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§ 1. Introduction and Main Results

Throughout this paper, we assume the reader is familiar with the fundamental results and
standard notations of the Nevanlinna distribution theory of meromorphic functions (see [16,17,
22]). Recently, there were interesting results on the growth of solutions of the complex linear
differential equations by using a new idea in which the coefficients are analytic functions in the
extended complex plane except a finite singular point C\{z,} with non-zero positive order (see
e.g. [6,7,10,12,13,15,18,19]), which are similar to some of those obtained for the case when the
coefficients are non-zero order entire functions (see e. g. [1,14,20,21]). The concept of logarithmic
order due to Chern [8, 9] was used to investigate the growth of solutions to linear differential
equations, difference and differential-difference equations for the case when the coefficients are
zero order entire or meromorphic functions (see e.g. [2-5,11]). In this article, we continue making
use of this concept to investigate the growth of solutions to homogeneous and non-homogeneous
linear differential equations in which the coefficients are analytic functions in C\{z} with zero
order, where we generalize those results obtained in [13]. We start by stating some essential
definitions: for all R € (0,00) and p > 1, we define exp, R = ef, exp,,, i = exp(exp, R),
log; R =log R and log,, | R = log(log, R).

Definition 1.1 ([12]). Let f be a meromorphic function in C\{z}, where C = CU {00}, 2 € C.
The counting function of f near 2, is defined by

Nyt ) = = [ DD gy e, o

[e o]

where n(t, f) counts the number of poles of f in {z € C:t < |z — 2|} U {00}, each pole
according to its multiplicity. The proximity function of f near zj is defined by

1 [ _
ma(rif) = = [ log" If(0 = re)] .
T™Jo
The characteristic function of f near zj is defined by

Loy (r, f) = mg(r, f) + Nao (1, f)-
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Definition 1.2 ([19]). Let f be a meromorphic function in C\{z}, p and ¢ be two integers with
p > q > 1. The [p, g]-order of f near z; is defined by

1 IOng TZ (T7 f)
Ilp,q] (f,20) = hmj,%p #.
T a5

For an analytic function f in C\{z,}, the [p, g]-order of f near z; is defined by

logt T, (r, log*t, | M., (r,
Olpq)(f, 20) = limsup gpl—()(lf) = lim sup gp+11 01( &
r—0 08y r—s0 08, ;

I

where M. (r, f) = max{|f(2)|: |z — 20| = r}. If o q(f, 20) = 0 € (0,00), then the [p, ¢]-type
of a meromorphic function f in C\{z,} is defined by

T ,20) = limsu
nalf; ) 7"—>0p (log,—y
For an analytic function f in C\{zo} with oy, ,(f,20) = o € (0, 00), the [p, g]-type of f near z,
is defined by

. log,y M., (r, )
T[pquM(fv 2) = hmj}%p (li)g : l)a
r q—1L1 r

The [p, q] exponent of convergence of the sequence of a—points and distinct a-points of a mero-
morphic function f in C\{z} are respectively defined by

log;;r Ny (r, %a) log;;r NZO (r, %a)
f f

A — = lim su DY —a, 2y) = limsu
[p,q](f a, 2o) THOP logq % [p,q}(f 0) THOP logq %

Remark 1.1. By Definition 1.2, we can see that oy, 1)(f, 20) = 0,(f, 20), Tp,1)(f5 20) = (5 20),
Apa](f — a,20) = Np(f — a,20) and Ay (f — a,20) = Ap(f — a,20) denote respectively the
iterated p-order, the iterated p-type and the iterated p-exponent of convergence of a-points and

distinct a-points (see, [13]).

By the original definitions of the logarithmic order and the logarithmic type [8, 9], we define
the logarithmic order and logarithmic type of a meromorphic function in C\{z,} as follows.

Definition 1.3. Let f be a meromorphic function in C\{z}, the logarithmic order of f near z is
defined by

. 10g+ Tz (T f)
. 1 08 1%L T)
o.2(f; 20) = o105(f, 20) g loglog

If f is an analytic function in C\{z}, then

log™ T, log™ log™ M,
Olog(f, 20) = lim sup og—o(rl,f) i sup 287108 f(r, f).
r—0 log log r—s0 loglog -

Definition 1.4. Let f be a meromorphic function in C\{z} with logarithmic order o4(f, 29) =
=0 € [1,00), the logarithmic type of f near z; is defined by

: T (r, f)
= Tioe(f, =1 A
T[l,?](fv ZO) Ti g(f ZO) lin S%p (log %)O’

