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Introduction

The main aim of the paper is the study of the operators from the L. Boutet de Monvel algebra

on R
n
+ acting in Hölder–Zygmund spaces of variable smoothness. Pioneering work is [12],

in which a symbolic calculus of operators of the form

A =

(
P+ +G K

T Q

)
:
C∞

c (Ω′×R+)⊗CM

⊕
C∞

0 (Ω′)⊗CN

→
C∞(Ω′×R+)⊗CM′

⊕
C∞(Ω′)⊗CN′

,

(where Ω′ ⊂ R
n−1, P+ = r+Pe+ is a pseudodifferential operator in a half-space with a symbol

from the L. Hörmander class Sm
1,0, satisfying the transmission property with respect to xn = 0,

G is a singular Green operator, K is a Poisson (or potential) operator, T is a trace operator,

Q — pseudodifferential operator on the boundary), which are called Green operators, was con-

structed, as well as conditions for the solvability of an elliptic equation on a compact manifold

with boundary were given and the index of the problem was found. An alternative approach

to the solvability of such equations in the scalar case had been proposed by Vishik and Eskin

(see [4] and references there), which had been based on factorization of the symbol of the pseu-

dodifferential operator. The investigation of L. Boutet de Monvel was continued by S. Rempel

and B.-W. Schulze (see [13] and references there), G. Grubb [5, 6], J. Johnsen [8], E. M. Shar-

gorodsky [3] and others. It should be noted that Green operators were considered in Lp spaces,

in Besov–Lizorkin–Tribel spaces, and Hölder–Zygmund spaces in these papers. But the exponents

and parameters of the functional spaces are constant and do not depend on a point of the domain

in all these cases. This leads to the fact that local properties of solutions were not appreciated.

In this article, our task is to take into account, in the spirit of the works [1, 2, 9–11], the local

smoothness of functions and distributions under the action of the Green operator.

The paper is organized as follows. In § 1 and § 2 we give the necessary definitions and

statements about the Hölder–Zygmund spaces of variable smoothness and the pseudodifferential

operators, respectively. The classes of Poisson operators, trace operators and singular Green op-

erators are introduced in § 3, § 4 and § 5, respectively. The theorems on the boundedness of these

operators are also proved there. The boundedness of a pseudodifferential operator with the trans-

mission property in a half-space is proved in § 6. In the final section we present a theorem

on the boundedness of the Green operator in Hölder–Zygmund spaces with a variable smooth-

ness in a half-space. The results obtained are important for studying the solvability of general
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elliptic boundary value problems on smooth manifolds and for analyzing the local smoothness of

solutions. The authors hope to present the results on this topic in the near future.

Throughout the paper we use the standard notations: for elements x = (x1, x2, . . . , xn) and

ξ = (ξ1, ξ2, . . . , ξn) of the real n-dimensional Euclidean space R
n their scalar product is defined

by x · ξ = x1ξ1 + . . . + xnξn, the norm is defined as |x| = √
x · x, dx = dx1 . . . dxn and 〈x〉2t =

= (1 + |x|2)t. Let us denote by N = {1, 2, 3, . . .} the set of positive integers and Z+ = N ∪ {0}.
Let Rn

+ be a half-space in R
n specified by unequality xn > 0 , and R

n

+ = {x ∈ R
n

∣∣∣xn ≥ 0} is its

closure. The extension of a function (or distribution) by zero from R
n
+ to R

n is denoted by e+, and

r+ is the restriction from R
n to R

n

+. For a multi-index α = (α1, . . . , αn) ∈ Z
n
+ as usual we denote

|α| = α1 + . . . + αn, ∂
αj
xj = ∂αj/∂xj

, ∂α
x = ∂α1

x1
. . . ∂αn

xn
, and Dj = −i∂/∂xj

, Dα = Dα1
1 . . . Dαn

n .
C∞(Rn), Cb(R

n), C∞
0 (Rn) and S(Rn) is the set of all infinitely differentiable functions on R

n,

the set of all continuous and bounded functions on R
n, the space of compactly supported smooth

functions and the Schwartz space, respectively. Let S ′(Rn) be the space of the distributions under

S(Rn), the spaces C∞(R
n

+) and S(R
n

+) are specified by the restriction on R
n

+, S ′(Rn
+) is the set

of all distributions under S(Rn
+) ⊂ S(Rn). The subset of C∞(R

n

+) of all functions with compact

supports in R
n

± is denoted by C∞
c (R

n

±). The Fourier transform for u ∈ S(Rn) is denoted by

Fu(ξ) = û(ξ) =

∫

Rn

e−ix·ξu(x) dx,

and for its inverse the notation

F−1v(x) = v̆(x) =
1

(2π)n

∫

Rn

eiξ·xv(ξ) dξ

is used. For u(x′, xn) ∈ S(Rn), where x′ = (x1, x2, . . . , xn−1), a partial transformation in x′ is

specified by

ú(ξ′, xn) = Fx′→ξ′u(x
′, xn) =

∫

Rn−1

e−ix′·ξ′u(x′, xn) dx
′.

Let γ0u(x
′) = lim

xn→+0
u(x′, xn) be the restriction to the hyperplane xn = 0 and γj = γ0D

j
xn

. The

function cap(·) ∈ C∞
0 (R) such that 0 ≤ cap(t) ≤ 1 and cap(t) = 1 for |t| ≤ 1 and cap(t) = 0 for

|t| ≥ 2 will be useful below. It should be noted that a symbol C without indices will be used to

denote various positive constants in the estimates given below.

