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§ 1. Introduction

Let K = R or K = C; Kn := {x = col(x1, . . . , xn) : xi ∈ K, i = 1, n}; Mr,q(K) is a space

of r × q-matrices with elements of K, Mr(K) := Mr,r(K) (we will denote Mr,q := Mr,q(K),
Mr := Mr(K), if the set K is predefined); Ir ∈ Mr(K) is the identity matrix (we will omit the

index r in the matrix Ir when it does not cause confusion); J := {ϑij} ∈ Mr(K) where ϑij = 1
for j = i + 1 and ϑij = 0 for j 6= i + 1; SpA and χ(A, λ) are the trace and the characteristic

polynomial of a matrix A ∈Mr(K), respectively; A⊗B is the Kronecker product of matrices A
and B.

Consider a linear control system

ẋ = Fx+Gu, y = Hx. (1)

Here x ∈ Kn is a state vector, u ∈ Km is a control vector, y ∈ Kk is an output vector, F ∈Mn(K),
G ∈Mn,m(K), H ∈ Mk,n(K). Suppose that the control in system (1) has the form of linear static

output feedback (LSOF):

u = Qy. (2)

Here Q ∈Mm,k(K). The closed-loop system has the form

ẋ = (F +GQH)x, x ∈ K
n. (3)

If k = n and

H = I ∈Mn(K), (4)

then y = x, that is (2) is a linear static state feedback (LSSF) control

u = Qx, (5)

https://doi.org/10.35634/vm240303
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and the closed-loop system has the form

ẋ = (F +GQ)x, x ∈ K
n. (6)

The classical problem of eigenvalue spectrum assignment for system (1) by LSOF (2) (or by

LSSF (5)) is as follows. Let an arbitrary set σ = {λ1, . . . , λn} ⊂ C of numbers λ1, . . . , λn ∈ C

be given (if K = R, then the set σ should be a set of real type, that is invariant under the

complex conjugation operation). One needs to construct a gain matrix Q ∈ Mm,k(K) such that

the eigenvalue spectrum of the closed-loop system (3) coincides with the pregiven set σ. The

spectrum σ is one-to-one determined by the coefficients γi ∈ K, i = 1, n, of the characteristic

polynomial

χ(F +GQH, λ) = λn + γ1λ
n−1 + . . .+ γn−1λ+ γn (7)

of the matrix F + GQH of system (3). Therefore, the eigenvalue spectrum assignment problem

for system (1) by LSOF (2) is equivalent to the problem of assigning arbitrary coefficients of the

characteristic polynomial (7) in the following formulation.

Definition 1. It is said that, for system (1), the problem of arbitrary coefficient assignment (ACA)

for the characteristic polynomial (CP) by linear static output feedback (LSOF) is resolvable, if

for any γi ∈ K, i = 1, n, there exists a gain matrix Q ∈ Mm,k(K) such that the characteristic

polynomial χ(F +GQH, λ) of the matrix F +GQH of system (3) satisfies equality (7).

In partial case, when (4) is fulfilled and the closed-loop system has the form (6), it is said

that, for system (1), the problem of ACA for CP by LSSF is resolvable.

For system (1), the problem of ACA for CP by LSSF has been solved in [1] for K = C and

in [2] for K = R. The following proposition was proven.

Proposition 1. The following statements are equivalent.

1. rank [G,FG, . . . , F n−1G] = n.

2. For arbitrary γi ∈ K, i = 1, n, there exists Q ∈ Mm,n(K) such that the matrix F + GQ is

similar to the matrix

Φ =




0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
−γn −γn−1 −γn−2 . . . −γ1



. (8)

The matrix (8) is a companion matrix of the polynomial

ϕ(λ) = λn + γ1λ
n−1 + . . .+ γn−1λ+ γn.

The following equality holds: χ(Φ, λ) = ϕ(λ). A matrix of the form (8) is also called a lower

Frobenius matrix.

Remark 1. Note that, if some matrix A is similar to some lower Frobenius matrix (8) (i.e.,

A = SΦS−1 for some S ∈ Mn(K)), then this lower Frobenius matrix Φ is uniquely defined, that

is, if the matrix (8) is similar to another lower Frobenius matrix

Φ̃ =




0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
−γ̃n −γ̃n−1 −γ̃n−2 . . . −γ̃1



,

then Φ = Φ̃ (i. e., γi = γ̃i, i = 1, n).
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For system (1), the problem of ACA for CP by LSOF is much more difficult than by LSSF,

and it still does not have a complete constructive solution. The most essential results have been

obtained in [3–5]; see also reviews [6–8] and references in [9].

This work is devoted to the study of the above problem for systems of a more general form.

Let s ∈ N be given. Consider an input-output linear control system with block matrix coefficients

with s× s-blocks:

ẋ = Fx+Gu, y = Hx, (9)

F =



F11 . . . F1n
...

...

Fn1 . . . Fnn


, G =



G11 . . . G1m

...
...

Gn1 . . . Gnm


, H =



H11 . . . H1n

...
...

