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§ 1. Introduction

Let K=RorK=C; K":= {z = col(zy,...,2,) : i €K, i = 1,n}; M,,(K) is a space
of r x g-matrices with elements of K, M, (K) := M, ,(K) (we will denote M, , := M, ,(K),
M, = M,(K), if the set K is predefined); I, € M,(K) is the identity matrix (we will omit the
index r in the matrix . when it does not cause confusion); J := {v;;} € M, (K) where 9;; = 1
for j =i+ 1and ¥;; =0 for j # i+ 1; SpA and x(A, \) are the trace and the characteristic
polynomial of a matrix A € M, (K), respectively; A ® B is the Kronecker product of matrices A
and B.

Consider a linear control system

*=Fr+Gu, y=Huz. (1)

Here x € K" is a state vector, u € K™ is a control vector, y € K* is an output vector, F' € M, (K),
G € M, .(K), H € My, (K). Suppose that the control in system (1) has the form of linear static
output feedback (LSOF):

u=Qy. )
Here () € M,, »(K). The closed-loop system has the form
i=(F+GQH)z, z¢cK" 3)
If k=nand
H=1¢€¢ M,(K), 4)

then y = x, that is (2) is a linear static state feedback (LSSF) control

u = Qu, (5
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and the closed-loop system has the form
t=(F+GQ)xr, zeK" (6)

The classical problem of eigenvalue spectrum assignment for system (1) by LSOF (2) (or by
LSSF (5)) is as follows. Let an arbitrary set 0 = {\{,..., \,} C C of numbers \{,...,\, € C
be given (if K = R, then the set o should be a set of real type, that is invariant under the
complex conjugation operation). One needs to construct a gain matrix ) € M,, ,(K) such that
the eigenvalue spectrum of the closed-loop system (3) coincides with the pregiven set 0. The
spectrum o is one-to-one determined by the coefficients v; € K, i = 1,n, of the characteristic
polynomial

X(E+GQH N = A"+ v A" v A+ (7

of the matrix F' + GQH of system (3). Therefore, the eigenvalue spectrum assignment problem
for system (1) by LSOF (2) is equivalent to the problem of assigning arbitrary coefficients of the
characteristic polynomial (7) in the following formulation.

Definition 1. It is said that, for system (1), the problem of arbitrary coefficient assignment (ACA)
for the characteristic polynomial (CP) by linear static output feedback (LSOF) is resolvable, if
for any 7; € K, ¢ = 1,n, there exists a gain matrix () € M,, ;(K) such that the characteristic
polynomial y(F + GQH, \) of the matrix F'+ GQH of system (3) satisfies equality (7).

In partial case, when (4) is fulfilled and the closed-loop system has the form (6), it is said
that, for system (1), the problem of ACA for CP by LSSF is resolvable.

For system (1), the problem of ACA for CP by LSSF has been solved in [1] for K = C and
in [2] for K = R. The following proposition was proven.

Proposition 1. The following statements are equivalent.

1. rank [G, FG, ..., F""'G] =n.

2. For arbitrary v; € K, i = 1, n, there exists Q € M,, ,,(K) such that the matrix F + GQ is
similar to the matrix

0 1 0 ... 0
0 0 1 ... 0
= : ST P (8)
0 0 0 o1
| =T —Vn-1 —n-2 --- T

The matrix (8) is a companion matrix of the polynomial
P(A) = A"+ 1A+ A+ e

The following equality holds: x(®,\) = ¢(A). A matrix of the form (8) is also called a lower
Frobenius matrix.

Remark 1. Note that, if some matrix A is similar to some lower Frobenius matrix (8) (i.e.,
A= 8S®S™! for some S € M, (K)), then this lower Frobenius matrix ® is uniquely defined, that
is, if the matrix (8) is similar to another lower Frobenius matrix

[0 1 0 0
0 0 1 0
b = : : : :
0 0 0 1
=Y —Vn-1 —Vn-2 M|

then ® = ® (i.e., v = 31, i = 1, n).
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For system (1), the problem of ACA for CP by LSOF is much more difficult than by LSSF,
and it still does not have a complete constructive solution. The most essential results have been
obtained in [3-5]; see also reviews [6—8] and references in [9].

