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Introduction

The problem of describing the dynamics of incompressible viscous fluid is of great importance
in applications. The dynamics is described by the Navier-Stokes equations and the problem
consists in finding a sufficiently regular solution to the equations for which a uniqueness theorem
is available. Essential contributions have been published in the research articles [11,17], as well
as surveys and books [15, 18, 19,29], etc. The topic is actively discussed in various aspects:
regularity of solutions, possible blow-up conditions, solvability criterion, etc., in various function
spaces and situations, including bounded domains, the half space R™ xR, and the periodic setting,
see, for instance, [3-7,9,12,13,24,31].

More precisely, let A = 92 + 92, + 92, be the Laplace operator, V and div be the gradient
operator and the divergence operator, respectively, in the Euclidean space R3. In the sequel we
consider the following initial problem. Given any sufficiently regular vector-valued functions
f="Y 723 and wy = (ud,ud, ud) on R? x [0, 7] and R, respectively, find a pair (u,p) of
sufficiently regular functions u = (u', u? u®) and p on R? x [0, T satisfying

du — pAu+ (u-Vyu+Vp=f, (z,t) e R*x (0,T),
divu =0, (x,t) € R® x (0,T), (0.1)
U = up, (x,t) € R? x {0},

with positive fixed numbers 7" and p. We additionally assume that the data f and wu, are spatially
periodic with a period ¢ > 0, i.e., for any 1 < 7 < 3 we have

f(x+lej, t) = f(z,t), up(z + lej) = up(x)

whenever z € R? and ¢ € [0, 7], where ¢; is as usual the j-th unit basis vector in R*. Then,
the solution (u, p) is also looked for in the space of spatially periodic functions with period ¢
on R3 x [0,7]. Relations (0.1) are usually referred to as the Navier-Stokes equations for an
incompressible fluid with given dynamical viscosity x of the fluid under consideration, density
vector of outer forces f, initial velocity ug and the search-for velocity vector field v and pressure p
of the flow, see for instance [29] for the classical setting or [25,30] for the periodic setting. In the
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present paper we use the method of energy type estimates to obtain an open mapping theorem and
a criterion of the surjectivity for the mapping induced by (0.1) over scales of specially constructed
function spaces of Bochner-Sobolev type parametrized with the smoothness index s € N.

First, we note that the integrability is a kind of regularity, too. Due to [15,23,26] and [18,19],
it is known that the uniqueness theorem and improvement of regularity actually follow from the
existence of a weak solution in the Bochner class L*([0, 7], L*(R?)) with the Ladyzhenskaya—
Prodi-Serrin numbers t, s satisfying 2/s + 3/t = 1 and v > 3 (the limit case t = 3 was added
to the list in [8]). Thus, avoiding weak solutions to the Navier—Stokes equations, we define
two scales {B}}scz,, {B5}sez, of separable Banach spaces such that: (a) each space of the
scale { Bf}scz, is continuously embedded into the spaces L*([0, 7], L*(R?)) with 2/s + 3/t = 1;
(b) the Navier-Stokes equations induce non-linear continuous mappings A,: B — B3 ! for all
s € N; (c) the components of vector fields belonging to the intersections N2, By, N2, B5 are
infinitely differentiable functions on the torus T3.

Second, we note that the existence of regular solutions to the Navier—Stokes equations for
sufficiently small data in different spaces is known since J. Leray. In addition to these results,
O. A. Ladyzhenskaya discovered the so-called stability property for the Navier—Stokes equations
in some Bochner type spaces (see [15, Ch. 4, §4, Theorems 10 and 11]). Hence, using in full
this property, we extend it to the mappings A,: B — Bj~! with arbitrary s € N, expressing it
as open mapping theorem for (0.1), cf. [27] for the Navier-Stokes type equations in R? or [22] in
a more general context of Elliptic Complexes on closed manifolds.

Finally, we prove that a map A, is surjective if and only if the inverse image A;'(K)
of any precompact set K from the range of the map A, is bounded in the Bochner space
L5([0,T], L*(T?)) with the Ladyzhenskaya-Prodi-Serrin numbers s, t. This echoes the idea of
using the properness property to study nonlinear operator equations, see for instance [28].

§1. Preliminaries

As usual, we denote by Z, the set of all nonnegative integers including zero, and by R" the
Euclidean space of dimension n > 2 with coordinates z = (z!,. .., 2").

For a domain & in R”, and s = 1,2,..., we write H°(X) for the Sobolev space of all
functions u € L?(X’) whose generalised partial derivatives up to order s belong to L?(X'). This
is a Hilbert space with the standard inner product (-,-)ys(x). The space Hj (X) consists of
functions belonging to H*(U) for each relatively compact domain U C X.

Next, for s = 0,1,..., and 0 < X\ < 1, we denote by C**(X) the so-called Holder spaces,
see for instance [16, Ch. 1, § 1], [15, Ch. 1, § 1]. The normed spaces C**(X) with s € Z, and
A € [0, 1) are known to be Banach spaces which admit the standard embedding theorems.

We are now ready to define proper spaces of periodic functions on R"™. For this purpose, fix
any ¢ > 0 and denote by Q the cube (0, ¢)™ of side length ¢. Suppose s € Z,. We denote by H*
the space of all functions u € H{ (R™) which satisfy the periodicity condition

loc
u(x + lej) = u(x) (1.1)

for all z € R" and 1 < j < n, where ¢; is the j-th unit basis vector in R". The space H® is
a Hilbert space endowed with the inner product (u,v)gs = (u,v)ms(g). The functions from H*
can be characterised by their Fourier series expansions with respect to the orthogonal system
{e!k2)r/0%, 0 in L?(Q) where ¢ is the imaginary unit. As the system consists of eigenfunctions
of the Laplace operator A corresponding to eigenvalues {\, = —(k, k)(27/()? }xezn, We see that
the above scale of Sobolev spaces may be defined for all s € R by

H* ={u= Z () e FACTO e ()] + Z(/{:,k)s|ck(u)|2 < oo} (1.2)
k

ezn k40



280 Inverse image of precompact sets

where ¢, (u) are the Fourier coefficients of u with respect to an orthonormal system of eigenfunc-
tions of the Laplace operator in the space L? corresponding to the eigenvalues ). Traditionally,
H* stands for the subspace of H* consisting of the elements u with co(u) = 01in (1.2). Actu-
ally, this discussion leads us to the identification of the space H° with Sobolev functions on the
torus T™, to wit, H* = H*(T™), see [2, § 2.4] and elsewhere.