If f is an analytic function in C\{zy} with order o104(f, z0) = o € [1, 00), then the logarithmic
type of f near z is defined by

. log* My, (r, f)
. 2) =1 26 P\l J)
Tiog,M (f 20) linjlép (log L)



418 On the growth of solutions of complex linear differential equations

Remark 1.2. According to [12, Lemma 2.2] if f is a non-constant meromorphic function
in C\{z0}, then g(w) = f(z0 — 2) is meromorphic in C and they satisfy

1(R.9) =T, (1)

Consequently all the properties of the logarithmic order for the meromorphic functions in C are
hold, such as all the non-constant rational functions which are analytic in C\{z} are of loga-
rithmic order equalling one, where there is no transcendental meromorphic function in C\ {2y} of
logarithmic order less than one, further, constant functions have zero logarithmic order and there
are no meromorphic functions in C\{zy} of logarithmic order between zero and one (see, [8,9]).

In [13], Fettouch and Hamouda considered the following complex homogeneous and non-
homogeneous linear differential equations

FO 4 A () f*D 4+ Ag(2) f 4 Ao(2) f =0, (1.1)

FO 4+ A1 (2) 0+ AY(2)f + Aol2) f = F(2), (1.2)

where A;(z) (j =0,1,...,k — 1) and F(z) are analytic functions in C\{z,}. Their results were
for the case when the coefficients are of finite iterated p-order, where they obtained the following
theorems.

Theorem A ([13]). Let Ay(2), ..., Ar_1(2) be analytic functions in C\{z} such that for real
constants o, 3, u, 01, 05 and a positive integer p with 0 < < a, 1 >0, 0, < by, 1 < p < o0, the
following inequalities hold:

(6
A0(2)) 2 exp, { 5,

B .
|A](Z)‘§€pr{r— ) jzlu"'ak_17
where arg(zy — z) = 0 € (61,02) and |20 — 2| =1 — 0. Then, every analytic solution f(z)(# 0)
in C\{20} of (1.1) satisfies 0p11(f, 20) > -

Theorem B ([13]). Let Ay(2),. .., Ap_1(2) be analytic functions in C\{z} and E C (0,1) be a
set of infinite logarithmic measure such that

(0%
40620 2 exp, { 5,

s :
|AJ(’Z)‘§epr{T_M ) jzlu"'ak_17

with0 < B3 <a, p>0and |20 — 2| =r — 0, r € E. Then, every analytic solution f(z)(# 0) in
C\{z0} of (1.1) satisfies o, 1(f, z0) > fu.

Theorem C ([13]). Let Ao(2), ..., Ax_1(2) be analytic functions in C\{zy} of finite iterated order
with max {o,(A;,20): j # 0} < 0,(A0,20) =0 < +00, 1 <p < o0, and E C (0,1) be a set of
infinite logarithmic measure such that for some constants 0 < [ < « and any given € > 0, we
have

(6% .
[ Ao(2)] = epr{TU_S}, [A4;(z)| < epr{Tf_E}, j=1... k=1,

as v — 0 with r € E. Then, every analytic solution f(z)(% 0) in C\{z0} of (1.1) satisfies
op1(f; 20) = 0p(Ao, 20) = 0.
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Theorem D ([13]). Let Ay(2), ..., Ar_1(2) be analytic functions in C\{z} satisfying

max {0,(A4;,20): j # 0} < 0,(Ao, 20).
Then, every analytic solution f(z)(# 0) in C\{z0} of (1.1) satisfies o,.1(f, 20) = 0,(Ag, 20).
Theorem E ([13]). Let Ag(2), ..., Ar—1(2) satisfy the hypotheses of Theorem C, and let F'(z) # 0
be an analytic function in C\{zo} with i(F') = q.

) Ifq<p+lorq=p+1,0,1(F, 2) < 0,(Ao, 20), then every analytic solution f(z)(Z 0)
in C\{z} of (1.2) satisfies \p+1(f, 20) = M\p11([f, 20) = 0p+1(f, 20) = 0,(Ao, 20), with at
most one exceptional solution fy satisfying i(fo) <p+ 1 or op11(f, 20) < 0,(Ao, 20).

i) If ¢ >p+1orqg=p+1, 0,(Ao, 20) < 0ps1(F, 20) < +00, then every analytic solution
f(2)(# 0) in C\{z0} of (1.2) satisfies i(f) = q and o,(f, z0) = 04(F, 20).

