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delay is considered. In the system, the input is a linear combination of m variables and their derivatives
of order not more than n — p and the output is a k-dimensional vector of linear combinations of the state
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Introduction

A large number of works have been devoted to the problem of stability and stabilization of
control systems with delays. A number of methods have been proposed to solving this problem.
One of the common methods is known as the Lyapunov-Krasovsky functional approach [1,
2]. This approach is a development of the second Lyapunov method and allows one to obtain
sufficient conditions for asymptotic and exponential stabilization of delayed systems. On the base
of the Lyapunov-Krasovsky approach, various methods were obtained in [3—6]: in [3], a new
technique is introduced based on the barycentric representation of a distributed delay system;
in [4], a new stabilization method is proposed for linear systems with distributed input delay via
reduction transformation and Riccati equation approach; in [5], conditions for stabilization are
obtained by using the full-block S-procedure and a convex-hull relaxation in terms of a LMI;
in [6] the problem of optimal stabilization is studied. Other approaches to solving the problem of
stabilization of systems with distributed delay are presented in [7,8]. In [7], it is shown how to
obtain finite-time stabilization of linear systems with delays in the input by using an extension of
Artstein’s model reduction to nonlinear feedback. In [8], truncated predictor feedback approach
is used for stabilization of time-varying linear systems with multiple and distributed input delays.

Another approach to problems of stability and stabilization of time-delay systems is an
eigenvalue-based approach [9]. Here it is required to find conditions providing the desired
placement of the spectrum of the system, that is, the sets of zeros of the characteristic func-
tion of the system. There are works on assignment of a given finite spectrum [10-16], spectral
reducibility [17, 18], i.e., reduction of systems to a finite (but not given) spectrum, modal con-
trollability [19-25]. In the present paper, necessary and sufficient conditions are obtained for
arbitrary spectrum assignability by linear static output feedback for a control system defined by
a linear differential equation of n-th order with one lumped and one distributed delay in the state
variable.
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§ 1. Main results

Let K=Cor K =R; K" = {z = col(xy,...,2,): z; € K} is the linear space of column
vectors over K; M, ,,(K) is the space of m x n-matrices over K; M, (K) := M, ,(K); I € M, (K)
is the identity matrix; @ is the complex conjugation of a; 7" is the transposition of a vector or a
matrix; * is the Hermitian conjugation, i.e., A* = XT; Sp H is the trace of a matrix H € M, (K);
for a matrix H € M, (K), we use the denotation H® := I; J := {9;;} € M,(R) where 9;; = 1
forj=1i+4+1and ¥;; =0 for j # 7+ 1.

Consider a control system defined by a linear time-invariant differential equation of n-th order
with a lumped and distributed delay in the state variable x € K; the input is a linear combination
of m variables and their derivatives of order < n — p; the output is a k-dimensional vector of
linear combinations of the state x and its derivatives of order < p — 1:

2™ () + a1z V() + ap V(= h) + .+ anox(t) + ama(t — ) +

0 0
+ /_h g (™ VYVt +7)dr +... + /_h gn(T)x(t + 7)dT = (D)

== b Uln p)( ) —|— bp+1 1UYL p_l)(t) + ...+ bnlul(t) + ...
+ DtV (t) 4 L bt (), >0,
yl(t) = Cn[L‘( ) —|— Cgll’/(t) —I— e +Ep1£17(p_1)(t), N

1.2
yk(t) = Elkl'(t) -+ Egkl‘/(t) + ...+ Epkf(p_l)(t), ( )

with initial conditions 2"~V (7) = ¢;(7), 7 € [~h,0]; here h > 0 is a constant delay, ¢; :
[—h,0] — K are continuous functions; a;;, bia, c,s € K, i =1,n, 7 =0,1, 1 =p,n, « = 1,m,
v=1,p B=1k; g :[~h 0] — K are integrable functions (i = I, n); u = col (uy, ..., Up) €
K™ is a control vector and i = col (y1, ..., yx) € K* is an output vector; p € {1,n}; the complex
conjugation to ¢, is used for convenience of notation.

