MATHEMATICS 2024. Vol. 34. Issue 3. Pp. [375](#page-0-0)[–396.](#page-20-0)

MSC2020: 05C78, 05C15

© *Gee-Choon Lau, Wai Chee Shiu, M. Nalliah, Ruixue Zhang, K. Premalatha*

COMPLETE CHARACTERIZATION OF BRIDGE GRAPHS WITH LOCAL ANTIMAGIC CHROMATIC NUMBER 2

An edge labeling of a connected graph $G = (V, E)$ is said to be local antimagic if it is a bijection $f: E \to \{1, \ldots, |E|\}$ such that for any pair of adjacent vertices x and y, $f^+(x) \neq f^+(y)$, where the induced vertex label $f^+(x) = \sum f(e)$, with e ranging over all the edges incident to x. The local antimagic chromatic number of G, denoted by $\chi_{l}(\mathcal{G})$, is the minimum number of distinct induced vertex labels over all local antimagic labelings of G. In this paper, we characterize s-bridge graphs with local antimagic chromatic number 2.

Keywords: local antimagic labeling, local antimagic chromatic number, s-bridge graphs.

DOI: [10.35634/vm240305](https://doi.org/10.35634/vm240305)

Introduction

In 1994, Hartsfield and Ringer [\[3\]](#page-18-0) introduced the concept of antimagic labeling of a graph $G(V, E)$. A bijective edge labeling $f: E \to \{1, \ldots, |E|\}$ is called an antimagic labeling of G if for any two distinct vertices u and v, $w(u) \neq w(v)$, where $w(u) = \sum f(e)$ with e ranging over all the edges incident to u . The most famous unsolved problems are the following conjectures [\[3\]](#page-18-0).

Conjecture 1. Every connected graph other than K_2 is antimagic.

Conjecture 2. Every tree other than K_2 is antimagic.

Arumugam et al. [\[1\]](#page-18-1) introduced the concept of local antimagic labeling and local antimagic chromatic number. A connected graph G is said to be *local antimagic* if it admits a *local antimagic edge labeling*, i.e., a bijection $f: E \to \{1, \ldots, |E|\}$ such that the induced vertex labeling $f^{\dagger}: V \to \mathbb{Z}$ given by $f^{\dagger}(u) = \sum f(e)$ (with e ranging over all the edges incident to u) has the property that any two adjacent vertices have distinct induced vertex labels. Thus, f^+ is a coloring of G . Clearly, the order of G must be at least 3. The vertex label $f^+(u)$ is called the *induced color* of u under f (the *color* of u, for short, if no ambiguous occurs). The number of distinct induced colors under f is denoted by c(f), and is called the *color number* of f. The *local antimagic chromatic number* of G, denoted by $\chi_{la}(G)$, is $\min\{c(f) | f$ is a local antimagic labeling of G. Clearly, $2 \leq \chi_{la}(G) \leq |V(G)|$. In [\[4\]](#page-18-2), Haslegrave proved that the local antimagic chromatic number is well-defined for every connected graph except K_2 .

In [\[1\]](#page-18-1), the authors determined the local antimagic chromatic number of many families of standard graphs including paths, cycles, certain complete bipartite graphs and wheel graphs. In [\[5\]](#page-18-3), Lau et al. gave a sharp lower bound of $\chi_{l} (G \vee O_n)$, where $G \vee O_n$ is the join product of G and the null graph of order n . They also completely settled the local antimagic chromatic number of wheels and complete bipartite graphs. In [\[6\]](#page-18-4), the authors also determined the local antimagic chromatic number of the join product of many cycle-related graphs. However, very little is known about graphs with local antimagic chromatic number 2 (see [\[1,](#page-18-1) Theorem 2.11] and [\[7,](#page-18-5) Theorem 2.4]).

§ 1. Bridge graphs

A graph consisting of s paths joining two vertices is called an s*-bridge graph*, which is denoted by $\theta(a_1, \ldots, a_s)$, where $s \geq 2$ and $1 \leq a_1 \leq a_2 \leq \ldots \leq a_s$ are the lengths of the s paths. For convenience, we shall let $\theta_s = \theta(a_1, a_2, \dots, a_s)$ if there is no confusion. In this paper, we shall characterize θ_s with $\chi_{la}(\theta_s) = 2$.

The contrapositive of the following lemma in $[6,$ Lemma 2.1] or $[7,$ Lemma 2.3] gives a sufficient condition for a bipartite graph G to have $\chi_{la}(G) \geq 3$.

Lemma 1.1 ([\[7,](#page-18-5) Lemma 2.3]). *Let* G *be a graph of size* q*. Suppose there is a local antimagic labeling of* G *inducing a* 2*-coloring of* G *with colors* x *and* y*, where* x < y*. Let* X *and* Y *be the sets of vertices colored* x *and* y*, respectively. Then* G *is a bipartite graph with bipartition* (X, Y) and $|X| > |Y|$ *. Moreover,* $x|X| = y|Y| = \frac{q(q+1)}{2}$ $\frac{(+1)}{2}$.

Clearly, $2 \le \chi(\theta(a_1, a_2, \ldots, a_s)) \le 3$ and the lower bound holds if and only if $a_1 \equiv \ldots \equiv a_s$ (mod 2). By Lemma [1.1,](#page-1-0) we immediately have the following lemma.

Lemma 1.2. For $s \ge 2$ and $1 \le i \le s$, if $\chi_{la}(\theta(a_1, a_2, \ldots, a_s)) = 2$, then $a_i \equiv 0 \pmod{2}$. *Otherwise*, $\chi_{la}(\theta(a_1, a_2, \ldots, a_s)) \geq 3$.

Throughout this paper, we shall use $a^{[n]}$ to denote a sequence of length n in which all terms are a, where $n \geq 2$. For integers $1 \leq a < b$, we let $[a, b]$ denote the set of integers from a to b. Interested readers may refer to $[2, 8, 9]$ $[2, 8, 9]$ $[2, 8, 9]$ $[2, 8, 9]$ for more results related to local antimagic chromatic number of graphs.

§ 2. Main result

In this section, we assume $\chi_{la}(\theta_s) = 2$. So, by Lemma [1.2,](#page-1-1) $\theta_s = \theta(a_1, \ldots, a_s)$ is bipartite and all a_i are even. When $s = 2$, θ_s is a cycle, whose local antimagic chromatic number is 3. Thus, $s \geq 3$.

For integers i and d and positive integer s, let $A_s(i; d)$ be the arithmetic progression of length s with common difference d and first term i . We first have two useful lemmas.

Lemma 2.1. *Suppose* $s, d \in \mathbb{N}$.

- (a) *For* $i, j \in \mathbb{Z}$, the sum of the k-th term of $A_s(i; d)$ and that of $A_s(j; -d)$ is $i + j$ for $k \in [1, s]$; *and the sum of the k-th term of* $A_s(i;d)$ *and the* $(k-1)$ -st term of $A_s(j;-d)$ *is* $i + j + d$ *for* $k \in [2, s]$ *.*
- (b) *If* $0 < |i_1 i_2| < d$, then $A_s(i_1; d) \cap A_s(i_2, \pm d) = \emptyset$.

P r o o f. It is easy to obtain (a). We prove the contrapositive of (b). Suppose $A_s(i_1;d) \cap$ $\cap A_s(i_2, \pm d) \neq \emptyset$. Let $a \in A_s(i_1; d) \cap A_s(i_2, \pm d)$. Now, $a = i_1 + j_1d = i_2 + j_2d$ for some integers j_1, j_2 . Thus, $|i_1 - i_2| = d|j_2 - j_1| \ge d$ if $j_2 \ne j_1$ or else $|i_1 - i_2| = 0$ if $j_2 = j_1$. □

Lemma 2.2. *Suppose* $\delta \in [0, n^2] \setminus \{2, n^2 - 2\}$ *for some integer* $n \geq 2$ *. There is a subset* B *of* $A_n(1; 2)$ *such that the sum of integers in B is* δ *.*

P r o o f. If $\delta = 0$, then we may choose $B = \emptyset$. Suppose $1 \leq \delta \leq 2n - 1$ and $\delta \neq 2$. If δ is odd, then choose $B = \{\delta\}$. If δ is even, then $\delta \geq 4$. We may choose $B = \{1, \delta - 1\}$.

Suppose $\delta > 2n - 1$, then we may choose the largest k such that $\kappa = \sum_{n=1}^{\infty}$ $j=n-k+1$ $(2j-1) \leq \delta.$ Let $\tau = \delta - \kappa$. By the choice of k, $0 \le \tau \le 2n - 2k - 1$. There are 3 cases.

- 1. Suppose $\tau = 0$. $B = A_k(2n 2k + 1; 2)$ is the required subset.
- 2. Suppose τ is odd. $B = A_k(2n 2k + 1; 2) \cup {\tau}$ is the required subset.
- 3. Suppose τ is even. If $\tau \geq 4$, then we may choose $B = A_k(2n 2k + 1; 2) \cup {\tau 1, 1}$. If $\tau = 2$, then $2 = \tau < 2n - 2k - 1$. We have $k \leq n - 2$. If $k \leq n - 3$, then choose $B = A_{k-1}(2n-2k+3; 2) \cup \{2n-2k-1, 3, 1\}$. If $k = n-2$, then $\kappa = n^2 - 4$ and hence $\delta = n^2 - 2$ which is not a case.

Let A_1 and A_2 be two sequences of length n. We combine these two sequences as a sequence of length 2n, denoted $A_1 \diamond A_2$, whose $(2i - 1)$ -st term is the i-th term of A_1 and the $(2i)$ -th term is the *i*-th term of A_2 , $1 \le i \le n$.

Theorem 2.1. *For* $s \geq 3$, $\chi_{la}(\theta_s) = 2$ *if and only if* $\theta_s = K_{2,s}$ *with even* $s \geq 4$ *or the size* m of θ_s *is greater than* $2s + 2$ *and* θ_s *is one of the following graphs:*

- (1) $\theta(4l^{[3l+2]}, (4l+2)^{[l]}), l \geq 1;$
- (2a) $\theta(2l-2,(4l-2)^{[3l-1]}), l \geq 2;$
- (2b) $\theta(2, 4^{[3]}, 6)$; $\theta(4, 8^{[5]}, 10^{[2]})$; $\theta(6, 12^{[7]}, 14^{[3]})$;
- (3a) $\theta(4l 2 2t, 2t, (4l 4)^{[l]}, (4l 2)^{[l-2]})$, $2 \le l \le t \le \frac{5l-2}{4}$ $\frac{-2}{4}$;
- (3b) $\theta(4l 2 2t, 2t 2, (4l 4)^{[l-1]}, (4l 2)^{[l-1]})$, $2 \le l \le t \le \frac{5l}{4}$ $\frac{1}{4}$;
- (4) $\theta(2t, 4s 6 2t, 2s 4, (4s 6)^{[s-3]})$, $\frac{2s-3}{8} \le t \le \frac{6s-5}{8}$ $\frac{s-5}{8}, s \geq 4.$

P r o o f. Note that $K_{2,s} = \theta(2^{[s]})$. In [\[1,](#page-18-1) Theorems 2.11 and 2.12], the authors obtained

$$
\chi_{la}(K_{2,s}) = \begin{cases} 2, & \text{if } s \ge 4 \text{ is even,} \\ 3, & \text{otherwise.} \end{cases}
$$

We only consider $\theta_s \neq K_{2,s}$, $s \geq 3$. Throughout the proof, we let u and v be the vertices of θ_s of degree s. We shall call the 2s edges incident to u or else to v as *end-edges*. An integer labeled to an end-edge is called an *end-edge label*. A path that starts at u and ends at v is called a (u, v) -path.

Suppose $\chi_{la}(\theta_s) = 2$. Since each a_i is even, θ_s has even size $m = \sum^s$ $i=1$ $a_i \geq 2s + 2 \geq 8$ edges and order $m - s + 2$. Let f be a local antimagic labeling that induces a 2-coloring of θ_s with colors x and y. Without lost of generality, we may assume $f^+(u) = f^+(v) = y$. Let X and Y be the sets of vertices with colors x and y, respectively. It is easy to get that $|Y| = m/2 - s + 2$ and $|X| = m/2$. By Lemma [1.1,](#page-1-0) we have $x|X| = y|Y| = m(m+1)/2$. Hence, $x = m+1 \ge 2s+3 \ge 9$ is odd, $y = m(m+1)/(m-2s+4)$ and $y \ge (1+2+\ldots+2s)/2 = (2s^2+s)/2$.

Note that θ_s has at least 2 adjacent non-end-edges. Suppose z_1z_2 is not an end-edge with $f(z_1z_2) = l$. Without loss of generality, we assume $f^+(z_1) = x$, $f^+(z_2) = y$. Since z_1z_2 is not an end-edge, there is another vertex z_3 such that $z_1z_2z_3$ forms a path. So, $f(z_2z_3) = y - l$. Since $1 \le y - l \le m$, we have $l \ge y - m = y - x + 1$. Consequently, all integers in $[1, y - x]$ must be assigned to end-edges. So, $y - x \le 2s$. Moreover, since $l \ne y - l$, we get $l \ne y/2$ so that $y/2$ must be an end-edge label when y is even.

