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Introduction

The main aim of the paper is the study of the operators from the L. Boutet de Monvel algebra
on R? acting in Holder-Zygmund spaces of variable smoothness. Pioneering work is [12],
in which a symbolic calculus of operators of the form

%
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(where ' C R™!, P, = r"Pe™ is a pseudodifferential operator in a half-space with a symbol
from the L. Hormander class S, satisfying the transmission property with respect to z,, = 0,
G is a singular Green operator, K is a Poisson (or potential) operator, 7" is a trace operator,
Q — pseudodifferential operator on the boundary), which are called Green operators, was con-
structed, as well as conditions for the solvability of an elliptic equation on a compact manifold
with boundary were given and the index of the problem was found. An alternative approach
to the solvability of such equations in the scalar case had been proposed by Vishik and Eskin
(see [4] and references there), which had been based on factorization of the symbol of the pseu-
dodifferential operator. The investigation of L. Boutet de Monvel was continued by S. Rempel
and B.-W. Schulze (see [13] and references there), G. Grubb [5, 6], J. Johnsen [8], E. M. Shar-
gorodsky [3] and others. It should be noted that Green operators were considered in L, spaces,
in Besov-Lizorkin-Tribel spaces, and Holder-Zygmund spaces in these papers. But the exponents
and parameters of the functional spaces are constant and do not depend on a point of the domain
in all these cases. This leads to the fact that local properties of solutions were not appreciated.
In this article, our task is to take into account, in the spirit of the works [1,2,9-11], the local
smoothness of functions and distributions under the action of the Green operator.

The paper is organized as follows. In §1 and §2 we give the necessary definitions and
statements about the Holder-Zygmund spaces of variable smoothness and the pseudodifferential
operators, respectively. The classes of Poisson operators, trace operators and singular Green op-
erators are introduced in § 3, §4 and § 5, respectively. The theorems on the boundedness of these
operators are also proved there. The boundedness of a pseudodifferential operator with the trans-
mission property in a half-space is proved in § 6. In the final section we present a theorem
on the boundedness of the Green operator in Holder-Zygmund spaces with a variable smooth-
ness in a half-space. The results obtained are important for studying the solvability of general
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elliptic boundary value problems on smooth manifolds and for analyzing the local smoothness of
solutions. The authors hope to present the results on this topic in the near future.

Throughout the paper we use the standard notations: for elements © = (1, s,...,z,) and
&= (&,&,...,&,) of the real n-dimensional Euclidean space R™ their scalar product is defined
by z-& =z + ... + 2,6, the norm is defined as |z| = /7 -, dv = dx, . ..dz, and {x)*" =
= (1 + |x|?)". Let us denote by N = {1,2,3,...} the set of positive integers and Z, = N U {0}.
Let R} be a half-space in R" specified by unequality x,, > 0, and RZ ={z € R"‘azn > 0} is its
closure. The extension of a function (or distribution) by zero from R”} to R” is denoted by e*, and
r is the restriction from R" to }RTi For a multi-index o = (o, ..., a,) € Z7} as usual we denote
la| = a1+ ...+ oy, O] = 0%/0,,, 03 =021 ...0%", and D; = —id/0,,, D* = DY* ... D4
C>®(R"), Cp(R™), C5°(R™) and S(R™) is the set of all infinitely differentiable functions on R",
the set of all continuous and bounded functions on R", the space of compactly supported smooth
functions and the Schwartz space, respectively. Let S'(R™) be the space of the distributions under
S(R™), the spaces C* (Ri) and S(@i) are specified by the restriction on E:i, S'(R%) is the set
of all distributions under S(R”) C S(R"). The subset of C*(R, ) of all functions with compact
supports in ﬁl is denoted by C° (@1) The Fourier transform for v € S(R") is denoted by

Fu(© =i(e) = [ e (o) s

n

and for its inverse the notation

1 .
Fo(x) = 9(x) = 2n) /n e ry(€) dé
is used. For u(z',x,) € S(R"), where ' = (x1, xa, ..., T, 1), a partial transformation in 2’ is

specified by
ﬂ(é“/,xn) = Fm/_)g/u(x/’l.n) — / 6_7;1‘,.5/”(1'/’1'”) dl'/.
Rn—1

Let you(z') = lirrJlr Ou(:zc' , ;) be the restriction to the hyperplane z,, = 0 and ~; = v DJ . The
Tpn—>

function cap(-) € C§°(R) such that 0 < cap(t) < 1 and cap(t) = 1 for |t| < 1 and cap(t) = 0 for
|t| > 2 will be useful below. It should be noted that a symbol C' without indices will be used to
denote various positive constants in the estimates given below.