It is clear that the above results do not include the case when the coefficients are analytic
functions in C\{z} of order zero. Therefore, for that case here we use the logarithmic order
in order to express the growth of solutions of the complex linear differential equations (1.1)
and (1.2), where we obtain the following theorems.

Theorem 1.1. Let Ay(z),..., Ar_1(2) be analytic functions in C\{z} such that, for real con-
stants o, B, 1,601 and Oy with 0 < 8 < a, p > 1, 6, < 65,

| 4g(2)| > exp {a(log %)M}

1 H
‘AJ<Z>|§GXP{6<lOg;) }7 jzlu"'ak_17

where arg(zy — 2) = 0 € (01, 0:) and |20 — z| = r — 0. Then, every analytic solution f(z)(% 0)
in C\{z0} of (1.1) satisfies oo 9(f,20) > p — 1.

Theorem 1.2. Let Ay(2), ..., Ar_1(2) be analytic functions in C\{z} and E C (0,1) be a set of
infinite logarithmic measure such that

Ao (2)] > exp {a<1og %)M}

I
|Aj<z>|Sexp{ﬁ(1og1) } i1kl
T

with0 < B < a, u>1and |2 — 2| =r — 0, r € E. Then, every analytic solution f(z)(# 0) in
C\{z0} of (1.1) satisfies o25(f, 20) > pp — L.

Theorem 1.3. Let Ay(z2),. .., Ar_1(2) be analytic functions in C\ {2y} of finite logarithmic order
with max {0105 (Aj, 20): j # 0} < 010g(Ao, 20) = 0 < +00 and E C (0,1) be a set of infinite
logarithmic measure such that for some constants 0 < 3 < « and any given £ > 0, we have

40(2) 2 exp fa103) L,

1 o—¢&
‘AJ<Z>|§6XP{6<lOg;) }7 .j:lu"'ak_17

as v — 0 with r € E. Then, every analytic solution f(z)(# 0) in C\{z} of (1.1) satisfies
Tlog (Ao, 20) — 1 < op2)(f, 20) < 010g(Ao, 20) = 0.
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Theorem 1.4. Let Ay(2), ..., A,_1(2) be analytic functions in C\{z} of finite logarithmic order
with max {alog(Aj, 20): J # O} < 0O10g(Ap, 20) = 0 < +o00. Then, every analytic solution

f(2)(Z0) in @\{ZO} of (1.1) satisfies 0105( Ao, 20) — 1 < 072,9(f, 20) < O1og( Ao, 20).

Theorem 1.5. Let Ay(2), ..., A,_1(2) be analytic functions in C\{zy} of finite logarithmic order
with
max {crlog(Aj,zo): Jj# O} < Olog(Ap, 20) =0, 1< 0 < +o0,

max {ﬂog,M(Aju ZO): Jlog<Aj7 ZO) = Juj # O} < 7-log,M<"407 ZO) =T < +00.

Then, every analytic solution f(z) # 0 in C\{20} of (1.1) satisfies 01o5(Ag,20) — 1 <
< 02,9/ (f, 20) < O10g( Ao, 20).

Theorem 1.6. Let Ay(2), ..., Ax_1(2) satisfy the hypotheses of Theorem 1.4 and let F'(z)(# 0)
be an analytic function in C\{z}.

i) If 010g(Ao, 20) < 0p9(F, 20) < 400, then every analytic solution f(z)(# 0) in C\{z}
of (1.2) satisfies 012,(f, z0) = 02,2 (F, 20).

ii) If 010g(Ao, 20) > 09 (F, 20), then every analytic solution f(z)(% 0) in C\{z} of (1.2)
satisfies 072.9)(f, 20) < O10g(Ao, 20), and that o (f, 20) > 010g(Ao, 20) — 1 with at most
one exceptional solution, and that \po(f, z0) = Np9j(f, 20) = 0.9 ([, 20) holds for every
solution [ which satisfies 013.9(f, 20) = O1og (Ao, 20).

Theorem 1.7. Let Ay(2), ..., Ax_1(2) satisfy the hypotheses of Theorem 1.5 and let F'(z)(# 0)
be an analytic function in C\{z}.

i) If 010g(Ao, 20) < 0p9(F, 20) < 400, then every analytic solution f(z)(# 0) in C\{z}
of (1.2) satisfies 012,9(f, z0) = 02,2 (F, 20).

ii) If 010g(Ao, 20) > 09 (F, 20), then every analytic solution f(z)( 0) in C\{z} of (1.2)
satisfies 072,9)(f, 20) < O10g(Ao, 20), and that o (f, 20) > 010g(Ao, 20) — 1 with at most
one exceptional solution, and that N5 (f, z0) = Npj(f, 20) = 0.9 [, 20) holds for every
solution [ which satisfies o2.9)(f, 20) = O10g(A0; 20)-

Remark 1.3. We should point that similar results to those in Theorems 1.4—1.7 are obtained in [5]
for the complex plane C case.