Solving for m, we get $m = \frac{1}{2}$ $\frac{1}{2}(y-1 \pm \sqrt{y^2+14y-8ys+1})$. Hence, $y^2+14y-8ys+1=$ $= t² \ge 0$, where t is a nonnegative integer. This gives $(y + 7 - 4s)² + 1 - (7 - 4s)² = t²$

or $(y + 7 - 4s - t)(y + 7 - 4s + t) = 8(s - 2)(2s - 3)$. By letting $a = y + 7 - 4s - t$ and $b = y + 7 - 4s + t$, we have $2y + 14 - 8s = a + b$ with $ab = 8(2s^2 - 7s + 6) = 8(s - 2)(2s - 3)$. Clearly, $b \ge a > 0$. Since a, b must be of same parity, we have both a, b are even.

Recall that $y - (2s^2 + s)/2 \ge 0$. Now

$$
y - (2s2 + s)/2 = 4s - 7 + \frac{a+b}{2} - \frac{2s2 + s}{2}
$$

= $\frac{a+b}{2} - \frac{2s2 - 7s + 6}{2} - 4 = \frac{a+b}{2} - \frac{ab}{16} - 4$
= $\frac{8a + 8b - ab - 64}{16} = -\frac{(a-8)(b-8)}{16}$. (2.1)

This implies that $a \leq 8$.

We shall need the following claim which is easy to obtain. Throughout the proof, by symmetry, we always assume $\alpha_1 < \beta_r$.

Claim: Let ϕ be a labeling of a path $P_{2r+1} = v_1v_2 \ldots v_{2r+1}$ with $\phi(v_{2i-1}v_{2i}) = \alpha_i$ and $\phi(v_{2i}v_{2i+1}) = \beta_i$ for $1 \leq i \leq r$. Suppose $\phi^+(v_{2j}) = x$ for $1 \leq j \leq r$ and $\phi^+(v_{2k+1}) = y$ *for* $0 \le k \le r$, where $y > x$. Then $\alpha_1 + \beta_1 = x$, $\{\alpha_1, \alpha_2, \dots, \alpha_r\}$ *is an increasing sequence with common difference* $y - x$ *while* $\{\beta_1, \beta_2, \dots, \beta_r\}$ *is a decreasing sequence with common difference* $y - x$ *.*

We shall consider 4 cases for $a = 8, 6, 4, 2$ respectively.

Case (1). Suppose $a = 8$. By [\(2.1\)](#page-3-0) we have $y = (2s^2 + s)/2$ which implies s is even. Express t and y in terms of s. This gives (i) $m = s^2 - 3s/2 - 1$ which implies $s \equiv 2 \pmod{4}$ and $x = s^2 - 3s/2$ or (ii) $m = 2s$. Since $m \ge 2s + 2$, (ii) is not a case. In (i), $y - x = 2s$ so that all integers in [1, 2s] are end-edge labels.

Let P be a (u, v) -path of θ_s with length 2r whose end-edges are labeled by integers in [1, 2s]. Suppose one of its end-edges is labeled by α_1 . By the claim, another end-edge is labeled by $\beta_r = \beta_1 - (r-1)(y-x) = x - \alpha_1 - 2rs + 2s \leq 2s$. So

$$
2r \ge \frac{x - \alpha_1}{s} \ge \frac{s^2 - 3s/2 - 2s}{s} = s - \frac{7}{2}.
$$

Since s and 2r are even, $2r \geq s - 2$. Since $\beta_r \geq 2$, we have $2r \leq \frac{1}{s}$ $\frac{1}{s}(x-\alpha_1+2s-2) < s + \frac{1}{2}$ $\frac{1}{2}$. Thus, each (u, v) -path of θ_s is of length s or $s - 2$. Suppose θ_s has h path(s) of length s and $(s-h)$ path(s) of length $s-2$. We now have $sh + (s-h)(s-2) = m (= s^2 - 3s/2 - 1)$. Therefore, $h = (s - 2)/4$. Thus, $\theta_s = \theta((s - 2)^{[(3s+2)/4]}, s^{[(s-2)/4]})$ for $s \equiv 2 \pmod{4}$.

Let $s = 4l+2$, $l \ge 1$. We now show that $\theta((s-2)^{[(3s+2)/4]}, s^{[(s-2)/4]}) = \theta((4l)^{[3l+2]}, (4l+2)^{[l]})$ admits a local antimagic 2-coloring. Recall that $m = 16l^2 + 10l$, $x = 16l^2 + 10l + 1$, $y = 16l^2 + 18l + 5$ and $y - x = 8l + 4$.

- Step 1: Label the edges of the path of length $4l + 2$, denoted R_i , $1 \le i \le l$, by using the sequence $A_{2l+1}(i; 8l+4) \diamond A_{2l+1}(x-i; -8l-4)$ in order. Note that, as a set $A_{2l+1}(x-i; -8l-4)$ = $= A_{2l+1}(2l+1-i; 8l+4)$. So, by Lemma [2.1\(](#page-1-2)b), $A_{2l+1}(i; 8l+4) \diamond A_{2l+1}(x-i; -8l-4)$ for all $i \in [1, l]$, denoted U_1 , form a partition of \bigcup 2_l $j=0$ $[(8l + 4)j + 1, (8l + 4)j + 2l]$. By Lemma [2.1\(](#page-1-2)a), we see that all induced labels of internal vertices are x and y alternatively. Now, integers in [1, 2l] are end-edge labels.
- Step 2: Label the edges of the path of length 4l, denoted Q_j , $1 \leq j \leq 3l + 2$, by the sequence $A_{2l}(\alpha; 8l + 4) \diamond A_{2l}(x - \alpha; -8l - 4)$, where α is the j-th integer of the sequence $[3l + 1, 4l + 1] \cup [4l + 3, 5l + 1] \cup \{5l + 3, 6l + 3\} \cup [7l + 5, 8l + 4]$, denoted U_2 , in

order. Note again, $A_{2l}(\alpha; 8l + 4) \diamond A_{2l}(x - \alpha; -8l - 4)$ for all $\alpha \in U_2$ form a partition of 2 U $l-1$ $j=0$ $[(8l + 4)j + 2l + 1, (8l + 4)j + 8l + 4]$. By Lemma [2.1\(](#page-1-2)a), we see that all induced labels of internal vertices are x and y alternatively. Now, integers in $[2l + 1, 8l + 4]$ are end-edge labels.

Step 3: We now merge the end-vertices with end-edge labels in $U_1 \cup U_2$ to get the vertex u. We then merge the other end-vertices with end-edge labels in $[1, 8l + 4] \setminus (U_1 \cup U_2)$ to get the vertex v. Clearly, both u and v have induced vertex label y .

Note that

$$
\left(\bigcup_{j=0}^{2l}[(8l+4)j+1,(8l+4)j+2l]\right)\cup\left(\bigcup_{j=0}^{2l-1}[(8l+4)j+2l+1,(8l+4)j+8l+4]\right)=[1,16l^2+10l].
$$

So the labeling defined above is a local antimagic 2-coloring for $\theta((4l)^{[3l+2]},(4l+2)^{[l]})$.

Case (2). Suppose $a = 6$. Now, $b = \frac{4}{3}$ $\frac{4}{3}(s-2)(2s-3)$. By [\(2.1\)](#page-3-0), we have $y = 2s(2s-1)/3$ and, hence, $s \equiv 0, 2 \pmod{3}$. Similar to Case (1), since $m > 2s + 2 > 8$, we must have $m = (4s^2 - 8s)/3$ and $s \ge 5$. Now $y - x = 2s - 1$. So integers in $[1, 2s - 1] \cup \{y/2 = (2s^2 - s)/3\}$ are end-edge labels.

Note that there are $s - 1$ paths in θ_s with both end-edges labeled with integers in [1, 2s – 1]. Suppose P_{2r+1} is one of these $s-1$ paths. Since $\alpha_1 < \beta_r$, we have $\alpha_1 \in [1, 2s-2]$. Now, $\beta_r = (x - \alpha_1) - (r - 1)(y - x) \le 2s - 1 = y - x$. Since $x = (4s^2 - 8s + 3)/3$ and $y - x = 2s - 1$, we have that

$$
(2s-6)(2s-1)/3 + 1 = (4s2 - 14s + 9)/3 \le x - \alpha_1 \le r(y - x) = r(2s - 1).
$$

Thus, $r > (2s - 6)/3 \geq \frac{4}{3}$ $\frac{4}{3}$, i.e., $r \ge 2$. Hence, β_{r-1} is labeled at a non-end-edge so that $\beta_{r-1} = (x - \alpha_1) - (r - 2)(y - x) \geq 2s$. Therefore,

$$
(r-2)(2s-1) \le x - \alpha_1 - 2s \le (4s^2 - 14s)/3 = (2s-6)(2s-1)/3 - 2 < (2s-6)(2s-1)/3.
$$

Consequently, $r - 2 < (2s - 6)/3 = 2s/3 - 2$, i.e., $r < 2s/3$. Combining the aboves, we have $2s/3 - 2 < r < 2s/3$ so that $2s - 6 < 3r < 2s$. This implies that $3r \in [2s - 5, 2s - 1]$. Since $s \not\equiv 1 \pmod{3}$, we have the following two cases.

a) Consider $s = 3l, l \ge 2$. Since $3r \equiv 0 \pmod{3}$, we have $3r = 2s - 3$, i.e., $r = 2l - 1$. Thus, the s-th path must have length $m - (3l - 1)(4l - 2) = 2l - 2$. Consequently, $\theta_{3l} =$ $= \theta(2l-2, (4l-2)^{[3l-1]}).$

We now show that $\theta_{3l} = \theta(2l - 2, (4l - 2)^{[3l-1]})$ admits a local antimagic 2-coloring. For $l = 2, \theta_6 = \theta(2, 6^{[5]})$ with induced labels $y = 44, x = 33$ and the paths have vertex labels

$$
22, 11; \qquad 1, 32, 12, 21, 23, 10; \quad 3, 30, 14, 19, 25, 8; \\ \mathbf{4}, 29, 15, 18, 26, 7; \quad 5, 28, 16, 17, 27, 6; \quad 9, 24, 20, 13, 31, 2.
$$

All the left (respectively right) end vertices are merged to get the degree 6 vertex with induced label 44.

For $l \geq 3$, we apply the following steps.

Step 1: Label the edges of the path R_i of length $4l - 2$ by the sequence $A_{2l-1}(i; 6l - 1) \diamond$ $\diamond A_{2l-1}((6l-1)(2l-1)-i; -6l+1)$ in order, $1 \le i \le 3l-1$.

Step 2: Label the path Q of length $2l - 2$ by the sequence

$$
A_{l-1}(6l-1;6l-1) \diamond A_{l-1}((6l-1)(l-2);-6l+1)
$$

in order. By Lemma [2.1,](#page-1-2) one may check that all integers in $[1, 4l(3l - 2)]$ are assigned after the step.

- Step 3: If we merge the end-vertices with end-edge labels in $[1, 3l 1] \cup \{y/2\}$ as u, then the induced label of u is $\frac{1}{2}(9l^2 - 3l) + (6l^2 - l) = \frac{1}{2}(21l^2 - 5l)$. Clearly it is less than $y = 12l^2 - 2l$. The difference is $\delta = \frac{l}{2}$ $rac{l}{2}(3l + 1).$
- Step 4: Consider the set of differences of two end-edge labels in R_i , $1 \le i \le 3l 1$, which is $D = \{1, 3, 5, \ldots, 6l - 3\} = A_{3l-1}(1; 2)$. Clearly, $3 < \delta < (3l - 1)^2 - 3$. By Lemma [2.2,](#page-1-3) we have a subset B of D such that the sum of numbers in B is δ .
- Step 5: Label all end-edges incident to u by

$$
([1,3l-1] \setminus \{\frac{6l-1-i}{2} \mid i \in B\}) \cup \{\frac{6l-1+i}{2} \mid i \in B\} \cup \{6l^2-l\}.
$$

We have a local antimagic 2-coloring for $\theta_{3l} = \theta(2l - 2, (4l - 2)^{[3l-1]})$.

b) Consider $s = 3l - 1$, $l > 2$. Now, $3r = 2s - 4$ or $2s - 1$ so that $r \in \{2l - 2, 2l - 1\}$. Note that $r \geq 2$.

Let the path with an end-edge label $y/2 = (2s^2 - s)/3$ be of length $2q$. Since $y/2 \notin [1, 2s - 1]$ and we assume $\alpha_1 < \beta_q$, this means $\beta_q = (2s^2 - s)/3 = (3l - 1)(2l - 1)$.