§ 1. Hölder–Zygmund spaces of variable smoothness

For Hölder–Zygmund spaces of variable smoothness to be defined we introduce a bounded con-

tinuous real-valued function s(·) on R
n which satisfies for any x ∈ R

n and 0 < |y| < 1 the

condition

|s(x+ y)− s(x)| ≤ S1

| log2 |y||
(1.1)

with not depending on x and y constant S1 > 0.
In order to define the Hölder–Zygmund spaces of the variable smoothness we use the

Littlewood–Paley partition of unity (see, e.g., [15, p. 57], [14, p. 241–243]). Let λ0(ξ) = cap(|ξ|).
For integer j ≥ 1 we denote

λj(ξ) = λ0(2
−jξ)− λ0(2

−j+1ξ).

Then suppλ0 ⊂ {ξ ∈ R
n | |ξ| ≤ 2} and suppλj ⊂ {ξ ∈ R

n | 2j−1 ≤ |ξ| ≤ 2j+1} for j ∈ N. It is

obviously that

∞∑

j=0

λj = 1.
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Definition 1 (see [9]). It is said that the distribution f ∈ S ′(Rn) belongs to the Hölder–

Zygmund space Λs(·)(Rn) of variable smoothness s(·) if

‖f‖Λs(·)(Rn) = sup
j∈Z+

‖2js(·)λj(D)f‖L∞(Rn) < ∞. (1.2)

If s(·) = s is constant then it is clear from the definition that the space Λs(·)(Rn) coincides with

the usual Hölder–Zygmund space Λs(Rn) (see e.g. [14,15]) and Λs2(·)(Rn) ⊂ Λs1(·)(Rn) provided

s1(x) ≤ s2(x) for any x. Let

s− = inf
x∈Rn

s(x) and s+ = sup
x∈Rn

s(x),

then the following estimates for the norms hold:

‖u‖Λs
− (Rn) ≤ ‖u‖Λs(·)(Rn) ≤ ‖u‖Λs+ (Rn).

The norm (1.2) is equivalent to the norm

‖u‖L∞(Rn) + sup
0<|h|<1

sup
x∈Rn

|u(x+ 2h)− 2u(x+ h) + u(x)|
|h|s(x)

if 0 < s− < s(x) < s+ < 2 for all x ∈ R
n (see [9]). Let us introduce the Banach space Λs(·)(R

n

+)

of all distributions from S ′(R
n

+), admitting extension to R
n, which belongs to Λs(·)(Rn). Norm in

Λs(·)(R
n

+) is defined by formula

‖u‖Λs(·)(R
n

+) = inf
lu∈Λs(·)(Rn)

‖lu‖Λs(·)(Rn),

where infimum is taken over all extensions of distribution u to R
n belonging to Λs(·)(Rn).

§ 2. Pseudodifferential operator

Definition 2 (see [7]). Assuming m ∈ R we define Hörmander class Sm(R2n) (= Sm
1,0(R

2n))
to consist of all functions a ∈ C∞(R2n) such that

|a|mp,q = max
|α|≤p, |β|≤q

sup
(x,ξ)∈R2n

∣∣∂β
x∂

α
ξ a(x, ξ)

∣∣(1 + |ξ|)|α|−m < ∞

for every p, q ∈ Z+.

For every symbol a ∈ Sm(R2n) we associate a pseudodifferential operator A = a(x,D) acting

upon a function f ∈ S(Rn) by the formula

Af(x) =
1

(2π)n

∫
a(x, ξ)eix·ξf̂(ξ) dξ.

The class of corresponding operators will be denoted by OPSm. The pseudodifferential opera-

tors from the class OPSm are well coordinated to the Hölder–Zygmund spaces of the variable

smoothness in the sense that they act continuously in a suitable pair of the spaces. Namely, the

following theorem holds.

Theorem 1 (see [9]). Suppose a is a symbol in Sm(R2n). Then the operator A = a(x,D)
is a bounded mapping from Λs(·)(Rn) to Λs(·)−m(Rn) , and there exist a constant C > 0 and

non-negative integers p and q not depending on the symbol a such that

‖A‖ ≤ C|a|mp,q.
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In order for the function r+Ae+u to belong to C∞(R
n

+) for any u ∈ C∞
c (R

n

+) we will require

the following additional condition for the symbol of A ∈ OPSm to be hold:

Definition 3 (see [4, 12], [13, p. 170]). The pseudodifferential operator a(x,D) ∈ OPSm,

m ∈ Z, satisfies the transmission property with respect to the boundary R
n−1 (when xn = 0),

if each derivative of its symbol admits the series expansion

∂γ
xn
a(x, ξ)

∣∣∣∣∣
xn=+0

=
m∑

s=0

ãs(x
′, ξ′)ξsn +

∞∑

k=−∞

ak(x
′, ξ′)

(〈ξ′〉 − iξn)
k

(〈ξ′〉+ iξn)k+1
,

where ãs(x
′, ξ′)∈ Sm−s(R2(n−1)) and ak(x

′, ξ′) is a rapidly decreasing sequence in Sm+1(R2(n−1)),
that is, for any seminorm | · |m+1

p,q on Sm+1(R2(n−1)) and any number N ∈ Z+ there is a constant

C = C(p, q,N) such that

|ak|m+1
p,q ≤ C(1 + |k|)−N .

The following system of seminorms can be introduced in this class

|a|mω =
m∑

s=0

|ãs|m−s
p,q + sup

k∈Z
|ak|m+1

p,q (1 + |k|)N

for any ω = (γ, p, q,N) ∈ Z
4
+.

§ 3. Poisson operator

Definition 4 (see [12, 13]). Let k(x′, ξ) be infinitely smooth function on R
n−1×R

n, admitting

the series expansion

k(x′, ξ) =
∞∑

j=0

kj(x
′, ξ′)

(〈ξ′〉 − iξn)
j

(〈ξ′〉+ iξn)
j+1 ,

where kj is a rapidly decreasing sequence in Sm+1(R2(n−1)), i.e., for any seminorm | · |m+1
p,q on

Sm+1(R2(n−1)) and for any N ∈ Z+ there is a constant C = C(p, q,N) such that

|kj|m+1
p,q ≤ C(1 + j)−N .