We also need efficient tools for obtaining a priori estimates. Namely, it is the Gagliardo—
Nirenberg inequality, see [21] for functions on R". Its analogue for the torus reads for peri-
odic functions as follows (see for instance [30, §2.3]). For 1 < p < oo, set ||V/u|rg) =
'= max|y|—j |0“u||1r(g). Then for any function u € L% N L* satisfying V/°u € L and
Vhoy € L™ it follows that

IV7ullzeo (o) < ex [IV*ull 0 gy 1l zantay + 2 llul

whenever sy > 1 and 0 < ap < 1, where - = 2 4 q (% — ’%) + (1 = ag) o, 22 < ap, the
constants ¢; and ¢, depend on jy, kg, So, po, go and 7o but not on u (ag < 1 if kg — jo — % € Zy).

Next, for s € Z, and A\ € [0,1), denote by C** the space of all functions on R” which
belong to C**(X) for any bounded domain X C R" and satisfy (1.1). The space C* of spatially
periodic C'*°-functions reduces to the intersection of the spaces C*° over s € Z,. Let D’ stand
for the space of distributions on T".

We will use the symbol L? for the space of periodic vector fields v = (u!,u? u®) on R?
with components u; in L”. The space is endowed with the standard norm. In a similar way we
designate the spaces of periodic vector fields on R™ whose components are of Sobolev or Holder
class. We thus get H® and C**, respectively. By C* and D’ are meant the spaces of infinitely
smooth periodic vector fields or distribution vector fields on T".

To continue, we recall basic formulas of vector analysis saying that

rotV=0, divV=A4, divrot =0, —rotrot+Vdiv = E3A (1.4)

where Fj is the unit (3 x 3)-matrix and rot is the usual rotation operator.

Given any differential operator A with C'*° coefficients on the space of vector fields, we
denote by ker(A) the subspace of D’ consisting of all vector fields satisfying Au = 0 in the sense
of distributions in R™. Furthermore, for an integer s, we write V; for the space H® Nker(div) and
V! for the dual spaces. The designations H and V' are usually used for V; and V;, respectively,
see [30, §2.1].

In order to characterize the space V;, we denote by Ny 5 the set of all natural numbers that
can be represented as (k, k) = k¥ + k2 + k2, where k = (ky, ko, k3) is a triple of natural numbers.
For m € Ny3, let S, be the finite-dimensional linear span of the system {e (k,z)(2m/ ﬁ)}(hk):m of
eigenfunctions of the Laplace operator, and let S,, be the corresponding space of vector fields
on R". Thus, we arrive at the following useful well-known statements.

Lemma 1. Let m € Ny,,. There are L*-orthonormal bases {Umj} ™ and {wy,, k}k ™ in the spaces
S, Nker(div) and S, Nker(rot) such that

1ot 010t Uy j = —Avy,; = m(27/€)* vy 4,
Vo divwy, x = Awpy g, = —m(2m /€)Wy, &
forall j=1,....J,and k=1,..., K,,. In particular, the system

{617 €2,...,6En, Um,j}meN,j:L...,Jm

is an orthonormal basis in V.
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Denote by P the orthogonal projection of L? onto V; which is usually referred to as the
Helmbholtz projection. By Lemma 1, we get

P =11+ rot"rot ¢

where for u =3, ci(u)e!™=) 27/ the operators IT and ¢ are given by

Ck’(u) u(k,z) (2 /)
Mu = co(u), gpu:—Z—e(’ :
2 (k. k) (2r 17

In particular, P is actually the H*-orthogonal projection onto V; whenever s € Z...

We use also the Bochner spaces of functions of (z,?) in the strip R™ x I, where I = [0, 7.
Namely, if B is a Banach space (possibly, a space of functions on R") and p > 1, we denote
by LP(I, B) the Banach space of all measurable mappings u: [ — B with finite norm

lullzr sy = Hlul, O)llsllze),

see for instance [29, Ch. III, § 1]. In the same line stays the space C'(I, ), i.e., it is the Banach
space of all continuous mappings u: I — B with finite norm

lullow.s) = sup [[u(-, )]s
tel

We are now in a position to introduce appropriate function spaces for solutions and for the
data in order to obtain existence theorems for regular solutions to the Navier-Stokes type equa-
tions (0.1), cf. similar spaces for non-periodic vector-fields over R™ in [27]. Namely, for s,k € Z
we denote by B¥?*(I) the set of all vector fields u in the space C(I, Visas) N L2(I, Vir112s)
such that 4

950]u € C(I, Virasjal-25) NV LI, Viy1125-jal-25)

k,2s,s
vel,a

k . 1/2
lullpezeray = (30 32 Nozoful,r)

i=0 |a|+2j<2s

provided |a| 4+ 2j < 2s. We endow each space B> (I) with the norm

. , 1/2
where ||ull; 7 = <||V’u||QC(I7L2) + u||VZ+1u||%2(I,L2)> are seminorms on the space B*>**(I),

vel
too. Similarly, for s,k € Z,, we define the space Bfo’fs’s(f ) to consist of all fields f in
C(I,H?**k) 0 L2(I, H?*k+1) with the property that 900} f € C(I,H*) N L?(I, H**1) provided

la| +2j < 2s. If f € B?**(I), then actually

for

3?8{f e C(lI, H’f+2(s—j)—|al) nL3(I, Hk+1+2(s—j)_\a|)

k,2s,s
for

for all « and j satisfying |a| + 25 < 2s. We endow each space B;-”°([) with the norm

k ) . ) : 1/2
Wl = (32 3 IV'00 1B nsn + IV 0200 B a0y -

i=0 |o|+2j<2s

Obviously, the pressure p is defined by (0.1) up to a summand independent of x. How-
ever, for the methods we use, the uniqueness of the map, defined by (0.1), is important. For

this mathematical reason, let the space B’g;gl’zsvs(] ) for the pressure p consist of all functions
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p e C(I, H>tF+1) N L2(I, H**%+2) such that Vp € BF?**(I). The space does not contain

for

functions depending on ¢ only, and this allows us to equip it with the norm
||p”B§;g1.,2s,sU) - HVPHB&%S([)-

