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Introduction

Throughout this article, unless otherwise specified, R will denote an associative ring with non-
zero identity, and all modules are left unital R-modules. By a class of modules we mean a non-empty
class of modules. The class of all left R-modules is denoted by R-Mod and by R we mean the set
{(M,N)| N <M, M € R-Mod}, where N < M is a notation which means that N is a submodule
of M. Given a family of modules {M;};cr, for each j € I, m;: @,.; M; — M; denotes the canonical
projection homomorphism. Let M be a module and let Y be a subset of M. The left annihilator
of Y in R will be denoted by Ir(Y), i.e, (r(Y)={r € R|ry=0,Vy € Y}. Given a € M, let
(Y : a) denote the set {r € R | ra € Y}, and let anng(a) := (0 : a). The right annihilator of
a subset I of R in M will be denoted by 7y (1), i.e., rpr(I) ={m &€ M | rm =0, Vr € I}. The class
{I'| I is a left ideal of R such that anng(m) C I, for some m € M} will be denoted by Q(M).

An R-module M is said to be injective if, for any module B, every homomorphism f: A — M,
where A is any submodule of B, extends to a homomorphism g: B — M [3]|. The notation g | A = f
means that g is an extension of f. Let M and N be modules. Recall that N is said to be M-injective
if every homomorphism from a submodule of M to N extends to a homomorphism from M to N [2].
A module M is said to be quasi-injective if M is M-injective. The injective envelope of a module
M will be denoted by E(M).

Let 7 = (7,F) be a torsion theory. A submodule B of a module A is said to be 7-dense in
A if A/B is 7-torsion (i.e., A/B € T). A submodule A of a module B is said to be 7-essential
in B if it is 7-dense and essential in B. A torsion theory 7 is said to be Noetherian if for every
ascending chain Iy C Iy C ... of left ideals of R with I, = U]Oi1 I; a 7-dense left ideal in R, there
exists a positive integer n such that I, is 7-dense in R. A module M is said to be 7-injective if
every homomorphism from a 7-dense submodule of B to M extends to a homomorphism from B
to M, where B is any module [8]. Let M be an R-module. A 7-injective envelope (or 7-injective
hull) of M is a 7-injective module E which is a 7-essential extension of M [6]. Every R-module M
has a 7-injective envelope and it is unique up to isomorphism [8]. We use the notation E,(M) to
denote an 7-injective envelope of M. A 7-injective module E is said to be ) -7-injective if EW) g
T-injective for any index set A; FE is said to be countably > -7-injective if E(©) is r-injective for
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any countable index set C. Let £ and M be modules. Then F is said to be 7-M-injective if any
homomorphism from a 7-dense submodule of M to E extends to a homomorphism from M to FE.
A module F is said to be 7-quasi-injective if F is 7-F-injective.

Let M = {(M,N,f,Q) | M,N,Q € R-Mod, N < M, f € Hompg(N,Q)} and consider the
following conditions on £ that will be useful later, where £ always denotes a nonempty subclass
of M:

() (M,N, f,Q) € L, (M,N",f",Q) € M and (M,N, f,Q) =< (M,N’, f,Q) implies inclusion
(M,N', f',Q) € L, where < is a partial order on M defined by:

(M’N’f’Q)j(MI7N/7f/7QI)<:>M:MI7 NQNI7 Q:QI7 fer:f7

(B8) (M,N,f,A) € L,i: A— B implies (M,N,if, B) € L, where i is an inclusion homomor-
phism;

(v) (M,N,f,A) € L, g: A— B an isomorphism, implies (M, N, gf, B) € L,

(0) (M,N,f,A) € L, g: A— B ahomomorphism, implies (M, N,gf,B) € L,

(A) (M,N, f,A) € L, g: A— B a split epimorphism, implies (M, N, gf, B) € L;

(u) (M, N, f,Q) € L, implies (R, (N : x),f,,Q) € LVx € M, where f, : (N : z) — Q is
a homomorphism defined by f.(r) = f(rz) Vr € (N : z).