§2. Some preliminary lemmas

The following lemmas are important for proving our results. Firstly we denote the logarithmic
measure of a set E C (0,1) by my(E) = [, 4.
Lemma 2.1 ([12]). Let f be a non-constant meromorphic function in C\{z}, let A > 0, € > 0
be given real constants and j € N. Then:

(i) there exist a set £y C (0,1) of finite logarithmic measure and a constant C' > 0 that
depends only on \ and j such that for all |z — zo| = r € (0, 1)\ Ey, we have

’ £0)(2)
f(z)

J

< c[ngw, Plog Ty 1) @1

(ii) there exist a set Ey C [0,27) that has a linear measure zero and a constant C > 0 that
depends on \ and j such that for all 6 € [0, 2m)\ Es, there exists a constant ro = ro(6) > 0
such that (2.1) holds for all z satisfying arg(z — zy) € [0,2m)\Es and r = |z — zy| < 7.
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Lemma 2.2 ([15]). Let f be a non-constant analytic function in C\{z}. Then there exists a
set E5 of (0,1) that has finite logarithmic measure such that for all j =0, ... k, we have

fO) < Vo (1) )j(l +o(1))

zZ0 — Rr

as v — 0, v ¢ Es, where z, is a point in the circle |z — zy| = r that satisfies |f(z.)| =
= maX|z—zo\:r |f(2)|

Lemma 2.3 ([19]). Let p and q be two integers with p > q > 1. Let [ be a non-constant analytic
Sunction in C\{2} and let V() be the central index of f. Then

. logy Vo, (7)
Olp,q ([f+ 20) = TIE}O lI:)g 1 .
qr

Lemma 2.4. Let Ay(2), ..., Ax_1(2) be analytic functions in C\{zy} of finite logarithmic order
with max {010g(A;,20): 5 =0,...,k — 1} < a < +oo. Then, every analytic solution f(z)(# 0)

in C\{zo} of (1.1) satisfies op2.2)(f, z0) < cv.

Proof Let f(z)(# 0) be an analytic solution of (1.1) in C\{z}. By Lemma 2.2, there exists
a set B3 C (0, 1) of finite logarithmic measure such that, for all » ¢ E3 and r — 0, we have

f9(zr) Vi (r) 4
= 1 1 =1,...,k. 2.2
f(zr) 20 — 2 ( +O( ))7 J ) ) ( )
Setting
MZO(T):‘IH&‘X {lA;(z)]: 5=0,1,... . k—1}. (2.3)
zo—z|=r
Since max {crlog(Aj, 20):j=0,....,k— 1} < a < 400, then for any given € > 0, there exists

ro > 0 such that for o > r > 0, we get

a+te
M, (r) < exp { <log %) } (2.4)

Now, we may rewrite (1.1) as

f¥(2) fED(z) f'(z)
’ e < |Apa(2)] — R yAl(z)}’ ) + |Ao(z)|. (2.5)
Then, by substituting (2.2) and (2.3) into (2.5), we obtain
k k—1
(VZOT(T)) 1+ 0(1)' < kM, (r) <VZOT(T)) 14 0(1)’. (2.6)

From (2.4) and (2.6), it follows that

Therefore, by Lemma 2.3, we get 0p2,9)(f, 20) < cv. O
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Lemma 2.5. Let f be a non-constant analytic function in C\{zy} with 01,5(f, 20) = 0. Then there
exists a subset E, of (0, 1) that has infinite logarithmic measure such that for all |z—zy| = r € Ej,

we have
log log M., (r, . log T (r,
o~ iy 08108 0(17“ F) _ i 108 o(rlf)
r—s0 loglog - r—0  loglog

and for any given € > 0,

M, (r, f) > exp{(log%) i }, T.,(r, f)> <log%) i )

Proof By the definition of the logarithmic order in Definition 1.3, there exists a sequence
{rn}o, tending to O satisfying ry,1 < 257, and