If $q = 1$, then $\alpha_1 + \beta_1 = x$. This implies $\alpha_1 + (3l - 1)(2l - 1) = (2l - 1)(6l - 5)$ and hence $\alpha_1 = 6l^2 - 11l + 4$. Since $\alpha_1 \leq 2s - 1 = 6l - 3$, we get $6l^2 - 17l + 7 = (2l - 1)(3l - 7) \leq 0$. The only solution is $l = 2$ so that $s = 5$. Note that $q = l - 1$.

Suppose $q \ge 2$. Now $\alpha_q + \beta_q = x$ and $\alpha_q = \alpha_1 + (q-1)(y-x)$ implies that $\alpha_1 =$ $x - \beta_q - (q - 1)(2s - 1) \le (2s - 1)$. So $x - \beta_q \le q(2s - 1)$. In terms of l, we have $(2l-1)(6l-5) - (3l-1)(2l-1) \le q(6l-3)$. Thus, $3l-4 \le 3q$. This implies $q \ge l-1$. Also note that $\beta_1 = \beta_q + (2s - 1)(q - 1) \le m = \frac{1}{3}$ $\frac{1}{3}(4s^2 - 8s)$. In terms of l we will obtain $(6l-3)q \leq 6l^2 - 5l$. This implies $q \leq l - \frac{2l}{6l-3} < l$. Thus, $q \leq l - 1$. Combining the aboves, we have $q = l - 1$, as in $q = 1$ above.

Now, suppose there are k paths of length $4l - 4$ and $3l - 2 - k$ paths of length $4l - 2$. We then have $(2l - 2) + k(4l - 4) + (3l - 2 - k)(4l - 2) = 4(3l - 1)(l - 1) = m$. Solving this, we get $k = 2l - 1$. Consequently, $\theta_{3l-1} = \theta(2l - 2, (4l - 4)^{[2l-1]}, (4l - 2)^{[l-1]})$ for $l \ge 2$.

Recall that $y = 12l^2 - 10l + 2$, $x = 12l^2 - 16l + 5$, $y - x = 6l - 3$. Using the claim, we now have the followings.

- Consider the $l 1$ path(s) of length $4l 2$. We have $\alpha_1 = i < \beta_{2l-1} = x i (y x)$. \cdot (2l – 2) = 2l – 1 – i. So 1 \leq i \leq l – 1. Thus, numbers in [1, l – 1] must serve as α_1 for these $l - 1$ path(s). Hence, numbers in [l, 2l − 2] must serve as β_{2l-1} for these $l - 1$ path(s). Thus, numbers in [1, 2l – 2] are assigned to these $l - 1$ paths.
- Consider the 2l − 1 paths of length 4l − 4. We have $2l 1 \leq \alpha_1 = i \leq \beta_{2l-2}$ $= x - i - (y - x)(2l - 3) = 8l - 4 - i$. So $2l - 1 \le i \le 4l - 3$. Thus, numbers in $[2l-1, 4l-3]$ must serve as α_1 for these $2l-1$ path(s). Hence, numbers in $[4l-1, 6l-3]$ must serve as β_{2l-2} for these $2l-1$ path(s). Thus, numbers in $[2l-1, 6l-3] \setminus \{4l-2\}$ are assigned to these $2l - 1$ paths.

• Consider the path of length $2l - 2$. This path must have $\alpha_1 = 4l - 2$ and $\beta_{l-1} =$ $= 6l^2 - 5l + 1 = y/2.$

Since $y/2$ is assigned to an end-edge incident to w, say, at the path of length $2l - 2$, we have

$$
\frac{1}{2}(25l^2 - 25l + 6) = \sum_{i=1}^{l-1} i + \sum_{j=2l-1}^{4l-3} j + (6l^2 - 5l + 1) \le f^+(w) = 12l^2 - 10l + 2.
$$

We get $l = 2, 3, 4$, which implies $s = 5, 8, 11$, respectively.

For $s = 5$, we get $\theta_5 = \theta(2, 4^{[3]}, 6)$ with induced vertex labels $y = 30$, $x = 21$. The labels of the paths are

15, 6; 3, 18, 12, 9; 4, 17, 13, 8; 7, 14, 16, 5; 1, 20, 10, 11, 19, 2.

For $s = 8$, we get $\theta_8 = \theta(4, 8^{[5]}, 10^{[2]})$ with induced vertex labels $y = 80$, $x = 65$. The labels of the paths are

40, 25, 55, 10; 5, 60, 20, 45, 35, 30, 50, 15; 6, 59, 21, 44, 36, 29, 51, 14; 7, 58, 22, 43, 37, 28, 52, 13; 8, 57, 23, 42, 38, 27, 53, 12; 11, 54, 26, 39, 41, 24, 56, 9; 1, 64, 16, 49, 31, 34, 46, 19, 61, 4; 2, 63, 17, 48, 32, 33, 47, 18, 62, 3.

For $s = 11$, we get $\theta_{11} = \theta(6, 12^{[7]}, 14^{[3]})$ with induced vertex labels $y = 154$, $x = 133$. The labels of the paths are

77, 56, 98, 35, 119, 14; 7, 126, 28, 105, 49, 84, 70, 63, 91, 42, 112, 21; 8, 125, 29, 104, 50, 83, 71, 62, 92, 41, 113, 20; 9, 124, 30, 103, 51, 82, 72, 61, 93, 40, 114, 19; 10, 123, 31, 102, 52, 81, 73, 60, 94, 39, 115, 18;
11, 122, 32, 101, 53, 80, 74, 59, 95, 38, 116, 17;
12, 121, 33, 100, 54, 79, 75, 58, 96, 37, 117, 16;
13, 120, 34, 99, 55, 78, 76, 57, 97, 36, 118, 15; $12, 121, 33, 100, 54, 79, 75, 58, 96, 37, 117, 16;$
 $1, 132, 22, 111, 43, 90, 64, 69, 85, 48, 106, 27, 127, 6;$ 4, 129, 25, 108, 46, 87, 67, 66, 88, 45, 109, 24, 130, 3.

1, 132, 22, 111, 43, 90, 64, 69, 85, 48, 106, 27, 127, 6; 2, 131, 23, 110, 44, 89, 65, 68, 86, 47, 107, 26, 128, 5;

Case (3). Suppose $a = 4$. In this case, $b = 2(2s^2 - 7s + 6)$ and $2y + 14 - 8s = 4s^2 - 14s + 16$. So $y = 2s^2 - 3s + 1$. Similar to the previous cases, $m = 2s^2 - 5s + 2$ only. Hence s is even, $x = 2s^2 - 5s + 3$ and $y - x = 2s - 2$. So, integers in $[1, 2s - 2]$ must be assigned to 2s − 2 end-edges. Let the remaining two end-edges be labeled by γ_1 and γ_2 . We have $4s^2 - 6s + 2 = 2y = f^+(u) + f^+(v) = \sum_{n=1}^{\infty}$ $i=1$ $i + \gamma_1 + \gamma_2 = (s - 1)(2s - 1) + \gamma_1 + \gamma_2$. Thus, $\gamma_1 + \gamma_2 = 2s^2 - 3s + 1 = y.$

Suppose γ_1 and γ_2 are labeled at the end-edges of the same path of length 2q. Without loss of generality, $\alpha_1 = \gamma_1$ and $\beta_q = \gamma_2$ so that $y = \alpha_1 + \beta_q = \alpha_1 + (x - \alpha_1) - (q - 1)(y - x)$. We have $q(y-x) = 0$ which is impossible. Therefore, γ_1 and γ_2 are labeled at different paths. Thus, there are $s - 2$ paths whose end-edges are labeled by integers in $[1, 2s - 2]$ and exactly two paths, say Q_i with an end-edge label in $[1, 2s - 2]$ and another end-edge label $\gamma_i \geq 2s - 1$, $i = 1, 2$.

Suppose P_{2r+1} is a path with both end-edges labeled with integers in [1, 2s – 2]. By the assumption $1 \le \alpha_1 < \beta_r \le 2s-2$ and the claim, we have $\beta_r = (x-\alpha_1)-(r-1)(y-x) \le 2s-2$. So,

$$
(2s-2)(s-3) = 2s^2 - 8s + 6 < 2s^2 - 7s + 5 \le x - \alpha_1 \le r(y-x) = r(2s-2).
$$

Thus, $r \ge s-2 \ge 2$. So β_{r-1} is labeled at a non-end-edge. Therefore, $\beta_{r-1} = (x-\alpha_1)-(r-2)$.

 $\cdot (y - x) \geq 2s - 1$. We have

$$
(r-2)(2s-2) \le x - \alpha_1 - 2s + 1 \le 2s^2 - 7s + 3 < 2s^2 - 6s + 4 = (2s-2)(s-2).
$$

So, $r < s$. Thus, $r \in \{s-2, s-1\}$.

Suppose Q_i is of length $2r_i$ whose end-edges are labeled by $\alpha_{1,i} \in [1, 2s - 2]$ and $\beta_{r_i,i} = \gamma_i$. So, $\beta_{r_i,i} = \gamma_i = x - \alpha_{1,i} - (r_i - 1)(y - x)$. Since $\gamma_1 + \gamma_2 = 2s^2 - 3s + 1$ is odd, $\gamma_2 \ge \frac{1}{2}$ $\frac{1}{2}(2s^2-3s+2)$ and $\gamma_1 \leq \frac{1}{2}$ $\frac{1}{2}(2s^2-3s)$. Now

$$
(r_2 - 1)(2s - 2) = x - \alpha_{1,2} - \gamma_2 \le 2s^2 - 5s + 3 - 1 - \frac{1}{2}(2s^2 - 3s + 2)
$$

= $(2s^2 - 7s + 2)/2 = [(2s - 2)(s - 2) - s - 2]/2 < (2s - 2)(s - 2)/2.$

We have $2r_2 - 2 < s - 2$ and hence $2r_2 < s - 2$.

Now $y = \gamma_1 + \gamma_2 = 2x - \alpha_{1,1} - \alpha_{1,2} - (r_1 + r_2 - 2)(y - x)$ or $(r_1 + r_2 - 1)(2s - 2) =$ $=(r_1 + r_2 - 1)(y - x) = x - \alpha_{1,1} - \alpha_{1,2}$. Since $\alpha_{1,1}, \alpha_{1,2} \in [1, 2s - 2]$,

$$
(s-1)(2s-2) > (s-1)(2s-2) - s - 2 = 2s^2 - 5s = x - 3 \ge (r_1 + r_2 - 1)(2s - 2)
$$

$$
\ge x - (4s - 5) = 2s^2 - 9s + 8 = (s - 4)(2s - 2) + s > (s - 4)(2s - 2).
$$

So, $s > r_1 + r_2 > s - 3$ or $2r_1 + 2r_2 \in \{2s - 2, 2s - 4\}$. Thus, $2r_1 + s - 2 \ge 2r_1 + 2r_2 \ge 2s - 4$. So, we have $2r_1 \ge s - 2 \ge 2r_2$. Since $2r_1 + 2r_2 \le 2s - 2$ and $2r_2 \ge 2$, $2r_1 \le 2s - 4$.

Without loss of generality, we may always assume that γ_1 is labeled at the end-edge of Q_1 incident to u. Since $s \geq 4$ and $f^+(u) = y$, γ_2 must be labeled at the end-edge of Q_2 incident to v. Suppose there are k paths of length $2s - 4$ and $s - k - 2$ paths of length $2s - 2$. Therefore, $2(r_1+r_2)+k(2s-4)+(s-k-2)(2s-2)=2s^2-5s+2$. So, $2(r_1+r_2)=s-2+2k$. For convenience, we write $s = 2l$ for $l \geq 2$.

(a) Suppose $2r_1 + 2r_2 = 4l - 2$. Now, $k = l$ and $\theta_{2l} = \theta(4l - 2 - 2r_1, 2r_1, (4l - 4)^{[l]}, (4l - 2)^{[l-2]})$ for $l \le r_1 \le 2l - 2$. Since $l - 1 \ge r_2 = 2l - 1 - r_1$, $r_1 \ge l$. Rewriting r_1 as t, we have $\theta_{2l} = \theta(4l - 2 - 2t, 2t, (4l - 4)^{[l]}, (4l - 2)^{[l-2]})$ for $l \le t \le 2l - 2$. Here Q_2 and Q_1 are (u, v) -paths of length $4l - 2 - 2t$ and $2t$, respectively.

Next, we consider all (u, v) -paths of θ_s . Let the (u, v) -paths of length 4l – 4 be R_i , $1 \le i \le l$, and the (u, v) -path(s) of length $4l - 2$ be T_j , $1 \le j \le l - 2$. Let T_{l-1} be the path obtained from Q_2 and Q_1 by merging the vertex v of Q_2 and the vertex u of Q_1 . Hence, T_{l-1} is a (u, v) -path of length 4l − 2. Under the labeling f, the end-edge labels are in [1, 4l − 2] and the induced vertex labels of all internal vertices of T_{l-1} are x and y alternatively.