Hk1 . . . Hkn


. (10)

Here x ∈ Kns is a state vector, u ∈ Kms is a control vector, y ∈ Kks is an output vector;

Fij , Gjα, Hβi ∈ Ms(K), i, j = 1, n, α = 1, m, β = 1, k. Suppose that the control in system (9),

(10) is a LSOF control:

u = Qy. (11)

Here Q = {Qαβ} ∈ Mms,ks(K), Qαβ ∈ Ms(K), α = 1, m, β = 1, k. The closed-loop system has

the form

ẋ = (F +GQH)x, x ∈ K
ns. (12)

If k = n and

H = I ∈Mns(K), (13)

then y = x, that is (11) is a LSSF control

u = Qx,

and the closed-loop system has the form

ẋ = (F +GQ)x, x ∈ K
ns. (14)

We would like to study a generalization of the problem of assigning eigenvalue spectrum (or

problem of ACA for CP) by LSOF (or by LSSF) to block matrix systems. Here difficulties arise

already at the level of problem formulation. Let a matrix polynomial be given

Ψ(λ) = Iλn + Γ1λ
n−1 + . . .+ Γn−1λ+ Γn, I,Γi ∈Ms(K), i = 1, n. (15)

The question of what is called the roots of this equation is not clear-cut. There are roots, which

are called left solvents (Lj), and accordingly, right solvents (Rj) [10]. They satisfy equations

Ln
j + Ln−1

j Γ1 + Ln−2
j Γ2 + . . .+ LjΓn−1 + Γn = 0, j = 1, . . . , n,

and

Rn
j + Γ1R

n−1
j + Γ2R

n−2
j + . . .+ Γn−1Rj + Γn = 0, j = 1, . . . , n,

respectively, and Li 6= Rj , in general. The fundamental theorem of algebra for matrix polynomials

(15) does not hold. There exists a matrix polynomial with no solvents [11, Theorem 2.6], e.g.:

Ψ(λ) = Iλ2 − 2Iλ+ A, I ∈M2, A =

[
2 1
−1 0

]
.
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Conversely, there are matrices that cannot be solvents of any equation. More precisely [10,

Corollary 6.1], there exist sets containing n matrices which are not a set of left (or right) solvents

for any monic matrix polynomial of degree n. Example [10, Sect. 6]: n = 2, s = 2,

X1 =

[
2 0
−2 1

]
, X2 =

[
4 2
0 3

]
.

Thus, in contrast to the case s = 1, there is no bijection between the set σ of “roots” of the

polynomial (15) and the (ordered) set of (matrix) coefficients (Γ1, . . . ,Γn) of the polynomial (15).

Therefore, a question on generalizing the formulation of the problem of assigning eigenvalue

spectrum or problem of ACA for CP by LSOF (or by LSSF) to block matrix systems is not

evident.

An attempt to generalize the formulation of the problem of assigning coefficients of the

characteristic polynomial to block-matrix systems was made in [ZK–2024]1. It is based on the

property described in Proposition 1. Using polynomial (15), we construct the block companion

matrix Θ ∈ Mns(K) associated to this polynomial:

Θ =




0 I 0 . . . 0
0 0 I . . . 0
...

...
...

. . .
...

0 0 0 . . . I
−Γn −Γn−1 −Γn−2 . . . −Γ1



. (16)

We will call such a matrix a block lower Frobenius matrix. The following definition was given

in the paper [ZK–2024].

Definition 2. We say that, for system (9), (10), the problem of arbitrary matrix coefficient assign-

ment (AMCA) for the characteristic matrix polynomial (CMP) by linear static output feedback

(LSOF) is resolvable if for any Γi ∈ Ms(K), i = 1, n, there exists a gain matrix Q ∈ Mms,ks(K)
such that the closed-loop system (12) is reducible by some change of variables z = Sx to the

system

ż = Θz, z ∈ K
ns, (17)

with the matrix (16), that is the matrix F +GQH of the system (12) is similar to the matrix (16):

S(F + GQH)S−1 = Θ.

In partial case, when (13) is fulfilled and the closed-loop system has the form (14), it is said

that, for system (9), (10), the problem of AMCA for CMP by LSSF is resolvable.

If s = 1, then the problem of AMCA for CMP by LSOF (or by LSSF) formulated in Defini-

tion 2, due to Remark 1, is more general than the problem of ACA for CP by LSOF (or by LSSF)

formulated in Definition 1. So, we are considering a generalization of the problem of eigenvalue

spectrum assignment by LSOF (or by LSSF) to systems with block matrix coefficients.

Note that for s > 1 new difficulties arise, among other things. In particular, an analogue of

Remark 1 no longer holds. If some matrix A is similar to certain block lower Frobenius matrix

(16), this does not imply that this matrix Θ is uniquely defined. In other words, there exist block

lower Frobenius matrices Θ1,Θ2 ∈ Mns such that Θ1 ∼ Θ2 but Θ1 6= Θ2 (note that this cannot

happen if s = 1, by Remark 1). This is confirmed by the following example.

1[ZK–2024] Zaitsev V., Kim I. Arbitrary matrix coefficient assignment for block matrix linear control systems by

static output feedback, European Journal of Control, 2024. (Submitted 10 May 2024).



V. A. Zaitsev 343

Example 1. Let n = 2, s = 2. Consider

Θ1 =




0 0 1 0
0 0 0 1
−2 0 3 0
0 −12 0 7


, Θ2 =




0 0 1 0
0 0 0 1
−4 0 5 0
0 −6 0 5


.