Physically, this means that we allow for the pressure to be negative in order to achieve the
uniqueness. Of course, if 2s + k > 1 then p € Bgﬁgms’s([ ) is bounded because of the Sobolev
embedding theorem and we may grant the positivity of a pressure adding a large constant to p. If
0 < 2s+ k < 1 then we may follow [15, Ch 2, § 5] to replace the positivity of the pressure by
other reasonable interpretations.

Clearly, BX2**(I), BF***(I), B¥+1:255(I) are Banach spaces with the following properties.

vel for pre

Lemma 2. Suppose that s € N, k € Z. The following mappings are continuous:

\Va Bk+1,2(s—l),s—1 (]) N Bk,Q(s—l),s—l(I)’

pre for

9;0;: Biy*(I) — B2t~V Y(1),

vel for

8;0;: Bk+2,2(s—1),s—1<]> _ Bk,2(3—1)7s_1(1>7

vel for

at . Bk,Qs,S(I> . Bk,2(s—1),s—1 (I),

vel for

0t By (I) = Vigas,

vel
where 0;(u(-,t)) = u(-,0) is the initial value functional (or the delta-function in t).
P r o o f. Follows immediately from the definition of the spaces. U

Lemma 3. If s € N then the following embeddings are continuous:

Bk,Qs,S(I) SN Bk+2,2(s—1),s—1 (I), Bk,?s,S(I) SN Bk+2,2(s—1),s—1 (1)7

vel vel for for

Bk+1,25,s(1) N Bk+3,2(371),571 ([)7 Bk,Zs,s SN LOO([, LB), Bk,25,5(1> SN L5<[, Lt)

pre pre vel vel
for all s, v satisfying 2/s + 3 /v = 1.

P r o o f. The continuity of the first three embeddings follows immediately from the definition
of the spaces. The other embeddings follow from (1.3) and the Sobolev embedding theorem (see,
for instance, [1, Ch. 4, Theorem 4.12]). For the fifth embedding with s = 2, v = +00, we use the
following: if k,s € Z, and A € (0,1) satisfying k — s — A > 3/2, then there exists a constant
c(k, s, \) depending on the parameters, such that

lul|can < c(k,s,A) ||ul|gx forall u € HF, (1.5)

cf. [27, Lemma 3.4] for vector-fields over R"™ without periodicity assumptions. U

§2. An open mapping theorem

This section is devoted to the so-called stability property for solutions to the Navier—Stokes
type equations (0.1). One of the first statements of this kind was obtained by O. A. Ladyzhenskaya
[15, Ch. 4, § 4, Theorem 11] for flows in bounded domains in R? with C? smooth boundaries.
In order to extend the property to the spaces of high smoothness, we consider the standard
linearisation of problem (0.1) at the zero solution (0, 0). Namely, let

D(u) = u- Vu, B(w,u) =u-Vw+w - Vu,

1,2

for vector fields u = (u', u?, u3) and w = (w!

w2 w?).
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Lemma 4. Suppose that s € N, k € Z,, and w € ijs’s(l). The following mappings are
continuous:

B(w ) : Bk+2,2(s—1),5—1 (I) N Bk:,2(s—1),s—1 (I)

vel for

D: Bk+2,2(5—1),s—1 (I) - Bk,2(s—1),s—1 (I),

vel for

B(w, ) : Bk,QS,S(I) N Bk,?(s—l),s—l(1>7

vel for

D : Bk‘,2878([) N Bk,?(s—l),s—l (I)

vel for

Moreover, with positive constants cs, independent of u, w,

HB(’LU, u) HBk,rE(sfl),sfl(I) S CSJC”wHB\IfeJlr,Qaﬂ(sfl),sfl(I) HUHBlvcizaz(sA),sﬂ(I). (21)

fo

Proof Follows easily from the definition of the spaces and inequality (1.3), cf. [27,
Lemma 3.5] for vector-fields over R™ without periodicity assumptions. U
Now, let us consider a linearisation of problem (0.1): given spatially periodic func-
tions f = (fL,f%f% € BN D), w = (whww?) € BE2S(I) on R3 x [0,7]
and vy = (uj,ud,ud) € Vaeyp on R® with values in R?, find spatially periodic functions
u=(u',u?,u’) € BLr*(I) and p € BEEY?5(I) in the strip R? x [0, 7] which satisfy
Owu — pAu+ B(w,u) + Vp = f, (z,t) € R® x (0,7),
divu = 0, (z,t) € R? x (0,T), (2.2)

u = uo, (z,t) € R® x {0}.
Let us obtain an expected existence and uniqueness theorem.

Theorem 1. Let s € N, k € Z, and w € Bfﬁs’s(]). Then (2.2) induces a bijective continuous
linear mapping

Ayt BE23(1) x BEEV26=Ds=1(1) y gE26=Ds=lpy oy, (2.3)

vel pre for
which admits a continuous inverse A".

Proof. The continuity of A, follows from Lemmata 2, 4. Next, one usually follows a
rather standard scheme beginning with the notion of a weak solution, see, for instance [15, Ch. VI,
§ 51, [29, Ch. 3, § 1] or [27, Theorems 3.1 and 3.2] for this particular type of spaces in the case
of vector fields over R" x (0,7") without periodicity assumptions.