The function k(x′, ξ) is called a potential symbol of order m ∈ R.

The space of all potential symbols of order m is denoted by Km(Rn−1,Rn), K−∞(Rn−1,Rn) =
=

⋂
m Km(Rn−1,Rn). Let us define the following system of seminorms on Km(Rn−1,Rn):

|k|mω = sup
j∈Z+

|kj|m+1
p,q (1 + j)N ,

for any ω = (p, q,N) ∈ Z
3
+.

The Poisson operator was introduced in the works of Vishik and Eskin (see [4, p. 76, 198])

and used to be called a potential type (or coboundary) operator. The Poisson operator K arises in

the description of the solution of the boundary value problem for the elliptic (pseudo)differential

operator.

Definition 5 (see [4, 12, 13]). The Poisson operator with the symbol k(x′, ξ) ∈ Km(Rn−1,Rn)
of order m acts on the function v ∈ S(Rn−1) by the following formula:

Kv(x) = (2π)−n

∫

R+

dξn

∫

Rn−1

eix·ξk(x′, ξ)v́(ξ′) dξ′.

The class of all such operators is denoted by OP (Km).
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The Poisson operators can be described using the following symbol-kernel, which is determined

by the formula

k̃(x′, xn, ξ
′) = F−1

ξn→xn
k(x′, ξ′, ξn),

where symbol-kernel k̃ ∈ Sm(R2(n−1), S(R+)). The symbol-kernel allows the Poisson operator

K to be written according to the formula

Kv(x) = (2π)1−n

∫

Rn−1

eix
′·ξ′ k̃(x′, xn, ξ

′)v́(ξ′) dξ′,

for v ∈ S(Rn−1).
Let P be a pseudodifferential operator in a half-space satisfying the transmission property

with respect to the boundary xn = 0, then the operator KP : S(Rn−1) → S(R
n

+) defined by the

formula

KPv(x) = r+P
(
v(x′)⊗ δ(xn)

)

is a Poisson operator (see, for instance, [4, p. 199], [12], [13, p. 212]). It was proved that any

Poisson operator can be represented in this form, namely, the following lemma is true.

Lemma 1 (see [4, 6, 12, 13]). For any k(x′, ξ) ∈ Km(Rn−1,Rn) there is a symbol p(x, ξ) ∈
∈ Sm(R2n) with the transmission property such that

Kv = r+p(x,D)
(
v(x′)⊗ δ(xn)

)
, v ∈ S(Rn−1).

Any seminorm of the symbol of the pseudodifferential operator P is estimated by a finite number

of seminorms of the symbol of the Poisson operator K.

Lemma 2. Suppose s(x′, 0)+1 ≤ s1 < 0 holds for any x′ ∈ R
n−1. Then there exists a constant

C > 0 such that for any distribution v ∈ Λs(·′,0)+1(Rn−1) the following inequality is satisfied

‖v(·′)⊗ δ(·n)‖Λs(·)(Rn) ≤ C‖v‖Λs(·′,0)+1(Rn−1). (3.1)

P r o o f. Let v ∈ Λs(·′,0)+1(Rn−1). We define λ̃0 by the formula

λ̃0(ξ) = cap(ξ1)cap(ξ2) . . . cap(ξn).

For integer j > 0 we denote

λ̃j(ξ) = λ̃0(2
−jξ)− λ̃0(2

−j+1ξ).

The system of functions λ̃j for j ≥ 0 gives the equivalent norm in Λs(·)(Rn) (see [10]). Then let

us consider the expression

∣∣2js(x)λ̃j(D)v(x′)⊗ δ(xn)
∣∣ =

∣∣∣∣2js(x)
∫

Rn

λ̃j(ξ)v́(ξ
′)eix

′·ξ′eixn·ξn d̄ξ′ d̄ξn

∣∣∣∣.

By replacing the function λ̃j(ξ) under the integral with λ̃0(2
−jξ)− λ̃0(2

−j+1ξ), we obtain

∣∣2js(x)λ̃j(D)v(x′)⊗ δ(xn)
∣∣ = (2π)−n

∣∣∣∣2js(x)
∫

Rn

(
λ̃0(2

−jξ′, 0)λ̃0(0, 2
−jξn)−

− λ̃0(2
−j+1ξ′, 0)λ̃0(0, 2

−j+1ξn)
)
v́(ξ′)eix

′·ξ′eixn·ξn dξ′ dξn

∣∣∣∣ =
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= (2π)−n+1

∣∣∣∣2js(x)
∫

Rn−1

(
λ̃0(2

−jξ′)lj(xn)−λ̃0(2
−j+1ξ′)lj−1(xn)

)
v́(ξ′)eix

′·ξ′dξ′
∣∣∣∣,

where λ̃0(η
′) = λ̃0(η

′, 0) and lj denotes the inverse Fourier transform of the function λ̃0(0, 2
−jξn)

for j ≥ 0 :

lj(xn) = (2π)−1

∫

R

λ̃0(0, 2
−jξn)e

ixn·ξndξn = 2jl0(2
jxn).