For system (1.1), (1.2) without delays (a;; = 0, g;(7) = 0, ¢ = 1, n), the problem of assigning
an arbitrary finite spectrum by static output feedback was studied in [26], and the problem of (ro-
bust) exponential stabilization by static output feedback was studied in [27] when the coefficients
aipn = ai(t), i = 1, n, are uncertain bounded functions. For system (1.1), (1.2) only with lumped
delays, without distributed delays (g;(7) = 0, ¢ = 1,n), the problem of assigning an arbitrary
spectrum by static output feedback was studied in [28].

Suppose that the controller in system (1.1), (1.2) has the form of linear static output feedback
with a lumped and distributed delay:

0

ult) = Quylt) + Quutt ~ 1)+ [ Ryt +7)dr (13)
—h

y() =0, & < —h. Here Q; = {qiﬁ} € M,,(K) are constant matrices (j = 0,1), R(1) =
{rap(T)} € My x(K), 745 : [—h,0] — K are integrable functions, o = 1,m, 3 = 1, k. By (1.2),

p —
we have ys(t) = Y 6,50~V (t), 3 =1, k. Hence,
v=1
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The closed-loop system (1.1), (1.2), (1.3) take the form

>t)+iai0x(“ +Za1x"’) +Z/ gi(T)x™ = (t 4 1) dr
- ZZ‘M(Z 1095 (D s V(1)) + qaﬁ(Zw( (- h) + (1.4)

a=1 I=p v=1 v=1
0 p (n—=1)
+/ raﬁ(r)(ZEyﬁx(”—”(t + T))dT]) = 0.
—h v=1

Denote by () the characteristic function of the closed-loop system (1.4). Then

0

w()\)_)\n_'_Z(alzo/\n + a; A" i —Ah+/

g (T)A" e dT)
—h
m n p
3322 [ s b ™)+

i o (1.5)
Top(T)Cpe™" dTi| /\"””1) .

a=1 I=p v=1 p=1 —h
The set A = {\ € C : ¢(\) = 0} is called the spectrum of system (1.4). If the spectrum of system
(1.4) lies in the left half-plane, then system (1.4) is exponentially stable. The spectrum of system
(1.4) is uniquely determined by coefficients of system (1.4). Therefore, the spectrum assignment
problem for system (1.4) can be considered as the problem of control over coefficients of system
(1.4). We study the problem of assigning an arbitrary spectrum that system (1.4) can only have.

Definition 1. System (1.1), (1.2) is said to be arbitrary spectrum assignable by the static
output feedback controller (1.3) if for any numbers v;0,v;1 € K and for any integrable functions
8; : [=h,0] = K, i = 1,n, there exist constant matrices Qo, Q1 € M,, x(K) and an integrable
matrix function R : [—h, 0] — M,, »(K) such that the characteristic function /() of the closed-
loop system (1.4) satisfies the equality

n 0
P(A) = A"+ Z A" (%0 + e M+ /

i=1 —h

Si(T)e dT) :

On the basis of system (1.1), (1.2), let us construct the matrices B = {b;o}, | = 1,n,a = 1,m
and C' = {c,5}, v =1,n, 3 = 1,k, where by, := 0 for | < p and ¢,3 := 0 for v > p.
Let us give an auxiliary assertion.

Lemma 1. Suppose that F' = { fio} € M, m(K), G = {gs} € Mpn(K) are arbitrary matrices

(—lna— Tm, B =1,k v=T1mn) and D; = GFF (j € {0,n—1}), D; = {d},},
B = Lm. Then djy = 3 gpi-jfe
l=j+1

Lemma 1 is proved in [28, Lemma 1].

