -22)$; R_2 by $A_{10}(18; 22) \diamond A_{10}(213; -22)$; R_3 by $A_{10}(19; 22) \diamond A_{10}(212; -22)$; R_4 by $A_{10}(20; 22) \diamond A_{10}(211; -22)$; R_5 by $A_{10}(21; 22) \diamond A_{10}(210; -22)$;
 - Q₂ by 22, 209, 44, 187, 66, 165, 88, 143;
 - *Q*₁ by 110, 121, 132, 99, 154, 77, 176, 55, 198, 33, 220, 11.

Thus,

$$f^+(u) = 1 + 9 + 3 + 7 + 6 + 17 + 18 + 19 + 20 + 21 + 22 + 110 = 253.$$

Example 3.4. The aim of this example is to illustrate the construction showed in Case (3) and provide a local antimagic 2-coloring for the exceptional case (l, t) = (3, 3). Let s = 6, i. e., l = 3. Now, x = 45 and y = 55. The sequences are $A_5(1; 10) \diamond A_5(44; -10)$: 1, 44, 11, 34, 21, 24, 31, 14, 41, 4

 $A_5(2;10) \diamond A_5(43;-10)$: 2, 43, 12, 33, 22, 23, 32, 13, 42, 3 $A_4(5;10) \diamond A_4(40;-10)$: 5, 40, 15, 30, 25, 20, 35, 10

 $A_4(6;10) \diamond A_4(39;-10): 6, 39, 16, 29, 26, 19, 36, 9$

 $A_4(7;10) \diamond A_4(38;-10)$: 7, 38, 17, 28, 27, 18, 37, 8

(a)
$$t = l = 3$$
. So $\theta_6 = \theta(4, 6, 8^{[3]}, 10)$.

(u, v)-path T_1 is labeled by 4, 41, 14, 31; 24, 21, 34, 11, 44, 1. So

(u, v)-path Q_2 is labeled by 4, 41, 14, 31 and

(u, v)-path Q_1 is labeled by 24, 21, 34, 11, 44, 1.

(u, v)-path T_2 is labeled by 3, 42, 13, 32, 23, 22, 33, 12, 43, 2.

(u, v)-path R_1 is labeled by 10, 35, 20, 25, 30, 15, 40, 5.

(u, v)-path R_3 is labeled by 8, 37, 18, 27, 28, 17, 38, 7.

(u, v)-path R_2 is labeled by 6, 39, 16, 29, 26, 19, 36, 9

Thus, $f^+(u) = 4 + 24 + 3 + 10 + 8 + 6 = 55$.

- (b) t = l = 3. So $\theta_6 = \theta(4, 4, 8^{[2]}, 10^{[2]})$.
 - (u, v)-path Q_2 is labeled by 8, 37, 18, 27.
 - (u, v)-path Q_1 is labeled by 28, 17, 38, 7.
 - (u, v)-path R_1 is labeled by 6, 39, 16, 29, 26, 19, 36, 9.
 - (u, v)-path R_2 is labeled by 10, 35, 20, 25, 30, 15, 40, 5.

(u, v)-path T_1 is labeled by 1, 44, 11, 34, 21, 24, 31, 14, 41, 4.

(u, v)-path T_2 is labeled by 2, 43, 12, 33, 22, 23, 32, 13, 42, 3.

Thus, $f^+(u) = 8 + 28 + 6 + 10 + 1 + 2 = 55$.