Jirdsko in [14] introduced the concepts of L-injective module as a generalization of injective
module as follows: a module @ is said to be L-injective if for each (B, A4, f,Q) € L, there exists a
homomorphism ¢ : B — @ such that (g | A) = f. An L-injective module FE is said to be an £-
injective envelope (or L-injective hull) of a module M if there is no proper L-injective submodule of
E containing M [14]. If a module M has an L-injective envelope and it is unique up to isomorphic
then we will use the notation Ez(M) to denote an L-injective envelope of M. Clearly, injective
module and all its generalizations are special cases of L-injectivity.

The aim of this article is to study L-injectivity and some related concepts.

In Section 1, we give some characterizations of L-injective modules. For example, in Theorem 1
we give a version of Baer’s criterion for £-injectivity. Also, in Theorem 2 we extend a characterization
due to [20, Theorem 2, p. 8] of L-injective modules over commutative Noetherian rings.

In Section 2, we introduce the concepts of £-M-injective module and s-L£-M-injective module as
generalizations of M-injective modules and give some results on them. For examples, in Theorem 3
we prove that if £ is a nonempty subclass of M satisfying conditions («), (), and () and M,Q €
R-Mod such that M satisfies condition (E), then @ is £-M-injective if and only if f(M) < @,
for all f € Hompg(Es(M), E£(Q)) with (M, L, f[L,Q) € L where L ={m € M | f(m) € Q} =
MO f~(Q). Also, in Proposition 2 we generalize [6, Proposition 14.12, p. 66|, [5, Proposition 1,
p. 1954] and Fuchs’s result in [12]. Moreover, our version of the generalized Fuchs criterion is given
in Proposition 3 in which we prove that if £ is a nonempty subclass of M satisfying conditions («)
and (p) and M, Q € R-Mod such that M satisfies condition (£), then a module @ is s-£-M-injective
if and only if for each (R, 1, f,Q) € L with ker(f) € Q(M), there exists an element 2z € @ such
that f(a) = ax Va € I.

In Section 3, we study direct sums of L-injective modules. In Proposition 4 we prove that for
any family {F, }aca of L-injective modules, where A is an infinite index set, if £ satisfies conditions
(a), (), and (0) and @ co Fo is an L-injective module for any countable subset C' of A, then
P .ca Ea is an L-injective module. In Theorem 4, we prove that for any nonempty subclass £ of
M which satisfies conditions («) and (0) and for any nonempty class K of modules closed under
isomorphic copies and L-injective hulls, if the direct sum of any family {F;};cn of L-injective R-
modules in K is L-injective, then every ascending chain I; C Iy C ... of left ideals of R in Hx(R)
with I = U]"il I; being s-L-dense in R terminates. Also, in Theorem 5 we generalize results
in [17, p. 643] and [8, Proposition 5.3.5, p. 165] in which we prove that for any nonempty subclass
L of M which satisfies conditions («), (1), (6), and (I) and for any nonempty class K of modules
closed under isomorphic copies and submodules, if every ascending chain J; C Js C ... of left ideals
of R, where (J;11/J;) € K Vi € Nand Jy = |J;2; J; is s-L-dense in R, terminates, then every direct
sum of L-injective modules in K is L-injective.
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Finally, in Section 4, we introduce the concept of > -L-injectivity as a generalization of ) -injecti-
vity and > _-7-injectivity and prove Theorem 6 in which we generalize Faith’s result [11, Proposition 3,
p. 184] and [6, Theorem 16.16, p. 98].

§ 1. Some Characterizations of L-Injective Modules

One well-known result concerning injective modules states that an R-module M is injective if
and only if every homomorphism from a left ideal of R to M extends to a homomorphism from R to
M if and only if for each left ideal I of R and every f € Homp(I, M) there is an m € M such that
f(r)=rm ¥r € I. This is known as Baer’s condition [3]. Baer’s result shows that the left ideals of
R form a test set for injectivity.

The following theorem gives a version of Baer’s criterion for L-injectivity.