. loglog M, (rn, f)
o= lim T .
n—:o0 log lOg E

Then, for any given € > 0, there exists an ny € N7 such that for all n > ny and for any
7 € [257n, ], We obtain

loglogMZO(rn,f) < loglog M., (r, f) < log log M., (nﬂ’f’n,f)

log log —— - log log% - loglogr—
n+1 n
Since
log log M. log log M., T,
lim og log zO(rn,f) — lim g log (n+1 f) _ 0
n—oo  loglog —t n—so0 log logr—
RS n
then for any r € [-257,,7,], we get
log log M., (r,
m 8% 0(17“ nN_, 2.7)
r—0 log log -
Set By = U [;%57n, 7). Then my(Ey) = Z fr” = > log(1+ 2) = oco. From (2.7), it
n=ng n=ng n=no

follows that, for any given ¢ > 0,

e { (1))

log T2y (r, f) _
r—0  loglog 2

Similarly, we can also get

and for any given € > 0

T.,(r, f)> <log %)J_a.
O

Similarly, by using the definition of the logarithmic type in Definition 1.4, we can prove the
following lemma.
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Lemma 2.6. Let f be a non-constant analytic function in C\{z} with finite logarithmic order
1 < 01g(f, 20) = 0 < 400 and finite logarithmic type 0 < Tiog 1 (f, 20) < +00. Then there exists
a subset Es of (0,1) that has infinite logarithmic measure such that for all |z — zo| = r € Ej5, we
have

Tlog,M(fa 2p) = lim

and for any given 3 < Tiog M (f, 20),

M, (. f)>em>{ﬁ<bg%)a}

We use the same proof of Lemma 4 in [13], we can easily prove the following lemma for the
[p, q]-order.

Lemma 2.7. Let p and q be two integers with p > q > 1, and let f be a non-constant analytic
Sunction in C\{zp}. Then

Olp,q] (f's20) = U[nq](fa 2p).

Lemma 2.8 ([19]). Let f be a non-constant meromorphic function in C\{z}. Then the following
statements hold

(ii) Tzo(ra f/) < O(TZO(T7 f) + log %)7 re (O>TO]\E67 where EG C (O>TO] with ml(EG) < 0.
Lemma 2.9 ([6]). Let f be a non-constant meromorphic function in C\{z} and let k € N. Then

(k)
)

Lemma 2.10. Let F(z) # 0, Ay(2), ..., Ay—1(z) be analytic functions in C\{z} and let f be a
non-constant analytic solution in C\{z} of (1.2) satisfying

M \T,

= O(T(r, f) + logl), Sor allr € (0,1)\E; with my(E7) < o0
r

max {O’[QQ](F, Zo), 0'[272}(14]‘, Zo)i (] =0,..., k — 1)} < 0'[272}(]0, Zo).
Then X[2,2](]2 20) = A2 (f, 20) = op2)(f; 20) = T10g( Ao, 20)-

Proof We may rewrite (1.2) as

1 B 1 f(k)(z) B M ) f’(z) .
f@f‘ﬂ@(f@)*A““) CR ““<U@>+%<O- 238)

By Lemma 2.8 and (2.8) we get

nijﬂwn%+om
1 1
k—
j:0
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From (1.2), it is easy to see that if f has a zero at z; of order m (m > k), then I’ must have a
zero at z; of order at least m — k. Hence

n@ﬁqgkmn%y+mn%)

~

and
Nafr5) < KN (1) + Nor ) (2.10)

By Lemma 2.9, there exists a set F; C (0, o] that has a finite logarithmic measure such that for
all |zo — z| =r € (0,70)\ E7, we obtain

K ()
ZmZO (r,fT) = O(TZO(T’, f) —i—log%) < =T (r, f). (2.11)

Substituting (2.10) and (2.11) into (2.9), we get
1 k—1

FTalre ) < KN (1) Tl F) + 3 T 45) + O(1),
=0

This lmplleS that 01[2,2] (f, Zo) < max {X[QQ](]C, Zo), O'[QQ](F, 20)7 0[2,2] (Aj7 Zo) . (j = 0, ey k— 1) } .
Since

max {O’[QQ](F, Zo), 0'[272}(14]‘, ZQ)Z (] =0,..., k — 1)} < 0'[272](]0, ZQ),

then we obtain o 2)(f, 20) < A,2(f, 20). On the other hand, by definition we have Ap o (f, z0) <
< A2)(fs 20) < o2.9(f, %), therefore

0[2,2](f7 Zo) = X[2,2](]2 Zo) = )\[2,2](f7 ZO)- O

§ 3. Proof of the theorems

Proof of Theorem 1.1.