This work is devoted to the study of the above problem for systems of a more general form.
Let s € N be given. Consider an input-output linear control system with block matrix coefficients
with s x s-blocks:

t=Fr+Gu, y=Hz, 9)
F11 Fln G11 Glm H11 Hln
F=1": L, G= s H=| e (10)
Fnl an Gnl Gnm Hkl Hkn

Here x € K™ is a state vector, v € K™ is a con_trol vector, y € K** is an output vector;
Fij,Gjo, Hg € Ms(K), 1,7 = 1,n, « = 1,m, B = 1, k. Suppose that the control in system (9),
(10) is a LSOF control:

u = Quy. (11)

Here Q = {Qap} € Mpsis(K), Qus € My(K), « = 1,m, 8 = 1, k. The closed-loop system has
the form
i = (F+GQH)z, zeK™, (12)

If K =n and
H=1¢ Mns(K)v (13)

then y = x, that is (11) is a LSSF control
u = Qux,
and the closed-loop system has the form
t=(F+GQ)x, zeK™. (14)

We would like to study a generalization of the problem of assigning eigenvalue spectrum (or
problem of ACA for CP) by LSOF (or by LSSF) to block matrix systems. Here difficulties arise
already at the level of problem formulation. Let a matrix polynomial be given

UA) =N+ T A" . 4T A+T,, I,T;€MJ(K), i=Tn. (15)

The question of what is called the roots of this equation is not clear-cut. There are roots, which
are called left solvents (L;), and accordingly, right solvents (R;) [10]. They satisfy equations

LY+ L D+ LT+ + LD, + T, =0, j=1,...,n,

and
R} 4+ TR+ THR 2+ 4+ Ry+ 10, =0, j=1,...,n,

respectively, and L; # R;, in general. The fundamental theorem of algebra for matrix polynomials
(15) does not hold. There exists a matrix polynomial with no solvents [11, Theorem 2.6], e.g.:

WA\ =IN—2IN+ A, €M, A:{_Ql (ﬂ
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Conversely, there are matrices that cannot be solvents of any equation. More precisely [10,
Corollary 6.1], there exist sets containing n matrices which are not a set of left (or right) solvents
for any monic matrix polynomial of degree n. Example [10, Sect.6]: n = 2, s = 2,

2 0 42
X_LQJ’&_b3}

Thus, in contrast to the case s = 1, there is no bijection between the set o of “roots” of the
polynomial (15) and the (ordered) set of (matrix) coefficients (I';, ..., T",) of the polynomial (15).
Therefore, a question on generalizing the formulation of the problem of assigning eigenvalue
spectrum or problem of ACA for CP by LSOF (or by LSSF) to block matrix systems is not
evident.

An attempt to generalize the formulation of the problem of assigning coefficients of the
characteristic polynomial to block-matrix systems was made in [ZK-2024]'. It is based on the
property described in Proposition 1. Using polynomial (15), we construct the block companion
matrix © € M,,,(K) associated to this polynomial:

0 I 0 ... 0
0 0 I ... 0

O=1: : S (16)
0 0 0 ... I
T, T,o1 —Tho ... -Ty

We will call such a matrix a block lower Frobenius matrix. The following definition was given
in the paper [ZK-2024].

Definition 2. We say that, for system (9), (10), the problem of arbitrary matrix coefficient assign-
ment (AMCA) for the characteristic matrix polynomial (CMP) by linear static output feedback
(LSOF) is resolvable if for any T'; € M,(K), i = 1,n, there exists a gain matrix Q € M, xs(K)
such that the closed-loop system (12) is reducible by some change of variables z = Sz to the
system

2 =0z 2zeK"™, (17)

with the matrix (16), that is the matrix F'+ GQ H of the system (12) is similar to the matrix (16):
S(F+GQH)S ! =0.

In partial case, when (13) is fulfilled and the closed-loop system has the form (14), it is said
that, for system (9), (10), the problem of AMCA for CMP by LSSF is resolvable.

If s = 1, then the problem of AMCA for CMP by LSOF (or by LSSF) formulated in Defini-
tion 2, due to Remark 1, is more general than the problem of ACA for CP by LSOF (or by LSSF)
formulated in Definition 1. So, we are considering a generalization of the problem of eigenvalue
spectrum assignment by LSOF (or by LSSF) to systems with block matrix coefficients.

Note that for s > 1 new difficulties arise, among other things. In particular, an analogue of
Remark 1 no longer holds. If some matrix A is similar to certain block lower Frobenius matrix
(16), this does not imply that this matrix © is uniquely defined. In other words, there exist block
lower Frobenius matrices ©1, 0, € M, such that ©; ~ O, but ©; # O, (note that this cannot
happen if s = 1, by Remark 1). This is confirmed by the following example.

1[ZK-2024] Zaitsev V., Kim 1. Arbitrary matrix coefficient assignment for block matrix linear control systems by
static output feedback, European Journal of Control, 2024. (Submitted 10 May 2024).



V. A. Zaitsev 343

Example 1. Let n = 2, s = 2. Consider

0 0 10 0 0 10
0O 0 01 0 0 0 1
O1=159 ¢ 3 o|’ ©:2=1_4 o 50
0 —12 0 7 0 -6 0 5

The eigenvalues of the matrix ©; are Ay 234(0;1) = {1, 2,3, 4}. The eigenvalues of the matrix O,
are A\1234(02) = {1,2,3,4}. All the eigenvalues are pairwise distinct. Hence, the matrices ©,
and ©, are similar. O

The purpose of this work is a more detailed study of the property given in Definition 2.