Theorem 1 (Generalized Baer’s Criterion). Consider the following three conditions for an
R-module M :

(1) M is L-injective;

(2) for every (R,I,f,M) € L, there exists an R-homomorphism g € Hompg(R, M) such that
g(a) = f(a), for alla € I;

(3) for each (R,I,f,M) € L, there exists an element m € M such that f(r) =rm, Vr € I.

Then (2) and (3) are equivalent and (1) implies (2). Moreover, if L satisfies conditions () and
(1), then all the three conditions are equivalent.

Proof. (1) = (2) and (2) & (3) are obvious.
(2) = (1). Let £ satisfy conditions («) and (u) and let (B, A, f,M) € L. Let S ={(C,p) | A<
C < B, ¢ € Hompg(C, M) such that (p[A) = f }. Define on S a partial order < by

(C1,01) 2 (Co,2) <= C1 < Cyand (p2 [ C1) = 1.

Clearly, S # () since (A, f) € S. Furthermore, one can show that S is inductive in the following
manner. Let F' = {(4;, f;) | ¢ € I} be an ascending chain in S. Let Ay = UjerA;. Then for any
a € Ay thereis a j € I such that a € A;, and so we can define fo : A = M, by fxo(a) = fj(a).
It is straightforward to check that fo, is well defined and (A, fo) is an upper bound for F in S.
Then by Zorn’s Lemma, S has a maximal element, say (B’,¢’). We will prove that B’ = B.

Suppose that there exists € B\ B’. It is clear that (B, A, f,M) < (B,B’,¢’,M). Since
(B, A, f,M) € L and L satisfies condition (), it follows that (B, B’,¢', M) € L. Since L satisfies
condition (p), we have (R, (B’ : z),g,,M) € L. By hypothesis, there exists a homomorphism
g : R — M such that g(r) = ¢..(r) = ¢'(rz), Vr € (B’ : z). Define ¢ : B'+ Rx — M by
b+ rx) = ¢() + g(r), Vb € B, Vr € R. It is clear that v is a well-defined homomorphism
and (B',g') = (B' + Rx,1). Since (B’ + Rx,1) € S and B’ & B’ + Rz, we have a contradiction
to maximality of (B’,¢’) in S. Hence B’ = B and this means that there exists a homomorphism
g’ : B — M such that (¢'[A) = f. Thus M is L-injective.

Now we will introduce the concept of P-filter as follows.

Definition 1. Let R = {(M,N) | N < M, M € R-Mod} and let p be a nonempty subclass of R.
We say that p is a P-filter if p satisfies the following conditions:
(i) if (M,N) € pand N < K < M, then (M, K) € p;
(13) for all M € R-Mod, (M, M) € p;
(13i) if (M, N) € p, then (R, (N : x)) € p, Vo € M.

Example 1. All of the following subclasses of R are P-filters.
(1) pr ={(M,N) € R | N < M such that M/N € T, M € R-Mod}, where 7 is a nonempty
class of modules closed under submodules and homomorphic images.
(2) poo =R ={(M,N) | N <M, M € R-Mod}.
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(3) pr = {(M,N) € ® | N is 7-dense in M, M € R-Mod}, where 7 is a hereditary torsion
theory.

4) pp ={(M,N) € R | N < M such that r(M/N) = M/N, M € R-Mod}, where r is a left
exact preradical.

(5) pmaz = {(M,N) € ®| N is a maximal submodule in M or N = M, M € R-Mod}.

(6) pe ={(M,N) e R| N <. M, M € R-Mod}.

It is clear that the P-filters from (2) to (5) are special cases of P-filter in (1). Also, if p is a
P-filter then the subclass pr = {(R,I) € p | I is a left ideal of R} of R is also P-filter.

Notations 1. We will fix the following notations.

— For any two P-filters p; and pa, we will denote by L ,, ,,) the subclass L,, ,,) = {(M, N, f,Q) €
M| M,N,Q € R-Mod, (M,N) € p; and f € Hompg(N, Q) such that (M, ker(f)) € p2}.