Therefore
∣∣2js(x)λ̃j(D)v(x′)⊗ δ(xn)

∣∣ =

= (2π)−n+1
∣∣∣2js(x)+j

∫

Rn−1

(
λ̃0(2

−jξ′)l0(2
jxn)−

1

2
λ̃0(2

−j+1ξ′)l0(2
j−1xn)

)
v́(ξ′)eix

′·ξ′ dξ′
∣∣∣ ≤

≤ (2π)−n+1
∣∣∣2js(x)+j

∫

Rn−1

(
λ̃0(2

−jξ′)− λ̃0(2
1−jξ′)

)
l0(2

jxn)v́(ξ
′)eix

′·ξ′ dξ′
∣∣∣+

+ (2π)−n+1
∣∣∣2js(x)+j

∫

Rn−1

λ̃0(2
1−jξ′)

(
l0(2

jxn)−
1

2
l0(2

j−1xn)

)
v́(ξ′)eix

′·ξ′ dξ′
∣∣∣ = I1 + I2,

where

I1 = (2π)−n+1
∣∣∣2js(x′,0)+j

∫

Rn−1

(
λ̃0(2

−jξ′)−

− λ̃0(2
1−jξ′)

)
v́(ξ′)eix

′·ξ′ dξ′
∣∣∣ ·

∣∣∣2j(s(x′,xn)−s(x′,0))l0(2
jxn)

∣∣∣
and

I2 = (2π)−n+1
∣∣∣2js(x′,0)+j

∫

Rn−1

λ̃0(2
1−jξ′)v́(ξ′)eix

′·ξ′ dξ′
∣∣∣·

·
∣∣∣2j(s(x′,xn)−s(x′,0))

(
l0(2

jxn)−
1

2
l0(2

j−1xn)
)∣∣∣.

Considering that λ̃0(2
−jξ′)− λ̃0(2

1−jξ′) = λ̃j(ξ
′) we obtain for the first factor in I1:

(2π)−n+1
∣∣∣2js(x′,0)+j

∫

Rn−1

(
λ̃0(2

−jξ′)− λ̃0(2
1−jξ′)

)
v́(ξ′)eix

′·ξ′ dξ′
∣∣∣ =

=
∣∣∣2j(s(x′,0)+1)λ̃j(D

′, 0)v(x′)
∣∣∣ ≤ C‖v‖Λs(·′,0)+1(Rn−1).

It should be noted that the function λ̃0(2
1−jξ′) in the first factor of I2 can be written as:

λ̃0(2
1−jξ′) =

(
λ̃0(2

−j+1ξ′)− λ̃0(2
−j+2ξ′)

)
+
(
λ̃0(2

−j+2ξ′)− λ̃0(2
−j+3ξ′)

)
+

. . .+
(
λ̃0(2

−1ξ′)− λ̃0(ξ
′)
)
+ λ̃0(ξ

′) =

j−1∑

k=0

λ̃k(ξ
′).

(3.2)

Thus, applying the formula (3.2) we have for the first factor of I2

(2π)−n+1
∣∣∣2j(s(x′,0)+1)

∫

Rn−1

λ̃0(2
−j+1ξ′)v́(ξ′)eix

′·ξ′ dξ′
∣∣∣ =

∣∣∣∣2j(s(x
′,0)+1)

j−1∑

k=0

λ̃k(D
′, 0)v(x′)

∣∣∣∣ ≤

≤
j−1∑

k=0

∣∣∣∣2k(s(x
′,0)+1)λ̃k(D

′, 0)v(x′)

∣∣∣∣2j(s(x
′,0)+1)2−k(s(x′,0)+1) ≤

≤ sup
r∈Z+

‖2r(s(·′,0)+1)λ̃r(D
′, 0)v‖L∞(Rn−1)

j−1∑

k=0

2(j−k)(s(x′,0)+1) = ‖v‖Λs(·′,0)+1(Rn−1)

1− 2j(s(x
′,0)+1)

2−s(x′,0)−1 − 1
.
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Since s(x′, 0) + 1 ≤ s1 < 0 holds for any x′ ∈ R
n−1, then

0 < 1− 2j(s(x
′,0)+1) < 1 and 2−s(x′,0)−1 − 1 ≥ 2−s1 − 1 = c > 0.

Therefore ∣∣∣2j(s(x′,0)+1)λ̃0(2
−j+1D′, 0)v(x′)

∣∣∣ ≤ C‖v‖Λs(·′,0)+1(Rn−1).

Let us consider the kernels lj of pseudodifferential operators λ̃0(0, Dn). Then for any M ∈ Z+

there is a constant AM > 0 such that

|l0(z)| ≤ AM |z|−M .

This estimate is a particular case of the estimate in [14, p. 244]. Then for z = 2jxn

|l0(2jxn)| ≤ AM2−jM |xn|−M . (3.3)

The boundedness of the second factor in I1 will be proved by examining it on two sets |xn| ≥ 2−
j

2

and |xn| < 2−
j

2 . Let us consider first the case |xn| ≥ 2−
j

2 , then |xn|−M ≤ 2
jM

2 . Using (3.3), we

obtain ∣∣∣2j(s(x′,xn)−s(x′,0))l0(2
jxn)

∣∣∣ ≤ 2j(s(x
′,xn)−s(x′,0))AM2−jM |xn|−M ≤

≤ AM2j(s(x
′,xn)−s(x′,0))2−jM2

jM

2 = AM2j(s(x
′,xn)−s(x′,0)−M

2
) ≤ AM < ∞

for M > 2(s+ − s−). In the case |xn| < 2
−j

2 we have log2 |xn| < −j

2
and | log2 |xn|| > j

2
,

therefore, from the inequality (1.1) it follows that

s(x′, xn)− s(x′, 0) ≤ S1

| log2 |xn||
<

2S1

j

and j(s(x′, xn)− s(x′, 0)) < 2S1.

Choosing in (3.3) M = 0 we get
∣∣∣2j(s(x′,xn)−s(x′,0)l0(2

jxn)
∣∣∣ ≤ A04

S1 < ∞.