§ 2. Main Results

In Definition 2, matrices T';, i = 1, n, are arbitrary matrices from the matrix space M,(K).
In M, (K), consider the subspace UT,(K) C M,(K) of the upper triangular matrices, the sub-
space LT, (K) C M,(K) of the lower triangular matrices, and the subspace D(K) C M (K) of
the diagonal matrices. Let us give the following definitions similar to Definition 2.

Definition 3. We say that, for system (9), (10), the problem of

(a) arbitrary upper triangular matrix coefficient assignment (AUTMCA),

(b) arbitrary lower triangular matrix coefficient assignment (ALTMCA),

(c) arbitrary diagonal matrix coefficient assignment (ADMCA),
for CMP by LSOF is resolvable if

(a) for any I'; € UTs(K), i = 1,n,

(b) for any I'; € LT,(K), i = 1,n,

(c) forany I'; € Ds(K), i = 1,n,
there exists a gain matrix ) € M, 1s(K) such that the closed-loop system (12) is reducible by
some change of variables z = Sz to the system (17) with the matrix (16), that is the matrix
F + GQH of the system (12) is similar to the matrix (16): S(F + GQH)S™! = ©.

In partial case, when (13) is fulfilled and the closed-loop system has the form (14), it is
said that, for system (9), (10), the problem of (a) AUTMCA (b) ALTMCA (c¢) ADMCA for CMP
by LSSF is resolvable.

The main problem that we explore in this work is the question on relationship between all
above definitions in Definitions 3 and 2. If s = 1, then, obviously, all these definitions are
equivalent between themselves (by LSOF or by LSSF, respectively). In the case when s > 1, this
problem has not been studied explicitly before. Obviously, the following implications hold:

AMCA = AUTMCA

4 4 (18)
ALTMCA = ADMCA

The question arises about other implications in this diagram. We will give a partial answer to
this question.

Theorem 1. /. For any matrix

[0 I 0 0]
0 0 I ... 0
Q=1 =+ & (19)
0 0 0 I
U1 Uy Us Un|
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where 0,1,U; € UT,(K), i = 1,n, there exists a non-degenerate matrix S € M, (K) such that
the matrix = := SQS™ has the form

[0 I 0 0]
0 0 I 0
== : : (20)
0 0 0 ... I
L, Ly Ly ... L,

where 0,1, L; € LT,(K), i = 1,n.

2. Conversely, for any matrix (20), where 0,1,L; € LT{(K), i = 1,n, there exists a
non-degenerate matrix S € M,s(K) such that the matrix Q := S=ZS8~! has the form (19),
where 0,1,U; € UT,(K), i = 1,n.

Theorem 1 implies the following theorem.

Theorem 2. The following statements are equivalent.
1. For system (9), (10), the problem of ALTMCA for CMP by LSOF is resolvable.
2. For system (9), (10), the problem of AUTMCA for CMP by LSOF is resolvable.

So, the implications ALTMCA <= AUTMCA in the diagram (18) take place.

Next, the following theorem takes place.

Theorem 3. Let K = C, n = 2, and s = 2. For any matrix © of (16), where 0,1,T"; € M (K),
i = 1,n, there exists a matrix Q of (19), where 0,1,U; € UT,(K), i = 1,n, such that Q ~ ©.

Theorem 3 implies the following theorem.

Theorem 4. Let K = C, n = 2, and s = 2. Suppose that, for system (9), (10), the problem of
AUTMCA for CMP by LSOF is resolvable. Then, for system (9), (10), the problem of AMCA for
CMP by LSOF is resolvable.

So, taking into account Theorem 2, the implications
ALTMCA = AMCA and AUTMCA=— AMCA (21)

in the diagram (18) take place under the conditions that K = C, n = 2, and s = 2. We believe
that the statements of Theorem 3 and Theorem 4 are true, for K = C, for arbitrary n, s € N. But
this hypothesis has not yet been proven for n > 2 or s > 2 and remains open.

Further, it turns out that the statement of Theorem 3 ceases to be true in the case when K = R,
for arbitrary s > 1 and n € N.

Theorem 5. Let K = R and s > 1. Not for any matrix © of (16), where 0,1,T; € M (K),
i = 1,n, there exists a matrix Q of (19), where 0,1,U; € UT,(K), i = 1,n, such that Q ~ ©.

From Theorem 5, it follows that we cannot assert the truth of the implications (21) in the case
when K = R and s > 1 (although their falsity also does not yet follow from anywhere, since the
statement of Theorem 3 is sufficient but not necessary for the conclusion of Theorem 4).