Theorem 1. System (1.1), (1.2) is arbitrary spectrum assignable by the static output feedback
controller (1.3) if and only if the matrices

cJ'B, c*J'B, ..., C*J"'B (1.6)

are linearly independent.
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Proof. Consider the spectrum assignment problem for system (1.1), (1.2) by the output
feedback controller (1.3). Let a function

n 0
e(A) ="+ Z AP (%o + e M 4 / Si(T)er dT) (1.7)
i=1 —h
be given, where ;0,71 € K are some numbers and ¢; : [—h,0] — K are some integrable

functions. One needs to construct matrices Qy, @1 € M, x(K) and integrable matrix function
R : [=h,0] = M, ;(K) such that the characteristic function ¢)(\) of the closed-loop system (1.4)
satisfies the equality

V(A) = @A) (1.8)
Let us write the characteristic function (1.5) of the closed-loop system (1.4) in the form

NEPLEDY (aio/\”_i +ag N e M 4 /
=1

—h

0
gi(T)A”_ie’\T dT) — A, (1.9)

where

n p

m k
A=Y"3"3"3 bagear ! (qgﬁ +qhge ™ + / (; Tag(T)eATdT) . (1.10)

a=1 =1 l=p v=1

Let us replace the last summation index v by ¢ = [ — v + 1 in (1.10). Since v ranges from 1 to p,
hence, 7 ranges from | — p + 1 to [. So,

n l

m k 0
32230 S (it [t

a=1 =1 l=p i=l—p+1

Ifi € {1, —p}, thenl +1—1¢ > p+1, hence, ¢;41-, 5 = 0. Thus,

If l € {1,p — 1}, then b, = 0, hence,

a=1 A=

n !

0
blaEH_l_iﬁ)\n_l <q36 + qclyﬁe_kh + / TQB(T)GATdT> .
1 h

1=

n n o n
Let us change the summation order: we replace > > by > > ; then we obtain
I=1i=1  i=ll=

m k 0
A= Z Z Z Z biaCi1-i g A"~ <qa5 +qrge M+ / T’ag(T)e’\TdT>. (1.11)
—h

Let D, =C*J"'B, D, 1 = {d}{oé1 ,i€{1,n}, =1,k o =1, m. Let us apply Lemma 1
to G = C*, I' = B: we have gg, = €,3, fia = bin. So, by Lemma 1 for j =i — 1, we have

dy, = Zéwm,ﬁbm- (1.12)
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For every i € {1,n}, consider the matrices C*J""' BQ,, C*J""1 BQ,, C*J""'BR(1). Let us find
its traces. Using (1.12), we obtain

m k m k n
Sp (C*JZ_IBQ()) = Z 1Q0 ZZCF 1q045 ZZZEH_l_iﬁblaqgﬁ. (113)
a=1 =1 a=1 =1 I=i
Similarly,
m k n
Sp(C* T BQ) = 333 i shiadls (1.14)
a=1 =1 I=i

0 m n
/ Sp (C*J'BR(7))eNdr = / Z Z Z Cri1—i gbiaTas(T)ENdT. (1.15)
From (1.11), (1.13), (1.14), and (1.15), it follows that

A= Z (Sp (C*JEBQo)A"™" 4+ Sp (C*J' 1 BQ )\ le ™ +
i=1 . (1.16)
+ / Sp (O*Ji—lBR(T))A"—ie”dT)
—h

Substituting (1.16) in (1.9), we obtain

A) = A" +i A (<ai0 = Sp(C*I1BQY) ) + (an = Sp (C* T BQY) e +
= (1.17)

—i—/i (gi(T) — Sp (C*JilBR(T))>€)\TdT>.

Taking into account (1.17), (1.8), and (1.7), we obtain that system (1.1), (1.2) is arbitrary spectrum
assignable by (1.3) iff there exist Qy, Q1 € M,, 1 (K) and integrable matrix function R : [—h, 0] —
M, 1(K) such that for all i = 1,n the following equalities hold:

Yio = aio — Sp (C* T BQo),
Y1 = an — Sp (C*J7'BQy), (1.18)
5:(1) = gi(1) — Sp (C*J'BR(7)).