— For any two nonempty classes of modules 7 and F, we will denote by L1 r) the sub-
class Lir 7y = {(M,N,f,Q) € M | M,N,Q € R-Mod, N < M such that M/N € T and
[ € Hompg(N,Q) with M/ker(f) € F}. Tt is clear that L7 r) = £ if 7 and F are closed
under submodules and homomorphic images.

— For any two preradicals r and s, we will denote by L, ) the subclass L, oy = {(M, N, f,Q) €
M | M,N,Q € R-Mod, N < M such that »(M/N) = M/N and f € Hompg(N,Q) with
s(M/ker(f)) = M/ker(f)}. It is clear that L, g = L, p,), if 7 and s are left exact preradicals.

— For any torsion theory 7, we will denote by L, the subclass £, = {(M,N, f,Q) € M |
M,N,Q € R-Mod, N is a 7-dense in M and f € Hompg(N,Q)}. It is clear that £, = £ if
7 is a hereditary torsion theory.

PTPF)

pTvaO)’

Lemma 1. Let p1 and pe be two P-filters. Then L, ,,) satisfies conditions (o), (6), and (p1).
P roof. It is obvious.

The following corollary is a generalization of Baer’s result in [3], [19, Proposition 2.1, p. 201], [14,
Baer’s Lemma 2.2, p. 628| and [4, Theorem 2.4, p. 319].

Corollary 1. Let p1 and ps be two P-filters. Then the following conditions are equivalent for
R-module M :
(1) M is L

p1.p2) - tNJECTIVE;

2) for every (R, I, f, M) € L(,, ,,) there exists an R-homomorphism g € Homg(R, M) such that

(
g(a) = f(a), for alla € I;
(3) for each (R, 1, f,M) € L,, ,,) there ezists an element m € M such that f(r) =rm, Vr € I.

P r oo f. By Lemma 1 and Theorem 1.

The following characterization of L-injectivity is a generalization of [18, Proposition 1.4, p. 3]
and [8, Proposition 2.1.3, p. 53].

Proposition 1. Consider the following three conditions for R-module M :

(1) Q is L-injective;

(2) for every (M, N, f,Q) € L with N <. M, the homomorphism f extends to a homomorphism
from M to Q;

(3) for every (R,I, f,Q) € L with I <. R, the homomorphism f extends to a homomorphism
from R to Q.

Then (1) implies (2), (2) implies (3) and, if L satisfies conditions () and (u), then (3) im-
plies (1).
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Proof (1) = (2) and (2) < (3) are obvious.

(3) = (1). Let £ satisfy () and (u) and let (R, I, f,Q) € L. Let I¢ be a complement left ideal of
I'in R and let C = I @ I¢. Thus, by [1, Proposition 5.21, p. 75|, C <. R. Define g: C =1 1° — Q
by g(la+b) = f(a) , Ya € I and Vb € I¢. Tt is clear that g is a well-defined homomorphism and
(R, I,f,Q) < (R,C,g,Q). Since L satisfies condition («), (R,C,g,Q) € L. By hypothesis, there
exists a homomorphism h : R — @ such that (h [ C) = ¢. Thus (h [ I) = (¢ | I) = f and this
implies that @ is L-injective, by Theorem 1.

In the following theorem we extend a characterization due to [20, Theorem 2, p. 8] of L-injective
modules over commutative Noetherian rings.

Theorem 2. Let R be a commutative Noetherian ring, let M be an R-module and suppose that
L satisfies conditions () and (). Then M is L-injective if and only if for every (R, 1, f,M) € L,
where I 1s a prime ideal of R, the homomorphism f extends to a homomorphism from R to M.

P r oo f. (=) This is obvious.
(<) Let (B,A,f,M) € Land let S = {(C,¢) | A < C < B, ¢ € Hompg(C, M) such that
(¢ | A) = f }. Define on S a partial order < by

(C1,01) 2 (Co,p2) <= C1 < Cq and (p2 | C1) = 1.