The eigenvalues of the matrix Θ1 are λ1,2,3,4(Θ1) = {1, 2, 3, 4}. The eigenvalues of the matrix Θ2

are λ1,2,3,4(Θ2) = {1, 2, 3, 4}. All the eigenvalues are pairwise distinct. Hence, the matrices Θ1

and Θ2 are similar. �

The purpose of this work is a more detailed study of the property given in Definition 2.

§ 2. Main Results

In Definition 2, matrices Γi, i = 1, n, are arbitrary matrices from the matrix space Ms(K).
In Ms(K), consider the subspace UTs(K) ⊂ Ms(K) of the upper triangular matrices, the sub-

space LTs(K) ⊂ Ms(K) of the lower triangular matrices, and the subspace Ds(K) ⊂ Ms(K) of

the diagonal matrices. Let us give the following definitions similar to Definition 2.

Definition 3. We say that, for system (9), (10), the problem of

(a) arbitrary upper triangular matrix coefficient assignment (AUTMCA),

(b) arbitrary lower triangular matrix coefficient assignment (ALTMCA),

(c) arbitrary diagonal matrix coefficient assignment (ADMCA),

for CMP by LSOF is resolvable if

(a) for any Γi ∈ UTs(K), i = 1, n,

(b) for any Γi ∈ LTs(K), i = 1, n,

(c) for any Γi ∈ Ds(K), i = 1, n,

there exists a gain matrix Q ∈ Mms,ks(K) such that the closed-loop system (12) is reducible by

some change of variables z = Sx to the system (17) with the matrix (16), that is the matrix

F +GQH of the system (12) is similar to the matrix (16): S(F +GQH)S−1 = Θ.

In partial case, when (13) is fulfilled and the closed-loop system has the form (14), it is

said that, for system (9), (10), the problem of (a) AUTMCA (b) ALTMCA (c) ADMCA for CMP

by LSSF is resolvable.

The main problem that we explore in this work is the question on relationship between all

above definitions in Definitions 3 and 2. If s = 1, then, obviously, all these definitions are

equivalent between themselves (by LSOF or by LSSF, respectively). In the case when s > 1, this

problem has not been studied explicitly before. Obviously, the following implications hold:

AMCA ⇒ AUTMCA
⇓ ⇓

ALTMCA ⇒ ADMCA
(18)

The question arises about other implications in this diagram. We will give a partial answer to

this question.

Theorem 1. 1. For any matrix

Ω =




0 I 0 . . . 0
0 0 I . . . 0
...

...
...

. . .
...

0 0 0 . . . I
U1 U2 U3 . . . Un



, (19)



344 On arbitrary matrix coefficient assignment

where 0, I, Ui ∈ UTs(K), i = 1, n, there exists a non-degenerate matrix S ∈ Mns(K) such that

the matrix Ξ := SΩS−1 has the form

Ξ =




0 I 0 . . . 0
0 0 I . . . 0
...

...
...

. . .
...

0 0 0 . . . I
L1 L2 L3 . . . Ln



, (20)

where 0, I, Li ∈ LTs(K), i = 1, n.

2. Conversely, for any matrix (20), where 0, I, Li ∈ LTs(K), i = 1, n, there exists a

non-degenerate matrix S ∈ Mns(K) such that the matrix Ω := SΞS−1 has the form (19),

where 0, I, Ui ∈ UTs(K), i = 1, n.

Theorem 1 implies the following theorem.

Theorem 2. The following statements are equivalent.

1. For system (9), (10), the problem of ALTMCA for CMP by LSOF is resolvable.

2. For system (9), (10), the problem of AUTMCA for CMP by LSOF is resolvable.

So, the implications ALTMCA ⇐⇒ AUTMCA in the diagram (18) take place.

Next, the following theorem takes place.

Theorem 3. Let K = C, n = 2, and s = 2. For any matrix Θ of (16), where 0, I,Γi ∈ Ms(K),
i = 1, n, there exists a matrix Ω of (19), where 0, I, Ui ∈ UTs(K), i = 1, n, such that Ω ∼ Θ.

Theorem 3 implies the following theorem.

Theorem 4. Let K = C, n = 2, and s = 2. Suppose that, for system (9), (10), the problem of

AUTMCA for CMP by LSOF is resolvable. Then, for system (9), (10), the problem of AMCA for

CMP by LSOF is resolvable.

So, taking into account Theorem 2, the implications

ALTMCA =⇒ AMCA and AUTMCA =⇒ AMCA (21)

in the diagram (18) take place under the conditions that K = C, n = 2, and s = 2. We believe

that the statements of Theorem 3 and Theorem 4 are true, for K = C, for arbitrary n, s ∈ N. But

this hypothesis has not yet been proven for n > 2 or s > 2 and remains open.

Further, it turns out that the statement of Theorem 3 ceases to be true in the case when K = R,

for arbitrary s > 1 and n ∈ N.

Theorem 5. Let K = R and s > 1. Not for any matrix Θ of (16), where 0, I,Γi ∈ Ms(K),
i = 1, n, there exists a matrix Ω of (19), where 0, I, Ui ∈ UTs(K), i = 1, n, such that Ω ∼ Θ.

From Theorem 5, it follows that we cannot assert the truth of the implications (21) in the case

when K = R and s > 1 (although their falsity also does not yet follow from anywhere, since the

statement of Theorem 3 is sufficient but not necessary for the conclusion of Theorem 4).