Hence the second factor in I1 does not exceed the largest of two numbers AM (where M >
> 2(s+ − s−)) and 4S1A0. The second factor in I2 is estimated in the same way as in I1. Thus,

collecting estimates for I1 and I2 together, we obtain the inequality (3.1). �

Theorem 2. Let k(x′, ξ) ∈ Km(Rn−1,Rn), then the Poisson operator K is bounded from

Λs(·′,0)(Rn−1) into Λs(·)−m−1(R
n

+). Moreover, there exist a constant C > 0 and ω ∈ Z
3
+ such that

for all v ∈ Λs(·′,0)(Rn−1) the following estimate holds

‖Kv‖Λs(·)−m−1(R
n

+) ≤ C|k|mω ‖v‖Λs(·′,0)(Rn−1).

P r o o f. Let k(x′, ξ) ∈ Km(Rn−1,Rn). By lemma 1 there is a pseudodifferential operator P
with the symbol p(x, ξ) ∈ Sm with the transmission property such that operator K can be written

Kv = r+P (v ⊗ δ).

First assume that s(x′, 0) ≤ s+ < 0 for any x′ ∈ R
n−1. Then according to Lemma 2 and

Theorem 1 for v ∈ Λs(·′,0)(Rn−1) there exist a constant C and non-negative integer p, q not

depending on the symbol such that

‖Kv‖Λs(·)−m−1(R
n

+) =
∥∥r+P (v ⊗ δ)

∥∥
Λs(·)−m−1(R

n

+)
≤

≤ ‖P (v ⊗ δ)‖Λs(·)−m−1(Rn) ≤ C|p|mp,q ‖v ⊗ δ‖Λs(·)−1(Rn) ≤ C|p|mp,q‖v‖Λs(·′,0)(Rn−1).
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By Lemma 1 for any p, q there exists ω such that the inequality |p|mp,q ≤ |k|mω is valid. Therefore,

the operator norm of the operator K is estimated through the seminorm of its symbol. Now we

allow s+ to be arbitrary. Then for Poisson operator K there is a condition

Kv = r+P
(
(〈D′〉−d·)⊗ δ

)
◦ 〈D′〉dv, v ∈ Λs(·′,0)(Rn−1),

where d ∈ R, 〈D′〉d is bounded from the space Λs(·′,0)(Rn−1) to Λs(·′,0)−d(Rn−1). Select d > s+,

for proving the theorem it suffices to show that the operator K ′ = r+P
(
(〈D′〉−d·)⊗ δ

)
is bounded

from Λs(·′,0)−d(Rn−1) into Λs(·)−m−1(R
n

+), which is true since s(x′, 0) − d < s+ − d < 0 and the

operator K ′ is a Poisson operator with the symbol k(x′, ξ′, ξn)〈ξ′〉−d ∈ Km−d(Rn−1,Rn). �

§ 4. Trace operator

Definition 6 (see [4, 12, 13]). Let t(x′, ξ) be C∞-function on R
n−1 ×R

n admitting the follow-

ing series expansion:

t(x′, ξ) =
r−1∑

j=0

tj(x
′, ξ′)ξjn +

∞∑

k=0

tk(x
′, ξ′)

(〈ξ′〉+ iξn)
k

(〈ξ′〉 − iξn)
k+1

= t1(x
′, ξ) + t2(x

′, ξ),

where tj ∈ Sm−j(R2(n−1)) and tk form a rapidly decreasing sequence in Sm+1(R2(n−1)), that is,

for any seminorm | · |m+1
p,q on Sm+1(R2(n−1)) and N ∈ Z+ there is a constant C = C(p, q,N) such

that

|tk|m+1
p,q ≤ C(1 + k)−N .

Function t(x′, ξ) is called a trace (boundary) symbol of order m ∈ R and of class r ∈ Z+. The

space of all trace symbols of order m and class r is denoted by Lm,r(Rn−1,Rn), the following

system of seminorms is introduced

|t|m,r
ω =

r−1∑

j=0

|tj|m−j
p,q + sup

k∈Z+

|tk|m+1
p,q (1 + k)N ,

where ω = (p, q,N) ∈ Z
3
+. The intersection over m of all classes Lm,r(Rn−1,Rn) is denoted

by L−∞,r(Rn−1,Rn).

Definition 7 (see [4, 12, 13]). The trace operator T with the symbol t(x′, ξ) ∈ Lm,r(Rn−1,Rn)
is defined by the formula

Tu(x′) = (2π)−n

∫

Rn

eix
′·ξ′t(x′, ξ)ê+u(ξ) dξn dξ

′, u ∈ S(R
n

+).

The space of trace operators with symbols from Lm,r(Rn−1,Rn) is denoted by OP (Lm,r). We

need the following statement:

Lemma 3 (see [6, 8]). The trace operator T of order m and class r can be written as a sum

Tu(x′) =
r−1∑

j=0

Tjγju(x
′) + T0u(x

′), u ∈ S(R
n

+),

where each Tj = tj(x
′, D′) is a pseudodifferential operator on R

n−1 with symbol tj(x
′, ξ′) ∈

∈ Sm−j(R2(n−1)). Operator T0 can be defined by the symbol-kernel t̃0 ∈ Sm(R2(n−1), S(R+))
according to the formula

T0u(x
′) = (2π)−n−1

∫

Rn−1

eix
′·ξ′

∫ ∞

0

t̃0(x
′, xn, ξ

′)ú(ξ′, xn) dxn dξ
′,

for t̃0(x, ξ
′) = F−1

ξn→xn
t0(x

′, ξ).
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It is easy to see that the restriction γ0 to the hyperplane xn = 0 acts continuously from Λs(R
n

+)
to Λs(Rn−1) for arbitrary s > 0 (see, e.g., [13, p. 247], [15, p. 192], [14]). Then the trace γj
is bounded from Λs(R

n

+) to Λs−j(Rn−1) if s > j for any j ∈ Z+. It is not difficult to prove that

the similar result is valid in the case of a variable order of smoothness:

Lemma 4. The trace γj is a bounded mapping from Λs(·)(R
n

+) to Λs(·′,0)−j(Rn−1), j ∈ Z+,

if there exists ε > 0 such that s(x′, 0)− j ≥ ε is fulfilled for all x′ ∈ R
n−1.