Finally, the following statement is true for both cases K = C and K = R.
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Theorem 6. Let s > 1. Not for any matrix ) of (19), where 0,1,U; € UT,(K), i = 1,n, there
exists a matrix

0 I 0 0
0 0 I ... 0

A= 0 ] (22)
0 0 0 ... I
Ri Ry Ry ... Ry

where 0,1, R; € Dy(K), i = 1,n, such that A ~ .
From Theorem 6, it follows that we cannot assert the truth of the implications

ADMCA = ALTMCA and ADMCA —=— AUTMCA

in the diagram (18) for the case s > 1.

Remark 2. We conducted a study of the issue of implications in the diagram (18) only on the
basis of the type of matrices ['; in Definitions 3 and 2, but did not touch here on the type
of feedback (LSOF or LSSF) and other conditions on the feedback coefficients. For example,
ifm=k=nand G =H =1 € M, then all properties in the diagram (18) are equivalent to
each other. These questions will be the subject of other research.

§ 3. Proofs of Theorems 1 and 2

Lemma 1. For any matrix U € UT,(K) there exist L € LT,(K) and non-degenerate S € M(K)
such that L = SUS™".

Proof Let
U1 U2 ... Ujpg
U — 0 u.22 oo Ugg
0 0 Ugs
Set
0 0 1
0 0o ... 1 0
Si= ... ... ... .. .. GMS(K) (23)
0 1 0 0
1 0 0 0
Then
Ugs 0 0
1 usfl,s usfl,sfl 0
SUS™ = )
Uis UY,s—1 U1

Proof of Theorem 1. Let Q have the form (19) where U; € UT,(K), i = 1,n.

Construct
S 0 ... 0
0SS ... 0
S =diag{s,...,S}=1|. . . | € M,s(K),

0o 0 ... 8
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where S € M,(K) is defined by (23). Then

0 I 0 0
0 0 I 0
SQS™! = : : : . :
0 0 0 I
(SUIS™Y SU,S™ SUS™ ... SU,S™!

Denote L; := SU;S™1, i = 1,n. Then, by Lemma 1, L; € LT,(K), i = 1,n. So, the first part of
the theorem has been proven.

Carrying out the reasoning in Lemma 1 and in the first part of the proof of Theorem 1 in
reverse order, and taking into account that S~! = S, we obtain the proof of the second part of the
theorem. O

Proof of Theorem 2. Suppose that, for system (9), (10), the problem
of ALTMCA for CMP by LSOF is resolvable. Let us prove that, for system (9), (10), the
problem of AUTMC'A for CM P by LSOF is resolvable. Let a matrix €2 of (19) be given, where
U; € UT,(K), i = 1,n, are arbitrary. By Theorem 1, part 1, there exists a matrix S € M,,,(K)
such that the matrix = := SQS~! has the form (20), where L; € LT,(K), i = 1,n. For the ma-
trix =, by the condition of the theorem, there exists a gain matrix ) € M, xs(K) such that the ma-
trix F'+GQH of the system (12) is similar to the matrix Z, i.e., P(F+GQH)P~! = Z, for some
P € M, (K). Hence, P(F+GQH)P~' = SQS™!. 1t follows that S~ P(F + GQH)P~'S = Q,
i.e., F+ GQH is similar to 2. This means that the problem of AUTMCA for CM P by LSOF
is resolvable. So, the implication 1 = 2 is proven. The implication 2 = 1 can be proved in a
similar way, using the second part of Theorem 1. U

§ 4. Proofs of Theorems 3 and 4

Let us prove Theorem 3. Let K = C, n = 2, and s = 2. One needs to prove the following
assertion: for any matrix
o 0 1 0
0 0 0 1
© = : 24
On B s a 29
On Os 013 Ouy

there exists a matrix

0 0 1 0
g_ |0 0 0 1 25)
W31 W2 Wiz W34
0 wir 0 wu

such that 2 ~ ©. We will prove this statement by brute force as follows. We will go through
all possible options for what elementary divisors the matrix © can have, and then, for the given
set of elementary divisors of the matrix ©, we will build a matrix 2 of form (25), which has the
same set of elementary divisors. From here the similarity of the matrices © and €2 will follow.
Next, different letters will mean different numbers.
1. Elementary divisors: (A —a), (A —b), (A —¢), (A — d).

0 0 1 0

0 0 0 1
= —ab 0 a+b O

0 —cd 0 c+d
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2. Elementary divisors: (A — a)?, (A =), (A —c).