Finally, the following statement is true for both cases K = C and K = R.
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Theorem 6. Let s > 1. Not for any matrix Ω of (19), where 0, I, Ui ∈ UTs(K), i = 1, n, there

exists a matrix

∆ =




0 I 0 . . . 0
0 0 I . . . 0
...

...
...

. . .
...

0 0 0 . . . I
R1 R2 R3 . . . Rn



, (22)

where 0, I, Ri ∈ Ds(K), i = 1, n, such that ∆ ∼ Ω.

From Theorem 6, it follows that we cannot assert the truth of the implications

ADMCA =⇒ ALTMCA and ADMCA =⇒ AUTMCA

in the diagram (18) for the case s > 1.

Remark 2. We conducted a study of the issue of implications in the diagram (18) only on the

basis of the type of matrices Γi in Definitions 3 and 2, but did not touch here on the type

of feedback (LSOF or LSSF) and other conditions on the feedback coefficients. For example,

if m = k = n and G = H = I ∈ Mns then all properties in the diagram (18) are equivalent to

each other. These questions will be the subject of other research.

§ 3. Proofs of Theorems 1 and 2

Lemma 1. For any matrix U ∈ UTs(K) there exist L ∈ LTs(K) and non-degenerate S ∈Ms(K)
such that L = SUS−1.

P r o o f. Let

U =




u11 u12 . . . u1s
0 u22 . . . u2s
...

...
. . .

...

0 0 . . . uss


.

Set

S :=




0 0 . . . 0 1
0 0 . . . 1 0
. . . . . . . . . . . . . . .
0 1 . . . 0 0
1 0 . . . 0 0



∈Ms(K). (23)

Then

SUS−1 =




uss 0 . . . 0
us−1,s us−1,s−1 . . . 0

...
...

. . .
...

u1s u1,s−1 . . . u11


.

�

P r o o f o f T h e o r e m 1. Let Ω have the form (19) where Ui ∈ UTs(K), i = 1, n.

Construct

S = diag {S, . . . , S} :=




S 0 . . . 0
0 S . . . 0
...

...
. . .

...

0 0 . . . S


 ∈Mns(K),
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where S ∈Ms(K) is defined by (23). Then

SΩS−1 =




0 I 0 . . . 0
0 0 I . . . 0
...

...
...

. . .
...

0 0 0 . . . I
SU1S

−1 SU2S
−1 SU3S

−1 . . . SUnS
−1



.

Denote Li := SUiS
−1, i = 1, n. Then, by Lemma 1, Li ∈ LTs(K), i = 1, n. So, the first part of

the theorem has been proven.

Carrying out the reasoning in Lemma 1 and in the first part of the proof of Theorem 1 in

reverse order, and taking into account that S−1 = S, we obtain the proof of the second part of the

theorem. �

P r o o f o f T h e o r e m 2. Suppose that, for system (9), (10), the problem

of ALTMCA for CMP by LSOF is resolvable. Let us prove that, for system (9), (10), the

problem of AUTMCA for CMP by LSOF is resolvable. Let a matrix Ω of (19) be given, where

Ui ∈ UTs(K), i = 1, n, are arbitrary. By Theorem 1, part 1, there exists a matrix S ∈ Mns(K)
such that the matrix Ξ := SΩS−1 has the form (20), where Li ∈ LTs(K), i = 1, n. For the ma-

trix Ξ, by the condition of the theorem, there exists a gain matrixQ ∈Mms,ks(K) such that the ma-

trix F+GQH of the system (12) is similar to the matrix Ξ, i. e., P (F+GQH)P−1 = Ξ, for some

P ∈Mns(K). Hence, P (F +GQH)P−1 = SΩS−1. It follows that S−1P (F +GQH)P−1S = Ω,

i. e., F +GQH is similar to Ω. This means that the problem of AUTMCA for CMP by LSOF
is resolvable. So, the implication 1 ⇒ 2 is proven. The implication 2 ⇒ 1 can be proved in a

similar way, using the second part of Theorem 1. �

§ 4. Proofs of Theorems 3 and 4

Let us prove Theorem 3. Let K = C, n = 2, and s = 2. One needs to prove the following

assertion: for any matrix

Θ =




0 0 1 0
0 0 0 1
θ31 θ32 θ33 θ34
θ41 θ42 θ43 θ44


, (24)

there exists a matrix

Ω =




0 0 1 0
0 0 0 1
ω31 ω32 ω33 ω34

0 ω42 0 ω44


 (25)

such that Ω ∼ Θ. We will prove this statement by brute force as follows. We will go through

all possible options for what elementary divisors the matrix Θ can have, and then, for the given

set of elementary divisors of the matrix Θ, we will build a matrix Ω of form (25), which has the

same set of elementary divisors. From here the similarity of the matrices Θ and Ω will follow.

Next, different letters will mean different numbers.

1. Elementary divisors: (λ− a), (λ− b), (λ− c), (λ− d).

Ω =




0 0 1 0
0 0 0 1

−ab 0 a+ b 0
0 −cd 0 c+ d


.
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2. Elementary divisors: (λ− a)2, (λ− b), (λ− c).

Ω =




0 0 1 0
0 0 0 1

−a2 0 2a 0
0 −bc 0 b+ c


.

3. Elementary divisors: (λ− a), (λ− a), (λ− b), (λ− c).

Ω =




0 0 1 0
0 0 0 1

−ab 0 a + b 0
0 −ac 0 a+ c


.