§ 1. Holder-Zygmund spaces of variable smoothness

For Holder-Zygmund spaces of variable smoothness to be defined we introduce a bounded con-
tinuous real-valued function s(-) on R” which satisfies for any € R” and 0 < |y| < 1 the
condition

S

< — (1.1)
< Tog

|s(z +y) - s(z)

with not depending on = and y constant .S; > 0.

In order to define the Holder-Zygmund spaces of the variable smoothness we use the
Littlewood—Paley partition of unity (see, e.g., [15, p. 57], [14, p. 241-243]). Let A\o(§) = cap([¢]).
For integer j > 1 we denote

X (€) = Xo(277€) — Xo(27711¢).
Then supp Ao C {£ € R™ | |¢] <2} and supp\; C {{ € R | 2971 < |¢| <2771} for j € N. It is
obviously that Z Aj =1

Jj=0
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Definition 1 (see [9]). It is said that the distribution f € S’(R™) belongs to the Holder—
Zygmund space A*)(R") of variable smoothness s(-) if

1Fllas @y = sup 270X (D) fl 1.y < 0. (1.2)

JELy

If s(-) = s is constant then it is clear from the definition that the space A*)(R™) coincides with
the usual Holder-Zygmund space A*(R") (see e.g. [14,15]) and A*20)(R™) C A*:()(R™) provided
s1(z) < so(x) for any z. Let

s = ;plgann s(r) and s, = xs;lﬂg s(z),

then the following estimates for the norms hold:

|

A= (R = [ ul AsO (Rr) S || A%+ (R7) -

The norm (1.2) is equivalent to the norm

lullp e + sup sup lu(z + 2h) — 2u(z + h) + u(z)]
- 0<|h|<1 z€R™ | ]s(x)

if 0 <s_ <s(z) <sy <2forall z € R™ (see [9]). Let us introduce the Banach space AS(')(EZ)
of all distributions from S’(R’, ), admitting extension to R”, which belongs to A*‘)(R"). Norm in
AsC) (Ri) is defined by formula

[

AsC) (Rn
lueAsC) (Rn) (")

where infimum is taken over all extensions of distribution u to R™ belonging to A*¢)(R™).

§ 2. Pseudodifferential operator

Definition 2 (see [7]). Assuming m € R we define Hormander class S™(R**) (= S7(R*"))
to consist of all functions a € C°°(R*") such that

al’* = max su DP0%a(x, €)|(1+ €)™ < o0
‘ ’pq la|<p, |BI<q (x,f)elﬂ){%f‘ 3 ( 5)’( |€|)

for every p, q € Z, .

For every symbol a € S™(R?") we associate a pseudodifferential operator A = a(x, D) acting
upon a function f € S(R™) by the formula

1 A
Af(e) = s [ alw e ) de
The class of corresponding operators will be denoted by OPS™. The pseudodifferential opera-
tors from the class OPS™ are well coordinated to the Holder-Zygmund spaces of the variable
smoothness in the sense that they act continuously in a suitable pair of the spaces. Namely, the
following theorem holds.

Theorem 1 (see [9]). Suppose a is a symbol in S™(R**). Then the operator A = a(x, D)
is a bounded mapping from A°*C)(R™) to A*O)~™(R™) , and there exist a constant C > 0 and
non-negative integers p and q not depending on the symbol a such that

[A} < Claly-
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In order for the function 7+ Ae*u to belong to C°(R"}) for any u € C®(R; ) we will require
the following additional condition for the symbol of A € OPSm to be hold:

Definition 3 (see [4,12], [13, p. 170]). The pseudodifferential operator a(z, D) € OPS™,
m € 7, satisfies the transmission property with respect to the boundary R"~! (when z,, = 0),
if each derivative of its symbol admits the series expansion