As in the proof of Theorem 1, we can prove that S has a maximal element, say (B’,g’). We
will prove that B’ = B. Suppose that there exists an z € B\ B’. By [20, Theorem 1, p. 8], there
exists an element ry € R such that (B’ : roz) is a prime ideal in R and roz ¢ B’. It is clear that
(B,A, f,M) < (B,B',g’,M). Since (B, A, f,M) € L and L satisfies condition («), it follows that
(B,B',¢',M) € L. Since L satisfies condition (u), it follows that (R, (B’ : b),g;, M) € L, Vb € B.
Put y = 7oz, thus y € B\ B’ and hence (R, (B’ : y),g,, M) € L. By hypothesis, there exists a
homomorphism g : R — M such that g(r) = g, (r) = ¢'(ry), Vr € (B : y). Define ¢ : B'+ Ry — M
by ¥(b+ry) = ¢'(b) + g(r), Vb € B’, Vr € R. As in the proof of Theorem 1, we can prove that v is
a well-defined homomorphism and (B, ¢’) < (B’ + Ry, ). Since (B'+Ry,v) € S and B’ & B'+ Ry,
we have a contradiction to maximality of (B’,¢’) in S. Hence B’ = B and this mean that there
exists a homomorphism ¢’ : B — M such that (¢'[A) = f. Thus M is L-injective.

Corollary 2. Let p1 and ps be two P-filters, let R be a commutative Noetherian ring and let M
be an R-module. Then M is L, ,,)-injective if and only if for every (R, I, f, M) € L,, ,,), where
I is a prime ideal of R, the homomorphism f extends to a homomorphism from R to M.

Proof By Lemma 1 and Theorem 2.

Corollary 3 (see [20, Theorem 2, p. 8]). Let R be a commutative Noetherian ring, let M be
an R-module. Then M is injective if and only if every homomorphism f : I — M, where I is a
prime ideal of R, can be extended to a homomorphism from R to M.

P r o o f. By taking the two P-filters p; = po= R and applying Corollary 2.
§ 2. L-M-Injectivity and s-£-M-Injectivity

In this section, we introduce the concepts of L-M-injective modules and s-L£-M-injective
modules as generalizations of M-injective modules and give some results about them.
Definition 2. Let M,Q € R-Mod. A module @Q is said to be L-M-injective if for every
(M, N, f,Q) € L the homomorphism f extends to a homomorphism from M to . A module Q is
said to be L-quasi-injective if Q) is L£-Q-injective.
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Let M,Q € R-Mod, it is well-known that a module Q) is M-injective if and only if f(M) < Q,
for every homomorphism f : F(M) — E(Q) [16, Lemma 1.13, p. 7|.

For an analogous result for £-M-injectivity we first fix the following condition.

(Er): Let £ be a subclass of M. Then a module M satisfies condition (E.) if M has an
L-injective envelope which is unique up to M-isomorphism and (E;(M),N, f,Q) € L whenever
(M,N, f,Q) € L.

The next theorem is the first main result of this section in which we give a generalization of [16,
Lemma 1.13, p. 7] and [7, Theorem 2.1, p. 34].

Theorem 3. Let M,Q € R-Mod and let L satisfy conditions («), (8), and (). Consider the
following two conditions.
(1) @ 1is L-M -injective.
(2) f(M) <Q, for all f € Hompg(Es(M), E£(Q)) with (M,L, fIL,Q) € L, where L = {m €
M| f(m)e@Q}=MNF Q).
Then (1) implies (2) and, if M satisfies condition (Er), then (2) implies (1).

Proof (1) = (2). Let f € Homgr(E-(M), Ec(Q)) with (M, L, fIL,Q) € L, where L = {m € M |
fim) € Q} = M f~YQ). Define g : L — Q by g(a) = f(a), Va € L (i.e., g = fIL). It is
clear that g is a homomorphism and (M, L,g,Q) € L. By L-M-injectivity of @, there exists a
homomorphism h : M — @ such that (h[L) = g. Since Q((f-h)(M) = 0 and @ is an essential
submodule of E.(Q) (by [14, Theorem 1.19, p. 627]), it follows that (f —h)(M) = 0 and this implies
that f(M) =h(M) < Q.