4. Elementary divisors: (λ− a)2, (λ− b)2.

Ω =




0 0 1 0
0 0 0 1

−a2 0 2a 0
0 −b2 0 2b


.

5. Elementary divisors: (λ− a)2, (λ− b), (λ− b).

Ω =




0 0 1 0
0 0 0 1

−ab −b a + b 1
0 −ab 0 a+ b


.

6. Elementary divisors: (λ− a), (λ− a), (λ− b), (λ− b).

Ω =




0 0 1 0
0 0 0 1

−ab 0 a + b 0
0 −ab 0 a+ b


.

7. Elementary divisors: (λ− a)3, (λ− b).

Ω =




0 0 1 0
0 0 0 1

−a2 1 2a 0
0 −ab 0 a+ b


.

8. Elementary divisors: (λ− a)2, (λ− a), (λ− b).

Ω =




0 0 1 0
0 0 0 1

−a2 0 2a 0
0 −ab 0 a+ b


.

9. Elementary divisors: (λ− a), (λ− a), (λ− a), (λ− b).

In fact, a matrix Θ of the form (24) cannot have such elementary divisors. Let us prove it by

contradiction. Let the matrix Θ have such elementary divisors. Then the matrix Θ is similar to
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the matrix

A =




a 0 0 0
0 a 0 0
0 0 a 0
0 0 0 b


.

Then Θ− aI ∼ A− aI . But rank (A− aI) = 1 while rank (Θ− aI) ≥ 2 since the first two rows

of the matrix (Θ− aI) are linearly independent. We have come to a contradiction.

10. Elementary divisors: (λ− a)4.

Ω =




0 0 1 0
0 0 0 1

−a2 1 2a 0
0 −a2 0 2a


.

11. Elementary divisors: (λ− a)3, (λ− a).

Ω =




0 0 1 0
0 0 0 1

−a2 −a 2a 1
0 −a2 0 2a


.

12. Elementary divisors: (λ− a)2, (λ− a)2.

Ω =




0 0 1 0
0 0 0 1

−a2 0 2a 0
0 −a2 0 2a


.

13. Elementary divisors: (λ− a)2, (λ− a), (λ− a).

In fact, a matrix Θ of the form (24) cannot have such elementary divisors. Let us prove it by

contradiction. Let the matrix Θ have such elementary divisors. Then the matrix Θ is similar to

the matrix

A =




a 1 0 0
0 a 0 0
0 0 a 0
0 0 0 a


.

Then Θ− aI ∼ A− aI . But rank (A− aI) = 1 while rank (Θ− aI) ≥ 2 since the first two rows

of the matrix (Θ− aI) are linearly independent. We have come to a contradiction.

14. Elementary divisors: (λ− a), (λ− a), (λ− a), (λ− a).

In fact, a matrix Θ of the form (24) cannot have such elementary divisors. Let us prove it by

contradiction. Let the matrix Θ have such elementary divisors. Then the matrix Θ is similar to

the matrix A = aI . Then Θ− aI ∼ A− aI = 0. But this is obviously false.

We went through all possible cases of elementary divisors of the matrix Θ. So, Theorem 3 is

proven. �

Theorem 4 obviously follows from Theorem 3 using arguments similar to the proof of Theo-

rem 2.
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§ 5. Proof of Theorem 5

We will carry out the proof from particular cases to the general case.

Case 1. Let s = 2 and n = 1. Set

N :=

[
0 −1
1 0

]
. (26)

Set Θ := N . It is clear that there is no real upper triangular 2× 2-matrix U such that U ∼ Θ.

Case 2. Let s = 2 and n = 2. Set

Θ :=

[
0 I
0 N

]
, 0, I, N ∈M2(R),

where N is defined by (26). The matrix Θ has the characteristic polynomial

χ(Θ, λ) = λ4 + λ2, (27)

and the eigenvalues λ1 = i, λ2 = −i, λ3 = λ4 = 0.
Let us prove that there is no matrix Ω of the form (25) with ωij ∈ R such that Ω ∼ Θ. Let

us prove it by contradiction. Suppose that there exists a matrix Ω of the form (25) with ωij ∈ R

such that Ω ∼ Θ. Then, in particular,

χ(Ω, λ) = χ(Θ, λ). (28)

We have rankΘ = 2, hence,

rankΩ = 2. (29)

From (29), it follows that

ω31 = 0, ω32 = 0, ω42 = 0. (30)

Further, the following equality holds:

SpΩ = SpΘ = 0. (31)

From (31), it follows that

ω33 = −ω44. (32)

From (30) and (32), it follows that

χ(Ω, λ) = λ4 − ω2
44λ

2. (33)

From (27), (28), and (33), it follows that ω2
44 = −1. This contradicts the fact that ω44 is real.

Case 3. Let s = 2 and n = 3. Set

Θ :=




0 I 0
0 0 I
0 0 N



, 0, I, N ∈M2(R),

where N is defined by (26). The matrix Θ has the characteristic polynomial

χ(Θ, λ) = λ6 + λ4, (34)

and the eigenvalues λ1 = i, λ2 = −i, λ3,4,5,6 = 0.
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Let us prove that there is no matrix

Ω =



0 I 0
0 0 I
Ω1 Ω2 Ω3


, 0, I,Ωi ∈ UT2(R), i = 1, 3, (35)

such that Ω ∼ Θ. Let us prove it by contradiction. Suppose that there exists a matrix Ω of the

form (35) such that

Ω ∼ Θ. (36)

Then, in particular,

χ(Ω, λ) = χ(Θ, λ). (37)

From (36), it follows that Ω2 ∼ Θ2. We have

Θ2 =



0 0 I
0 0 N
0 0 N2


.