Every system of (1.18) consists of n equations with mk unknown entries of matrices (),
(1, R(7). Let us rewrite (1.18) in the vector form. Denote by vec : M, ,(K) — KP? the
mapping, which “unrolls” a matrix Z = {z;;}, i = 1,p, j = 1,q, by rows into the column
vector vec Z = col (211, ., 21gy -+ s Zply - - - » Zpg) € KP9. Then Sp (XY) = (vec X)T - (vecYT)
for any X € M, ,(K), Y € M,,(K). Let us apply this equality to the matrix X = C*J""'B

(i = 1,n) and to the matrices Y = Qy, Y = 1, and Y = R(7) one by one. Let us construct the
mk X n-matrix

P := [vec (C*B),vec (C*JB),...,vec(C*J" 'B)].
Denote vy := vec (QF) € K™, vy := vec (QT) € K™, vy(7) := vec (RT (7)) € K™*,

wp = col (a10 — 710, - - - » @no — Yno) € K",
wy = col (ary — M1y 5 A1 — Ym1) € K,
wo(T) :=col (g1(7) — 91(7), ..., gu(7) — 0n(7)) € K".
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Then systems (1.18) can be rewritten in the vector form
Plog=wo,  Ploy=w;,  Ploy(r) = ws(7). (1.19)

System (1.1), (1.2) is arbitrary spectrum assignable by the feedback controller (1.3) iff systems
(1.19) are solvable with respect to vy, vy, vo(7) for any ;0,71 € K and any integrable functions
d; : [=h,0] — K. This is equivalent to linear independency of the matrices (1.6). In that case,
systems (1.19) have the particular solutions

=P(P"P)'wy, v =P(PTP) wy,  uy(r) = P(PTP)  wy(7). (1.20)

The required matrices @y, Q1 and R(7) can be found from the equalities Qy = (vec™vy)?,
Q1 = (vec'v)T, R(1) = (vec™tvy(7))T. The theorem is proved. O

Remark 1. Note that a necessary condition for linear independence of matrices (1.6) is the
condition mk > n.

§ 2. Corollaries

If the characteristic function of the closed-loop system (1.4) turns into a polynomial then
spectrum A of system (1.4) is finite. We say that system (1.1), (1.2) is arbitrary finite spectrum
assignable by the static output feedback controller (1.3) if for any w; € K, i = 1,n, there exist
constant matrices Qo, @1 € M,, ,(K) and an integrable matrix function R : [—h,0] — M, x(K)
such that the characteristic function /() of the closed-loop system (1.4) satisfies the equality

PA) = A"+ AT L w,.

Corollary 1. System (1.1), (1.2) is arbitrary finite spectrum assignable by the static output
feedback controller (1.3) iff matrices (1.6) are linearly independent.

Corollary 1 follows from Theorem 1: the problem under consideration is equivalent to solv-
ability of system (1.19), where v;0 = w;, Vi1 = 0, §;(7) = 0, 7 € [=h,0], i = 1,n: if matrices
(1.6) are linearly independent, then system (1.19) is resolvable for any w;; if not, then system
(1.19) is resolvable not for any w;, i = 1, n.

Corollary 2. [f matrices (1.6) are linearly independent, then system (1.1), (1.2) is exponentially
stabilizable by the static output feedback controller (1.3).

Corollary 2 follows from Corollary 1, if one take, e.g., numbers w;, ¢ = 1,n, such that
A+ ST w A = (A + 1)

i=1
Next, consider system (1.1), (1.2) containing only a distributed delay:

+Z<azox” (¢ / gi(T)x™ I (t 4 7 dT) ZZbau" D(t). 2.1)

a=1 l=p

Let the controller in system (2.1), (1.2) have the same form as the left-hand side of (2.1), i.e.,
contains only a distributed delay:

u(t) = Qoy(t) + /h R(T)y(t + 1) dr. (2.2)

Consider the problem of assigning an arbitrary spectrum that the closed-loop system (2.1), (1.2),
(2.2) can only have.
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Definition 2. System (2.1), (1.2) is said to be arbitrary spectrum assignable by the static
output feedback controller (2.2) if for any numbers ;0 € K and for any integrable functions
8; : [=h,0] = K, i = 1,n, there exist a constant matrix Qo € M,, (K) and an integrable matrix
function R : [—h,0] — M,, x(K) such that the characteristic function 1(\) of the closed-loop
system (2.1), (1.2), (2.2) satisfies the equality

P(A) = A"+ z": A" (%‘0 + /

i=1 —h

0
Si(1)e d7‘> :
The following theorem take place.

Theorem 2. System (2.1), (1.2) is arbitrary spectrum assignable by the static output feedback
controller (2.2) if and only if the matrices (1.6) are linearly independent.