(b) Suppose $2r_1 + 2r_2 = 4l - 4$. Now, $2r_1 = 4l - 4 - 2r_2 \le 4l - 6$ so that $k = l - 1$ and $\theta_{2l} = \theta(4l - 4 - 2r_1, 2r_1, (4l - 4)^{[l-1]}, (4l - 2)^{[l-1]})$ for $l - 1 \le r_1 \le 2l - 3$. Rewriting r_1 as t − 1, we have $\theta_{2l} = \theta(4l - 2 - 2t, 2t - 2, (4l - 4)^{[l-1]}, (4l - 2)^{[l-1]})$ for $l \le t \le 2l - 2$. Here Q_2 and Q_1 are (u, v) -paths of length $4l - 2 - 2t$ and $2t - 2$, respectively.

Next, we consider all (u, v) -paths of θ_s . Let the path(s) of length $4l - 4$ be R_i , $1 \le i \le l - 1$, and the path(s) of length $4l - 2$ be T_j , $1 \le j \le l - 2$. Let R_l be the path obtained from Q_2 and Q_1 by merging the vertex v of Q_2 and the vertex u of Q_1 . Hence R_l is a (u, v) -path of length $4l - 4$. Under the labeling f, the end-edge labels are in [1, 4l – 2] and the induced vertex labels of all internal vertices of R_l are x and y alternatively.

For each case, after the merging, we have l paths R_i of length $4l - 4$, $1 \le i \le l$ and $l - 1$ paths T_i of length $4l - 2$, $1 \le j \le l - 1$, where $l \ge 2$. All the end-edge labels are in $[1, 4l - 2]$ under

the labeling f. Consider the (u, v) -path R_i of length $2s - 4 = 4l - 4$. Suppose $x_i = \alpha_1$ is an end-edge label, then another end-edge label is $\beta_{s-2} = (x - \alpha_1) - (s - 3)(2s - 2) \leq 2s - 2$. We have $\alpha_1 \geq s - 1$. By symmetry, $\beta_{s-2} \geq s - 1$. So, all the l paths R_i have their end-edges labeled by integers in $[2l - 1, 4l - 2]$. Thus, all (u, v) -paths T_j have their end-edges labeled by integers in $[1, 2l - 2]$.

Let the label assigned to the end-edge of T_j incident to u be y_j .

(a) For the case $\theta_{2l} = \theta(4l - 2 - 2t, 2t, (4l - 4)^{[l]}, (4l - 2)^{[l-2]}), 2 \le l \le t \le 2l - 2, \gamma_1$ is the $(4l - 2 - 2t + 1)$ -st edge label of T_{l-1} so that $\gamma_1 = y_{l-1} + (2l - 1 - t)(4l - 2)$. Hence,

$$
(4l-1)(2l-1) = f^{+}(u) = \gamma_1 + \sum_{j=1}^{l-1} y_j + \sum_{i=1}^{l} x_i = y_{l-1} + (2l-1-t)(4l-2) + \sum_{j=1}^{l-1} y_j + \sum_{i=1}^{l} x_i.
$$

We have

$$
(2l - 1 - t)(4l - 2) = (4l - 1)(2l - 1) - y_{l-1} - \sum_{j=1}^{l-1} y_j - \sum_{i=1}^{l} x_i
$$

\n
$$
\geq (4l - 1)(2l - 1) - (2l - 2) - \frac{(l - 1)(3l - 2)}{2} - \frac{l(7l - 3)}{2}
$$

\n
$$
= 3l^2 - 4l + 2.
$$

This means

$$
t(4l-2) \le 2(2l-1)^2 - (3l^2 - 4l + 2) = 5l^2 - 4l = \frac{1}{4}[(5l-1)(4l-2) - 2l - 2] < \frac{1}{4}(5l-1)(4l-2).
$$

Therefore, $t < \frac{5l-1}{4}$, i.e., $t \le \frac{5l-2}{4}$ $\frac{-2}{4}$. Thus, $l \le t \le \frac{5l-2}{4}$ $\frac{-2}{4}$.

(b) For the case $\theta_{2l} = \theta(4l - 2 - 2t, 2t - 2, (4l - 4)^{[l-1]}, (4l - 2)^{[l-1]})$ for $2 \le l \le t \le 2l - 2$, similarly, we have

$$
(2l - 1 - t)(4l - 2) = (4l - 1)(2l - 1) - x_l - \sum_{j=1}^{l-1} y_j - \sum_{i=1}^{l} x_i
$$

\n
$$
\geq (4l - 1)(2l - 1) - (4l - 2) - \frac{(l - 1)(3l - 2)}{2} - \frac{l(7l - 3)}{2}
$$

\n
$$
= 3l^2 - 6l + 2.
$$

This means

$$
t(4l-2) \le 2(2l-1)^2 - (3l^2 - 6l + 2) = 5l^2 - 2l = \frac{1}{4}[(5l+1)(4l-2) - 2l + 2] < \frac{1}{4}(5l+1)(4l-2).
$$

Therefore, $t < \frac{5l+1}{4}$, i. e., $t \le \frac{5l}{4}$. Thus, $l \le t \le \frac{5l}{4}$.

Consequently, we have the following two cases.

(a) $\theta_{2l} = \theta(4l - 2 - 2t, 2t, (4l - 4)^{[l]}, (4l - 2)^{[l-2]})$ for $2 \le l \le t \le \frac{5l-2}{4}$ $\frac{-2}{4}$, or else

(b)
$$
\theta_{2l} = \theta(4l - 2 - 2t, 2t - 2, (4l - 4)^{[l-1]}, (4l - 2)^{[l-1]})
$$
 for $2 \le l \le \frac{5l}{4}$.

Now, we are going to find a local antimagic 2-coloring for the above graphs.

- (a) $\theta_{2l} = \theta(4l 2 2t, 2t, (4l 4)^{[l]}, (4l 2)^{[l-2]})$ for $2 \le l \le t \le \frac{5l-2}{4}$ $\frac{-2}{4}$.
	- Step 1: Label the edges of T_i by the sequence $A_{2l-1}(l 1 + j; 4l 2) \diamond A_{2l-1}(x l + 1 j;$ $-4l + 2$, $1 \le j \le l - 1$. Note that we choose $\alpha_1 = l - 1 + j$. This gives $\beta_{2l-1} = l - j$. So, as a set $A_{2l-1}(x - (l - 1 + j))$; $-4l + 2 = A_{2l-1}(l - j)$; $4l - 2$). Thus, integers in $[1, 2l - 2]$ are end-edge labels of all path(s) T_j and integers in $\bigcup_{l=1}^{l-1} [(j-1)(4l-2)+1, (j-1)(4l-2)+(2l-2)]$ are assigned. $j=1$
	- Step 2: Label the edges of the (u, v) -path R_i by the sequence $A_{2l-2}(2l 2 + i; 4l 2) \diamond$ $\diamond A_{2l-2}(x-2l+2-i;-4l+2), 1 \le i \le l$. Note that we choose $\alpha_1 = 2l-2+i$. This gives $\beta_{2l-2} = 6l-3-(2l-2+i) = 4l-1-i$. So, as a set $A_{2l-2}(x-2l+2-i; -4l+2) =$ $= A_{2l-2}(4l - 1 - i; 4l - 2)$. Thus, integers in $[2l - 1, 4l - 2]$ are end-edge labels of all path(s) R_i and integers in \bigcup l $\frac{i=1}{i}$ $[(i-1)(4l-2)+(2l-1), (i-1)(4l-2)+(4l-2)]$ are assigned. The set of difference between the two end-edge labels of a path R_i is $D_2 = \{1, 3, \ldots, 2l - 1\} = A_l(1; 2).$
	- Step 3: Pick the (u, v) -path T_{l-1} and separate it into two paths. Note that the end-edge labels of T_{l-1} are $2l - 2$ and 1. The first $4l - 2 - 2t$ edges form a (u, v) -path Q_2 and the remaining 2t edges form a (u, v) -path Q_1 . Note that the label of $(4l - 1 - 2t)$ -th edge of T_{l-1} is $\gamma_1 = (2l - 1 - t)(4l - 2) + (2l - 2)$.

Thus, the above labeling is a local antimagic labeling. Under this labeling, the induced vertex label of u is

$$
\sum_{j=1}^{l-1} (l-1+j) + \sum_{i=1}^{l} (2l-2+i) + \gamma_1
$$

=
$$
\frac{(l-1)(3l-2)}{2} + \frac{l(5l-3)}{2} + (2l-1-t)(4l-2) + (2l-2)
$$

=
$$
12l^2 + 2t - 10l - 4lt + 1.
$$

The difference from $y = 8l^2 - 6l + 1$ is $\delta(t) = 4lt + 4l - 4l^2 - 2t = (4l - 2)(t - l) + 2l$. Clearly, $2 < \delta(t) \le (4l-2)\frac{l-2}{4} + 2l \le l^2$. Suppose $\delta(t) = l^2 - 2$, then $t = \frac{5l^2 - 4l - 2}{4l - 2} = \frac{5l - 2}{4} + \frac{l - 6}{2(4l - 2)}$. Since $t \leq \frac{5l-2}{4}$ $\frac{-2}{4}$, $2 \le l \le 6$. Since $t \in \mathbb{Z}$, $l = 6$ and, hence, $t = 7$. Thus, by Lemma [2.2,](#page-1-3) we may choose $B \subset D_2$ to obtain a local antimagic 2-coloring of $\theta(4l - 2 - 2t, 2t, (4l - 4)^{[l]},$ $(4l-2)^{[l-2]}$ for $2 \leq l \leq t \leq \frac{5l-2}{4}$ $\frac{-2}{4}$ and $(l, t) \neq (6, 7)$. We shall provide a local antimagic 2-coloring for the special case $(l, t) = (6, 7)$ in Example [3.3\(](#page-15-0)a)(ii).

- (b) $\theta_{2l} = \theta(4l 2 2t, 2t 2, (4l 4)^{[l-1]}, (4l 2)^{[l-1]})$ for $2 \le l \le t \le \frac{5l}{4}$ $\frac{5l}{4}$.
	- Step 1: Label the edges of T_i by the sequence $A_{2l-1}(j; 4l-2) \diamond A_{2l-1}(x-j; -4l+2)$, $1 \leq j \leq l-1$. The set of difference between the last label and the first label of a paths T_i 's is $D_1 = \{1, 3, \ldots, 2l - 3\} = A_{l-1}(1; 2)$.
	- Step 2: Label the edges of R_i by the sequence $A_{2l-2}(3l-2+i; 4l-2) \diamond A_{2l-2}(x-3l+2-i;$ $-4l+2$, $1 \le i \le l$. The set of difference between the last label and the first label of a paths R_i 's, $1 \le i \le l-1$, is $D_2 = \{-1, -3, \ldots, -(2l-3)\} = A_{l-1}(-1, -2)$.
	- Step 3: Pick the (u, v) -path R_l and separate it into two paths. Note that the end-edge labels of R_l are $4l - 2$ and $2l - 1$. The first $4l - 2 - 2t$ edges form a (u, v) -path Q_2 and the remaining $2t - 2$ edges form a (u, v) -path Q_1 . Note that the label of $(4l - 1 - 2t)$ -th edge of R_l is $\gamma_1 = (2l - 1 - t)(4l - 2) + (4l - 2)$.

Similar to the previous case, the above labeling is a local antimagic labeling. Under this labeling, the induced vertex label of u is

$$
\sum_{j=1}^{l-1} j + \sum_{i=1}^{l} (3l - 2 + i) + \gamma_1 = \frac{(l-1)l}{2} + \frac{l(7l-3)}{2} + (2l - 1 - t)(4l - 2) + (4l - 2)
$$

$$
= 12l^2 + 2t - 6l - 4lt.
$$

The difference from $y = 8l^2 - 6l + 1$ is $\delta(t) = -4l^2 - 2t + 4lt + 1$. Clearly, $\delta(t)$ is an increasing function of t. It is easy to show that $3 \leq 2l - 1 \leq \delta(t) \leq l^2 - \frac{5l}{2} + 1 \leq$ $\leq (l-1)^2 - 1$ when $l+1 \leq t \leq \frac{5l}{4}$ $\frac{5l}{4}$. We need to show that $\delta(t) \neq (l-1)^2 - 2$. Now $\delta((5l-1)/4)) = \frac{2l^2-7l+3}{2} = (l-1)^2 - \frac{3l-1}{2} < (l-1)^2 - 2$. If $\frac{5l}{4} \in \mathbb{Z}$, then $l \geq 4$. So, $\delta(5l/4) = \frac{2l^2-5l+1}{2} = (l-2)^2 - \frac{l+1}{2} < (l-1)^2 - 2$. Thus, $3 \leq \delta(t) \leq l^2 - \frac{5l}{2} + 1 \leq (l-1)^2 - 2$. when $l + 1 \leq t \leq \frac{5l}{4}$ $\frac{5l}{4}$. By Lemma [2.2,](#page-1-3) we may choose $B \subset D_1$ and then we obtain a local antimagic 2-coloring for $\theta(4l - 2 - 2t, 2t - 2, (4l - 4)^{[l-1]}, (4l - 2)^{[l-1]})$ for $l + 1 \le t \le \frac{5l}{4}$ $\frac{5l}{4}$.