Hence, rankΘ2 = 2. Therefore,

rankΩ2 = 2 (38)

as well. We have

Ω2 =



0 0 I
Ω1 Ω2 Ω3

∗ ∗ ∗


. (39)

From (38) and (39) it follows that

Ω1 = Ω2 = 0 ∈ M2(R). (40)

From (35) and (40), it follows that

Ω =




0 I 0
0 0 I
0 0 Ω3



, Ω3 =

[
ω55 ω56

0 ω66

]
. (41)

Further, the following equality holds:

SpΩ = SpΘ = 0. (42)

From (42), it follows that

ω55 = −ω66. (43)

From (41) and (43), it follows that

χ(Ω, λ) = λ6 − ω2
66λ

4. (44)

From (34), (37), and (44), it follows that ω2
66 = −1. This contradicts the fact that ω66 is real.

Case 4. Let s = 2 and n > 3. Set

Θ :=




0 I 0 . . . 0
0 0 I . . . 0
...

...
...

. . .
...

0 0 0 . . . I
0 0 0 . . . N



∈M2n(R), 0, I, N ∈M2(R),
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where N is defined by (26). The matrix Θ has the characteristic polynomial

χ(Θ, λ) = λ2n + λ2(n−1), (45)

and the eigenvalues λ1 = i, λ2 = −i, λ3 = . . . = λ2n = 0.
Let us prove that there is no matrix

Ω =




0 I 0 . . . 0
0 0 I . . . 0
...

...
...

. . .
...

0 0 0 . . . I
Ω1 Ω2 Ω3 . . . Ωn



, 0, I,Ωi ∈ UT2(R), i = 1, n, (46)

such that Ω ∼ Θ. Let us prove it by contradiction. Suppose that there exists a matrix Ω of the

form (46) such that

Ω ∼ Θ. (47)

Then, in particular,

χ(Ω, λ) = χ(Θ, λ). (48)

From (47), it follows that Ωn−1 ∼ Θn−1. We have

Θn−1 =




0 . . . 0 I
0 . . . 0 N
...

...
...

0 . . . 0 ∗


.

Hence, rankΘn−1 = 2. Therefore,

rankΩn−1 = 2 (49)

as well. We have

Ωn−1 =




0 . . . 0 I
Ω1 . . . Ωn−1 Ωn

∗ . . . ∗ ∗
...

...
...

∗ . . . ∗ ∗



. (50)

From (49) and (50) it follows that

Ω1 = . . . = Ωn−1 = 0 ∈M2(R). (51)

From (46) and (51), it follows that

Ω =




0 I 0 . . . 0
0 0 I . . . 0
...

...
...

. . .
...

0 0 0 . . . I
0 0 0 . . . Ωn



, Ωn =

[
ω2n−1,2n−1 ω2n−1,2n

0 ω2n,2n

]
. (52)

Further, the following equality holds:

SpΩ = SpΘ = 0. (53)
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From (53), it follows that

ω2n−1,2n−1 = −ω2n,2n. (54)

From (52) and (54), it follows that

χ(Ω, λ) = λ2n − ω2
2n,2nλ

2n−2. (55)

From (45), (48), and (55), it follows that ω2
2n,2n = −1. This contradicts the fact that ω2n,2n is real.

Case 5. Let s > 2 and n ∈ N. Set N := diag{0, . . . , 0︸ ︷︷ ︸
s−2

, N} ∈ Ms(R) where N is defined

by (26), and set

Θ :=




0 I 0 . . . 0
0 0 I . . . 0
...

...
...

. . .
...

0 0 0 . . . I
0 0 0 . . . N



∈Mns(R), 0, I,N ∈Ms(R). (56)

Then, carrying out the proof similarly to Case 4, it can be shown that there is no matrix Ω of

the form (19), where 0, I, Ui ∈ UTs(K), i = 1, n, such that Ω is similar to (56). �

§ 6. Proof of Theorem 6

Let n = 1. We set Ω := U1 := aI + J ∈ UTs(K) where I, J ∈ Ms(K) and a ∈ K. It is

well known that there is no matrix R1 ∈ Ds(K) such that R1 ∼ U1. In fact, if R1 ∼ U1, then

χ(R1, λ) = χ(U1, λ) = (λ−a)s, hence, R1 = aI , but aI 6∼ U1 since s > 1. We will use the same

idea for arbitrary n ∈ N.

Let n > 1 and s > 1. Let us construct the matrix Ω of the form (19) where

Un = naI, Un−1 = −Cn−2
n a2I, Un−2 = Cn−3

n a3I, . . . , U2 = (−1)n−2C1
na

n−1I,

U1 = (−1)n−1anI + J, I, J ∈Ms(K), a ∈ K.
(57)

Then Ui ∈ UTs(K). Let us calculate χ(Ω, λ). By [12, Theorem 1.1], we have

det(λIns − Ω) = det[λnIs − Unλ
n−1 − Un−1λ

n−2 − . . .− U1]. (58)

By (57), we obtain that

[λnIs−Unλ
n−1−Un−1λ

n−2−. . .−U1] =




(λ− a)n −1 . . . 0 0

0 (λ− a)n
. . . 0 0

...
...