The proof of Theorem 2 repeats the proof of Theorem 1 with a;; = 0, v;; = 0, qéﬁ =0,
i=1,na=1m,B=1,k.

Corollary 3. System (2.1), (1.2) is arbitrary finite spectrum assignable by the static output
feedback controller (2.2) iff matrices (1.6) are linearly independent.

Corollary 4. If matrices (1.6) are linearly independent, then system (2.1), (1.2) is exponentially
stabilizable by the linear static output feedback controller (2.2).

Similar statements take place if system (1.1) and controller (1.3) contain only a lumped delay.
Theorem 3. System

™ 4 z": (az‘ox(n_i) () + anz™ ) (t - h)> - Em: En: ol (1) (2.3)
=1

a=1 [=p

with (1.2) is arbitrary spectrum assignable by the static output feedback controler

u(t) = Qoy(t) + Quy(t — h), (2.4)

i. e., for any numbers v;0, Vi1 € K there exist constant matrices Qo, Q1 € M, 1 (K) such that the
characteristic function {)(\) of the closed-loop system (2.3), (1.2), (2.4) satisfies the equality

Y(A) ="+ i A" <’Yz‘o + %‘16_/\h>>
i=1

if and only if the matrices (1.6) are linearly independent.

The proof of Theorem 3 repeats the proof of Theorem 1 with gi(1) =0,0,(1) =0, rap(1) =0,
i=1,n,a=1m,B=1k 7€[-h,0]

Corollary 5. System (2.3), (1.2) is arbitrary finite spectrum assignable by the static output
feedback controller (2.4) iff matrices (1.6) are linearly independent.

Corollary 6. If matrices (1.6) are linearly independent, then system (2.3), (1.2) is exponentially
stabilizable by the linear static output feedback controller (2.4).

Next, we can obtain the following statements if two equalities from (1.19) are nullified.
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Theorem 4. System

n

+Z / gt + ) dr = 305 b () (2.5)

a=1 [=p

with (1.2) is arbitrary spectrum assignable by the static output feedback controller

0
u(t) = / R(T)y(t+7)dr. (2.6)

—h
i.e., for any integrable functions &; : [—h,0] — K, i = 1,n, there exists an integrable matrix

Sunction R : [—h,0] — M, x(K) such that the characteristic function (\) of the closed-loop
system (2.5), (1.2), (2.6) satisfies the equality

no .0
A) ="+ Z/ §i(T)eM dr,
i=17~h

if and only if the matrices (1.6) are linearly independent.

The proof of Theorem 4 repeats the proof of T_heorem 1 with a;p = 0, a;; = 0, ;0 = 0,
i1 :Oa qgﬁzoa Qég:O,Z:L_”,a: 1am5ﬂ: ]-ak

Remark 2. Note that Theorem 4 is not contained in Theorem 2 and does not follow directly
from it because the form of controller (2.6) is less general with respect to (2.2). In fact, any form
of the controller that differs from others generates a separate problem.

Theorem 5. System

n n

.Z‘(n) + Z CLillL’(n_i) (t - h) - Z Z blaugn_l) (t) (27)
a=1 |=p

=1

with (1.2) is arbitrary spectrum assignable by the static output feedback controller

u(t) = Qry(t — h), (2.8)

i.e., for any numbers v, € K there exists a constant matrix ()1 € M, (K) such that the
characteristic function () of the closed-loop system (2.7), (1.2), (2.8) satisfies the equality

YA = A" ) e M,
i=1

if and only if the matrices (1.6) are linearly independent.