Namely, one usually begins with the following statement.

Proposition 1. Suppose w € C(I,Vy) N L*(1,Vy) N L*(I,L*°). Given any pair (f,ug) €
€ L*(1,V]) x V,, there is a unique vector field u € C(I,Vy) N L*(1,Vy) with Ou € L*(I, V),
satisfying for all v € V;

%(u, )iz + w(Vu, Vo)iz = (f — B(w, u), v),

u(+,0) = ug.

(2.4)

Proof It is similar to the proof of the uniqueness and existence theorem for the Stokes
problem and the Navier-Stokes problem, see [30, §2.3, §2.4] (or [19, Ch. II, Theorem 6.1 and
Theorem 6.9] or [29, Ch. III, Theorem 1.1, Theorem 3.1 and Theorem 3.4] for domains in R?).
It is based on Gronwall type Lemma, see [20, Ch. XII, p. 360, formulas (9.1") and (9.17)],
inequality (1.3) and the following useful lemmata and formulas.
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Lemma 5. Let V, H and V' be Hilbert spaces such that V' is the dual to V' and the embeddings
V C H C V' are continuous and everywhere dense. If v € L*(I,V) and Oyu € L*(1,V") then
L, t)||3; = 2 (Opu, u) and u is equal almost everywhere to a continuous mapping from [0, T]
to H.

Proof See[29, Ch. III § 1, Lemma 1.2]. 0
The following standard statement, where

1/2
il = (I 0l k) + 1 IVl ie))
2 2 2 2 1/2
17 w0 lor = (ol + % 1 By + 1 )

gives a basic a priori estimate for regular solutions to (2.4).

Lemma 6. Let w € L*(I,Vy) N C(I,Vy) N L*(I,L>). If u € C(I, Vo) N L*(I1, V1) and (f,ug) €
€ L*(I,V}) x V, satisfy

gl DlE + 1 Vullg. < (f = Bw,u),u)
(2.5)
u(-,0) = ug
Sorall t € [0,T], then, with positive constant c; independent of w and u,
2 2 o [T 2
el < 10 w0 (1 cvexp (2] flwl:, ) [Ewdt) +
# o (2.6)

+%</OT||w(-,t)Hioodt) exp (%“/0 HwM)H%wdf))

The rest of the proof runs the standard scheme with the use of Faedo—Galerkin approximations,
see ibid. O
Of course, we also have to recover the pressure p via known velocity .

Proposition 2. Letn >3, seN, k€ Z,, and F € Bgz(sq),sq satisfy PF = 0. Then there is a
k+1,2(s—1),s—1

unique function p € Bpre , satisfying Vp = F in T" x [0, T].
P r o o f. The arguments are straightforward. U
This finishes our sketch of the proof of Theorem 1. 0

Since problem (2.2) is a linearisation of the Navier—Stokes type equations at an arbitrary
vector field w, it follows from Theorem 1 that the nonlinear mapping given by (0.1) is locally
invertible. The implicit function theorem for Banach spaces even implies that the local inverse
mappings can be obtained from the contraction principle of Banach. In this way we obtain what
we shall call the open mapping theorem for problem (0.1).

Theorem 2. Let s € N and k € Z,. Then (0.1) induces an injective continuous nonlinear open
mapping
Az BF253(1) x BEFR2s=Ds=1(1) oy BRIy sy, 2.7)

vel pre for

The significance of the theorem is in the assertion that for each point (ug, po) € BY2**(I) x

vel
x BEEL2ED 71 1) there is a neighbourhood V of the image A(uo, po) in BE2C™" (1) x Vag ks
such that A is a homeomorphism of the open set &/ := A~*(V) onto V.
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P r o o f. Since the bilinear form B is symmetric and B(u, u) = 2D(u), we obtain
D) — D(u") =B, v —u") + (1/2) B(u' — u",u' — u"). (2.8)

Then the continuity of the mapping A is clear from (2.1) and (2.8).

Suppose that (u,p) € Bir™*(I) x Bpre 2 7H(1), A(u,p) = (f,u0) € Be® "7 (1) %
X Viio2s. Obviously, an integration by parts implies that u is a weak solution to equations (0.1),
see, for instance, [30, (2.41)]. By the Sobolev embedding theorem, see (1.5), the space Bffcjfs’s(l )

is continuously embedded into L*(7,L°°(R?)). Thus, u is a strong solution that is unique, see,
for instance, [30, Remark 3.1] or [29, Theorem I11.3.9]. Thus, if («/,p’) and (u”,p”) belong to

BE255(1) BEEPETDS 1y and A, p) = AW, p") then o/ = u” and V(' — p")(-, 1) = 0
for all ¢ € [0,7]. It follows that the difference p’ — p” is identically equal to a function ¢(¢) on
the segment [0, 7. Since p/ —p”" € C(I, H*), we conclude by Proposition 2 that p’ — p” = 0. So,
the operator .4 of (2.7) is injective.

Finally, (2.8) makes it evident that the Fréchet derivative A’(w’ o) Of the nonlinear mapping A

at an arbitrary point (w, py) € B%2*(I) x BEE2E=D71 (1) coincides with the continuous linear
mapping A, of (2.3). By Theorem 1, A, is an invertible continuous linear mapping from
BE25%(1) x BEELAEDsT1 () o Bﬁf(s—l)’s_l(l) X Vi42s. Both the openness of the mapping A

and the continuity of its local inverse mapping now follow from the implicit function theorem for
Banach spaces, see for instance [10, Theorem 5.2.3, p. 101]. O

Corollary 1. The range of the mapping (2.7) is closed if and only if it coincides with the whole
destination space.

Proof Since the destination space is convex, it is connected. The only closed and open
sets in a connected topological vector space are the empty set and the space itself. Hence, the
range of A is closed if and only if it coincides with the whole destination space. 0

§ 3. A surjectivity criterion

Inspired by [15,23,26] and [18, 19], let us obtain a surjectivity criterion for mapping (2.7) in
terms of L°(1, L*)-estimates for solutions to (0.1) via the data.