The remaining case is $t = l$. For this case, $\delta(l) = -2l + 1$. If $l \neq 3$, then we may choose $B = \{- (2l - 3), -3, 1\} \subset D_1 \cup D_2$. When $l = 3$, we have $t = 3$. This is a special case with solution given in Example [3.4\(](#page-17-0)b).

Case (4). Suppose $a = 2$. In this case, $b = 4(2s^2 - 7s + 6)$ and $2y + 14 - 8s = 8s^2 - 28s + 26$. So, $y = 4s^2 - 10s + 6$. Similar to the previous cases we have $m = 4s^2 - 12s + 8$. Hence, $x = 4s^2 - 12s + 9.$

Suppose $s = 3$. We get $m = 8$, $x = 9$ and $y = 12$. Thus, $\theta_3 = \theta(2, 2, 4)$. The sequences we can use are $3, 6; 1, 8$ and $4, 5, 7, 2$ or else $3, 6; 1, 8, 4, 5$ and $7, 2$, both of which give no solution. We now assume $s > 4$.

Note that $y - x = 2s - 3$, y is even and $y/2 > 2s - 3$. Recall that if y is even, then $y/2$ is an end-edge label. Thus, integers in $[1, 2s - 3] \cup \{y/2\}$ are end-edge labels.

There are only 3 end-edge labels greater than $2s - 3$. So, there are at least $s - 3$ paths with both end-edges labeled by integers in [1, 2s – 3]. Suppose P_{2r+1} is one of these s – 3 paths. Keep the notation defined in the claim and the assumption $\alpha_1 < \beta_r$. So, $\alpha_1 \in [1, 2s - 4]$.

Now $\beta_r = (x - \alpha_1) - (r - 1)(y - x) \le 2s - 3$. Since $x = 4s^2 - 12s + 9$ and $y - x = 2s - 3$, we have

$$
(2s-3)(2s-4) < 4s2 - 14s + 13 \le x - \alpha_1 \le r(y - x) = r(2s - 3)
$$

Thus, $r \geq 2s - 3$.

Since $r \ge 4$, β_{r-1} is labeled at a non-end-edge. So, $\beta_{r-1} = (x-\alpha_1) - (r-2)(y-x) \ge 2s-2$ so that

$$
(r-2)(2s-3) \le x - \alpha_1 - 2s + 2 \le 4s^2 - 14s + 10 < (2s-3)(2s-4).
$$

So, $r - 2 \le 2s - 5$ or $r \le 2s - 3$. Thus, $r = 2s - 3$. Note that $\beta_{2s-3} = 2s - 3 - \alpha_1$.

Suppose $y/2 = 2s^2 - 5s + 3$ is labeled at an end-edge of a path Q. Let the length of Q be $2q$. So, we have $\alpha_1 \leq 2s - 3$, $\beta_q = y/2$ and $\beta_1 = y/2 + (q - 1)(2s - 3)$. Now $x = \alpha_1 + \beta_1 =$ $= \alpha_1 + y/2 + (q-1)(y-x)$ so that $2x > y + (2q-2)(y-x)$. We have $(2s-3)^2 = x > y$ $> (2q-1)(y-x) = (2q-1)(2s-3)$. Thus, $2q-1 < 2s-3$, i.e., $q \leq s-2$.

On the other hand, $2x = 2\alpha_1 + y + (2q - 2)(y - x) \leq 2(2s - 3) + y + (2q - 2)(y - x) =$ $y = y + 2q(y - x)$ so that $(2s - 3)^2 = x \le (2q + 1)(y - x) = (2q + 1)(2s - 3)$. This means $2q + 1 \ge 2s - 3$, i.e., $q \ge s - 2$. Thus, $q = s - 2$. Consequently, θ_s contains a path of length 2s – 4 with an end-edge label $\beta_{s-2} = 2s^2 - 5s + 3 = y/2$ so that $\alpha_i = i(2s - 3)$ and $\beta_i = 4s^2 - 14s + 12 - (i-1)(2s-3) = (2s-3)(2s-3-i) \ge (2s-3)(s-1)$ for $1 \le i \le s-2$.

Let the remaining two end-edge labels be γ_1 and γ_2 . Thus, $2y = f^+(u) + f^+(v) = \gamma_1 + \gamma_2 + \gamma_3$ $+y/2+(2s-3)(s-1)$. So, $\gamma_1+\gamma_2=4s^2-10s+6=y$.

Suppose γ_1 and γ_2 are labeled at the same path of length 2q. By a similar proof of Case (3), we have $4s^2 - 10s + 6 = \gamma_1 + \gamma_2 = \gamma_1 + (x - \gamma_1) - (q - 1)(y - x) = 4s^2 - 12s + 9 - (q - 1)(2s - 3)$ which is impossible.

As a conclusion, there are exactly $s - 3$ paths of length $4s - 6$ whose end-edges are labeled by integers in [1, 2s − 4], one path of length $2s - 4$ whose end-edges are labeled by $2s - 3$ and $y/2$, two paths Q_i of length s_i whose end-edges are labeled by $\alpha_{1,i} \in [1, 2s - 4]$ and γ_i , $i = 1, 2$. By counting the number of edges of the graph, we have $s_1 + s_2 = 4s - 6$. Thus, $\theta_s = \theta(2t, 4s - 6 - 2t, 2s - 4, (4s - 6)^{[s-3]})$ for some $t \ge 1$.

Let us rename all (u, v) -paths.

- Let R_1, \ldots, R_{s-3} be the (u, v) -paths in θ_s of length $4s 6$. Let the end-edge label of R_i incident to u be x_i , $1 \le i \le s-3$.
- Let P be the (u, v) -path of length 2s–4 whose end-edge labels are 2s–3 and $(s-1)(2s-3)$.
- Let Q_1 be (u, v) -path of length $4s 6 2t$ whose end-edge labels are γ_1 and x_{s-1} . Let Q_2 be (u, v) -path of length 2t whose end-edge labels are x_{s-2} and γ_2 . Without loss of generality, we may assume that $\gamma_1 < \gamma_2$. Since $\gamma_1 + \gamma_2 = y$, $\gamma_1 < y/2 < \gamma_2$. Also, without loss of generality, we may always assume that γ_1 is labeled at the end-edge incident to u. Thus, x_{s-2} is labeled at the end-edge of Q_2 incident to u.

Let R_{s-2} be the labeled (u, v) -path obtained from Q_2 and Q_1 by merging the end vertex v of Q_2 with the end vertex u of Q_1 . Therefore, R_{s-2} satisfies the assumption of the Claim. Thus, x_{s-2} is labeled at the end-edge of R_{s-2} incident to u. Now $\gamma_1 = t(2s - 3) + x_{s-2}$.

Suppose $2s - 3$ is labeled at the end-edge of P incident to u, then

$$
2(s-1)(2s-3) = f^{+}(u) = \sum_{i=1}^{s-3} x_i + (2s-3) + x_{s-2} + \gamma_1
$$

=
$$
\sum_{i=1}^{s-2} x_i + (2s-3) + [t(2s-3) + x_{s-2}] = \sum_{i=1}^{s-2} x_i + (t+1)(2s-3) + x_{s-2}.
$$

This means $(2s - t - 3)(2s - 3) = x_{s-2} +$ $\sum_{i=1}^{s-2} x_i \le (2s-4) + \frac{(s-2)(3s-5)}{2}$. Since 1 ≤ t ≤ s - 2, $(s-1)(2s-3) \le (2s-4) + \frac{(s-2)(3s-5)}{2} = \frac{3s^2-7s+2}{2}$ which is impossible. Thus, $(s-1)(2s-3)$ must be a label of the end-edge of \overline{P} incident to u. Consequently, we have

$$
2(s-1)(2s-3) = f^{+}(u) = \sum_{i=1}^{s-3} x_i + (s-1)(2s-3) + x_{s-2} + \gamma_1
$$

=
$$
\sum_{i=1}^{s-2} x_i + (s-1)(2s-3) + [t(2s-3) + x_{s-2}] = \sum_{i=1}^{s-2} x_i + (s-1+t)(2s-3) + x_{s-2}.
$$

This means $(s-t-1)(2s-3) = x_{s-2} +$ \sum^{s-2} $i=1$ $x_i \geq 1 + \frac{(s-2)(s-1)}{2} = \frac{s^2-3s+4}{2} = \frac{(2s-3)^2}{8} + \frac{7}{8} > \frac{(2s-3)^2}{8}$ $\frac{-3)^2}{8}$. Solving this inequality, we have $t < \frac{6s-5}{8}$.

Similarly, we have $(s - t - 1)(2s - 3) = x_{s-2} +$ \sum^{s-2} $i=1$ $x_i \leq \frac{3s^2 - 7s + 2}{2} = \frac{(6s - 5)(2s - 3)}{8} - \frac{7}{8}$ $\frac{(6s-5)(2s-3)}{8}$ $\frac{1}{8}$. Solving this inequality, we have $t > \frac{2s-3}{8}$. Hence,

$$
t \in \begin{cases} [2j-1, 6j-4], & \text{if } s = 8j-4; \\ [2j-1, 6j-3], & \text{if } s = 8j-3; \\ [2j, 6j-3], & \text{if } s = 8j-2; \\ [2j, 6j-2], & \text{if } s = 8j-1; \\ [2j, 6j-1], & \text{if } s = 8j; \\ [2j, 6j], & \text{if } s = 8j+1; \\ [2j+1, 6j], & \text{if } s = 8j+2; \\ [2j+1, 6j+1], & \text{if } s = 8j+3; \end{cases} \Longleftrightarrow t \in \begin{cases} [k, 3k-1], & \text{if } s = 4k; \\ [k, 3k], & \text{if } s = 4k+1; \\ [k+1, 3k], & \text{if } s = 4k+2; \\ [k+1, 3k+1], & \text{if } s = 4k+3; \\ [2j+1, 6j+1], & \text{if } s = 8j+3; \end{cases}
$$

where $j, k > 1$.

We now show that $\theta_s = \theta(2t, 4s - 6 - 2t, 2s - 4, (4s - 6)^{[s-3]})$, for $s \ge 4$ and $\frac{2s-3}{8} < t < \frac{6s-5}{8}$, admits a local antimagic 2-coloring. We keep the notation defined above. Following is a general approach:

- Step 1: Label the edges of the path R_j of length $4s 6$ by the sequence $A_{2s-3}(j; 2s 3) \diamond$ $\diamond A_{2s-3}(x-j; -(2s-3))$ in order, for $1 \le j \le s-2$.
- Step 2: For convenience, write $x_{s-2} = \alpha$. Separate R_{s-2} into two paths. The first 2t edges form the path Q_2 and the rest form the path Q_1 . So α and γ_1 are labeled at the end-edges incident to u. Recall that $\gamma_1 = t(2s - 3) + \alpha$.
- Step 3: Label the edges of the (u, v) -path P of length $2s 4$ by the reverse of the sequence $A_{s-2}(2s-3; 2s-3) \diamond A_{s-2}((2s-3)(2s-4); -2s+3)$, i.e., $A_{s-2}((s-1)(2s-3);$ $2s-3$) $\diamond A_{s-2}((s-2)(2s-3); -2s+3).$

Clearly, by the construction above, it induces a local antimagic labeling for $\theta(2t, 4s - 6 - 2t,$ $(2s-4, (4s-6)^{[s-3]})$. Under this labeling, the induced vertex label for u is

$$
(s-1)(2s-3) + \sum_{i=1}^{s-2} i + \gamma_1 = (2s-3)(s-1+t) + \frac{s^2 - 3s + 2}{2} + \alpha.
$$

The difference from $y = (2s - 3)(2s - 2)$ is $\delta(t) = (2s - 3)(s - 1 - t) - \frac{s^2 - 3s + 2}{2} - \alpha$. Clearly, $\delta(t)$ is a decreasing function of t.