0 0 1 0
0 0 0 1
= —a> 0 2a 0

3. Elementary divisors: (A —a), (A —a), (A —b), (A —¢).

0 0 1 0
P
0 —ac 0 a+c
4. Elementary divisors: (A — a)?, (A — )%
0 0 1 0
R

5. Elementary divisors: (A — a)?, (A —b), (A —b).

0 0 1 0
0 0 0 1
—ab —=b a+b 1
0 —ab 0 a+b

0=

6. Elementary divisors: (A — a), (A —a), (A —b), (A —0).

0 0 1 0
0 0 0 1
& —ab 0 a+b O
0O —ab 0 a+bd
7. Elementary divisors: (A — a)?, (A — b).
0 0 1 0
0 0 0 1
2=1_02 1 2 0
0 —ab 0 a+0

8. Elementary divisors: (A — a)?, (A —a), (A — D).

0 0 1 0
0 0 0 1
—a 0 2a 0
0 —ab 0 a+d

9. Elementary divisors: (A —a), (A —a), (A —a), (A —b).
In fact, a matrix © of the form (24) cannot have such elementary divisors. Let us prove it by
contradiction. Let the matrix © have such elementary divisors. Then the matrix © is similar to
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the matrix

o O O e
o O O
o Q@ OO
O OO

Then © —al ~ A—al. But rank (A —al) = 1 while rank (© —al) > 2 since the first two rows
of the matrix (O — a/) are linearly independent. We have come to a contradiction.
10. Elementary divisors: (A — a)%.

0 0 1 0
0O 0 0 1
Q=102 1 9 o0

0 0 1 0
0 0 0 1
= —a®> —a 2a 1

0O 0 1 0
O 0 0 1
Q=1_2 0 2 o0

0 —a® 0 2a

13. Elementary divisors: (A — a)?, (A — a), (A — a).

In fact, a matrix © of the form (24) cannot have such elementary divisors. Let us prove it by
contradiction. Let the matrix © have such elementary divisors. Then the matrix © is similar to
the matrix

a 1 0 0
0 a 00
A_OOaO
00 0 «a

Then © —al ~ A—al. But rank (A —al) = 1 while rank (© —al) > 2 since the first two rows
of the matrix (© — a/) are linearly independent. We have come to a contradiction.

14. Elementary divisors: (A — a), (A — a), (A —a), (A — a).

In fact, a matrix © of the form (24) cannot have such elementary divisors. Let us prove it by
contradiction. Let the matrix © have such elementary divisors. Then the matrix O is similar to
the matrix A = al. Then © — al ~ A — al = 0. But this is obviously false.

We went through all possible cases of elementary divisors of the matrix ©. So, Theorem 3 is
proven. U

Theorem 4 obviously follows from Theorem 3 using arguments similar to the proof of Theo-
rem 2.
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§5. Proof of Theorem 5

We will carry out the proof from particular cases to the general case.
Case 1. Let s=2and n = 1. Set

0 —1
N = L 0}. (26)

Set © := N. It is clear that there is no real upper triangular 2 x 2-matrix U such that U ~ ©.
Case 2. Let s =2 and n = 2. Set

0 I
C"‘)ZI |:0 N:|’ O,I,NEMQ(R),

where N is defined by (26). The matrix © has the characteristic polynomial
NCRIEPIEY 27)

and the eigenvalues \; =7, Ay = —i, A3 = Ay = 0.

Let us prove that there is no matrix €2 of the form (25) with w;; € R such that 2 ~ ©. Let
us prove it by contradiction. Suppose that there exists a matrix 2 of the form (25) with w;; € R
such that ) ~ ©. Then, in particular,

X(©2,4) = x(©,A). (28)
We have rank © = 2, hence,
rank Q) = 2. (29)
From (29), it follows that
w31 = 0, W32 = 0, Wy = 0. (30)
Further, the following equality holds:
Sp=5SpO =0. (31)
From (31), it follows that
W33 = —W44. (32)
From (30) and (32), it follows that
(2, 0) = X — Wi\ (33)

From (27), (28), and (33), it follows that w?, = —1. This contradicts the fact that wyy is real.
Case 3. Let s =2 and n = 3. Set

@ = y O,I,N c MQ(R),

oo o
o o~
=~ o

where N is defined by (26). The matrix © has the characteristic polynomial
X(0,4) = A%+ A%, (34)

and the eigenvalues \; =%, Ao = —%, A\3456 = 0.
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Let us prove that there is no matrix

0 I 0
Q=10 0 I, 01,QeUnR), i=13, (35)
O QO

such that {2 ~ ©. Let us prove it by contradiction. Suppose that there exists a matrix (2 of the
form (35) such that

Q~ 0. (36)
Then, in particular,
X(©2,2) = x(6, A). (37)
From (36), it follows that 2 ~ ©2. We have
00 I
©*=10 0 N|.
00 N?
Hence, rank ©? = 2. Therefore,
rank Q? = 2 (38)
as well. We have
0 0 I
= Q Q. (39)
X ok %
From (38) and (39) it follows that
0 =Qy =0 € My(R). (40)
From (35) and (40), it follows that
01 0 e
Q=100 1], 93:[55 56}. (41)
00 O 66
Further, the following equality holds:
Sp2=SpO = 0. (42)
From (42), it follows that
Ws5 = —We6- (43)
From (41) and (43), it follows that
X A) = A0 — wi AL (44)

From (34), (37), and (44), it follows that w2, = —1. This contradicts the fact that weg is real.
Case 4. Let s =2 and n > 3. Set

0 I 0 0
O 0 I ... 0
©:=|: : : .. 1| eM,®R), 0,INeMR),
00 0 . I
_O 0 0 N_
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where N is defined by (26). The matrix © has the characteristic polynomial
NCIRVEPIE P (45)
and the eigenvalues \; =17, g = —i, A3 = ... = Ay, = 0.
Let us prove that there is no matrix
(0 T 0 0]
0O 0 I ... 0
Q=|: =+ 0 |, 0, eULR), i=1Ln, (46)
0 0 0 1
Q Qy Qg Q,

such that {2 ~ ©. Let us prove it by contradiction. Suppose that there exists a matrix €2 of the

form (46) such that
O~ 0.