. . .
. . .

...

0 0 . . . (λ− a)n −1
0 0 . . . 0 (λ− a)n



. (59)

So, from (58) and (59), it follows that χ(Ω, λ) = (λ − a)ns. Thus, all the eigenvalues of the

matrix Ω are equal to a. Construct the matrix Ω− aIns. It can be seen that the minor consisting

of the first ns − 1 rows and last ns − 1 columns of the matrix Ω − aIns is not equal to zero,

i. e., rank (Ω − aIns) = ns − 1. This means that the matrix Ω has only one elementary divisor

(λ− a)ns and

Ω ∼ aI + J, I, J ∈Mns(K).
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Let us show that there is no matrix ∆ of the form (22) where Ri ∈ Ds(K), i = 1, n, such

that ∆ ∼ Ω. Let us prove it by contradiction. Suppose that there exists a matrix ∆ of the

form (22) where
R1 = diag {r11, . . . , r1s},

. . . . . . . . . . . . . . . . . . . . . . . .

Rn = diag {rn1, . . . , rns},

(60)

such that ∆ ∼ Ω. Taking into account (60), we get

det(λIns−∆) = det[λnIs−Rnλ
n−1−Rn−1λ

n−2−. . .−R1] = det[diag {q1(λ), . . . , qs(λ)}] (61)

where
q1(λ) = λn − rn1λ

n−1 − . . .− r21λ− r11,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

qs(λ) = λn − rnsλ
n−1 − . . .− r2sλ− r1s.

(62)

Since ∆ ∼ Ω, we get χ(∆, λ) = χ(Ω, λ) = (λ − a)ns. Hence, from (61), it follows that
s∏

j=1

qj(λ) = (λ− a)ns. Hence, qj(λ) = (λ− a)n, j = 1, s. From this, by (62), it follows that

rij = (−1)n−iCn+1−i
n an+1−i, i = 1, n,

for all j = 1, s. Thus, the matrices (60) are scalar matrices and

Rn = naI, Rn−1 = −C2
na

2I, Rn−2 = C3
na

3I, . . . ,

R2 = (−1)n−2Cn−1
n an−1I, R1 = (−1)n−1anI, I, J ∈Ms(K).

(63)

In particular, Ri = Ui, i = 2, n. From (63), it follows that ∆ =W ⊗ I where I ∈Ms(K) and

W =




0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
−(−a)n −(−a)n−1n −(−a)n−2n(n− 1)/2 . . . na



.

The matrix W has the elementary divisor (λ − a)n and W ∼ aI + J , I, J ∈ Mn(K). Hence,

∆ = W ⊗Is ∼ (aIn+J)⊗Is, and, therefore, ∆ has s elementary divisors (λ−a)n, . . . , (λ−a)n.

We get that the set of elementary divisors of the matrix ∆ does not coincide with the set of

elementary divisors of the matrix Ω (since s > 1). This contradicts the fact that these matrices

are similar. We have come to a contradiction. Thus, the theorem is proven. �

§ 7. On simultaneous assignment of spectrum eigenvalues and eigenvectors

In conclusion, we present one property that systems with AMCA have. The property of

AMCA was studied in [9] partially (there it was called as AMESA: this name is not completely

accurate, see [ZK–2024]). Suppose that, for system (9), (10), the problem of AMCA for CMP

by LSOF (or by LSSF) is resolvable. Then, for any Γi ∈ Ms(K), i = 1, n, there exists a gain

matrix Q ∈ Mms,ks(K) such that the closed-loop system (12) is reducible by some change of

variables z = Sx to the system (17) with the matrix (16). The system (17) with the matrix (16)

is equivalent to the differential equation of nth order in the space Ks:

X (n) + Γ1X
(n−1) + . . .+ ΓnX = 0, X ∈ K

s. (64)
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The AMCA property allows us to assign coefficients of the matrices Γi, i = 1, n. In particular,

this allows us to assign arbitrary modes (corresponding to eigenvalues) to solutions of differen-

tial equation (64) and simultaneously assign eigenvectors with a high degree of freedom. The

following theorem was proven [9, Theorem 11].

Theorem 7. For any different λξ ∈ R, ξ = 1, ns, and for any linear independent vectors

h1, . . . , hs ∈ Rs there exist matrices Γj ∈ Ms(R), j = 1, n, such that the general solution of

system (64) has the form

X (t) = C1h1 exp(λ1t) + C2h2 exp(λ2t) + . . .+ Cshs exp(λst)

+ Cs+1h1 exp(λs+1t) + . . .+ C2shs exp(λ2st) + . . .

+ C(n−1)s+1h1 exp(λ(n−1)s+1t) + . . .+ Cnshs exp(λnst).

In [9, Remark 16], it was noted that the condition of [9, Theorem 11] that all λξ are different

can be weakened. We will prove this statement here. Moreover, we assume here that λξ ∈ K

where K = R or K = C (and not only K = R).

Lemma 2. Let Ω = (λ1, λ2, . . . , λns) be an ordered list of ns numbers λξ ∈ K such that not all λξ
are necessarily different, but the multiplicity (that is, the number of repetitions) of each number

in the list Ω does not exceed s. Then these numbers can be placed in the matrix Φ = {φij},

i = 1, . . . , n, j = 1, . . . , s, in such a way that no column contains two identical numbers, that is,

φij = φνµ ⇒ j 6= µ.