Proof Weassume that f # 0 is an analytic solution of (1.1) in C\{z,}. From (1.1), we have

f®(z) 5 V() f'(z)
}A&Mﬂf@ +M“@Mf%;—+~+M&wﬂ@- (3.1)
By the hypotheses of Theorem 1.1, for real constants 0 < < o, u > 1 and |29 — z| =7 — 0.
we have .
Ag(2)] exp{a<log %) } (3.2)
and
1 M
|Aj(2)|§exp{ﬁ<log;> }, j=1,...k—1. (3.3)

By Lemma 2.1, there exist a subset £, C (0, 1) having finite logarithmic measure and a constant
C' > 0 that depends only on )\, such that for all » ¢ E;, we have

' £0)(2)
f(z)

27
SCH%Mnﬂ =1k (3.4)
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Substituting (3.2)—(3.4) into (3.1), for all » ¢ E; and r — 0, we obtain

1\* 1 o 1\*
exp {a(log;) }gkC{;TZO()\r,f)} exp{ﬂ(log;) } (3.5)

From (3.5), it follows that

exp {(a — B) (log %)“} < kC ETZO(M, f)} " (3.6)

From (3.6), we conclude that opp 5 ( f, 29) > p — 1. The proof is completed. O
Proof of Theorem 1.2.

P r oo f By the hypotheses of Theorem 1.2, there exists a set £ C (0, 1) of infinite logarithmic
measure such that, for all € £ and r — 0, (3.2) and (3.3) hold. Then, similarly as in (3.1)—(3.6)
in the proof of Theorem 1.1, for all » € E'\ E; and r — 0, we get that (3.6) holds which implies

o (f,20) > p— 1. O
Proof of Theorem 1.3.

Proof First, by Theorem 1.2, we can obtain o 9(f,20) > 0 — 1 — ¢ and since ¢ > 0 is
arbitrary, we have

o12,2)(f5 20) > Olog(Aos 20) =1 =0 — 1. (3.7)
Next, we may rewrite (1.1) as
k k-1 /
N TAa - R
By the definition of o,4(A;, 29) (as in Definition 1.3), for any given ¢ > 0 and » — 0, we have
1\ o+
|Aj(2)|§eXp{<log;> } §=0,... k-1 (3.9)

By Lemma 2.2, there exists a set F3 C (0, 1) of finite logarithmic measure such that, for all
r ¢ Fsand r — 0, we have

() <vzo<r>
f(zr) 20 — ”r

where |f(z.)| = M., (r, f) = max|._.,= | f(2)]. Substituting (3.9) and (3.10) into (3.8), we get

)](1+O(1)), j=1,... .k (3.10)

k o+e k—1
1 f
(VL(T)) 1+0(1))§k:exp{<log—) }(M) 1+0(1)‘.
r r r

From this, it follows that

1 o+te
VZO(T)SkreXp{<log;) }’1+0(1)’.
This implies that
0'[272}(‘]0, Zo> S Ulog<A07 Zo) = 0. (311)

From (3.7) and (3.11), we obtain

Orog(Aos 20) — 1 < 02,9/ (f, 20) < T10g( Ao, 20)- O
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Proof of Theorem 1.4.

Proof Set max{og(A;, 20): j # 0} < 09 < a < 0105(Ag, 20). For any given e > 0, there
exists a o > 0 such that for all ro > r > 0, we have

1 oo+e
|Aj(2)|§eXp{<log—> } j=1,...,k—1. (3.12)
T

For 0p+¢ < a < 0104(Ao, 20), by Lemma 2.5, there exists a set £, C (0, 1) of infinite logarithmic
measure such that, for all » € E, and |Ay(z)| = M., (r, Ay), we have

|Ap(z)| > exp { <log %) } (3.13)

Substituting (3.4), (3.12) and (3.13) into (3.1), for all » € E4\ F1, we obtain

1 o 1 2k 1 oo+e
exp { (log ;) } < kC [;TZO(X/’, f)] exp { <log ;) } (3.14)

From (3.14), we get
0'[272}(‘]0, Zo> Z o — 1. (315)

Further, by (3.15) and Lemma 2.4, we have o — 1 < 0p2.9/(f, 20) < 010g( Ao, 20), Which holds for
each a < 014(Ao, 20). Thus, we obtain g,e(Ao, 20) — 1 < 0p2,91(f, 20) < Tlog( Ao, 20). The proof
is completed. U

Proof of Theorem 1.5.