Example 3.5. The aim of this example is to illustrate the construction given in Case (4). Take s = 7 so that $\theta_7 = \theta(2t, 22 - 2t, 10, 22^{[4]}), 2 \le t \le 4$. We have x = 121, y = 132 and y - x = 11. $A_{11}(1;11) \diamond A_{11}(120;-11) = 1, 120, 12, 109, 23, 98, 34, 87, 45, 76, 56, 65, 67, 54, 78, 43, 89, 32, 100, 21, 111, 10;$ $A_{11}(2;11) \diamond A_{11}(119;-11) = 2, 119, 13, 108, 24, 97, 35, 86, 46, 75, 57, 64, 68, 53, 79, 42, 90, 31, 101, 20, 112, 9;$ [7] $A_{11}(3;11) \diamond A_{11}(118;-11) = 3, 118, 14, 107, 25, 96, 36, 85, 47, 74, 58, 63, 69, 52, 80, 41, 91, 30, 102, 19, 113, 8;$ [5] $A_{11}(4;11) \diamond A_{11}(117;-11) = 4, 117, 15, 106, 26, 95, 37, 84, 48, 73, 59, 62, 70, 51, 81, 40, 92, 29, 103, 18, 114, 7;$ [3] $A_{11}(5;11) \diamond A_{11}(116;-11) = 5, 116, 16, 105, 27, 94, 38, 83, 49, 72, 60, 61, 71, 50, 82, 39, 93, 28, 104, 17, 115, 6.$ [1] $A_5(66;11) \diamond A_5(55;-11) = 66, 55, 77, 44, 88, 33, 99, 22, 110, 11 \leftarrow$ this sequence is for the (u, v)-path *P*. Note that $(s - 3)^2 = 16$. The number with a bracket behind the sequence is the difference

between the last and the first terms. Hence, $D = \{1, 3, 5, 7\}$.

- When t = 4. We have δ(4) = 6 < 16. First, we separate A₁₁(1;11) ◊ A₁₁(120; -11) into two sequences: 1, 120, 12, 109, 23, 98, 34, 87; and 45, 76, 56, 65, 67, 54, 78, 43, 89, 32, 100, 21, 111, 10. Since δ(4) < 7, by Lemma 2.2, we choose B = {1,5}. So, we reverse the order of A₁₁(5;11) ◊ A₁₁(116; -11) and A₁₁(3;11) ◊ A₁₁(118; -11), i. e., the end-edge labels for u are 1, 45 = γ₁, 2, 8, 4, 6, 66.
- 2. When t = 3. We have $\delta(3) = 17 > 16$ and $\delta^*(3) = -1$. We must use an ad hoc method which is shown in the proof.
- 3. When t = 2. We have δ(2) = 28 > 16. δ*(2) = 10 < 16. First, we separate the reverse of A₁₁(1; 11) ◊ A₁₁(120; -11) into two sequences: 10, 111, 21, 100; and 32, 89, 43, 78, 54, 67, 65, 56, 76 45, 87, 34, 98, 23, 109, 12, 120, 1. Since δ*(2) = 10, we choose B = {7,3}. So, we reverse the order of A₁₁(2; 11) ◊ A₁₁(119; -11) and A₁₁(4; 11) ◊ A₁₁(117; -11), i.e., the end-edge labels for u are 10, 32 = γ₁, 9, 3, 7, 5, 66.

§4. Conjecture and Open Problem

We have completely characterized s-bridge graphs θ_s with $\chi_{la}(\theta_s) = 2$. We note that the only other known results on s-bridge graphs are (i) $\chi_{la}(\theta(a, b)) = 3$ for $a, b \ge 1$ and $a + b \ge 3$; and (ii) $\theta(2^{[s]}) = 3$ for odd $s \ge 3$. We end with the following conjecture and open problem.

Conjecture 3. If θ_s is not a graph in Theorem 2.1, then $\chi_{la}(\theta_s) = 3$.

Problem 4.1. Characterize graph G with $\chi_{la}(G) = 2$.