The proof of Theorem 5 repeats the proof of Theorem 1 with a;o = 0, gi(1) =0, 70 = 0,
0i(1)=0,q05=0,708(1) =0,i =T,n,a=1,m, 3 =1k, 7 € [~h,0].
Theorem 6. System

m n

x(n) + Zn: a4 (n— z) Z Z blaugl l (29)
i=1

a=1 [=p
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with (1.2) is arbitrary (finite) spectrum assignable by the static output feedback controller

u(t) = Qoy(t), (2.10)

i.e., for any numbers v,y € K there exists a constant matrix Qo € M,, ;,(K) such that the
characteristic function {(\) of the closed-loop system (2.9), (1.2), (2.10) satisfies the equality

P = A"+ A,

i=1
if and only if the matrices (1.6) are linearly independent.

The proof of Theorem 6 repeats the proof of Theorem 1 with a;; = 0, gi(1) = 0, i1 = 0,
6i(1) =0,q45 =0,703(1) =0,i=1,n,a =1,m, f = 1,k, 7 € [-h,0].

Remark 3. Theorem 6 was proved in [26] for the case K = R.

Remark 4. Note that Theorems 5 and 6 are not contained in Theorem 3 and do not follow
directly from it because the form of controllers (2.8) and (2.10) is less general with respect
to (2.4).

Corollary 7. If matrices (1.6) are linearly independent, then system (2.9), (1.2) is exponentially
stabilizable by the linear static output feedback controller (2.10).

Remark 5. Corollaries from Theorems 4 and 5 on assignment arbitrary finite spectrum do not
take place. Corollaries from Theorems 4 and 5 on stabilization is questionable.

§ 3. Example
Consider the system with a lumped and distributed delay h > 0:

2" (t) + 32" (t) + 22" (t — h) + 5a/(t) + 42’ (t — h) — z(t) + x(t — h) +
0 0 0
+ / 2"(t + 7)sinTdr + / 22'(t + 7) cos TdT + / z(t 4 7)sin 27 dr = —uy (t) + uh(t),

—h —h —h
y(t) =x(t), ya(t) = —2'(t), (3.1
where z € R, u = col (uy,us) € R?. We have
n=3 m=2, k=2 p=2;
alg =3, axp =295, azxp=-1, a1 =2, an=4, a3 =1
bor =0, b3 =—1, bp=1 byp=0; cn1=1 ©1=0, Ca2=0, Cp=-1

gi1(7) =sinT, go(T) =2cosT, g¢3(7) = sin2r7.

0 O
On the basis of (3.1), we construct the matrices B and C': we obtain B = | 0 1|, C =
-1 0
10
0 —1]. Hence,
0 0
«n |0 0 s1pn |01 s2n  |—1 0
CB—[O _1], CJB—[1 0], CJB—[O 0]. (3.2)
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Obviously, the matrices (3.2) are linearly independent. Thus, by Theorem 1, system (1.1), (1.2)
is arbitrary spectrum assignable by feedback (1.3). Let us construct such feedback controller.
Suppose, for example, that

YA) = A+12A+e) =N+ 20 + X+ Ve 20 M e M (3.3)

Then yi0 =2, 720 =1, 730 =0, y11 = 1, v21 = 2, 731 = 1, 61(7) = 0, d2(7) = 0, d3(7) = 0.
We have

wy = col (am — 710, @20 — 720, 30 — 730) = (1747 —1)7
wy = col (a1 — Y11, a21 — Vo1, a31 — ¥31) = (1,2,0),

wy = col (g1(7) — 81(7), g2(7) — 02(7), g3(7) — d3(7)) = (sin T, 2 cos 7, sin 27).
Calculating vy, vy, and v,(7) by formulas (1.20), we obtain
vg =col(1,2,2,—1), wv; =col(0,1,1,—1), vy = col(—sin27,cosT,cosT, —sinT).