(2) = (1). Let M satisfy condition (E.) and let (M, N, f,Q) € L, thus (E-(M),N, f,Q) € L.
Since L satisfies condition (f), it follows that (Eg(M),N,if, Ec(Q)) € L, where i is the in-
clusion mapping from @ into E-(Q). By L-injectivity of E,(Q), there exists a homomorphism
h: Ec(M) — E-(Q) such that h(n) = f(n) Yn € N. Let L = {m € M | h(m) € Q}. We will
prove that (M, L,g,Q) € L, where g = h [ L. Let x € N, thus h(z) = f(z) € @Q and hence x € L.
Thus N < Land (g [ N) = f. Thus (M, N, f,Q) =< (M, L,g,Q). Since L satisfies condition («), it
follows that (M, L, g,Q) € L. By hypothesis, we have h(M) < @Q and hence ' =h] M : M — Q is
such that (b’ 1 N) = f. Thus @ is an £-M-injective module.

Corollary 4. Let M,Q € R-Mod and let p1 and ps be two P-filters. If M satisfies condition
(El:(m,pz))’ then the following two conditions are equivalent:

(1) Q is L, pp)-M-injective;

(2) f(M) < Q, for all f € Homp(E, (M), Ez, . (Q)) with (M,L, fIL,Q) € L, where
L={meM| f(m)eQ}t=MN[Q).

Proof. By Lemma 1 and Theorem 3.

Let M,Q € R-Mod and let 7 be any hereditary torsion theory. A module @ is s-7-M-injective
if for any N < M every homomorphism from a 7-dense submodule of N to @ extends to a homo-
morphism from N to @ [6, Definition 14.6, p. 65].

As a generalization of s-7-M-injectivity and hence of M-injectivity we introduce the concept of
s-L-M-injectivity as follows.

Definition 3. Let M,Q € R-Mod. A module @ is said to be s-£-M-injective if @ is L£-N-
injective, for all N < M. A module @ is said to be s-L-quasi-injective if Q) is s-L-Q-injective.
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Fuchs in [12] has obtained a condition similar to Baer’s Criterion that characterizes quasi-injective
modules, Bland in [5] has generalized that to s-7-quasi-injective modules, and Charalambides in [6]
has generalized that to s-7-M-injective modules.

Our next aim is to generalize Fuchs’s condition once again in order to characterize s-£-M-injective
modules. We begin with the following condition.

(£): Let £ be a subclass of M and let M be a module. Then M satisfies condition (L) if for
every (B, A, f,Q) € L we have (Rm,(A : z)m, f(zm),Q) € L, for all m € M and x € B with
anng(m) C (ker(f) : x), where fi, ) @ (A: x)m — @ is a well-defined homomorphism defined by
f@m)(rm) = f(rx), for all r € (A : x).

A subclass £ of M is said to be full subclass if every R-module satisfies condition (£).

Example 2. All of the following subclasses of M are full subclasses.
(1) L7 r), where T' and F' are nonempty classes of modules closed under submodules and ho-
momorphic images.
(2) L =M.
(3) L;, where 7 is a hereditary torsion theory.
(4) L(y,0), where p and o are left exact preradicals.

In following proposition, we generalize [6, Proposition 14.12, p. 66], [5, Proposition 1, p. 1954]
and Fuchs’s result in [12], and it is necessary for our version of the Generalized Fuchs criterion.

Proposition 2. Consider the following statements, where M,Q € R-Mod:

(1) @ is s-L-M -injective;

(2) if m € M with (Rm, K, f,Q) € L, then the homomorphism f extends to a homomorphism
from Rm to Q;

(3) if K < N are modules, not necessarily submodules of M such that (N, K, f,Q) € L and
Q(N) CQ(M), then the homomorphism f extends to a homomorphism from N to Q.