0ol € ia e+ S a, ) &)

o 5/) + Zf )k+1’

where d,(z', &) € S™*(R*"~1)) and a, (', ¢') is a rapidly decreasing sequence in S™+1(R2(—1)),
that is, for any seminorm | - [ on Sm“(RQ(” D) and any number N € Z, there is a constant
C' = C(p, q, N) such that

k=—o00

gl < C(L+[R)™Y
The following system of seminorms can be introduced in this class

m

lalz = ladly, +Sup|ak!m“(1+ kDY
s=0

for any w = (v,p,q, N) € Z%.
§ 3. Poisson operator

Definition 4 (see [12,13]). Let k(2/, &) be infinitely smooth function on R*~! x R", admitting

the series expansion ‘
par £’> + zw“

m+1

: : m—+1 2(n—1 : :
where k; is a rapidly decreasing sequence in ™' (R (n=1), i.e., for any seminorm | - v

SmH+L(R2(=1) and for any N € Z, there is a constant C' = C(p, ¢, N) such that

on

|kt < C(1+ )7,
The function k(2', ) is called a potential symbol of order m € R.

The space of all potential symbols of order m is denoted by K™ (R"~ R"), K~°°(R"~1 R") =
=), L™ (R"!,R"). Let us define the following system of seminorms on ™ (R"~ R"):

|kl = sup Kl (14 5)Y

for any w = (p,q,N) € Z3.

The Poisson operator was introduced in the works of Vishik and Eskin (see [4, p. 76, 198])
and used to be called a potential type (or coboundary) operator. The Poisson operator / arises in
the description of the solution of the boundary value problem for the elliptic (pseudo)differential
operator.

Definition 5 (see [4,12,13]). The Poisson operator with the symbol k(z2/, &) € K™(R™1 R")
of order m acts on the function v € S(R"™!) by the following formula:

Ko (2m)” /R+dgn/Rnl e k(2 €)b(¢) de'.

The class of all such operators is denoted by O P(K™).
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The Poisson operators can be described using the following symbol-kernel, which is determined
by the formula

k(xlvxnvgl) = Fg;:mnk(l‘/?g/agn)a

where symbol-kernel £ € S™ (R, S(R,)). The symbol-kernel allows the Poisson operator
K to be written according to the formula

Ko(w) = (20" [ R €06
Rn—1
for v e S(R*1).

Let P be a pseudodifferential operator in a half-space satisfying the transmission property
with respect to the boundary z,, = 0, then the operator Kp : S(R""!) — S(R,) defined by the
formula

Kpv(z) =r"P(v(z') @ 6(z,))

is a Poisson operator (see, for instance, [4, p. 199], [12], [13, p. 212]). It was proved that any
Poisson operator can be represented in this form, namely, the following lemma is true.

Lemma 1 (see [4,6,12,13]). For any k(2',&) € K™(R",R") there is a symbol p(z,§) €
€ S™(R?") with the transmission property such that

Kv=r"p(z,D)(v(2') ® §(z,)), veSR".

Any seminorm of the symbol of the pseudodifferential operator P is estimated by a finite number
of seminorms of the symbol of the Poisson operator K.

Lemma 2. Suppose s(x',0)+1 < s; < 0 holds for any x' € R"~'. Then there exists a constant
C > 0 such that for any distribution v € A*COYY (R 1) the following inequality is satisfied

lo() ®0(-n)

AsO®Rn) < Cllv ASCHO+1 (1Y 3.1

Proof Letv e ASC'OH(R" 1) We define A, by the formula

Mo(&) = cap(&y)cap(Ea) - - - cap(én)-

For integer 7 > 0 we denote

A (&) = Xo(277€) — Xo(27711¢).

The system of functions ); for j > 0 gives the equivalent norm in A*()(R™) (see [10]). Then let
us consider the expression

|275@\;(D)v(a) @ 6(x,)| =

20 [ )6 et g g,

By replacing the function \;(¢) under the integral with \o(277¢) — A\o(277/71€), we obtain

275\ (D)v(2') @ d(x,)| = (27) "

2is(@) / (Rol(277¢',0)Xo(0,276,) -

= Ro(2 771 0)0(0,2771,) ) (€)™ € et e de,
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— (27.‘_)—TL+1

2 (Ra(2 Iy () = Raf2 7 (0 6D

where A\o(17') = Ao(7/,0) and I; denotes the inverse Fourier transform of the function \o(0,277¢,,)
forj >0:

Li(z,) = (2m) 7! /]R Xo(0,277€, el tnde, = 21y(2 ).