Proof Letfand 3 betwo constants such that max {Tiog 11 (A}, 20): Olog(A;, 20) = 0,5 # 0} <
< Bo < B < Tiog,m (Ao, 20). If 0165(A;, 20) < 010g(Ao, 20), then there exists o > 0 such that for
all 1o > r > 0 and for any given ¢ > 0, (3.12) holds. If gio5(A;, 20) = 010g(Ao, 20), then, by the
definition of 7je s(A;, 20), for any given € > 0 and for sufficiently small r, we get

|A;(2)] Sexp{%(log%)g}, j=1,...,k—1. (3.16)

By Lemma 2.6, there exists a set F5 C (0,1) of infinite logarithmic measure such that, for all
r € By and |Ag(z)| = M,,(r, Ay), we obtain

|Ao(2)] >exp{ﬂ<log%)o}. (3.17)

Substituting (3.4), (3.12), (3.16) and (3.17) into (3.1), for all r € E5\ F;, we obtain

1 o 1 2k 1 o
exp < B log — < KkC|-T,,(Ar, f)| exp{ Bo| log— :
r r r
This implies that

012,29 (fs20) 2 0 — 1 = 0165 (Ao, 20) — 1. (3.18)
Then, by (3.18) and Lemma 2.4, we have 01,4(A0, 20) — 1 < 0p2.91(f, 20) < 010g( Ao, 20)- O
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Proof of Theorem 1.6.

Proof Let f be an analytic solution in C\{z} of (1.2). Then f can be represented as

f(z) = Ci(2) f1(2) + Ca(2) fo(2) + - - + Cul(2) fr(2), (3.19)
where f1, fo,..., fx 1s a solution base of (1.1) (the homogeneous equation corresponding to (1.2))
and C, Cy, ..., C} are given by the following system of equations:

C1(2)fi(2) + Co(2) fa(2) + - - - + Cp(2) ful2) = 0,
C1(2)f1(2) + Co(2) f5(2) + - - - + C(2) fi(2) = 0,

(3.20)
G @+GEL T @+ + GRRTE) = F
By (3.20), for j =1, ..., k, we obtain
Ci=F.Gi(fi, far - o) W(f1s for o fr) (3.21)
where
hE) RE)  Re)
Wi = | 00 R
) AR -
is the Wronksian of fi, fo, ..., fr and G;(f1, fa, . . ., fx) is differential polynomial of fi, fo, ..., fi
and their derivatives with constant coefficients. From (3.21) and Lemma 2.7, for j = 1,...k,
we get

0[2,2](03‘, Zo) = 0[2,2](C§, Zo)
S max {0-[2,2](F7 ZO)) 0[272}(Gj(f17 fZa R fk)) ZO)7 0[272}(W(f17 f27 R fk)) ZO)} (322)

By Theorem 1.4 and the fact that G,;(f1, fa, ..., fx) and W(f1, fa, ..., fix) are both differential

polynomials of f1, fo, ..., fr and their derivatives with constant coefficients, we have
max {0[272]<Gj<f17 Jor ooy fi)s20), o2 20(W (f1, for - fi)s Zo)} < 01,9 fj, 20) < O10g( Ao, 20)-
(3.23)
By (3.19), (3.22) and (3.23), for 5 = 1, ..., k, we obtain
,20) < 1 20), 072.21(Cl, 2
U[2,2](f Zo) > max {0[2,2](f; 0) [2,2]( J 0)} (3.24)

< max {02,9/(F, %), O10g(Ao; 20) } -

i) If op2.9)(F, 20) > 010g( Ao, 20), then from (1.2) and (3.24), we deduce that oy o(f, 20) =
= 0’[272}(}77 Zo).

il) If o9 (F, 20) < 0105(Ao, 20), then, from (3.24), it follows that o3 91(f, 20) < 072,2]( Ao, 20)-
Now, we assert that all solutions f of the equation (1.2) satisfy o12,9( f, 20) > Olog(Ao, 20)—1
with at most one exception. In fact, if there exist two distinct analytic solutions g; and ¢
of (1.2) satisfying o12.9)(9;, 20) < O1og(A0, 20) — 1 (j = 1,2), then g = g1 — g2 is a nonzero
analytic solution of (1.1) and satisfies o29)(g, 20) = 0[2,91(91 — 92, 20) < Olog( Ao, 20) — 1.
But by Theorem 1.4, we have 0(2,9)(g,20) = 02,2/(91 — 92, 20) > T0g(Ao, 20) — 1. This is
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a contradiction. Further, if f is an analytic solution of (1.2) that satisfies o 9(f, 20) =
= 0O10g(Ao, 20), then

max {O’[QQ](F, Zo),O'[QQ}(Aj,Zo)Z 7=0,1,..., k — ]_} < 0'[272](]0, ZQ).