Then (1) implies (2) and (3) implies (1). Moreover, if L satisfies condition (o) and M satisfies
condition (L), then all above statements are equivalent.

Proof. (1) = (2). Let m € M with (Rm, K, f,Q) € L. Thus @ is £- Rm-injective, since @ is
s-L-M-injective and hence there exists a homomorphism ¢ : Rm — @ such that (¢[|K) = f.

(2) = (3). Let L satisfy condition («) and M satisfy condition (£). Let K < N be modules,
not necessarily submodules of M with (N, K, f,Q) € £ and Q(N) C Q(M). Let S = {(C,¢) |
K <C <N, ¢ € Homg(C, M) such that (¢ | K) = f}. Define on S a partial order < by

(C1,01) 2 (Ca,p2) <= C1 < Cy and (2 [ C1) = 1

As in the proof of Theorem 1, we can prove that S has a maximal element, say (X, h). It suffices
to show that X = N. Suppose that there exists an n € N \ X. It is clear that (N, K, f,Q) =<
(N, X,h,Q). Since (N, K, f,Q) € L and L satisfies condition («), it follows that (N, X,h,Q) € L.
Since anng(n) € Q(N) and Q(N) C Q(M) (by assumption), we have anng(n) € Q(M) and this
implies that there exists an m € M such that anng(m) C anng(n). Since anng(n) C (ker(h) : n),
we obtain anng(m) C (ker(h) : n). Since m € M and n € N \ X such that anng(m) C (ker(h) : n)
and since M satisfies condition (L), we get (Rm, (X : n)m,he,my, @) € L. By hypothesis, there
exists a homomorphism ¢* : Rm — @ such that ¢*(am) = h(, ,,)(am) for all am € (X : n)m. Define
h*: X+Rn — Q by h*(z+rn) = = h(z)+¢*(rm), Vo € X and Vr € R. Clearly, h* is a well-defined
homomorphism. For all a € K we have h*(a) = h*(a + 0.n) = h(a) + ¢*(0.m) = h(a) = f(a) and
hence (h*[K) = f. Since K < X + Rn < N, it follows that (X + Rn,h*) € S. Since (h* | X) =h
and X < X + Rn < N, we have (X,h) < (X + Rn,h*). Since n € X + Rn and n ¢ X, it follows
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that X G X + Rn and this contradicts the maximality of (X, h) in S. Thus X = NN and this implies
that there exists a homomorphism h: N — @ such that (h[K) = f.

(3) = (1). Let N < M with (N, K, f,Q) € L. Let I € Q(N), thus there exists an element
n € N such that anng(n) C I and hence there exists an element n € M such that anng(n) C I and
this implies that I € Q(M) and so Q(N) C Q(M). By hypothesis, there exists a homomorphism
g: N — @ such that (g]K) = f. Thus @ is £-N-injective module, for all N < M and this implies
that @ is s-L£-M-injective.

There follows the last main result of this section in which we generalize [6, Proposition 14.13,
p. 68], [5, Proposition 2, p. 1955] and [12, Lemma 2, p. 542]. It is our version of generalized Fuchs
criterion.

Proposition 3 (Generalized Fuchs criterion). Consider the following conditions, where M,

Q € R-Mod:

(1) Q is s-L-M-ingective;

(2) for each (R, I, f,Q) € L with ker(f) € Q(M), the homomorphism f extends to a homomor-
phism from R to Q;

(3) for each (R,I,f,Q) € L with ker(f) € Q(M), there exists an element x € @ such that
fla) =azx Va € I.

Then (2) < (3) and if M satisfies condition (L) then (1) implies (2). Moreover, if L satisfies
conditions () and (u), then (2) implies (1).

Proof. (2) < (3). This is obvious.