Theorem 3. Let s € N, k € Z. and the numbers v, s satisfy 2/s+3/v = 1. Then mapping (2.7) is

surjective if and only if, given subset S = Sye1 X Spre 0f the product BR255(1) x Bgrtl’Q(S_l)’s_l(])

vel
k,2(s—1),s—1

such that the image A(S) is precompact in the space By (I) X Vagig, the set Syq is

bounded in the space L*(1,L").

P r o o f. Let mapping (2.7) be surjective. Then the range of this mapping is closed according
to Theorem 2. Fix a subset S = Sye1 X Spye 0f the product BY25(1) x B’;;Zl’?(s‘l)’s‘l(l) such that

vel

the image A(S) is precompact in the space Bk’Q(S_l)’s_l([ ) X Vo If the set S, is unbounded

for

in the space L*(I, L") then there is a sequence {(ux, px)} C S such that

1. S t) — . 3.1
Jim flug | e = o0 G.1)
As the set A(S) is precompact in B’ =571 TY % Vayk, we conclude that the corresponding
sequence of data { A(ug, px) = (fk, uro)} contains a subsequence {( fx,,, U, o)} Which converges
to an element (f,wug) in this space. But the range of the map is closed and hence for the data

(f, uo) there is a unique solution (u, p) to (0.1) in the space BX2**(I) x BEE2"1*1(T) and the
sequence {(uy, ,pk, )} converges to (u,p) in this space. Therefore, {(uy, ,px, )} is bounded in
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BE2S (1) x BEEY26D571 (1) and this contradicts (3.1) because the space BE25%(I) is embedded
continuously into the space L°(/, L") for any pair t, s satisfying 2/s + 3/t = 1.

We continue with typical estimates for solutions to the Navier-Stokes equations (0.1). We
emphasize again that the elements of the spaces under consideration are already sufficiently
regular. So, we need the estimates for proving the surjectivety of mapping (2.7) but not for

improving regularity of weak (Leray—Hopf) solutions.

Lemma 7. If (u,p) € B2 (I) x BLYO(1) is a solution to the Navier-Stokes equations (0.1) with

vel pre

data (f,uo) € By, "(I) x Va, then ||ullo,ur < ||(f, uo)llour-

for

Proof. For a solution (u,p) to (0.1) related to data (f,ug) within the declared func-
tion classes, the component u belongs to C(I, H*) N L*(I, H*), and both d,u and f belong
to C(I,L*) N L*(I,H'). Then we may calculate the inner product (Au,u)y: with the use of
integration by parts and Lemma 5, obtaining

d

Zlullze + plVulte = (f,w).

Finally, applying Lemma 6 with w = 0, we conclude the estimate follow. U
Let’s obtain estimates for the derivatives of vector fields with respect to space variables.

Lemma 8. Let k € Z, and s, t satisfy 2/s + 3/t = 1. Then for any ¢ > 0 and for all u € H>*
it follows that

I(~A)2Dul2. < || V*F2ul2: +

+c(k,s,v,0) [lull LV ulfs + ek, s, 0) lullgellullEe + c(k,s,7) ullgs

(3.2)

with positive constants depending on the parameters in parentheses and not necessarily the same
in diverse applications, the constants being independent of u.

P r o o f. On using the Leibniz rule, the Holder inequality we deduce that

I(—4)2 Dyl

k
LS D CHITHIT oy [ Vule (33)

Jj=0

with binomial type coefficients C? and any ¢ € (1,00).

For £ = 0 there are no other summands than that with j = 0. But for £ > 1 we have to
consider the items corresponding to 1 < j < k, too. The standard interpolation inequalities on
compact manifolds (see, for instance, [10, Theorem 2.2.1]) hint us that those summands which
correspond to 1 < j < k could actually be estimated by the item with 7 = 0. We realize this as
follows: For any j satistfying 1 < j < k there are numbers ¢ > 1 and ¢ > 0 depending on k and j
but not on u, such that

IV5 0] 2 1Vl < e I9 ull s, e + ez ) (3.4)

Indeed, we may apply Gagliardo—Nirenberg inequality (1.3) if we prove that foreach 1 < j < k
there is a ¢ > 1 depending on k£ and 7, such that the system of algebraic equations
1 t—2 k+1 11—
— =2 AL P
2 3 ( 2t 3 ) Lt T
-1 k+1-—3 t—2 k+1 1—v
1 - J + ( )192 + 2

29 3 2t 3
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admits solutions ¥, € [+, 1), ¥ € [52=4 1). On adding these equations we see that

k+1°

k+1
1 k+1 2 1 k+1 2

S e Y (L N O Y
2 3 t (2 3 c)(1+ 2),

1. e., the system is reduced to

91q(2(k 4 1)t 4 12 — 3t) = 2jtq + 6¢ — 3t,
0y + 10, = 1.

(k+1)e

W Slncet>n>2

J kE+1—7
008¢ ¥ k+1an 2 k+1
and 1 < j <k, an easy calculation shows that

to obtain ¢ = q(k,j) =

2k +1)+j(t—4)>2(k+1)—2j >2>0,
k+Dr—2k+1)+j—4)=(k+1(xt—2)—j(t—4) >0,

i.e., q(k,j) > 1 in this case, and so (3.4) holds true.
Therefore, if we choose ¢(k,0) = t/2 > 1, the estimates of (3.3) and (3.4) readily yield

I(=2)5Duls < el v) (IIV** 0l s fullfs + ullZ2) (3.5)

with a constant ¢(k, t) independent of w.
Now, if s = 2 and v = 400, then, obviously, we get

ok, ) [Vl 20 [lullge = ek, o) [Vl fJull. (3.6)
If s > 2and 3 < v < oo, then we may again apply Gagliardo—Nirenberg inequality (1.3) to

achieve , s
195z elle < efe) (9 2ullgs 9 ullgs + llulle ) s (3.7)

with an appropriate Gagliardo-Nirenberg constant ¢(t) independent of w.
Since s = ﬁ—t?), it follows from (3.7) that