In order to prove boundedness of the trace operator we need some facts about pseudodifferen-

tial operators with operator-valued symbols (see, e.g., [6], [13, p. 202]). Let B1 and B2 be Banach

spaces, B = B(B1, B2) be the Banach space of bounded linear operators acting from B1 to B2.

In the usual way we introduce the Banach-valued analogues: the Schwarts space S(Rn−1, Bi),
the L. Hörmander class Sm(R2(n−1);B), the Hölder–Zygmund space Λs(·′)(Rn−1, Bi) with vari-

able smoothness s(x′) and others. The theorem on the boundedness of a pseudodifferential

operator in Hölder–Zygmund spaces can be almost literally carried over to the Banach-valued

case. This means that there are non-negative integers p, q and constant C > 0 independent of u
such that

‖a(x′, D′)u‖Λs(·′)−m(Rn−1,B2)
≤ C|a|mp,q‖u‖Λs(·′)(Rn−1,B1)

where a ∈ Sm(R2(n−1);B).

Theorem 3. The trace operator T ∈OP (Lm,r) is bounded from Λs(·)(R
n

+) into Λs(·′,0)−m(Rn−1),
if the following conditions are satisfied:

(i) there exists τ > 0 such that s(x′, xn) ≥ s(x′, 0) when xn ∈ (0; τ);
(ii) there exists ε > 0 such that s(x′, 0) ≥ max{r − 1 + ε, ε} for any x′ ∈ R

n−1.

P r o o f. Let u(x) ∈ Λs(·)(R
n

+). By Lemma 3 the trace operator T acts by the formula

Tu(x′) =
r−1∑

j=0

Tjγju(x
′) + T0u(x

′),

where Tj = tj(x
′, D′) are pseudodifferential operators on R

n−1 with symbols tj ∈ Sm−j(R2(n−1)),
and T0 is the trace operator of the zero class. The traces γj with j = 0, 1, . . . , r−1 are continuous

Λs(·)(R
n

+)
γj−→ Λs(·′,0)−j(Rn−1) if there exists ε > 0 such that s(x′, 0)− j ≥ ε holds for any x′ ∈

∈ R
n−1. Operators Tj of the order m− j are bounded from Λs(·′,0)−j(Rn−1) into Λs(·′,0)−m(Rn−1)

by Theorem 1. Therefore
∑r−1

j=0 Tjγj is bounded from Λs(·)(R
n

+) to Λs(·′,0)−m(Rn−1) and the

operator norm of this operator is estimated through a finite sum of seminorms of symbols tj .
Namely, there exist a constant C > 0 and non-negative integers p, q, such that

r−1∑

j=0

∥∥tj(x′, D′)γju
∥∥
Λs(·′,0)−m(Rn−1)

≤ C
r−1∑

j=0

|tj|m−j
p,q ‖u‖Λs(·)(R

n

+) .

It is easy to notice that from condition (1.1) it follows that there exists ε1 > 0 such that s(x′, xn)−
r+1 ≥ ε1 > 0 holds for any xn ∈ (0; 2

1−
S1

ε−ε1 ) and x′ ∈ R
n−1. Without loss of generality, we can

assume that 2
1−

S1
ε−ε1 = τ . Suppose ϕ1(xn) = cap(2 |xn|

τ
) and ϕ2 = 1−ϕ1. Then ϕ1 ∈ C∞

0 (R) and

ϕ1(xn) = 0 when |xn| > τ . We split the operator T0 into two terms T0,lu = T0ϕlu when l = 1, 2.
Let us consider the case l = 1. According to the condition (i) of the theorem, ϕ1(xn)u(x

′, xn) ∈
∈ Λs(·′,0)(R

n

+) and besides s(x′, 0) ≥ ε > 0. Then Λs(·′,0)(R
n

+) ⊂ Λs(·′,0)(Rn−1;Cb(R+)) and the
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embedding is continuous. Let a Banach space B2 = C and a Banach space B1 = Cb(R+) and

at(x
′, ξ′) ∈ B = B(B1, B2) is an operator acting by the formula

at(x
′, ξ′)v =

∫ ∞

0

t̃0,1(x
′, xn, ξ

′)v(xn) dxn,

where v ∈ Cb(R+). Then the trace operator T0,1 of the zero class can be defined as a Banach-

valued pseudodifferential operator

(T0,1u)(x
′) = (2π)−n+1

∫

Rn−1

eix
′·ξ′at(x

′, ξ′) · ú(ξ′) dξ′

with symbol at(x
′, ξ′) ∈ Sm(R2(n−1);B). Then T0,1 is bounded from Λs(·′,0)(Rn−1;Cb(R+))

into Λs(·′,0)−m(Rn−1;C) = Λs(·′,0)−m(Rn−1). Therefore, the trace operator T0,1 is bounded from

Λs(·)(R
n

+) into Λs(·′,0)−m(Rn−1), moreover, its norm is estimated through the seminorm of a sym-

bol (or a symbol-kernel, which is equivalent) of the trace operator T0 (see [13, p. 184]). That is,

there exist a constant C > 0 and ω = (p, q,N) ∈ Z
3
+ such that

‖T0,1u‖Λs(·′,0)−m(Rn−1) ≤ C|t0|m,0
ω ‖u‖Λs(·)(R

n

+).