So, the assumption of Lemma 2.10 also holds and therefore X[ZQ}( [ 20) = A\ (f,20) =
= 0[2,2}(f7 %) = Jlog(A07 20)-
O
Proof of Theorem 1.7.

P ro o f By using similar discussions as in the proof of Theorem 1.6, we obtain the assertions
of Theorem 1.7. U

§4. Examples
Here we give some examples to illustrate the sharpness of some assertions in our theorems.

Example 4.1. For Theorem 1.4, we consider the analytic function in C\{z,}

1

which is a solution to the following homogeneous complex differential equation

F7(2) + Ao (2) 7 (2) + Ar(2) f'(2) + Ao(2) f(2) = 0, (4.2)
where AQ(Z) _ (2n+1)((:ﬁ;;2))?’(2n+3) . (2n+1)(2211;:)§%(377i) + (an;lz(zi;r7i)’ Al (Z) — 34 7i and AQ(Z) _

= 3 — Ti. The coefficients A;(z), j = 0,1, 2, satisfy the conditions of Theorem 1.4 and
max{oiog (A1, 20), Olog (A2, 20) } = 0 < 010g(Ao, 20) = 1.
We see that f satisfies
Olog(Ao, 20) = 1 = 091 (f, 20) = 0 < 0105(A0, 20) = 1.
Example 4.2. For Theorem 1.5, we consider the analytic function in C\{z,}
flz) = em, n € N.
Note that f is a solution to the homogeneous complex differential equation (4.2), for

4(n+1)(2n + 1)?
(z — z)4t5 7

2n+2)(2n + 3) . 2n+1
(z — 29)? ) As(z) = (z — 20)2n+2'

The coefficients A;(z), j = 0, 1, 2, satisfy the conditions of Theorem 1.5 and

Aolz) = Ay(z) = -

max{oiog (A1, 20), Olog (A2, 20) } = Olog(Ao, 20) =1

and
max{Tiog(A1, 20), Tog (A2, 20) } = 2n + 2 < Tiog (Ao, 20) = 4n + 5.

We remark that f satisfies

Ulog(AOa Zo) -1< U[Q,Z](fa Zo) = Ulog(Ao,Zo) = 1.
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Example 4.3. For Theorem 1.7, the function f in (4.1) is an analytic solution in C\{z,} to the
following non-homogeneous linear differential equation

F"(2) + A (2) f"(2) + Ar(2) f(2) + Ao(2) f (2) = F(2),

where Ag(z) = 22C0H2@n3) - 4 oy = V2@n42) gy = /3 and F(z) = 2E20@nE8)  Aq e

(z—z0)3 (z2—20) (z—20)3

see A;(z),1=0,1,2, and F(2) satisty the conditions of Theorem 1.7 in case (ii) and
max{0og( A1, 20), Olog (A2, 20) } = T10g(Ao; 20) = 1,

maX{Tlog<A17 ZO)uTlog<A27 2’0)} =1< Tlog(A07 Zo) =3

and
O'[QQ](F, Z()) =0< Ulog<A07zO) =1.

Then f satisfies
Olog (Ao, 20) — 1 = 0p2.91(f, 20) = 0 < 0105( Ao, 20) = 1.

§5. Conclusion

In this paper, we deal with the growth properties of solutions of the following complex linear
differential equations

FO 4+ A () 5V o A(2) f + Ag(2) f =0,

f(k) + Ak_1(2)f(k_1) + -+ Al(z)f/ + AO(Z)f = F(Z)7

where A;(2) (j =0,1,...,k — 1) and F(2) are analytic functions in C\{20}, 2o is an essential
singular point. Since it’s hard to find some general forms for the solutions of the above equations,
we are interested in the study of the behavior of such solutions and specially the notion of the
growth by using the concepts of logarithmic order and logarithmic type near a singular point. The
strongest tool we used for establishing our results is the Nevanlinna theory which can be found
in [16,17,22]. Under some conditions on the growth of the coefficients, we improve and extend
some recent results due to Fettouch and Hamouda in [13]. Furthermore, we obtain similar results
to those in [5] for the complex plane C case.
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