P r o o f. We renumber the elements λξ of Ω as follows. Among the numbers of the list Ω, we

select the number with the greatest multiplicity i1 ≤ s. Denote these numbers as λ′1 = λ′2 =
. . . = λ′i1 with the indices from 1 to i1. Next, among the remaining numbers of the list Ω,

we select the number with the greatest multiplicity i2 (i2 ≤ i1 ≤ s). Denote these numbers as

λ′i1+1 = . . . = λ′i1+i2
. And so on. We obtain the ordered list

Ω′ = (λ′1, . . . , λ
′

i1
, λ′i1+1, . . . , λ

′

i1+i2
, . . . , λ′i1+i2+...+ik

),

ik ≤ . . . ≤ i2 ≤ i1 ≤ s. (65)

Let’s place the list Ω′ into the matrix Φ as follows: we place the elements of the list Ω′ in order

into the first row of the matrix Φ; then, when we reach the end of the first row of the matrix

Φ, we move to the second row of the matrix Φ, and place the subsequent elements of the list Ω′

in order into the second row of the matrix Φ; and so on, reaching the end of the jth row of the

matrix Φ, we move to the next row. By doing this, we will place all the elements of the list Ω′

into the matrix Φ in such a way that

Ω′ = (φ11, φ12, . . . , φ1s, φ21, . . . , φ2s, . . . , φn1, . . . , φns).

This placement method will ensure that the required condition is met. Indeed, the equality of two

elements of one column would mean that the multiplicity of this number is greater than s, and

this contradicts with (65). �

Let an arbitrary set of linear independent vectors h1, . . . , hs ∈ Ks be given. Let an arbitrary

ordered list Ω = (λ1, λ2, . . . , λns) of ns numbers λξ ∈ K be given such that the multiplicity of

each number in the list Ω does not exceed s. Let us renumber the list Ω according to Lemma 2

into the list Ω′ and denote it again by Ω (in this case we will say that the list Ω is ordered

according to Lemma 2). Let us construct the following vector functions:

ψ1,1(t) = h1 exp(λ1t), ψ1,2(t) = h2 exp(λ2t), ψ1,s(t) = hs exp(λst),

ψ2,1(t) = h1 exp(λs+1t), ψ2,2(t) = h2 exp(λs+2t), ψ2,s(t) = hs exp(λ2st),

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ,

ψn,1(t) = h1 exp(λ(n−1)s+1t), ψn,2(t) = h2 exp(λ(n−1)s+2t), ψn,s(t) = hs exp(λnst).

(66)
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From the construction, it follows obviously that the vector functions (66) are linearly independent.

The following theorem takes place.

Theorem 8. For any linear independent vectors h1, . . . , hs ∈ Ks, and for any λξ ∈ K, ξ = 1, ns,
such that the vector functions (66) are linearly independent, there exist matrices Γj ∈ Ms(R),
j = 1, n, such that the general solution of system (64) has the form

X (t) =

n∑

j=1

s∑

i=1

Cj,iψj,i(t) (67)

where ψj,i(t) are defined by (66).

The proof of Theorem 8 repeats the proof of Theorem 7 (see [9, Theorem 11]) up to the last

paragraph of the proof. Further, distinctness of λξ is not assumed, but linear independence of (67)

is assumed.

Theorem 9. For any linear independent vectors h1, . . . , hs ∈ K
s, and for an arbitrary list Ω =

= (λ1, λ2, . . . , λns) of ns numbers λξ ∈ K (such that the multiplicity of each number in the list Ω
does not exceed s) that is ordered according to Lemma 2, there exist matrices Γj ∈ Ms(R),
j = 1, n, such that the general solution of system (64) has the form (67) where ψj,i(t) are defined

by (66).

The proof of Theorem 9 follows from Theorem 8 and the fact that if the list Ω is ordered

according to Lemma 2, then the functions (66) are linearly independent.
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О назначении произвольных матричных коэффициентов для характеристического матрично-

го многочлена блочных матричных линейных систем управления
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чений, линейная статическая обратная связь, блочная матричная система.

УДК 517.977

DOI: 10.35634/vm240303

Для блочных матричных линейных систем управления изучается свойство, обеспечивающее на-

значение произвольных матричных коэффициентов для характеристического матричного полинома.

Это свойство является обобщением свойства назначаемости спектра собственных значений или на-

значаемости произвольных коэффициентов характеристического полинома, от систем с блочными

матрицами со скалярными блоками (s = 1) на системы с блочными матрицами с блоками более

высоких размерностей (s > 1). По сравнению со скалярным случаем (s = 1) в блочных случаях

более высоких размерностей (s > 1) появляются новые особенности, отсутствующие в скалярном

случае. Вводятся новые свойства, обеспечивающие назначение произвольных (верхнетреугольных,

нижнетреугольных, диагональных) матричных коэффициентов для характеристического матричного

полинома. В скалярном случае все описанные свойства эквивалентны друг другу, однако в блоч-

ных случаях более высоких размерностей это не так. Устанавливаются импликации между этими

свойствами.

Финансирование. Исследование выполнено за счет гранта Российского научного фонда № 24–21–

00311, https://rscf.ru/project/24-21-00311/.
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