Now we assume l = 2. It is clear that ϕ2u(x
′, xn) ∈ Λs(·)(Rn) with an arbitrary extension of

the function s on R
n
− and the operator of multiplication by the function ϕ2 is a bounded operator

acting from Λs(·)(R
n

+) into Λs(·)(Rn). Let us represent the operator T0,2 in the form γ0◦p(x′, D)ϕ2

(see [13, p. 214]) where the pseudodifferential operator p(x′, D) of the order m is bounded from

Λs(·)(Rn) into Λs(·)−m(Rn). By the pseudolocality property of the pseudodifferential operator, the

distribution T0,2u is infinitely differentiable in a neighborhood of xn = 0. Therefore, the operator

γ0 is defined on the image of the operator p(x′, D), moreover,

‖γ0p(x′, D)ϕ2u‖Λs(·′,0)−m(Rn−1) ≤ c‖u‖Λs(·)(R
n

+),

where the constant c is estimated through the seminorm of p(x′, ξ), which is estimated through

the seminorm of the symbol of the Trace operator T0 (see [13, p. 214]). Thus, there exists

ω = (p, q,N) ∈ Z
3
+ such that

‖T02u‖Λs(·′,0)−m(Rn−1) ≤ C|t0|m,0
ω ‖u‖Λs(·)(R

n

+). �

It should be noted that the proof of the corresponding theorem for Hölder–Zygmund spaces

with constant smoothness can be found in [8] and [13].

§ 5. Singular Green operator

Definition 8 (see [12, 13]). Let g(x′, ξ′, ξn, ηn) be C∞ function on R
2(n−1) × R× R admitting

a series expansion:

g(x′, ξ′, ξn, ηn) =
r−1∑

j=0

gj(x
′, ξ′, ξn)η

j
n +

∑

j,l∈Z+

gjl(x
′, ξ′)

(〈ξ′〉 − iξn)
j

(〈ξ′〉+ iξn)
j+1

(〈ξ′〉+ iηn)
l

(〈ξ′〉 − iηn)
l+1

,

where gj ∈ Km−j(Rn−1,Rn) is the Poisson symbol of order m− j, and gjl is a rapidly decreasing

double sequence in Sm+2(R2(n−1)), that is, for any seminorm | · |m+2
p,q on Sm+2(R2(n−1)) and all

N ∈ Z+ there exists a constant C = C(p, q,N) such that

|gjl|m+2
p,q ≤ C(1 + j + l)−N .

The function g(x′, ξ′, ξn, ηn) is called a singular Green symbol of order m and class r.
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Definition 9 (see [12, 13]). The singular Green operator G of order m and class r with the

symbol g(x′, ξ′, ξn, ηn) ∈ Gm,r(Rn−1,Rn+1) is defined by the formula

Gu(x) = (2π)−n−1

∫

R

∫

R

∫

Rn−1

eix·ξg(x′, ξ′, ξn, ηn)ê+u(ξ
′, ηn) dξ

′ dξn dηn.

The class of all such operators is denoted by OP (Gm,r).

A singular Green operator arises, for example, as a composition of a Poisson operator and a

trace operator. Let us define the Poisson symbols as

kl(x
′, ξ′, ξn) =

∞∑

j=0

gjl(x
′, ξ′)

(〈ξ′〉 − iξn)
j

(〈ξ′〉+ iξn)
j+1 ,

then the symbol of a singular Green operator can be written as

g(x′, ξ′, ξn, ηn) =
r−1∑

j=0

gj(x
′, ξ′, ξn)η

j
n +

∞∑

l=0

kl(x
′, ξ′, ξn)

(〈ξ′〉+ iηn)
l

(〈ξ′〉 − iηn)
l+1

,

where kl(x
′, ξ′, ξn) is a rapidly decreasing sequence in Km+1(Rn−1,Rn), i.e., for any seminorm

| · |m+1
ω on Km(Rn−1,Rn) there is a constant C = C(ω), ω = (p, q,N) such that

|kl|m+1
ω ≤ C(1 + l)−N .

The space of all such symbols is denoted by Gm,r(Rn−1,Rn+1), and the following set of semi-

norms is defined

|g|m,r
ω =

r−1∑

j=0

|gj|m−j
ω + sup

j,l∈Z+

|gjl|m+2
p,q (1 + j + l)N ,

where ω = (p, q,N) ∈ Z
3
+, or an equivalent set of seminorms (see [13, p. 184])

|g|m,r
ω ≈

r−1∑

j=0

|gj|m−j
ω + sup

l∈Z+

|kl|m+1
ω (1 + l)N .

The intersection over m of all classes Gm,r(Rn−1,Rn+1) will be denoted by G−∞,r(Rn−1,Rn+1).

Theorem 4 (see [12, 13]). Any singular Green operator G ∈ OP (Gm,r(Rn−1,Rn+1)) can be

written in the form

Gu =
r−1∑

j=0

K̃jγju+
∞∑

l=1

Kl ◦ Tlu, u ∈ S(R
n

+),

where K̃j ∈ OP (Km−j) and Kl ∈ OP (Km), Tl ∈ OP (L0,0), and the corresponding series

of symbols
∞∑

l=1

kl(x
′, ξ′, ξn)tl(x

′, ξ′, ηn)

together with the symbol of the first sum converges to the symbol of the operator G in

Gm,r(Rn−1,Rn+1).
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Theorem 5. The singular Green operator G ∈ OP (Gm,r) is bounded

G : Λs(·)(R
n

+) → Λs(·)−m−1(R
n

+),

provided:

i) there is τ > 0 such that s(x′, xn) ≥ s(x′, 0) when xn ∈ (0; τ) and x′ ∈ R
n−1;

ii) there is ε > 0 such that s(x′, 0) ≥ max{r− 1+ ε, ε} for any x′ ∈ R
n−1. Moreover, there exist

a constant C > 0 and ω = (p, q,N) ∈ Z
3
+ such that for the operator norm the following estimate

is fulfilled:

‖Gu‖Λs(·)−m−1(R
n

+) ≤ C|g|m,r
ω ‖u‖Λs(·)(R

n

+) .