Therefore
‘st(‘”)j\j(D)v(:c’) X 6(:cn)| =
) . ~ . . 1~ . , e
= (2m)™H! QJS(IHJ/ <>\0(27j5/)lo(2]1'n)— §>\o(2j+1§/)lo(2jl9€n)) (g )e
Rnfl
< (an) e [ (Gu(zig) = o2 6)) () i(€)e ¢
Rnfl
. . ~ . . 1 . s el
+ (27r)_”+1 2]5(””/ /\0(21_75’) (l0(2jmn) — §l0(23_1mn)) 0(&)e™ €
]Rn—l
where
]1 _ (27T)—n+1 2js(z'70)+j/ (5\0<2—j€/) _
Rn— 1
Mo(2' 7€) ) 6(€)e (sltsn) = S@”O”lo(zjxn)\
and

IQ — (27T)_n+1

o0 [ (@)
Rn—1

o , . 1 ;
|9i(s(@’ @n)—s(a',0)) <10(2j$n) - 550(23719’;")) ’

Considering that \o(277€") — Xo(2'77¢") = \;(¢') we obtain for the first factor in I;:

ois(@' 0)+j /Rn_1< o(279¢) — (21_j§)> S(E)eiE

= [2CEOFDN(D', 0)o(a’)

(2) "t

< OH/U”AS('/,O)le(Rnfl)-

It should be noted that the function \o(2'~7¢’) in the first factor of I, can be written as:

Jo(27€) = (Ro(27741€) = Ro(27742¢)) + (Ro(27772¢) = Ao(2777%¢) ) +
- - - —L (3.2)
+ (Ro(27€) = 2o(€)) + (&) = Y A(&).

0

.

>
Il

Thus, applying the formula (3.2) we have for the first factor of I

j—1
| = |20CEOD N XD, 0)o(2)

k=0

(27r)fn+l S

2j(s(x’,0)+1) / 5\0<27j+1£/)15(€/)6ix’~£’
Rn—1

-1

M

(z' O)+1)>\ D/ O) ( /) 2j(s($’,0)+1)2—k(s(x’,0)+1) <

k=0

~1

< sup ||2¢ s(O+D (D', 0)v|| . (re-1) 2U=k)(s(=",0)+1) _ |v]
T€Z+ 0

<.

1— 2]’(5(:0'70)-‘1-1)
AsC,0)+1(Rn—1) 2—s(@,0)-1 _ 1°

e
I
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Since s(z’,0) + 1 < s; < 0 holds for any z’ € R"!, then
0<1—26E0H) <1 apd 275071 1 >979 _1=¢>0.

Therefore A - ~
(@D (279 D' 0)u(a’)| < C||v]

As(-/,0)+1(Rn—l) .

Let us consider the kernels [; of pseudodifferential operators 5\0(0, D,,). Then for any M € Z,
there is a constant A,; > 0 such that

lo(2)] < Anelz| ™
This estimate is a particular case of the estimate in [14, p. 244]. Then for z = 27z,
l0(22,)| < Ap27M |z, | 7M. (3.3)

The boundedness of the second factor in /; will be proved by examining it on two sets |z, | > 23
and |z,| < 27%. Let us consider first the case |z,| > 22, then |z,| ™ < 2%, Using (3.3), we
obtain

27 (s(@an)=s(&" 0N 1 (977 Y| < 23 (@) =s(2"0)) g\ 9=IM | 1M <

< Ay 2 @) =5 0)g=iMolE _ 4 (s an) =5 0-%) < 4 < o

for M > 2(s; — s_). In the case |z,| < 27 we have log, |z,| < 3 and |log, |z,|| > £,
therefore, from the inequality (1.1) it follows that

S 28
s(a',x,) — s(2',0) < - <=
| logy [zall

and j(S(ZL‘,, xn) - 8({13/, 0)) < 2Sl
Choosing in (3.3) M = 0 we get
2j(3(x"w")_5($"0)lo(2jxn) < Apd®t < 0.