REFERENCES

- Arumugam S., Premalatha K., Bača M., Semaničová–Feňovčíková A. Local antimagic vertex coloring of a graph, *Graphs and Combinatorics*, 2017, vol. 33, issue 2, pp. 275–285. https://doi.org/10.1007/s00373-017-1758-7
- Arumugam S., Lee Yi-Chun, Premalatha K., Wang Tao-Ming. On local antimagic vertex coloring for corona products of graphs, *arXiv: 1808.04956v1 [math.CO]*, 2018. https://doi.org/10.48550/arXiv.1808.04956
- 3. Hartsfield N., Ringel G. Pearls in graph theory, Boston: Academic Press, 1994.
- 4. Haslegrave J. Proof of a local antimagic conjecture, *Discrete Mathematics and Theoretical Computer Science*, 2018, vol. 20, no. 1. https://doi.org/10.23638/DMTCS-20-1-18
- Lau Gee-Choon, Ng Ho-Kuen, Shiu Wai-Chee. Affirmative solutions on local antimagic chromatic number, *Graphs and Combinatorics*, 2020, vol. 36, issue 5, pp. 1337–1354. https://doi.org/10.1007/s00373-020-02197-2
- Lau Gee-Choon, Shiu Wai-Chee, Ng Ho-Kuen. On local antimagic chromatic number of cycle-related join graphs, *Discussiones Mathematicae Graph Theory*, 2021, vol. 41, no. 1, pp. 133–152. https://doi.org/10.7151/dmgt.2177
- Lau Gee-Choon, Shiu Wai-Chee, Ng Ho-Kuen. On local antimagic chromatic number of graphs with cut-vertices, *Iranian Journal of Mathematical Sciences and Informatics*, 2024, vol. 19, issue 1, pp. 1–17. https://doi.org/10.61186/ijmsi.19.1.1
- Lau Gee-Choon, Shiu Wai-Chee, Ng Ho-Kuen. On number of pendants in local antimagic chromatic number, *Journal of Discrete Mathematical Sciences and Cryptography*, 2022, vol. 25, issue 8, pp. 2673–2682. https://doi.org/10.1080/09720529.2021.1920190
- Lau Gee-Choon, Shiu Wai-Chee, Soo Chee-Xian. On local antimagic chromatic number of spider graphs, *Journal of Discrete Mathematical Sciences and Cryptography*, 2023, vol. 26, issue 2, pp. 303–339. https://doi.org/10.1080/09720529.2021.1892270

Received 05.03.2024 Accepted 13.07.2024

Gee-Choon Lau, College of Computing, Informatics and Mathematics, Universiti Teknologi MARA (Segamat Campus), Johor, 85000, Malaysia.

ORCID: https://orcid.org/0000-0002-9777-6571 E-mail: geeclau@yahoo.com

Wai Chee Shiu, Department of Mathematics, The Chinese University of Hong Kong, Shatin, Hong Kong. E-mail: wcshiu@associate.hkbu.edu.hk

Movirichettiar Nalliah, Department of Mathematics, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India. ORCID: https://orcid.org/0000-0002-3927-2607 E-mail: nalliahklu@gmail.com, nalliah.moviri@vit.ac.in

Ruixue Zhang, School of Mathematics and Statistics, Qingdao University, Qingdao, 266071, China. E-mail: rx.zhang87@qdu.edu.cn

Kanthavadivel Premalatha, Department of Mathematics, Sri Shakthi Institute of Engineering and Technology, Coimbatore, 641062, India. E-mail: premalatha.sep26@gmail.com

Citation: Gee-Choon Lau, Wai Chee Shiu, M. Nalliah, Ruixue Zhang, K. Premalatha. Complete characterization of bridge graphs with local antimagic chromatic number 2, *Vestnik Udmurtskogo Universiteta*. *Matematika*. *Mekhanika*. *Komp'yuternye Nauki*, 2024, vol. 34, issue 3, pp. 375–396.

МАТЕМАТИКА

2024. Т. 34. Вып. 3. С. 375-396.

Г.-Ч. Лау, В. Ч. Шиу, М. Наллиа, Ж. Чжан, К. Премалатха

Полная характеризация мостовых графов с локальным антимагическим хроматическим числом 2

Ключевые слова: локальная антимагическая разметка, локальное антимагическое хроматическое число, *s*-мостовые графы.

УДК 519.17

DOI: 10.35634/vm240305

Разметка ребер связного графа G = (V, E) называется локальной антимагической, если она является биекцией $f: E \to \{1, ..., |E|\}$ такой, что для любой пары смежных вершин x и y выполнено $f^+(x) \neq f^+(y)$, где $f^+(x) = \sum f(e)$ — индуцированная метка вершины, а e пробегает все ребра, инцидентные x. Локальное антимагическое хроматическое число графа G, обозначаемое $\chi_{la}(G)$, — это минимальное число различных индуцированных меток вершин среди всех локальных антимагических разметок G. В данной статье мы охарактеризуем s-мостовые графы с локальным антимагическим хроматическим числом 2.