Now, if we choose $\alpha = 1$, then $\delta(t) = \frac{3s^2 - 7s - 4st + 6t + 2}{2}$ $\frac{4st+6t+2}{2}$, where $\frac{2s-3}{8} < t < \frac{6s-5}{8}$. So,

$$
\begin{aligned}\n\frac{16k^2 - 11k + 1}{16k^2 - k - 1} \\
\frac{16^2 + k - 1}{16k^2 + 11k + 1}\n\end{aligned}\n\ge \delta(t) \ge \begin{cases}\n3k - 2, & \text{if } s = 4k; \\
k - 1, & \text{if } s = 4k + 1; \\
7k, & \text{if } s = 4k + 2; \\
5k + 1, & \text{if } s = 4k + 3.\n\end{cases}
$$

The set of differences of two end-edge labels in R_j , $2 \le j \le s-2$, is $D = \{1, 3, 5, \ldots, 2s - 7\}$ $= A_{s-3}(1; 2).$

Clearly, $\delta(t) = 2$ only when $(s, t) = (13, 9)$. Also the maximum value of $\delta(t)$ for each case of s is greater than $(s-3)^2$. Let us look at the second and third largest values δ_2 and δ_3 of $\delta(t)$ if any:

$$
\delta_2 = \begin{cases}\n16k^2 - 19k + 4, & \text{if } s = 4k; \\
16k^2 - 9k, & \text{if } s = 4k + 1; \\
16k^2 - 7k - 2, & \text{if } s = 4k + 2; \\
16k^2 + 3k - 2, & \text{if } s = 4k + 3;\n\end{cases}\n\quad\n\delta_3 = \begin{cases}\n16k^2 - 27k + 7, & \text{if } s = 4k; \\
16k^2 - 17k + 1, & \text{if } s = 4k + 1; \\
16k^2 - 15k - 3, & \text{if } s = 4k + 2; \\
16k^2 - 5k - 5, & \text{if } s = 4k + 3.\n\end{cases}
$$

Clearly, $0 \le \delta_3 < (s-3)^2 - 2$. So, by Lemma [2.2,](#page-1-3) there is a subset B of D such that the sum of integers in B is $\delta(t)$ when $\frac{2s-3}{8}+2 < t < \frac{6s-5}{8}$ except the case $(s, t) = (13, 9)$. Similar to Case (2), we find a local antimagic 2-coloring for $\theta(2t, 4s-6-2t, 2s-4, (4s-6)^{[s-3]})$ according to the above range of t.

For the case $(s, t) = (13, 9), y = 552$. Under the proposed labeling, we can see that the induced label for u is $549 + \alpha$. So, we may choose $a = 3$.

The remaining cases are when $\frac{2s-3}{8} < t \le \frac{2s-3}{8} + 2$. When $s = 4$, we have $\delta_2 = 1$ and δ_3 does not exist. We shall modify our proposed labeling. Now, we choose $\alpha = 2s - 4$. In this case, 1 is not labeled at the end-edge incident to u so that the set of labels of the end-edges incident to u is $\{(s-1)(2s-3), \gamma_1\} \cup [2, s-2] \cup \{2s-4\}$. Thus, the sum is $(s-1)(2s-3) + (2s-4) +$ $+$ $\sum_{s=2}^{s-2} i + \gamma_1 = (2s-3)(s-1+t) + \frac{s^2+5s-16}{2}$ $i=2$ $\frac{2s-16}{2}$. The difference from $y = (2s-3)(2s-2)$ is $\delta^*(t) = \frac{3s^2 - 15s - 4st + 6t + 22}{2}$ $\frac{4st+6t+22}{2}$. One may easily check that $3 \leq \delta^*(t) \leq (s-3)^2 - 3$ for $\frac{2s-3}{8} < t \leq$ $\leq \frac{2s-3}{8}+2$, except $(s, t) = (4, 2), (5, 2), (6, 3), (7, 3)$. Thus, we have a local antimagic 2-coloring for $\theta(2t, 4s - 6 - 2t, 2s - 4, (4s - 6)^{[s-3]})$ when $\frac{2s-3}{8} < t \le \frac{2s-3}{8} + 2$.

For those exceptional cases, we have

- 1. $(s, t) = (4, 2)$. Now $\delta(2) = 1$. We may apply the original approach.
- 2. $(s, t) = (5, 2), \theta_5 = \theta(4, 6, 10, 14, 14)$ with edge labels 39, 10, 46, 3; 7, 42, 14, 35, 21, 28; 4, 45, 11, 38, 18, 31, 25, 24, 32, 17; 1, 48, 8, 41, 15, 34, 22, 27, 29, 20, 36, 13, 43, 6; 5, 44, 12, 37, 19, 30, 26, 23, 33, 16, 40, 9, 47, 2.
- 3. $(s, t) = (6, 3)$. Now $\delta(3) = 7 < 3^2$. We may apply the original approach.

4. $(s, t) = (7, 3)$. Now $x = 121$, $y = 132$, $\theta_7 = \theta(6, 10, 16, 22, 22, 22, 22)$ with sequences , 117, 15, 106, 26, 95; , 55, 77, 44, 88, 33, 99, 22, 110, 11; , 84, 48, 73, 59, 62, 70, 51, 81, 40, 92, 29, 103, 18, 114, 7; , 119, 13, 108, 24, 97, 35, 86, 46, 75, 57, 64, 68, 53, 79, 42, 90, 31, 101, 20, 112, 9; , 116, 16, 105, 27, 94, 38, 83, 49, 72, 60, 61, 71, 50, 82, 39, 93, 28, 104, 17, 115, 6; , 113, 19, 102, 30, 91, 41, 80, 52, 69, 63, 58, 74, 47, 85, 36, 96, 25, 107, 14, 118, 3; , 111, 21, 100, 32, 89, 43, 78, 54, 67, 65, 56, 76, 45, 87, 34, 98, 23, 109, 12, 120, 1.

So we have a local antimagic 2-coloring for $\theta(2t, 4s-6-2t, 2s-4, (4s-6)^{[s-3]})$ when $s > 4$ and $\frac{2s-3}{8} < t < \frac{6s-5}{8}$.

Note that, one may see from each case that $m > 2s + 2$. This completes the proof.

§ 3. Examples

In this section, we shall provide example(s) to illustrate the construction of each case and also provide solutions for the exceptional cases raised in the proof of Theorem [2.1.](#page-2-0)

Example 3.1. The aim of this example is to illustrate the construction showed in Case (1).

Take $s = 6$ (i.e., $k = 1$), we have $\theta_6 = \theta(4, 4, 4, 4, 4, 6)$ with $m = 26$, $x = 27$, $y = 39$, $U_1 = \{1\}, U_2 = \{4, 5, 8, 9, 12\}, [1, 12] \setminus (U_1 \cup U_2) = \{2, 3, 6, 7, 10, 11\}.$

 $A_3(1;12) = (1, 13, 25)$ and $A_3(26; -12) = (26, 14, 2)$. So, $A_3(1; 12) \diamond A_3(26; -12) =$ $= (1, 26, 13, 14, 25, 2).$

Similarly, $A_2(4;12) = (4, 16)$ and $A_2(23, -12) = (23, 11)$, $A_2(5; 12) = (5, 17)$ and $A_2(22;-12) = (22, 10), A_2(8; 12) = (8, 20)$ and $A_2(19;-12) = (19, 7), A_2(9; 12) = (9, 21)$ and $A_2(18; -12) = (18, 6), A_2(12; 12) = (12, 24)$ and $A_2(15; -12) = (15, 3).$

So, the paths of length 4 and 6 have edge labels

4, 23, 16, 11; 5, 22, 17, 10; 8, 19, 20, 7; 9, 18, 21, 6; 12, 15, 24, 3; 1, 26, 13, 14, 25, 2.

All the left (respectively right) end vertices are merged to get the degree 6 vertex with induced label 39.

Example 3.2. The aim of this example is to illustrate the construction showed in Case (2).

Take $s = 9$ (i.e., $l = 3$), we get $\theta(4, 10^{[8]})$ with $y = 102$, $x = 85$. Keep the notation defined in Lemma [2.2](#page-1-3) and the proof of Theorem [2.1.](#page-2-0) Since $\delta = 15$, $n = 8$, we choose $\kappa = 15$ with $\tau = 0$. By Lemma [2.2,](#page-1-3) we have $B = \{15\}$. So we replace 1 by 16 as a label of end-edge incident to u. Thus u is incident to end-edge labels in $\{16, 2, 3, 4, 5, 6, 7, 8, 51\}$. The paths labels are $51, 34, 68, 17: A_2(51; 17) \diamond A_2(34; -17);$

16, 69, 33, 52, 50, 35, 67, 18, 84, 1: the *reverse of* $A_5(1; 17) \diamond A_5(84; -17)$;

 $2, 83, 19, 66, 36, 49, 53, 32, 70, 15: A₅(2, 17) \diamond A₅(83, -17);$

 $3, 82, 20, 65, 37, 48, 54, 31, 71, 14$: $A_5(3, 17) \diamond A_5(82, -17)$;

 $4, 81, 21, 64, 38, 47, 55, 30, 72, 13: A₅(4; 17) \diamond A₅(81; -17);$

 $5, 80, 22, 63, 39, 46, 56, 29, 73, 12$: $A_5(5; 17) \diamond A_5(80; -17)$;

 $6, 79, 23, 62, 40, 45, 57, 28, 74, 11: A₅(6; 17) \diamond A₅(79; -17);$

 $7, 78, 24, 61, 41, 44, 58, 27, 75, 10: A₅(7; 17) \diamond A₅(78; -17);$

 $8, 77, 25, 60, 42, 43, 59, 26, 76, 9: A₅(8; 17) \diamond A₅(77; -17).$

Using $s = 12$ (i.e., $l = 4$), we get $\theta(6, 14^{[11]})$ with $y = 184$, $x = 161$. Since $\delta = 26$. We choose $\kappa = 21$ (i.e., $k = 1$) with $\tau = 5$. By Lemma [2.2,](#page-1-3) we have $B = \{21, 5\}$. So, we replace 1 by 22 and 9 by 14 as labels of end-edges incident to u . Thus, u is incident to end-edge labels in {22, 2, 3, 4, 5, 6, 7, 8, 14, 10, 11, 92}. The paths labels are

92, 69, 115, 46, 138, 23: $A_3(92; 23) \diamond A_3(69; -23);$

```
22, 139, 45, 116, 68, 93, 91, 70, 114, 47, 137, 24, 160, 1: the reverse of A_7(1; 23) \diamond A_7(160; -23);
```
2, 159, 25, 136, 48, 113, 71, 90, 94, 67, 117, 44, 140, 21: $A_7(2; 23) \diamond A_7(159; -23);$

3, 158, 26, 135, 49, 112, 72, 89, 95, 66, 118, 43, 141, 20: $A_7(3; 23) \diamond A_7(158; -23)$;

 $4, 157, 27, 134, 50, 111, 73, 88, 96, 65, 119, 42, 142, 19: A₇(4; 23) \diamond A₇(157; -23);$ $5, 156, 28, 133, 51, 110, 74, 87, 97, 64, 120, 41, 143, 18: A₇(5; 23) \diamond A₇(156; -23);$

```
6, 155, 29, 132, 52, 109, 75, 86, 98, 63, 121, 40, 144, 17: A_7(6; 23) \diamond A_7(155; -23);
```
7, 154, 30, 131, 53, 108, 76, 85, 99, 62, 122, 39, 145, 16: $A_7(7; 23) \diamond A_7(154; -23);$

8, 153, 31, 130, 54, 107, 77, 84, 100, 61, 123, 38, 146, 15: $A_7(8; 23) \diamond A_7(153; -23)$;

14, 147, 37, 124, 60, 101, 83, 78, 106, 55, 129, 32, 152, 9: the reverse of $A_7(9; 23) \circ A_7(152; -23)$;

 $10, 151, 33, 128, 56, 105, 79, 82, 102, 59, 125, 37, 148, 13: A_7(10; 23) \diamond A_7(151; -23);$

11, 150, 34, 127, 57, 104, 80, 81, 103, 58, 126, 36, 149, 12: $A_7(11; 23) \diamond A_7(150; -23)$. ■

Example 3.3. The aim of this example is to illustrate the construction showed in Case (3) and provide a local antimagic 2-coloring for the exceptional case $(l, t) = (6, 7)$.

Let $s = 12$, i. e., $l = 6$. Now, $x = 231$ and $y = 253$.