Then, in particular,
X(€,A) = x(©, A).
From (47), it follows that Q"~! ~ ©"~1. We have

0 0 I
o1 0 0 N
0 .0 %
Hence, rank ©"~! = 2. Therefore,
rank Q"1 =2
as well. We have ~ -
0 0 1
Ql anl Qn
orl— [ x ... * *
* * *
From (49) and (50) it follows that
Ql :---:anl :OEMQ(R)
From (46) and (51), it follows that
[0 T 0 0]
00 I . 0
_ |- . . Wan—1,2n—1
Q=1+ = L, Qe = 0
0 00 I
000 Qn_
Further, the following equality holds:
Sp2=SpO = 0.

(47)

(48)

(49)

(50)

(51

(52)

(33)
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From (53), it follows that

Won—1,2n—1 = —Wap 2n- (54)

From (52) and (54), it follows that
X(QA) = A — w5, A2 (55)

From (45), (48), and (55), it follows that w%mn = —1. This contradicts the fact that wy, 5, is real.
Case 5. Let s > 2 and n € N. Set N := diag{0,...,0, N} € M (R) where N is defined
N——

s—2

by (26), and set

071 0 0
001 ... 0
O:=|: : : .. | €MyuR), 0INEeM/R). (56)
000 ... I
_O 00 ... /\/_

Then, carrying out the proof similarly to Case 4, it can be shown that there is no matrix €2 of
the form (19), where 0, I, U; € UT,(K), i = 1,n, such that € is similar to (56). O

§ 6. Proof of Theorem 6

Let n = 1. Weset 2 := U, :=al +J € UT,(K) where I,J € M (K) and a € K. Tt is
well known that there is no matrix R; € D,(K) such that Ry ~ U;. In fact, if Ry ~ Uj, then
X(R1,\) = x(U1, \) = (A—a)®, hence, Ry = al, but al + U; since s > 1. We will use the same
idea for arbitrary n € N.

Let n > 1 and s > 1. Let us construct the matrix €2 of the form (19) where

U, =nal, U, 1=-C'"?a*I, U, ,=0C"3I ..., Uy=(-1)"2Cla"'I, 57)
U= ()"t a"I+J, 1I,JeMJ(K), acK
Then U; € UT,(K). Let us calculate x (2, \). By [12, Theorem 1.1], we have
det(A\,s — Q) = det[\" I, — U\ = U, N2 — ... = U] (58)
By (57), we obtain that
A—a)" -1 0 0 7
0 (A—a)" . 0 0
N L= U N U, A2 U] = : : : . (59)
0 0 ... A=—a" -1
|0 0 . 0 (A—a)"]

So, from (58) and (59), it follows that x(2,\) = (A — a)™®. Thus, all the eigenvalues of the
matrix €2 are equal to a. Construct the matrix €2 — al,,. It can be seen that the minor consisting
of the first ns — 1 rows and last ns — 1 columns of the matrix {2 — al,, is not equal to zero,
i.e., rank (2 — al,s) = ns — 1. This means that the matrix {2 has only one elementary divisor
(A —a)™ and

Q~al+J, 1,J e My(K).
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Let us show that there is no matrix A of the form (22) where R; € D,(K), i = 1,n, such
that A ~ €. Let us prove it by contradiction. Suppose that there exists a matrix A of the
form (22) where

Ry =diag {ri1,..., 115},

........................ (60)
R, = diag{rn1,...,mns},
such that A ~ €). Taking into account (60), we get
det(AM,s—A) = det[\"[,— RN =R, 1\ ?—. .. — Ry = det[diag {q1(\), ..., g (A)}] (61)
where .
@A) = A" = AT — = A =
....................................... (62)
QS<)\) =\"— Tns>\n71 - - T2s>\ — T1s.