IVE R ull? 2 flullEe < 2<||V'“+2UIIL2 94 g

c(k, ¢)
(e 19"+ 2ufif + ===

Nl + Nulaluli) <
(3.8)

= ) 94 ulfa e+ 20(k, o) ullEal .

with some positive constants independent of u because of Young’s inequality applied with
p1 =t/3 and py = t/(v — 3).
Now, inequalities (3.5), (3.6) and (3.8) imply (3.2) forall3 <t < ocand 2 < s = 2t/(t—3) <
< 00, as desired. O
For k£ > 1, we now introduce

1/2
100 lgsr = (19" wollEz + 4~ IV FllEara))

Lemma 9. Let k € Z, and the pair s, v satisfy 2+ 2 = 1. If (u,p) € B2 () x BEFLOO(T) s a

vel pre

solution to (0.1) corresponding to data (f,uy) in Bk (I X Viys then

for

lullj+rpr < ei((f o), w), [V Dullrarrz) < ¢;((f, uo), w),
ijatuH%?(I,L?) + ||vj+1p‘|%2(l,L2) < Cj((f? uo)v u)?

for all 0 < 57 < k + 1, where the constants on the right-hand side depend on the norms

I (f, wo)llo,pr (}, )|l j+1,u0 and ||u||ps(1,1e) and need not be the same in diverse applications.

(3.9)
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Proof We first recall that u € C(I,H*"2) N L2(I,H**3), vy € H**? and Vp, f €
€ C(I,H*) N L*(I,H*™) under the hypotheses of the lemma. Next, we see that in the sense of
distributions we have

(—A)2 (8yu — pAu + Du+ Vp) = (—A)2 f in R® x (0,7), G.10)
(—A)zu(r,0) = (—A)2up(x) for z € R '
forall 0 < j < k+ 1, if (u,p) is a solution to (0.1). Integration by parts yields
(= A)2u, (=) T u)e = | (=24) 7 ulfz = [V ulf; (3.11)
and similarly
j i+2 d :
2D (= A)ru, (~4)F uie = — ||V ulf, (3.12)
cf. Lemma 5. Furthermore, using (1.4) we conclude that, for all ¢ € [0, 77,
(=2)2Vp(- 1), (=4) 7 ul-, )iz = lim ((=2)3Vpi(-,1), (rot) "ot (=A)3ul-,£))rz =
;o , (3.13)
— lim (— A) 10t Vi (-, £), 10t (— A) (-, ) = 0,
1—r 00
where p;(-,t) € H7™2 is any sequence approximating p(-,t) in H7T!,
On combining (3.10), (3.11), (3.12) and (3.13) we get
2 ((—A)% (Ahu — pAu+ Du+ Vp) (-, ), (~A) T u(-, )z =
d . | ; o (3.14)
= IVl )+ 20l V7P ul D)t 2((=2)2Dul, 1), (= A) > ul-, 1))rz
for all 0 < 57 < k + 1. Next, according to the Holder inequality, we get
j i 2 i i
2/((=4)*Du, (=2) F | < (-2 Dullfs + SN Tl 0l (19
i 2 i 2
2((=2)2f( 1), (=4) = ul(-, 1))z < 2[[(=2)2 F (-, D) lle2l[(=2) = u(-, )|l <
4 ; 1 a2 (3.16)
< I(=2)2 £ D)llEz + 7 1(=2) = ul D)llg
for all ¢ € [0, T|. By the Holder inequality with ¢; = % and ¢ = " ¢ 3
t
[ a5 s < Tl o T a1
On summarising inequalities (3.10), (3.14), (3.15), (3.2), (3.17) and (3.16) we obtain
t
IVl s s [ 97l 5) [ ds <
0
, 4. ‘
< IV g |§ + ;HijH%m,m) + C(]>5>t)HU\|QL%([0¢LL2)HU”%S([O,t],Lf) + (3.18)

, 1 [t , .
+eljsn) / lal-, $)lIe V7 (e, 8)|Zads + (G, 5, ) ullZ
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for all t € [0, T]. By (2.6), and (3.18), given any 0 < j < k+ 1, we get for all ¢t € I:

t
IV e, )2 4+ / IV 2u(-, 8)|2 ds <
0
. 3
< ||<f7 U()) H?Jrl,,u,T + C(j757 t>T[ (f7 UO)H(2),;L,T”u||i5([0,t],L‘) + (319)

g L .
+C(]a5at);/ ”u('aS)||L”||Vj+lu('7s)||%2d8+C(]vﬁat)T||(fau0)”(2),p,,T'
0

On applying Grénwall type Lemma to (3.19) we conclude that, forall ¢ € [0, 7] and 0 < j < k+1,

, . . 1/t
IV )12 < c(d,s, e, T, p, (f,uo)) exp (C(]757t);/ ||U('7S)||ird3> (3.20)
0

with a positive constant ¢(j,s,t, T, i, (f,uo)) independent of u. Obviously, (3.19) and (3.20)
imply the first estimate of (3.9). Next, applying (3.2) and (3.17) we see that
1(=2)2DullZ20002) < IV 2ull 220012 + 2¢0,¥) lJullf20. 12 +

+c(j,8,v,e=1) HUHELS([o,t},Lr)|’Vj+1u||%:([o,t],L2) +2¢(j, ) [|ull? 5

2
L3 ([0,t],L2) ”uHLS([O,t},Lt)u

the constants being independent of u. The second bound of (3.9) follows from (2.6) and (3.9).
We are now ready to establish the estimates on J,u and p. Indeed, since divu = 0, we get

1(=2)2 (9 + V)22 = [V Oulze + V7 p1Es (3.21)

for all j satistfying 0 < 5 < k£ + 1. From (3.10) it follows that

1 J
—[(=2A)2 (0 + V) ||227 r 2y <
S (= )5t + V)11 < 52

< ”ij”%Z(I,m) +u ’|VJ+2UH%2(I,L2) + H(_A)QDUH%%LL?)

for all 0 < j < k 4 1. Therefore, the third estimate of (3.9) follows from the first and second
estimates of (3.9), (3.21) and (3.22), showing the lemma. 0
Clearly, we may obtain additional information on O,u and p.