СПИСОК ЛИТЕРАТУРЫ

- Arumugam S., Premalatha K., Bača M., Semaničová–Feňovčíková A. Local antimagic vertex coloring of a graph // Graphs and Combinatorics. 2017. Vol. 33. Issue 2. P. 275–285. https://doi.org/10.1007/s00373-017-1758-7
- Arumugam S., Lee Yi-Chun, Premalatha K., Wang Tao-Ming. On local antimagic vertex coloring for corona products of graphs // arXiv: 1808.04956v1 [math.CO]. 2018. https://doi.org/10.48550/arXiv.1808.04956
- 3. Hartsfield N., Ringel G. Pearls in graph theory. Boston: Academic Press, 1994.
- 4. Haslegrave J. Proof of a local antimagic conjecture // Discrete Mathematics and Theoretical Computer Science. 2018. Vol. 20. No. 1. https://doi.org/10.23638/DMTCS-20-1-18
- Lau Gee-Choon, Ng Ho-Kuen, Shiu Wai-Chee. Affirmative solutions on local antimagic chromatic number // Graphs and Combinatorics. 2020. Vol. 36. Issue 5. P. 1337–1354. https://doi.org/10.1007/s00373-020-02197-2
- Lau Gee-Choon, Shiu Wai-Chee, Ng Ho-Kuen. On local antimagic chromatic number of cycle-related join graphs // Discussiones Mathematicae Graph Theory. 2021. Vol. 41. No. 1. P. 133–152. https://doi.org/10.7151/dmgt.2177
- Lau Gee-Choon, Shiu Wai-Chee, Ng Ho-Kuen. On local antimagic chromatic number of graphs with cut-vertices // Iranian Journal of Mathematical Sciences and Informatics. 2024. Vol. 19. Issue 1. P. 1–17. https://doi.org/10.61186/ijmsi.19.1.1
- Lau Gee-Choon, Shiu Wai-Chee, Ng Ho-Kuen. On number of pendants in local antimagic chromatic number // Journal of Discrete Mathematical Sciences and Cryptography. 2022. Vol. 25. Issue 8. P. 2673–2682. https://doi.org/10.1080/09720529.2021.1920190
- Lau Gee-Choon, Shiu Wai-Chee, Soo Chee-Xian. On local antimagic chromatic number of spider graphs // Journal of Discrete Mathematical Sciences and Cryptography. 2023. Vol. 26. Issue 2. P. 303–339. https://doi.org/10.1080/09720529.2021.1892270

Поступила в редакцию 05.03.2024 Принята к публикации 13.07.2024 Лау Ги-Чун, Колледж вычислительной техники, информатики и математики, Технологический университет MAPA (Кампус Сегамат), 85000, Малайзия, Джохор. ORCID: https://orcid.org/0000-0002-9777-6571 E-mail: geeclau@yahoo.com

Шиу Вай Чи, Отделение математики, Китайский университет Гонконга, Гонконг, Шатин. E-mail: wcshiu@associate.hkbu.edu.hk

Наллиа Мовири Четтиар, кафедра математики, школа передовых наук, Веллорский технологический институт, 632014, Индия, Тамилнад, г. Веллор. ORCID: https://orcid.org/0000-0002-3927-2607 E-mail: nalliahklu@gmail.com, nalliah.moviri@vit.ac.in

Чжан Жуйсюэ, Школа математики и статистики, Университет Циндао, 266071, Китай, г. Циндао. E-mail: rx.zhang87@qdu.edu.cn

Премалатха Кантавадивел, факультет математики, Инженерно-технологический институт Шри Шакти, 641062, Индия, г. Коимбатур. E-mail: premalatha.sep26@gmail.com

Цитирование: Г.-Ч. Лау, В.Ч. Шиу, М. Наллиа, Ж. Чжан, К. Премалатха. Полная характеризация мостовых графов с локальным антимагическим хроматическим числом 2 // Вестник Удмуртского университета. Математика. Механика. Компьютерные науки. 2024. Т. 34. Вып. 3. С. 375–396.