Since A ~ €, we get x(A,\) = x(2,\) = (A —a)™. Hence, from (61), it follows that
[T ¢;(A) = (A —a)". Hence, ¢;(\) = (A —a)", j =1, s. From this, by (62), it follows that
j=1

ry = (=1)"CM T =1,
for all j = 1, s. Thus, the matrices (60) are scalar matrices and

R,=nal, R,_y=—C2d’I, R,_,=C3"I, ...,

63
RQ — (—].)n_QC;L_la,n_l_[, Rl —_ (_1)n—1anI’ I, = MS(K) ( )

In particular, R; = U;, i = 2, n. From (63), it follows that A = W ® [ where I € M,(K) and

0 1 0 oo 0
0 1 ... 0
W = : : : oot
0 0 0 |
—(=a)" —(=a)"n —(—a)"?*n(n-1)/2 ... na

The matrix W has the elementary divisor (A — a)” and W ~ al + J, I,J € M,(K). Hence,
A=W®I;~ (al,+J)® I, and, therefore, A has s elementary divisors (A—a)”, ..., (A—a)".
We get that the set of elementary divisors of the matrix A does not coincide with the set of
elementary divisors of the matrix €2 (since s > 1). This contradicts the fact that these matrices
are similar. We have come to a contradiction. Thus, the theorem is proven. 0

§ 7. On simultaneous assignment of spectrum eigenvalues and eigenvectors

In conclusion, we present one property that systems with AMCA have. The property of
AMCA was studied in [9] partially (there it was called as AMESA: this name is not completely
accurate, see [ZK-2024]). Suppose that, for system (9), (10), the problem of AMCA for CMP
by LSOF (or by LSSF) is resolvable. Then, for any I'; € M,(K), i = 1,n, there exists a gain
matrix ) € M xs(K) such that the closed-loop system (12) is reducible by some change of
variables z = Sx to the system (17) with the matrix (16). The system (17) with the matrix (16)
is equivalent to the differential equation of nth order in the space K*:

X 40X 4 4T, =0, XeK°. (64)
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The AMCA property allows us to assign coefficients of the matrices I';, i = 1,n. In particular,
this allows us to assign arbitrary modes (corresponding to eigenvalues) to solutions of differen-
tial equation (64) and simultaneously assign eigenvectors with a high degree of freedom. The
following theorem was proven [9, Theorem 11].

Theorem 7. For any different \¢ € R, & = 1,ns, and for any linear independent vectors
hi,...,hs € R® there exist matrices T'; € M(R), j = 1,n, such that the general solution of
system (64) has the form

X (t) = Crhy exp(Ait) + Cohg exp(Aat) + ... 4+ Cshg exp(Ast)
+ Csi1hy exp(Asi1t) + ... + Coshgexp(Aast) + . ..
+ Cln-1)s+1M1 exXp(An_1)s41t) + - .. + Crshg exp(Apst).
In [9, Remark 16], it was noted that the condition of [9, Theorem 11] that all \; are different

can be weakened. We will prove this statement here. Moreover, we assume here that A\ € K
where K = R or K = C (and not only K = R).

Lemma 2. Let Q2 = (A, Ag, ..., \ys) be an ordered list of ns numbers \¢ € K such that not all A
are necessarily different, but the multiplicity (that is, the number of repetitions) of each number
in the list Q) does not exceed s. Then these numbers can be placed in the matrix ® = {¢;;},
1=1,....,n,7=1,...,s, in such a way that no column contains two identical numbers, that is,
Gij = Pup = J F

Proof We renumber the elements \¢ of €2 as follows. Among the numbers of the list 2, we
select the number with the greatest multiplicity i; < s. Denote these numbers as \] = \, =
... = Aj, with the indices from 1 to 7;. Next, among the remaining numbers of the list €,
we select the number with the greatest multiplicity iy (1o < 77 < s). Denote these numbers as

f41=---= A 44, And so on. We obtain the ordered list
Q, — ()\/1, . .’A{il’)\;l"l_l’ . '7>\;1+i27 . .,)\;1+22++Zk),

Let’s place the list ' into the matrix ® as follows: we place the elements of the list {2 in order
into the first row of the matrix ®; then, when we reach the end of the first row of the matrix
®, we move to the second row of the matrix ®, and place the subsequent elements of the list £/
in order into the second row of the matrix ®; and so on, reaching the end of the jth row of the
matrix ¢, we move to the next row. By doing this, we will place all the elements of the list {2/
into the matrix ® in such a way that

Q/ = (¢117¢127---7¢137¢217---7¢237---7¢n17---7¢ns)-

This placement method will ensure that the required condition is met. Indeed, the equality of two
elements of one column would mean that the multiplicity of this number is greater than s, and
this contradicts with (65). U

Let an arbitrary set of linear independent vectors hq, ..., hs € K® be given. Let an arbitrary
ordered list 2 = (Ay, Aa, ..., \ys) of ns numbers \¢ € K be given such that the multiplicity of
each number in the list €2 does not exceed s. Let us renumber the list {2 according to Lemma 2
into the list ' and denote it again by €2 (in this case we will say that the list 2 is ordered
according to Lemma 2). Let us construct the following vector functions:

Y11(t) = hyexp(Ait), V12(t) = hyexp(Aat), V1,(t) = hsexp(Ast),

"Lpz,l(t) = hl eXp()\erlt), "Lpz,g(t) = h2 eXp()\ergt), ’Lpz,s(t) = hs eXp()\gst), (66)
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From the construction, it follows obviously that the vector functions (66) are linearly independent.
The following theorem takes place.