Hence the second factor in /; does not exceed the largest of two numbers A,; (where M >
> 2(s; —s_)) and 451 Ay. The second factor in I, is estimated in the same way as in ;. Thus,
collecting estimates for /; and [, together, we obtain the inequality (3.1). 0

Theorem 2. Let k(2',&) € K™(R"™ ' R"™), then the Poisson operator K is bounded from
AR dnto ASO=m=Y(R). Moreover; there exist a constant C > 0 and w € 72 such that
for all v € A*CO)(R™1) the following estimate holds

1Kol

AsO=m—1(R}) < C’|k:|7w”||v| AsC/,0) (Rr—1)

Proof Let k(2 &) € K™(R"! R"). By lemma 1 there is a pseudodifferential operator P
with the symbol p(x, ) € S™ with the transmission property such that operator K can be written

Kv=r"Plv®?J).

First assume that s(2’,0) < s, < 0 for any 2/ € R""!. Then according to Lemma 2 and
Theorem 1 for v € A0 (R"~!) there exist a constant C' and non-negative integer p, ¢ not
depending on the symbol such that

<

HK/U’ As(~)7m—1(ﬁ1) =

AsO)=m=1(R]}) = HTJrP(v ® 5)‘
As()=m—1(Rn) < C\p’;?q HU ® 5’

< [|P(v®0d)|

AsCO)-1(Rn) < C‘p!;?qH’U‘ As(/0) (Rn—1)-
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By Lemma 1 for any p, ¢ there exists w such that the inequality [p[;" < [k[]} is valid. Therefore,
the operator norm of the operator K is estimated through the seminorm of its symbol. Now we
allow s, to be arbitrary. Then for Poisson operator K there is a condition

Kv=r"P (D)) @) o (D)0, v e XV @),

where d € R, (D')? is bounded from the space A*("9(R""1) to A5t/ O~4(R"1), Select d > s,
for proving the theorem it suffices to show that the operator K’ = r* P (((D/>_d-) ® 0 ) is bounded
from A*("0~4(R"=1) into A*)~"~1(R}), which is true since s(2’,0) — d < s, — d < 0 and the
operator K’ is a Poisson operator with the symbol k(z/, &', €,)(¢/) "¢ € K™~ 4(R"~1 R™). O

§ 4. Trace operator

Definition 6 (see [4,12,13]). Let t(2/, &) be C*-function on R"~! x R" admitting the follow-
ing series expansion:

—_

r—

t(x',€) = &g+ Z

J

() +i&)"
> . g )k:—l—l
where t; € S™J(R*") and ¢, form a rapidly decreasing sequence in S™F!(R?"~V), that is,

for any seminorm |- [ on S™ ™ (R*"~ V) and N € Z. there is a constant C' = C(p, ¢, N) such
that

=t (xlv g) + tQ(xla 5)7

Il
=)

|t,€\m+1 <CO+k)N

Function t(2/, ) is called a trace (boundary) symbol of order m € R and of class r € Z,. The
space of all trace symbols of order m and class r is denoted by £™"(R"~! R"), the following
system of seminorms is introduced

r—1

[t|m" = Z [ Iy sup ]tk]m“(l + k)N,
=0

where w = (p,q, N) € Z3. The intersection over m of all classes £™"(R"~!, R") is denoted
by E—oo,r(Rn—l,]Rn).

Definition 7 (see [4,12,13]). The trace operator T' with the symbol (', £) € L™"(R"1 R")
is defined by the formula

Tu(z') = (2m)™ / (! E)etu(€) de, de', ue S(RY).

The space of trace operators with symbols from £™"(R"~! R") is denoted by OP(L™"). We
need the following statement:

Lemma 3 (see [6,8]). The trace operator T' of order m and class r can be written as a sum
Z t) + Tou(a'), u € S(RY),

where each T; = t;(«',D') is a pseudodifferential operator on R"" with symbol t;(z', &) €
€ S™=I(R*"=1). Operator Ty can be defined by the symbol-kernel t, € S™(R?*"~Y S(R,))
according to the formula

N _ —n—1 iz’ ¢’ < / N (! /
Toule!) = (2m) " [ (e €€ ) o
for to(x, &) = 5H_Wt (2, ).
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It is easy to see that the restriction 7, to the hyperplane z,, = 0 acts continuously from A*® (Ei)
to A*(R"!) for arbitrary s > 0 (see, e.g., [13, p. 247], [15, p. 192], [14]). Then the trace ;
is bounded from A® (ﬁi) to AS7/(R"1) if s > j for any j € Z,. It is not difficult to prove that
the similar result is valid in the case of a variable order of smoothness:

Lemma 4. The trace v; is a bounded mapping from A°C)(R', ) to N°UO-I(RY), G o€ Z,,
if there exists € > 0 such that s(x',0) — j > ¢ is fulfilled for all ¥’ € R"',

In order to prove boundedness of the trace operator we need some facts about pseudodifferen-
tial operators with operator-valued symbols (see, e.g., [6], [13, p. 202]). Let B; and B, be Banach
spaces, B = B(Bj, Bs) be the Banach space of bounded linear operators acting from B; to Bs.
In the usual way we introduce the Banach-valued analogues: the Schwarts space S(R"™1, B;),
the L. Hérmander class S™(R*™~1; B), the Holder-Zygmund space A*)(R"~!, B;) with vari-
able smoothness s(z') and others. The theorem on the boundedness of a pseudodifferential
operator in Holder-Zygmund spaces can be almost literally carried over to the Banach-valued
case. This means that there are non-negative integers p, ¢ and constant C' > 0 independent of u
such that

la(z’, D )u|

AsCD=m(Rn=1 By) = C|a|pq||u| ASC) (RP=1 By)

where a € S™(R2"1); B).

Theorem 3. The trace operator T € OP(L™") is bounded from A*) (Ri) into NS¢0 (R,
if the following conditions are satisfied:
(i) there exists T > 0 such that s(2’', z,) > s(2’,0) when x,, € (0;7);
(ii) there exists € > 0 such that s(z',0) > max{r — 1 + ¢,e} for any ' € R""1,

Proof. Letu(z) € A*O(R] +). By Lemma 3 the trace operator 7" acts by the formula

Z ) + Tou(a'),

where T; = t,(2/, D') are pseudodifferential operators on R"~! with symbols ¢; € 5™ (R*"~1),
and T is the trace operator of the zero class. The traces ; with j = 0, 1,...,7—1 are continuous
ASORY) L5 AsCO—3 (R if there exists ¢ > 0 such that s(a’,0) — j > ¢ holds for any 2’ €
€ R™!. Operators T} of the order m — j are bounded from A*(":0)=7(R"~1) into A*"O—m(R"~1)
by Theorem 1. Therefore Z;;é Tyv; is bounded from A*C)(R}) to A*"9=m(R"1) and the
operator norm of this operator is estimated through a finite sum of seminorms of symbols .
Namely, there exist a constant C' > (0 and non-negative integers p, g, such that

r—1

ZH (2!, D" fyju‘

J=0

AsO®RY) -

r—1

As (-/,0)— Rnfl) S CZ |tj|;??(;J Hu‘
=0

It is easy to notice that from condition (1 1) it follows that there exists £; > 0 such that s(z/, x,,) —

r+1>e, > 0 holds for any z, € (0;2' = 51) and 7/ € R"~!. Without loss of generality, we can

assume that 217:721 = 7. Suppose 1 (z,) = cap(2@) and @2 = 1 — ;. Then ¢, € C°(R) and
©1(z,) = 0 when |z,,| > 7. We split the operator T; into two terms Ty ,u = Topu when [ =1, 2.
Let us consider the case [ = 1. According to the condition (i) of the theorem, @1 (z,)u(x’, x,) €
€ A*UO(R’) and besides s(2’,0) > ¢ > 0. Then A*C"O(R}) C A*C"O(R"!; Cy(R)) and the
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embedding is continuous. Let a Banach space B, = C and a Banach space B; = C,(R,) and
ay(2',£') € B = B(By, By) is an operator acting by the formula

au(a, € = / o (2! 2, €0 () datn,
0

where v € Cy(R.). Then the trace operator Ty of the zero class can be defined as a Banach-
valued pseudodifferential operator

(To)(@) = 2m) " [ e Caal,€) (e e
Rn—1
with symbol a,(z/,¢") € S™(R>*"V: B). Then Tp; is bounded from A*"O(R*~!:Cy(R,))
into AS"0=m(R*=1.C) = A0~ (R"1). Therefore, the trace operator Tp; is bounded from
A*O(RY) into A*C"O=(R"~1) moreover, its norm is estimated through the seminorm of a sym-
bol (or a symbol-kernel, which is equivalent) of the trace operator 7 (see [13, p. 184]). That is,
there exist a constant C' > 0 and w = (p, ¢, N) € Z3 such that

||T0,1U

As(/,0)—m(Rn—1) < C|t0|$’OHU| AsO®RY)