(a) The graph is $\theta_{12} = \theta(22 - 2t, 2t, 20^{[6]}, 22^{[4]})$, where $t = 6, 7$. Begin with the sequences $A_{11}(6;22) \diamond A_{11}(225;-22): 6, 225, 28, 203, 50, 181, 72, 159, 94, 137, 116, 115, 138, 93, 160, 71, 182, 49, 204, 27, 226, 51, 52, 53, 54, 55, 56, 57, 58, 59, 59, 50, 51, 52, 54, 55, 56, 57, 58, 59, 59, 50, 51, 52, 54, 55,$ A_{11} (7; 22) ◇ A_{11} (224; -22): 7, 224, 29, 202, 51, 180, 73, 158, 95, 136, 117, 114, 139, 92, 161, 70, 183, 48, 205, 26, 227, 4 $A_{11}^{\prime}(8;22) \diamond A_{11}^{\prime}(223; -22)$: 8, 223, 30, 201, 52, 179, 74, 157, 96, 135, 118, 113, 140, 91, 162, 69, 184, 47, 206, 25, 228, 3 $\overline{A_{11}}(9;22) \diamond A_{11} (222;-22): 9,222,31,200,53,178,75,156,97,134,119,112,141,90,163,68,185,46,207,24,229,21)$ $A_{11}(10;22) \diamond A_{11}(221; -22)$: 10, 221, 32, 199, 54, 177, 76, 155, 98, 133, 120, 111, 142, 89, 164, 67, 186, 45, 208, 23, 230, 1

 $A_{10}(11; 22) \diamond A_{10}(220; -22)$: 11, 220, 33, 198, 55, 176, 77, 154, 99, 132, 121, 110, 143, 88, 165, 66, 187, 44, 209, 22 $A_{10}(12; 22) \diamond A_{10}(219; -22)$: 12, 219, 34, 197, 56, 175, 78, 153, 100, 131, 122, 109, 144, 87, 166, 65, 188, 43, 210, 21 A10(13; 22) ⋄ A10(218; −22): 13, 218, 35, 196, 57, 174, 79, 152, 101, 130, 123, 108, 145, 86, 167, 64, 189, 42, 211, 20 A10(14; 22) ⋄ A10(217; −22): 14, 217, 36, 195, 58, 173, 80, 151, 102, 129, 124, 107, 146, 85, 168, 63, 190, 41, 212, 19 $A_{10}(15; 22) \diamond A_{10}(216; -22)$: 15, 216, 37, 194, 59, 172, 81, 150, 103, 128, 125, 106, 147, 84, 169, 62, 191, 40, 213, 18 A10(16; 22) ⋄ A10(215; −22): 16, 215, 38, 193, 60, 171, 82, 149, 104, 127, 126, 105, 148, 83, 170, 61, 192, 39, 214, 17

Now the difference sets are $D_1 = A_5(-1, -2)$ and $D_2 = A_6(1, 2)$.

i) $t = 6$. So, $\theta_{12} = \theta(10, 12, 20^{[6]}, 22^{[4]})$. Initially, we use the first five sequences above to label the (u, v) -paths T_j and the last six sequences above to label the (u, v) -paths R_i . We then break T_5 into two parts such that the first 10 edges form the (u, v) -path Q_2 and the remaining 12 edges form the (u, v) -path Q_1 . Now, the induced vertex label for u is \sum 16 $j=6$ $j + 120 = 241$. Thus, $\delta(6) = 12$. So, we choose $B = \{1, 11\} \subset D_2$. Therefore, the actual assignment for each (u, v) -path is to label: T_1 by $A_{11}(6; 22) \diamond A_{11}(225; -22); T_2$ by $A_{11}(7; 22) \diamond A_{11}(224; -22); T_3$ by $A_{11}(8; 22) \diamond$ $\diamond A_{11}(223;-22); T_4$ by $A_{11}(9;22) \diamond A_{11}(222;-22);$ Q² by 10, 221, 32, 199, 54, 177, 76, 155, 98, 133; Q¹ by 120, 111, 142, 89, 164, 67, 186, 45, 208, 23, 230, 1; R_1 by the reverse of $A_{10}(11; 22) \diamond A_{10}(220; -22)$; R_2 by $A_{10}(12; 22) \diamond A_{10}(219; -22)$; R_3

by $A_{10}(13; 22) \diamond A_{10}(218; -22); R_4$ by $A_{10}(14; 22) \diamond A_{10}(217; -22); R_5$ by $A_{10}(15; 22) \diamond$ $\diamond A_{10}(216; -22); R_6$ by the reverse of $A_{10}(16; 22) \diamond A_{10}(215; -22)$. Thus,

$$
f^+(u) = 6 + 7 + 8 + 9 + 10 + 120 + 22 + 12 + 13 + 14 + 15 + 17 = 253.
$$

ii) $t = 7$. So, $\theta_{12} = \theta(8, 14, 20^{[6]}, 22^{[4]})$. Initially, we use the first five sequences above to label the (u, v) -paths T_j and the last six sequences above to label the (u, v) -paths R_i . We then break T_5 into two parts such that the first 8 edges form the (u, v) -path Q_2 and the remaining 14 edges form the (u, v) -path Q_1 . Now, the induced vertex label for u is \sum 16 $j=6$ $j + 98 = 219$. Thus, $\delta(7) = 34$. For this case, we do not have $B \subset D_2$. So, we choose $B = \{-1, 3, 5, 7, 9, 11\} \subset D_1 \cup D_2$. Thus the actual assignment for each (u, v) -path is to label: T_1 by the reverse of $A_{11}(6; 22) \diamond A_{11}(225; -22); T_2$ by $A_{11}(7; 22) \diamond A_{11}(224; -22); T_3$ by $A_{11}(8; 22) \diamond A_{11}(223; -22); T_4$ by $A_{11}(9; 22) \diamond A_{11}(222; -22);$ Q_2 by 10, 221, 32, 199, 54, 177, 76, 155; Q¹ by 98, 133, 120, 111, 142, 89, 164, 67, 186, 45, 208, 23, 230, 1; R_1 by the reverse of $A_{10}(11; 22) \diamond A_{10}(220; -22)$; R_2 by the reverse of $A_{10}(12; 22) \diamond$

 $A_{10}(219; -22)$; R_3 by the reverse of $A_{10}(13; 22) \diamond A_{10}(218; -22)$; R_4 by the reverse of

 $A_{10}(14; 22) \diamond A_{10}(217; -22); R_5$ by the reverse of $A_{10}(15; 22) \diamond A_{10}(216; -22); R_6$ by $A_{10}(16; 22) \diamond A_{10}(215; -22)$. Thus,

 $f^+(u) = 5 + 7 + 8 + 9 + 10 + 98 + 22 + 21 + 20 + 19 + 18 + 16 = 253.$

(b) The graph is $\theta_{12} = \theta(22 - 2t, 2t - 2, 20^{[5]}, 22^{[5]})$, where $t = 6, 7$. We begin with the following sequences that are the reverse of the initial sequences in Case (a): $A_{11}(1; 22) \diamond A_{11}(230; -22), A_{11}(2; 22) \diamond A_{11}(229; -22), A_{11}(3; 22) \diamond A_{11}(228; -22),$ $A_{11}(4;22) \diamond A_{11}(227;-22), A_{11}(5;22) \diamond A_{11}(226;-22), A_{10}(17;22) \diamond A_{10}(214;-22),$ $A_{10}(18; 22) \diamond A_{10}(213; -22), A_{10}(19; 22) \diamond A_{10}(212; -22), A_{10}(20; 22) \diamond A_{10}(211; -22),$ $A_{10}(21; 22) \diamond A_{10}(210; -22), A_{10}(22; 22) \diamond A_{10}(209; -22).$

Now, the difference sets are $D_1 = A_5(1; 2)$ and $D_2 = A_6(-1, -2)$.

i) $t = 6$. So $\theta_{12} = \theta(10, 10, 20^{5} \cdot 1, 22^{5})$. Initially, we use the first five sequences above to label the (u, v) -paths T_j and the last six sequences above to label the (u, v) -paths R_i . We then break R_6 into two parts such that the first 10 edges form the (u, v) -path Q_2 and the remaining 10 edges form the (u, v) -path Q_1 . Now, the induced vertex label of u is \sum 5 $j=1$ $j+\sum$ 22 $i=17$ $i + 132 = 264$. So, we choose $B = \{-9, -3, 1\} \subset D_1 \cup D_2$.

Thus the actual assignment for each (u, v) -path is to label:

 T_1 by $A_{11}(1; 22) \diamond A_{11}(230; -22)$; T_2 by $A_{11}(2; 22) \diamond A_{11}(229; -22)$; T_3 by $A_{11}(3; 22) \diamond$ $\diamond A_{11}(228; -22); T_4$ by $A_{11}(4; 22) \diamond A_{11}(227; -22); T_5$ by the reverse of $A_{11}(5; 22) \diamond$ $\diamond A_{11}(226; -22);$

 R_1 by $A_{10}(17; 22) \diamond A_{10}(214; -22); R_2$ by the reverse of $A_{10}(18; 22) \diamond A_{10}(213; -22); R_3$ by $A_{10}(19;22) \diamond A_{10}(212;-22)$; R_4 by $A_{10}(20;22) \diamond A_{10}(211;-22)$; R_5 by the reverse of $A_{10}(21; 22) \diamond A_{10}(210; -22);$

Q² by 22, 209, 44, 187, 66, 165, 88, 143, 110, 121; Q_1 by 132, 99, 154, 77, 176, 55, 198, 33, 220, 11. Thus,

$$
f^+(u) = 1 + 2 + 3 + 4 + 6 + 17 + 15 + 19 + 20 + 12 + 22 + 132 = 253.
$$

ii) $t = 7$. So $\theta_{12} = \theta(8, 12, 20^{5} \text{m})$. Initially, we use the first five sequences above to label the (u, v) -paths T_j and the last six sequences above to label the (u, v) -paths R_i . We then break R_6 into two parts such that the first 8 edges form the (u, v) -path Q_2 and the remaining 12 edges form the (u, v) -path Q_1 . Now, the induced vertex label of u is \sum 5 $j=1$ $j+\sum$ 22 $i=17$ $i + 110 = 242$. Now $\delta(6) = 11$. So, we may choose $B = \{1, 3, 7\}$. Thus the actual assignment for each (u, v) -path is to label: T_1 by $A_{11}(1; 22) \diamond A_{11}(230; -22)$; T_2 by the reverse of $A_{11}(2; 22) \diamond A_{11}(229; -22)$; T_3 by $A_{11}(3; 22) \diamond A_{11}(228; -22)$; T_4 by the reverse of $A_{11}(4; 22) \diamond A_{11}(227; -22)$; T_5 by

the reverse of $A_{11}(5; 22) \diamond A_{11}(226; -22);$

- R_1 by $A_{10}(17; 22) \diamond A_{10}(214; -22); R_2$ by $A_{10}(18; 22) \diamond A_{10}(213; -22);$
- R_3 by $A_{10}(19; 22) \diamond A_{10}(212; -22); R_4$ by $A_{10}(20; 22) \diamond A_{10}(211; -22);$
- R_5 by $A_{10}(21; 22) \diamond A_{10}(210; -22);$
- Q_2 by 22, 209, 44, 187, 66, 165, 88, 143;
- Q¹ by 110, 121, 132, 99, 154, 77, 176, 55, 198, 33, 220, 11.

Thus,

$$
f^+(u) = 1 + 9 + 3 + 7 + 6 + 17 + 18 + 19 + 20 + 21 + 22 + 110 = 253.
$$

■

Example 3.4. The aim of this example is to illustrate the construction showed in Case (3) and provide a local antimagic 2-coloring for the exceptional case $(l, t) = (3, 3)$. Let $s = 6$, i.e., $l = 3$. Now, $x = 45$ and $y = 55$. The sequences are $A_5(1; 10) \diamond A_5(44; -10)$: 1, 44, 11, 34, 21, 24, 31, 14, 41, 4

 $A_5(2; 10) \diamond A_5(43; -10)$: 2, 43, 12, 33, 22, 23, 32, 13, 42, 3 $A_4(5; 10) \diamond A_4(40; -10)$: 5, 40, 15, 30, 25, 20, 35, 10

 $A_4(6; 10) \diamond A_4(39; -10)$: 6, 39, 16, 29, 26, 19, 36, 9

- $A_4(7;10) \diamond A_4(38; -10)$: 7, 38, 17, 28, 27, 18, 37, 8
- (a) $t = l = 3$. So $\theta_6 = \theta(4, 6, 8^{[3]}, 10)$.

 (u, v) -path T_1 is labeled by 4, 41, 14, 31; 24, 21, 34, 11, 44, 1. So

 (u, v) -path Q_2 is labeled by 4, 41, 14, 31 and

 (u, v) -path Q_1 is labeled by 24, 21, 34, 11, 44, 1.

 (u, v) -path T_2 is labeled by 3, 42, 13, 32, 23, 22, 33, 12, 43, 2.

 (u, v) -path R_1 is labeled by 10, 35, 20, 25, 30, 15, 40, 5.

 (u, v) -path R_3 is labeled by 8, 37, 18, 27, 28, 17, 38, 7.

 (u, v) -path R_2 is labeled by 6, 39, 16, 29, 26, 19, 36, 9

Thus, $f^+(u) = 4 + 24 + 3 + 10 + 8 + 6 = 55$.

- (b) $t = l = 3$. So $\theta_6 = \theta(4, 4, 8^{[2]}, 10^{[2]})$.
	- (u, v) -path Q_2 is labeled by 8, 37, 18, 27.
	- (u, v) -path Q_1 is labeled by 28, 17, 38, 7.
	- (u, v) -path R_1 is labeled by 6, 39, 16, 29, 26, 19, 36, 9.
	- (u, v) -path R_2 is labeled by 10, 35, 20, 25, 30, 15, 40, 5.
	- (u, v) -path T_1 is labeled by 1, 44, 11, 34, 21, 24, 31, 14, 41, 4.
	- (u, v) -path T_2 is labeled by 2, 43, 12, 33, 22, 23, 32, 13, 42, 3.

Thus, $f^+(u) = 8 + 28 + 6 + 10 + 1 + 2 = 55$.