Theorem 8. For any linear independent vectors hy, ..., hs € K* and for any \¢ € K, { = 1,ns,
such that the vector functions (66) are linearly independent, there exist matrices I'; € M,(R),
j = 1,n, such that the general solution of system (64) has the form

X(t) = Z Z Cji;4(t) (67)

j=1 i=1
where 1, ;(t) are defined by (66).

The proof of Theorem 8§ repeats the proof of Theorem 7 (see [9, Theorem 11]) up to the last
paragraph of the proof. Further, distinctness of \¢ is not assumed, but linear independence of (67)
is assumed.

Theorem 9. For any linear independent vectors hq, ..., hs € K® and for an arbitrary list Q) =
= (M, A2y ..., Ans) of ns numbers e € K (such that the multiplicity of each number in the list ()
does not exceed s) that is ordered according to Lemma 2, there exist matrices I'; € My(R),
J = 1,n, such that the general solution of system (64) has the form (67) where 1), ;(t) are defined
by (66).

The proof of Theorem 9 follows from Theorem 8 and the fact that if the list €2 is ordered
according to Lemma 2, then the functions (66) are linearly independent.

Funding. The research was carried out with a grant from the Russian Science Foundation No. 24—
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B. A. 3aityes

O Ha3HAYEHHMHU NPOU3BOJIBHBIX MATPUYHBIX KOI(PPUIUMEHTOB IS XapaAKTEePUCTHYECKOr0 MaTPUYHO-
r0 MHOTOYWIeHa OJIOYHBIX MATPHYHBIX JHHEHHBIX CHCTEM YNpPaBJIeHHS

Kniouesvie cnosa: MMHEHHAs CTallMOHApHAsA CUCTEMa YIPAaBJICHUS, HA3HAUECHHUE CIIEKTPa COOCTBEHHBIX 3HA-
YeHUi, TMHEHAs cTaTHuecKast oOpaTHast CBA3b, OJIOUHAs MaTpUYHAs CHCTEMA.

YIK 517.977
DOLI: 10.35634/vm240303

Jnsi ONOYHBIX MaTPUYHBIX JIMHEWHBIX CHUCTEM YIIPaBICHHs HM3ydaeTcsi CBOMCTBO, oOecreunBaroliee Ha-
3HAYEHHE MPOU3BOJIBHBIX MAaTPHYHBIX KOA(PPHULIMEHTOB I XapaKTePUCTHIECKOTO MaTPUYHOTO MOJIMHOMA.
DTO CBOKMCTBO SABISAETCS 0000IIEHNEM CBOWCTBAa HA3HAYAEMOCTH CIIEKTpa COOCTBEHHBIX 3HAYCHUU WIIM Ha-
3HAYaeMOCTH MPOU3BOJIBHBIX KOI(PPHUIMEHTOB XapaKTEPUCTUIECKOr0 MOJIMHOMA, OT CUCTEM C OJOYHBIMH
MaTpUIaMH CO CKaISIPHBIMU Oiokamu (s = 1) Ha cHCTeMbI C OIIOYHBIMH MaTpHIaMu ¢ Giokamu Oolee
BBICOKHX pa3zmepHocTeii (s > 1). 1o cpaBHEHHIO CO CKASIPHBIM ciiydaeM (§ = 1) B GIOYHBIX CITydasx
GoJiee BBICOKHX pa3MepHOCTEil (s > 1) MOSBISIOTCS HOBBIE OCOOCHHOCTH, OTCYTCTBYIOIINE B CKAJSIPHOM
ciy4yae. BBoasTCs HOBBIE CBOWCTBA, 0OECIEUMBAIOIINE Ha3HAYCHNUE MPOU3BOJIBHBIX (BEPXHETPEYTONbHBIX,
HWKHETPEYTONBHBIX, JUAarOHABHBIX ) MATPUYHBIX KOX(PPHUIIMEHTOB I XapaKTepPUCTHYECKOTO MaTPHYHOTO
nojvHOMa. B ckansipHOM ciydae Bce ONMMCAHHBIE CBOWCTBA SKBHBAICHTHBI APYT IPYTy, OJHAKO B OJ0Y-
HBIX CITydasx Ooliee BBICOKHX Pa3MEPHOCTEW 3TO HE TaK. YCTaHABIMBAIOTCA MMIUIHKAIIMYA MEXIy dTHMHU
CBOMCTBAMH.

dunancupoBanue. ccienoBaHue BBIIOIHEHO 3a cueT rpanTta Poccuiickoro Hayunoro ¢onga Ne 24-21-
00311, https://rscf.ru/project/24-21-00311/.
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