Lemma 10. Under the hypotheses of Lemma 9, for all 0 < 5 < k

V' Dullc e < ¢;((f,uo), u),

. : (3.23)
IV Oyullp 2y + IV 10l 5 2y < ei((f u0), )
with a positive constant c;((f,uo), w) depending on the norms ||(f,wo)|lou1, - -, [|(f; wo) k42,01
ijfHC(LLZ) and HUHLs(LLr).
P ro o f Using (3.10), we get
sup [|(=4)% (9 + Vp) (- 1)|32 < sup [[(=A)2(f + pAu+ Du)(- )|z <
te[0,7] te[0.T] (3.24)
= o (IV7f 0L + V7P ul Ol + [V Du(- 1)1£2)
te[0,T

for all 0 < 5 < k. The first two summands in the last line of (3.24) can be estimated via the data
(f,uo) and ||| rs(r,Lr) using Lemma 9.
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On applying Lemma 8 to the third summand in (3.24) we see that
|’VjDuHQC(1,L2) < ||vj+2UH?J(I,L2) +c(j, s, v,e=1) HUHSC(I,L“)‘|vj+1u|’%’(1,L2) + (3.25)
+¢(4,5,°) HUH%‘(LLQ)HUHQC(I,U) +¢(J, 8, v) ||U||%(1,L2)

for all 0 < 5 < k, the constants being independent of u. On the other hand, we may use the
Sobolev embedding theorem (see, for instance, [1, Ch. 4, Theorem 4.12] or (1.5)) to conclude
that for any A € [0, 1/2) there exists a constant c¢()) independent of u and ¢, such that

[u( t)llcon < e(A) [ul-, t)|me2

for all t € [0, 7. Then energy estimate (2.6) and Lemma 9 imply immediately
sup ||u< )HCO“\ < C((f? Uo), U), (326)

t€[0,T

where the constant c((f,uo),u) depends on ||(f,uo)l;r With j° = 0,1,2 and ||u|[zs(7,Lr), if
inequality (1.5) is fulfilled. In particular,

. 30 . 35
lulleny < TC: tsgl;] u(-, t)lle < T+ e((f,uo),u) (3.27)
€0,

with constant ¢((f, u),u) from (3.26). Hence, the first estimate of (3.23) is fulfilled.
At this point Lemma 9 and (3.24), (3.25) and (3.27) allow us to conclude that

sup {|(=2)%(Gyu + Vp)(, D)L < (G, (fu0),u) (3.28)
te[0,7
forall j = 0,1,...,k, where c(j, (f,uo),u) is a positive constant depending on ||(f, uo)||;/ .1
with 0 < 5/ < k+ 2, ||w||s(z,Lr) and T'. Hence, the second estimate of (3.23) follows from (3.21)
and (3.28). U

Our next objective is to evaluate the derivatives of v and p with respect to = and ¢.

Lemma 11. Suppose that s € N, k € Z, and s, ¢ satisfy 2/s + 3/t = 1. If (u,p) €
e BF23(1) x BEEY?CV "N (D) is a solution to the Navier-Stokes equations of (0.1) with data

vel

(f,uo) € Bf’if(s D-s= Y(I) X Vipas then it is subjected to an estimate of the form
||(uvp)||B"fé125»5(])XB’;jel’Q(s*l)’Sfl(]) < C(k7 S, (fa u0>, u), (3.29)

the constant on the right-hand side depending on ||f||Bk,2(s—1),s—l(I), uollvy,., and ||ul|s(rLey as
for
well as on ¢, T, yu, etc.

Proof Fors=1andany k € Z,, the statement of the lemma was proved in Lemmata 9
and 10. Then the statement follows by induction with respect to s from the recurrent formulas

98] (Oyu + Vp) = 8°9](f + pAu — Du),

. . . (3.30)
10°0] (Bru + Vp)i2 = 10°0 iz + 1|0°0/ V| 32

provided that divu = 0 and j € Z, o € Z'; are fit for the assumptions.
Indeed, suppose the assertion of the lemma is valid for s = sy and any £ € Z+ We then
prove that it is fulfilled for s = sy + 1 and any k € Z,. As (u,p) € BEIeoth=otlpy

vel

x BFELZs0s0 () (f ug) € Bf:2so.s0 (I) X Va(so+1)+k> then, by the definition of the spaces, (u,p) €

pre for

€ BEr22s0so (1) o gRtP2eom 0ol (1) (f ug) € BRI 0N (1) X Vg4 (k1a)- Thus, by the

vel for
1nduct10n assumption,

H (u7 p) HBk;;?ﬂsovso(I)XB’;;;LQ(SO*U@O*l(I) < C<k7 S0, (fa uO)a U), (33 1)
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where the properties of the constant ¢(k, so, (f, ug), u) are similar to those described in the state-
ment of the lemma.
It follows from the first equality of (3.30) that for all suitable ;7 we get

IV?0;°(Opu + Vp)I2 = [IV707°(f + pdu — Du)||> <

e . o (3.32)

<2 (V70 fllzz + p IVI207ullz2 + [ V79, Dulf3).