P r o o f. By Theorem 4, the singular Green operator G of order m and class r can be represented

as

G =
r−1∑

j=0

Kj ◦ γj +G0,

where Kj are the Poisson operators of order m− j, γj are traces, and

G0 =
∞∑

l=1

Kl ◦ Tl,

where Kl are the Poisson operators of order m and Tl are the Trace operators of order 0 and

class 0. Consequently Theorem 5 follows from Theorem 2 and Theorem 3. �

§ 6. Pseudodifferential operator with the transmission property

The following theorem is a transference of the theorems on the boundedness of a pseudodif-

ferential operator with the transmission property ( [13, p. 250], [8]) in Hölder–Zygmund spaces

with variable smoothness.

Theorem 6. Let the symbol p(x, ξ) with the transmission property belong to Sm(R2n), m ∈ Z.

Then the operator P+ = r+p(x,D)e+ is bounded from Λs(·)(R
n

+) into Λs(·)−m(R
n

+) provided:

i) there exists τ > 0 such that s(x′, xn) ≥ s(x′, 0) for xn ∈ (0; τ),
ii) there exists ε > 0 such that s(x′, 0) ≥ ε holds for any x′ ∈ R

n−1.

P r o o f. Let the distribution u(x) ∈ Λs(·)(R
n

+). Since

‖u‖Λs(·)(R
n

+) = inf
v
{‖v‖Λs(·)(Rn) | r+v = u},

it follows that one can choose such expansion of distribution u (which will be denoted lu) that

‖lu‖Λs(·)(Rn) ≤ 2‖u‖Λs(·)(R
n

+).

Then for the operator P+ we have

r+p(x,D)e+u = r+p(x,D)lu+
(
r+p(x,D)e+ − r+p(x,D)l

)
u = r+p(x,D)lu+Gu,

where G is a singular Green operator of order m− 1 and class 0 (see [13, p. 220]). Thereby

‖r+p(x,D)e+u‖Λs(·)−m(R
n

+) ≤ ‖r+p(x,D)lu‖Λs(·)−m(R
n

+) + ‖Gu‖Λs(·)−m(R
n

+) ≤
≤ 2C|p|mp,q‖u‖Λs(·)(R

n

+) + C|g|m−1,0
ω ‖u‖Λs(·)(R

n

+),

where ω = (p, q,N) ∈ Z
3
+. The symbol of the singular Green operator G calculated in [13] has

Gm−1,0 seminorms that are estimated by the corresponding seminorms of the symbol p ∈ Sm(R2n)
with the transmission property:

|g|m−1,0
ω ≤ C|p|mω̃ ,

where ω̃ = (γ′, p′, q′, N ′) ∈ Z
4
+ and ω = (p, q,N) ∈ Z

3
+. Then

‖r+p(x,D)e+u‖Λs(·)−m(R
n

+) ≤ C
(
|p|mp,q + |p|mω̃

)
‖u‖Λs(·)(R

n

+). �
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§ 7. Green operators

Let us consider the matrix operator

A =

(
P+ +G K

T Q

)
:

S(R
n

+)⊗CM

⊕
S(Rn−1)⊗CN

→
S(R

n

+)⊗CM′

⊕
S(Rn−1)⊗CN′

(7.1)

where

• P+ = r+Pe+ is a M ′ ×M -matrix with pseudodifferential operators on a half-space, with

symbols of the class Sm(R2n) with the transmission property as elements;

• G is a M ′ ×M -matrix with singular Green operators from OP (Gm−1,r) as elements;

• K is a M ′ ×M -matrix with Poisson operators from OP (Kµ) as elements;

• T is a M ′ ×M -matrix with Trace operators from OP (Lγ,r) as elements;

• Q is a M ′ ×M -matrix with pseudodifferential operators from OPS1−m+µ+γ acting at the

boundary as elements.

The operator A is called a Green operator, and the set of Green operators with the indicated

orders is denoted by OP (Sm,µ,γ,r).

Consider two spaces, defined by

Λ1(R
n
+) = Λs(·)(R

n

+)⊗ C
M ⊕Λs(·′,0)−m+µ+1(Rn−1)⊗ C

N

and

Λ2(R
n
+) = Λs(·)−m(R

n

+)⊗ C
M ′ ⊕Λs(·′,0)−γ(Rn−1)⊗ C

N ′

.

Summarizing the results obtained in Theorems 2, 3, 5, 6 we arrive at the following

Theorem 7. Suppose A ∈ OP (Sm,µ,γ,r); then it acts continuously

A : Λ1(R
n
+) → Λ2(R

n
+)

provided:

i) there is τ > 0 such that s(x′, xn) ≥ s(x′, 0) holds for all xn ∈ (0; τ) and arbitrary x′ ∈ R
n−1;

ii) there is ε > 0 such that s(x′, 0) ≥ max{r − 1 + ε; ε} for any x′ ∈ R
n−1.

The norm of the operator A is estimated by finite number of seminorms of symbols of operators

P, G, K, T, Q.

In conclusion, note that condition i) in Theorem 7 is not necessary. For example, if the first

column of matrix 7.1 contains only differential operators, then this condition can be removed. The

authors do not know whether conditions i) and ii) can be weakened or removed in the general

case.
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ременный показатель гладкости.
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Рассматриваются операторы Грина из алгебры Буте де Монвеля в пространствах Гёльдера–Зигмунда

переменного порядка гладкости на R
n

+. Порядок гладкости зависит от точки пространства и может

принимать отрицательные значения. Доказаны достаточные условия ограниченности оператора Буте

де Монвеля в этих пространствах.
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