Therefore

0y = E _21]’ 0, = [(1) 11}7 R(r) = [—SiHQT COST }

COS T —sinT

The controller (1.3)

lzzgg] = B;gﬂ T B;E: _ Zﬂ + /_ i R(r)y(t +7)dr (3.4)

has the components

0 0

z(t + 7)sin 27 dr — / Z'(t + 7) cos T dr,
—h

up(t) = z(t) — 22'(¢t) — 2’ (t — h) — /_h

0 0

z(t +7)cosTdr + / Z'(t + 7)sinTdr.

us(t) = 2x(t) + 2'(t) + x(t — h) +2'(t — h) + /

—h
System (3.1) closed-loop by feedback (3.4) take the form

() + 22" (t) + 2" (t — h) + 2/ (t) + 22’ (t — h) + x(t — h) = 0. (3.5)
The characteristic function of system (3.5) is equal to (3.3).

§ 4. Conclusions and future works

Necessary and sufficient conditions are obtained for the problem of arbitrary spectrum as-
signment by static output feedback with a lumped and distributed delay for a linear differential
equation with a lumped and distributed delay. Corollaries on stabilization are stated. An illustra-
tive example is given.

In the future we expect to extend these results to control systems with several lumped and
distributed delays. Moreover, this approach could be applied for the corresponding problems of
eigenvalue assignment and stabilization by output feedback control for systems of differential
equations (not just for one).

Funding. This work was funded by the Ministry of Science and Higher Education of the Russian
Federation in the framework of state assignment No. 075-00232-20-01, project 0827-2020-0010
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B. A. 3ainyes, U.I. Kum
VYhpagiieHHe CIEKTPOM U CTAOMIM3ANMSA JUHEHHBIX Tu(depeHmalbHbIX YpaBHEHUH ¢ 3ama3ibIBa-
HHEM CTAaTHYECKOH 00paTHOIi CBSA3bI0 MO BBIXOAY C 3ana3ibiBAHUEM

Kurouesvie crosa: nuHeliHOe quddepeHInaIbHOe ypaBHEHHE, COCPEIOTOYCHHOE 3aa3IplBaHie, pacipe/e-
JICHHOE 3ama3blBaHue, YIPABICHUE CIIEKTPOM, CTA0MIIM3AIHsI, CTaTUYeCcKasi 0OpaTHas CBA3b MO BEIXOLY.

YIK 517.929, 517.977
DOI: 10.35634/vm200205

PaccmarpuBaercst uHEHHas cucTeMa YIpaBleHHS, 3aJlaHHas CTAllMOHAPHBIM A depeHIInaIbHbIM YPaB-
HEHHMEM C OJTHUM COCPEIOTOYCHHBIM U OJHHUM pacIpeAeiIeHHBIM 3ala3iblBaHueM. B cucteme Ha BXon mo-
JaeTcsd JUHEeWHas KOMOWHAIMS W3 7 CHTHAJIOB M MX MPOW3BOAHBIX J0 MOPSAAKA 1 — p BKIIOUMTENBHO, a
BBIXOJ] IIPEIICTABISIET CO00H k-MEepHBII BEKTOP JIMHEHHBIX KOMOMHAIMN COCTOSIHUS U €0 IMIPOM3BOAHBIX 110
nopsiika He 6omnee p—1. [l 370 cucTeMBl UccenyeTcs 3a/1a4a YIpaBIeHUs CIIEKTPOM € TIOMOIIBIO JTHHEH-
HOH CTaTMYECKOM 0OpaTHOMN CBSA3U IO BBIXOAY € COCPEIOTOYCHHBIM M PACIpEAeICHHBIM 3alla3IblBaHUIMH.
[TomyueHs!l HEOOXOAMMBIE M JOCTATOYHBIE YCIOBUS Pa3pelIMMOCTH 3a/auyd NMPOU3BOJIBHOTO pa3MeEIleHUs
CIIEKTpa MOCPEICTBOM CTAaTHYECKOH OOPAaTHOM CBS3U IO BBIXOAY, UMEIOIIEH TOT K€ BHI, YTO M CUCTEMA.
[Nomy4eHs! cneAcTBHUS O CTAOUIU3ALNUU CHCTEMBI.
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