Now we assume | = 2. It is clear that pou(2’,x,) € A*")(R™) with an arbitrary extension of
the function s on R” and the operator of multiplication by the function 5 is a bounded operator
acting from A*C)(R”) into A°)(R™). Let us represent the operator Ty » in the form v op(2’, D)y
(see [13, p. 214]) where the pseudodifferential operator p(z’, D) of the order m is bounded from
A*C)(R™) into A*C)=™(R™). By the pseudolocality property of the pseudodifferential operator, the
distribution 7j »u 1s infinitely differentiable in a neighborhood of x,, = 0. Therefore, the operator
7o is defined on the image of the operator p(z’, D), moreover,

Iop(x", D)paul| s or-m(@n-1y < ellullyso @),

where the constant ¢ is estimated through the seminorm of p(2’, ), which is estimated through
the seminorm of the symbol of the Trace operator Ty (see [13, p. 214]). Thus, there exists
w = (p,q,N) € Z3 such that

| To2u

pstr 0 -m(gn-1) < Cltol i ull yecs @y - o

It should be noted that the proof of the corresponding theorem for Holder-Zygmund spaces
with constant smoothness can be found in [8] and [13].

§ 5. Singular Green operator

Definition 8 (see [12,13]). Let g(z/, ¢, &,,m,) be O function on R?™~1 x R x R admitting
a series expansion:

r—1 . j . l

Y Y j Y (<€/> - Zgn)J (<§/> + ”771)
ySHSnylln) = i 'S HSn Zz + i ) R ; R )
g(l’ 6 ) ;g (x S )77 j7;+g l(x 5)(<£,> + Zérn)j—f—l <<£/> . Znn)Hl

where g; € K™/ (R"1,R") is the Poisson symbol of order m — j, and g¢;; is a rapidly decreasing
double sequence in S™2(R*"~1), that is, for any seminorm | - [7F2 on S™2(R*"~1) and all
N € Z, there exists a constant C' = C(p, ¢, N) such that

lgali? < C(1+j+1)~N.

The function g(2/, &', &,,m,) is called a singular Green symbol of order m and class 7.
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Definition 9 (see [12,13]). The singular Green operator G' of order m and class r with the
symbol g(2', & &, m,) € G™T(R™1 R™1) is defined by the formula

Guta) = (2m) ™ [ [ [ ety ¢ )T )
RJRJRA-1
The class of all such operators is denoted by OP(G™").

A singular Green operator arises, for example, as a composition of a Poisson operator and a
trace operator. Let us define the Poisson symbols as

T IRY
g gn Zg]l M

(&) + Zgn)ﬁ_l ’

then the symbol of a singular Green operator can be written as

(&) + ina)’

r—1 >
g(‘rlv 5/7 5”7 nn) - jzogj(‘rlv 5/7 gn)ﬁﬁz + ; kl(‘rlv 5/7 gn)W’

where ki(2/,¢,€,) is a rapidly decreasing sequence in K™ (R"~1 R"), i.e., for any seminorm
| - |™ ! on K™(R™!, R") there is a constant C' = C(w), w = (p, ¢, N) such that
kmtt < ca+0N

The space of all such symbols is denoted by G™"(R"~!, R"*!), and the following set of semi-
norms is defined

|gle" Z\gg 7+ sup. gl (145 + DY

where w = (p, ¢, N) € Z3, or an equivalent set of seminorms (see [13, p. 184])

r—1

g0~ Y gl + sup [l 1+ DY
7=0

The intersection over m of all classes G™" (R, R"*1) will be denoted by G~ (R"~ R"1),

Theorem 4 (see [12,13]). Any singular Green operator G € OP(G™"(R"! R"™)) can be
written in the form

r—1 o
Gu = ZKfﬁU—F ZKl 0T, wu€SR,),
=0 I=1

where K; € OP(K™ ) and K; € OP(K™), Ty € OP(L"°), and the corresponding series
of symbols