By the induction assumption, if 0 < j < k+ 1 and 0 < 4 < k, then the norms ||Vjaf°f||i2(I7L2)
and ||V'0;° f[|2,; 2 are finite and

V72050 ul| 72 p2) < € HUHQBH]z,zso,so

V20 ullé ey < ellullprizans g, (3:33)

()’ ()

with constants ¢ independent of u and not necessarily the same in diverse applications. Be-
sides, (2.1) with w = u yields
j 2 4
IV 0 Dz p2) < cllull gz s

V'O DullE e < llullgrzecs (3.34)

()’ ()

provided 0 < 5 < k+ 1 and 0 < i < k, the constants being independent of w.
Finally, combining (3.31), (3.32), (3.33), (3.34) with the second equality of (3.30), we con-
clude that

H(u,p) |’Bk,12(30+1),50+1(1)XBk+1,2SO,SO(I) < C(k, S0+ 1, (f, uo), u),

pre

and [|u

1y %0 ][Vaug 1y s LA (1,L7)
as well as on ¢, T, u, etc. This proves the lemma. O
Keeping in mind Corollary 1, we are now in a position to show that the range of mapping (2.7)

is closed if given subset S = Sy X Spre of the product BY2%(I) x 85;21’2(371)’871([) such that

vel
the image .A(.S) is precompact in the space Bﬁ)f (5—1),3—1(] ) X Vasik, the set Sy is bounded in the

space L°(I, L") with a pair s, v satisfying 2/s + 3/t = 1.
Let a pair (f,ug) € Be2® V"1 (I) X Vayyx belongs to the closure of the range of values of
the mapping A. Then there is a sequence {(u;, p;)} in BE2*(I) x Bt ~1(I) such that
the sequence {(f;, u;0) = A(u;, p;)} converges to (f,ug) in the space Bﬁ)’f(s_l)’s_l(l) X Vasik-
Consider the set S = {(u;,p;)}. As the image A(S) = {(fi,uio)} is precompact in
Bﬁ)f (571)’571([ ) X Vs, it follows from our assumption that the subset Sy = {u;} of Bffjs’s([ )
is bounded in the space L*(I,L").
Applying Lemmata 7 and 11 we conclude that the sequence {(u;, p;)} is bounded in the space

BE2S(1) x BEEL2E=D571( 1) By the definition of BE23(I, the sequence {u;} is bounded in
C(I,H*2%) and L*(I, H**?*1)  and the partial derivatives {&/u;} in time with 1 < j < s are
bounded in C'(1, H*+2(=9)) and L?(I, H*+2(=7+V)_ Therefore, there is a subsequence {u;, } such

that:

where the constant on the right-hand side depends on || f|| ;20,5
for

(1) the sequence {0290 u;, } converges weakly in L?(1,L?) provided that |o| + 2j < 25 and
1B < k+1;

(2) the sequence {92170/ u;, } converges weakly-* in L°(I,L?) provided that |a| + 25 < 2s
and |B] < k.

It is clear that the limit u of {u;, } is a solution to the Navier—Stokes equations (0.1) such that:
(1) each derivative 9273 u belongs to L>(I,V;) provided that |a| +2j < 2s and |5] < k + 1;

(2) each derivative 92797 u belongs to L (I, V;) provided that |o| + 2j < 2s and |5| < k.
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As we already mentioned, such a strong solution is unique, see, for instance, [30, Remark 3.1]
or [29, Theorem II1.3.9]. In addition, if

0<ji<s—1, lof+25<2s |B]<k, (3.35)

then 02°9¢u € L*(I,V;) and 0°°9! ™ u € L*(1,V}). Applying Lemma 5 we readily conclude
that 90+° dlu e C(I,V;) for all j and «, 3 satisfying (3.35). Hence it follows that u belongs to the
space Bf;r 2’2(8_1)’5_1(1 ). Moreover, using formula (2.1) with w = u implies that the derivatives
92+89! Du belong to C(I,L?) for all j and «a, § which satisfy inequalities (3.35).

Besides, the operator P maps C(1,L?) continuously into C(I,L?). Therefore, since u is a
solution to (0.1) we deduce that

P05u = 0°0:  pAu — 0°0;"PDu + 0P0;T'P f

belongs to C'(I,V;) for all multi-indices 3 such that || < k. In other words, u € B¥>%%(I).

vel

Finally, applying Proposition 2, we conclude that there is p € Bit"?* V" (I) such that

i.e., the pair (u,p) € B¥*(I) x BEE™"71(]) and it is a solution to (0.1).

Thus, we have proved that the image of the mapping in (2.7) is closed. Then the statement of
the theorem related to the surjectivity of the mapping follows from Corollary 1. U
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IIpooGpa3 npeAkOMNAKTHBIX MHOXKECTB M peryJisipHble pemienns ypapHenuii HaBbe—Ctokca

Kniouegvie crosa: ypasuenus HaBpe—CToKCa, peryaspHble pelieHHs.

VJIK 517

DOI: 10.35634/vm220208

Paccmarpupaetcs 3aiaua Ko juis ypasuenuit Hasbe—Crokca Haj ionocoit R3 x [0, T'] ¢ Bpemenem 1" > 0
B MPOCTPAHCTBEHHO-TIEPHOANYECKOI TTocTaHOBKe. JlOKa3bIBaeTCs, YTO 3a/1a4a WHAYIUPYET OTKPHITHIE UHDB-
eKTHBHbIe oToOpaxkeHus Ag: By — BS_I, roe B, BS_I CYTh 3JIEMEHTHI 1IKaJ CIEUUaIbHO MOCTPOEHHBIX
(hyHKIMOHAIBHBIX TIpocTpaHCTB boxHepa—CoboneBa, mapaMeTpU30BaHHBIX HHIEKCOM Iankoctd s € N.
HakoHerl, MbI JI0Ka3biBaeM, 4To 0TOOpaxkeHne A; CIOPBEKTUBHO TOTJA W TOJIBKO TOT/A, KOrma Mpoodpas
A;1(K) mo6oro npeakoMnakTHOro MHOxkecTBa K m3 obpasza otobpaskenus A; orpaHHueH B MPOCTpaH-
ctBe Boxnepa L*([0, 7], L¥(T?)) ¢ nokasarensmu Jlansokenckoit-TIponu-Ceppuna s, t.

duHancupoBaHue. VccnenoBanus MepBOro aBTopa BEITIOTHEHBI TIPH (UHAHCOBOH nonepkke DoHma pas-
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