Example 3.5. The aim of this example is to illustrate the construction given in Case (4). Take s = 7 so that $\theta_7 = \theta(2t, 22-2t, 10, 22^{[4]}), 2 \le t \le 4$. We have $x = 121, y = 132$ and $y - x = 11$. $A_{11}(1; 11) \circ A_{11}(120; -11) = 1,120,12,109,23,98,34,87,45,76,56,65,67,54,78,43,89,32,100,21,111,10;$ $A_{11}(2;11) \diamond A_{11}(119;-11) = 2,119,13,108,24,97,35,86,46,75,57,64,68,53,79,42,90,31,101,20,112,9;$ [7] $A_{11}(3;11) \diamond A_{11}(118;-11) = 3,118,14,107,25,96,36,85,47,74,58,63,69,52,80,41,91,30,102,19,113,8;$ [5] $A_{11}(4;11) \diamond A_{11}(117;-11) = 4,117,15,106,26,95,37,84,48,73,59,62,70,51,81,40,92,29,103,18,114,7;$ [3] $A_{11}(5; 11) \diamond A_{11}(116; -11) = 5,116,16,105,27,94,38,83,49,72,60,61,71,50,82,39,93,28,104,17,115,6.$ [1] $A_5(66; 11) \diamond A_5(55; -11) = 66, 55, 77, 44, 88, 33, 99, 22, 110, 11 \leftarrow$ this sequence is for the (u, v) -path P. Note that $(s-3)^2 = 16$. The number with a bracket behind the sequence is the difference

between the last and the first terms. Hence, $D = \{1, 3, 5, 7\}$.

- 1. When $t = 4$. We have $\delta(4) = 6 < 16$. First, we separate $A_{11}(1; 11) \diamond A_{11}(120; -11)$ into two sequences: 1, 120, 12, 109, 23, 98, 34, 87; and 45, 76, 56, 65, 67, 54, 78, 43, 89, 32, 100, 21, 111, 10. Since $\delta(4) < 7$, by Lemma [2.2,](#page-1-3) we choose $B = \{1, 5\}$. So, we reverse the order of $A_{11}(5; 11) \diamond A_{11}(116; -11)$ and $A_{11}(3; 11) \diamond A_{11}(118; -11)$, i. e., the end-edge labels for u are $1, 45 = \gamma_1, 2, 8, 4, 6, 66.$
- 2. When $t = 3$. We have $\delta(3) = 17 > 16$ and $\delta^*(3) = -1$. We must use an ad hoc method which is shown in the proof.
- 3. When $t = 2$. We have $\delta(2) = 28 > 16$. $\delta^*(2) = 10 < 16$. First, we separate the reverse of $A_{11}(1; 11) \diamond A_{11}(120; -11)$ into two sequences: 10, 111, 21, 100; and 32, 89, 43, 78, 54, 67, 65, 56, 76 45, 87, 34, 98, 23, 109, 12, 120, 1. Since $\delta^*(2) = 10$, we choose $B = \{7, 3\}$. So, we reverse the order of $A_{11}(2; 11) \diamond A_{11}(119; -11)$ and $A_{11}(4; 11) \diamond A_{11}(117; -11)$, i.e., the end-edge labels for u are 10, $32 = \gamma_1$, 9, 3, 7, 5, 66.

§ 4. Conjecture and Open Problem

We have completely characterized s-bridge graphs θ_s with $\chi_{l}(\theta_s) = 2$. We note that the only other known results on s-bridge graphs are (i) $\chi_{la}(\theta(a, b)) = 3$ for $a, b \ge 1$ and $a + b \ge 3$; and (ii) $\theta(2^{[s]}) = 3$ for odd $s \geq 3$. We end with the following conjecture and open problem.

Conjecture 3. If θ_s is not a graph in Theorem [2.1,](#page-2-0) then $\chi_{la}(\theta_s) = 3$.

Problem 4.1. Characterize graph G with $\chi_{la}(G) = 2$.

REFERENCES

- 1. Arumugam S., Premalatha K., Bača M., Semaničová–Feňovčíková A. Local antimagic vertex coloring of a graph, *Graphs and Combinatorics*, 2017, vol. 33, issue 2, pp. 275–285. <https://doi.org/10.1007/s00373-017-1758-7>
- 2. Arumugam S., Lee Yi-Chun, Premalatha K., Wang Tao-Ming. On local antimagic vertex coloring for corona products of graphs, *arXiv: 1808.04956v1 [math.CO]*, 2018. <https://doi.org/10.48550/arXiv.1808.04956>
- 3. Hartsfield N., Ringel G. *Pearls in graph theory*, Boston: Academic Press, 1994.
- 4. Haslegrave J. Proof of a local antimagic conjecture, *Discrete Mathematics and Theoretical Computer Science*, 2018, vol. 20, no. 1. <https://doi.org/10.23638/DMTCS-20-1-18>
- 5. Lau Gee-Choon, Ng Ho-Kuen, Shiu Wai-Chee. Affirmative solutions on local antimagic chromatic number, *Graphs and Combinatorics*, 2020, vol. 36, issue 5, pp. 1337–1354. <https://doi.org/10.1007/s00373-020-02197-2>
- 6. Lau Gee-Choon, Shiu Wai-Chee, Ng Ho-Kuen. On local antimagic chromatic number of cycle-related join graphs, *Discussiones Mathematicae Graph Theory*, 2021, vol. 41, no. 1, pp. 133–152. <https://doi.org/10.7151/dmgt.2177>
- 7. Lau Gee-Choon, Shiu Wai-Chee, Ng Ho-Kuen. On local antimagic chromatic number of graphs with cut-vertices, *Iranian Journal of Mathematical Sciences and Informatics*, 2024, vol. 19, issue 1, pp. 1–17. <https://doi.org/10.61186/ijmsi.19.1.1>
- 8. Lau Gee-Choon, Shiu Wai-Chee, Ng Ho-Kuen. On number of pendants in local antimagic chromatic number, *Journal of Discrete Mathematical Sciences and Cryptography*, 2022, vol. 25, issue 8, pp. 2673–2682. <https://doi.org/10.1080/09720529.2021.1920190>
- 9. Lau Gee-Choon, Shiu Wai-Chee, Soo Chee-Xian. On local antimagic chromatic number of spider graphs, *Journal of Discrete Mathematical Sciences and Cryptography*, 2023, vol. 26, issue 2, pp. 303–339. <https://doi.org/10.1080/09720529.2021.1892270>

Received 05.03.2024 Accepted 13.07.2024

Gee-Choon Lau, College of Computing, Informatics and Mathematics, Universiti Teknologi MARA (Segamat Campus), Johor, 85000, Malaysia.

ORCID: <https://orcid.org/0000-0002-9777-6571> E-mail: geeclau@yahoo.com

Wai Chee Shiu, Department of Mathematics, The Chinese University of Hong Kong, Shatin, Hong Kong. E-mail: wcshiu@associate.hkbu.edu.hk

Movirichettiar Nalliah, Department of Mathematics, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India. ORCID: <https://orcid.org/0000-0002-3927-2607> E-mail: nalliahklu@gmail.com, nalliah.moviri@vit.ac.in

Ruixue Zhang, School of Mathematics and Statistics, Qingdao University, Qingdao, 266071, China. E-mail: rx.zhang87@qdu.edu.cn

Kanthavadivel Premalatha, Department of Mathematics, Sri Shakthi Institute of Engineering and Technology, Coimbatore, 641062, India. E-mail: premalatha.sep26@gmail.com

Citation: Gee-Choon Lau, Wai Chee Shiu, M. Nalliah, Ruixue Zhang, K. Premalatha. Complete characterization of bridge graphs with local antimagic chromatic number 2, *Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki*, 2024, vol. 34, issue 3, pp. [375](#page-0-0)[–396.](#page-20-0)

МАТЕМАТИКА 2024. Т. 34. Вып. 3. С. [375](#page-0-0)[–396.](#page-20-0)

Г.-Ч. Лау, В. Ч. Шиу, М. Наллиа, Ж. Чжан, К. Премалатха

Полная характеризация мостовых графов с локальным антимагическим хроматическим числом 2

Ключевые слова: локальная антимагическая разметка, локальное антимагическое хроматическое число, s-мостовые графы.

УДК 519.17

DOI: [10.35634/vm240305](https://doi.org/10.35634/vm240305)

Разметка ребер связного графа $G = (V, E)$ называется локальной антимагической, если она является биекцией $f: E \to \{1, \ldots, |E|\}$ такой, что для любой пары смежных вершин x и y выполнено $f^+(x) \neq f^+(y)$, где $f^+(x) = \sum f(e)$ — индуцированная метка вершины, а е пробегает все ребра, инцидентные x. Локальное антимагическое хроматическое число графа G, обозначаемое $\chi_{la}(G)$, это минимальное число различных индуцированных меток вершин среди всех локальных антимагических разметок G . В данной статье мы охарактеризуем s -мостовые графы с локальным антимагическим хроматическим числом 2.

СПИСОК ЛИТЕРАТУРЫ

- 1. Arumugam S., Premalatha K., Bača M., Semaničová–Feňovčíková A. Local antimagic vertex coloring of a graph // Graphs and Combinatorics. 2017. Vol. 33. Issue 2. P. 275–285. <https://doi.org/10.1007/s00373-017-1758-7>
- 2. Arumugam S., Lee Yi-Chun, Premalatha K., Wang Tao-Ming. On local antimagic vertex coloring for corona products of graphs // arXiv: 1808.04956v1 [math.CO]. 2018. <https://doi.org/10.48550/arXiv.1808.04956>
- 3. Hartsfield N., Ringel G. Pearls in graph theory. Boston: Academic Press, 1994.
- 4. Haslegrave J. Proof of a local antimagic conjecture // Discrete Mathematics and Theoretical Computer Science. 2018. Vol. 20. No. 1. <https://doi.org/10.23638/DMTCS-20-1-18>
- 5. Lau Gee-Choon, Ng Ho-Kuen, Shiu Wai-Chee. Affirmative solutions on local antimagic chromatic number // Graphs and Combinatorics. 2020. Vol. 36. Issue 5. P. 1337–1354. <https://doi.org/10.1007/s00373-020-02197-2>
- 6. Lau Gee-Choon, Shiu Wai-Chee, Ng Ho-Kuen. On local antimagic chromatic number of cycle-related join graphs // Discussiones Mathematicae Graph Theory. 2021. Vol. 41. No. 1. P. 133–152. <https://doi.org/10.7151/dmgt.2177>
- 7. Lau Gee-Choon, Shiu Wai-Chee, Ng Ho-Kuen. On local antimagic chromatic number of graphs with cut-vertices // Iranian Journal of Mathematical Sciences and Informatics. 2024. Vol. 19. Issue 1. P. 1–17. <https://doi.org/10.61186/ijmsi.19.1.1>
- 8. Lau Gee-Choon, Shiu Wai-Chee, Ng Ho-Kuen. On number of pendants in local antimagic chromatic number // Journal of Discrete Mathematical Sciences and Cryptography. 2022. Vol. 25. Issue 8. P. 2673–2682. <https://doi.org/10.1080/09720529.2021.1920190>
- 9. Lau Gee-Choon, Shiu Wai-Chee, Soo Chee-Xian. On local antimagic chromatic number of spider graphs // Journal of Discrete Mathematical Sciences and Cryptography. 2023. Vol. 26. Issue 2. P. 303–339. <https://doi.org/10.1080/09720529.2021.1892270>

Поступила в редакцию 05.03.2024 Принята к публикации 13.07.2024 Лау Ги-Чун, Колледж вычислительной техники, информатики и математики, Технологический университет МАРА (Кампус Сегамат), 85000, Малайзия, Джохор. ORCID: <https://orcid.org/0000-0002-9777-6571> E-mail: geeclau@yahoo.com

Шиу Вай Чи, Отделение математики, Китайский университет Гонконга, Гонконг, Шатин. E-mail: wcshiu@associate.hkbu.edu.hk

Наллиа Мовири Четтиар, кафедра математики, школа передовых наук, Веллорский технологический институт, 632014, Индия, Тамилнад, г. Веллор. ORCID: <https://orcid.org/0000-0002-3927-2607> E-mail: nalliahklu@gmail.com, nalliah.moviri@vit.ac.in

Чжан Жуйсюэ, Школа математики и статистики, Университет Циндао, 266071, Китай, г. Циндао. E-mail: rx.zhang87@qdu.edu.cn

Премалатха Кантавадивел, факультет математики, Инженерно-технологический институт Шри Шакти, 641062, Индия, г. Коимбатур. E-mail: premalatha.sep26@gmail.com

Цитирование: Г.-Ч. Лау, В. Ч. Шиу, М. Наллиа, Ж. Чжан, К. Премалатха. Полная характеризация мостовых графов с локальным антимагическим хроматическим числом 2 // Вестник Удмуртского университета. Математика. Механика. Компьютерные науки. 2024. Т. 34. Вып. 3. С. [375](#page-0-0)[–396.](#page-20-0)