Z kl f fn tl 5/7 nn)

together with the symbol of the first sum converges to the symbol of the operator G in
gm,r (Rn—I’ Rn—&-l)'
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Theorem 5. The singular Green operator G € OP(G™") is bounded
G: NORY) = A0 (RY),

provided.:
i) there is T > 0 such that s(x',x,) > s(z',0) when z,, € (0;7) and 2’ € R"';
ii) there is € > 0 such that s(x',0) > max{r — 1 +¢, €} for any 2’ € R"~'. Moreover, there exist
a constant C > 0 and w = (p,q, N) € Z3 such that for the operator norm the following estimate
is fulfilled:

|Gul

AsO-m-L @&y S Clgle" [lul ASO®RY) -

P r o o f. By Theorem 4, the singular Green operator G of order m and class r can be represented
as

r—1
G = ZKjOfyj + Go,

j=0

where K are the Poisson operators of order m — j, -y, are traces, and
Go = Z K0T,
=1

where K are the Poisson operators of order m and 7; are the Trace operators of order 0 and
class 0. Consequently Theorem 5 follows from Theorem 2 and Theorem 3. 0

§ 6. Pseudodifferential operator with the transmission property

The following theorem is a transference of the theorems on the boundedness of a pseudodif-
ferential operator with the transmission property ( [13, p. 250], [8]) in Holder-Zygmund spaces
with variable smoothness.

Theorem 6. Let the symbol p(x, &) with the transmission property belong to S™(R*"), m € Z.
Then the operator P, = r*p(x, D)e* is bounded from AS(')(ED into AS(')*m(ﬁi) provided:
i) there exists T > 0 such that s(z', x,) > s(2’,0) for x, € (0;7),
ii) there exists € > 0 such that s(z',0) > ¢ holds for any ¥’ € R"1,

Proof Let the distribution u(z) € A*)(R). Since

[u AO®RY) = ir;f{Hv[ ASO @R | rtv=u},

it follows that one can choose such expansion of distribution u (which will be denoted [u) that

[lul| asr ey < 21wl ps0r @y

Then for the operator P, we have
r*p(z, D)etu=r*p(z,D)lu+ (r*p(z, D)et — rp(z, D)) u = rp(z, D)lu+ Gu,
where G is a singular Green operator of order m — 1 and class 0 (see [13, p. 220]). Thereby
I pla, D) ull oy < lIr*pla, D)l perom (@) <
< 2Cplytllul

aso-m@r) T Gl

AsO®RY) T C|9|Ln_1’0||u| ASO(RY)

where w = (p, ¢, N) € Z%. The symbol of the singular Green operator G calculated in [13] has
G™ 19 seminorms that are estimated by the corresponding seminorms of the symbol p € S™(R*")
with the transmission property:

9|01 < ClplZ,

where @ = (v, p/, ¢/, N') € Z% and w = (p,q, N) € Z3.. Then
I p(x, D)etul

aso-m@ty < C (L, + 1pIE) Nl ASOR™) O
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§ 7. Green operators

Let us consider the matrix operator

: — S 7.1
T Q S(R"—1)®(CN S(Rn—l)®cN’ ( )

where

e P, =rtPe" is a M’ x M-matrix with pseudodifferential operators on a half-space, with
symbols of the class S™(R?*") with the transmission property as elements;

G is a M’ x M-matrix with singular Green operators from OP(G™ ") as elements;

K is a M’ x M-matrix with Poisson operators from OP(K*) as elements;

T is a M’ x M-matrix with Trace operators from OP(L"") as elements;

Q is a M’ x M-matrix with pseudodifferential operators from OPS!~™T#*7 acting at the
boundary as elements.

The operator A is called a Green operator, and the set of Green operators with the indicated
orders is denoted by O P(&"#7T),
Consider two spaces, defined by

Al (Ri) _ As() (Ei) ® (CM ®A5(~’,0)—m+u+l(Rn—1) ® CN

and
Aa(RY) = AO(RY) © CY eA O R @ €.

Summarizing the results obtained in Theorems 2, 3, 5, 6 we arrive at the following

Theorem 7. Suppose A € OP(&"™"V7); then it acts continuously

provided:

i) there is T > 0 such that s(x',x,) > s(a’,0) holds for all x,, € (0;7) and arbitrary ' € R"1;
ii) there is € > 0 such that s(x’,0) > max{r — 1+ ¢;&} for any 2’ € R""1.

The norm of the operator A is estimated by finite number of seminorms of symbols of operators

PG KT, Q.

In conclusion, note that condition i) in Theorem 7 is not necessary. For example, if the first
column of matrix 7.1 contains only differential operators, then this condition can be removed. The
authors do not know whether conditions 1) and ii) can be weakened or removed in the general
case.
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