(1) = (2). Let M satisfy condition (£) and let (R, I, f,Q) € L with ker(f) € Q(M). Thus
there exists an element m € M such that anng(m) C ker(f). Since ker(f) = (ker(f) : 1), where 1
is the identity element of R, we have anngr(m) C (ker(f) : 1). Since M satisfies condition (L), we
get (Rm, (I : 1)m, f1,m), @) € £ and hence (Rm, Im, f( ), Q) € L. Since Q is s-L-M-injective, it
follows from Proposition 2 that there exists a homomorphism h : Rm — @ such that hoiy = f(q 1),
where iy is the inclusion mapping from I'm into Rm. Define vy : I — Im by vi(a) = am, Va € I,
and define vy : R — Rm by va(r) = rm, ¥Vr € R. It is clear that v; and vy are homomorphisms and
for all a € I we have (vg 0i1)(a) = (i2 o v1)(a), where i; is the inclusion mapping from I into R.
Define g : R — Q by g(r) = (howg)(r), ¥r € R. It is clear that g is a homomorphism and for
all a € I we have that (goi1)(a) = f1,m)(vi(a)) = f,m)(am) = f(a.1) = f(a). Thus there exists
a homomorphism ¢ : R — @ such that (g[I) = f.

(2) = (1). Let L satisfy conditions («) and (u). Let K < N < M such that (N, K, f,Q) € L
and let S = {(C,p) | K < C < N, ¢ € Hompg(C, M) such that (¢[K) = f}. Define on S a partial
order = by

(C1,01) 2 (Co,p2) <= C1 < Cy and (p2 | C1) = 1.

As in the proof of Theorem 1, we can prove that S has a maximal element, say (X, h). It suffices
to show that X = N. Suppose that there exists an n € N \ X. It is clear that (N, K, f,Q) =<
(N, X,h,Q). Since (N, K, f,Q) € L and L satisfies condition («), we have (N, X,h,Q) € L. Since
L satisfies condition (u) and n € N\ X, we get (R, (X : n),hy,, Q) € L. Since (0: n) C ker(h,) and
n € M, it follows that ker(h,) € Q(M). By hypothesis, there exists a homomorphism ¢* : R — Q
such that (¢*[(X : n)) = hy. Define h* : X+Rn — Q by h*(z+rn) = h(z)+¢*(r), Vo € X, Vr € R.
We can prove that h* is a well-defined homomorphism, (X, h) < (X + Rn,h*) and (X + Rn,h*) € S.
Since n € X + Rn and n ¢ X, it follows that X ; X + Rn and this contradicts the maximality
of (X,h) in S. Thus X = N and this implies that there exists a homomorphism h : N — @ such
that (h[K) = f. Thus @ is £-N-injective module for all N < M and hence @ is s-L£-M-injective
R-module.

§ 3. Direct Sums of L-Injective Modules

The direct sums of L-injective modules is not L-injective, in general. For example: let {T;}icr

be a family of rings with unit and let R = [[,.;T; be the ring product of the family {T;}cr,
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where addition and multiplication are defined componentwise. Let A = U;c;7T; be the direct sum
of T;, Vi € I. If each 1,T; is injective, Vi € I and [ is infinite, then pA is a direct sum of injective
modules, but pA is not itself injective, by [15, p. 140]. Hence we have that rpA is a direct sum of
L-injective modules, but rA is not itself L-injective where £ = M.

Further we study conditions under which the class of L-injective modules is closed under direct
sums.

Let {Eq}aca be a family of modules and let E = @ . 4 Eo. For any x = (24 )aca € E, we define
the support of x as the set {« € A| 2, # 0} and denote it by supp(z). For any X C E, we define
supp(X) as the set |J supp(z) ={a € A| 3z € X)z, # 0}.

reX

The following condition will be useful later.

(F'): Let {E,}aca be a family of modules, where A is an infinite index set and let £ be a subclass
of M. We say that L satisfies condition (F) for a family {Eq}aca, if for any (R, I, f,@ cs Fa) € L
the set supp(im(f)) is finite.

Lemma 2. Suppose that A is any index set, C is any countable subset of A, and {Ey}aca is
any family of modules. Define nc : @ocn Fa = @occ Ea by mo(x) = 20, for all x € @,y Ea
o(z), ifaeC,

0, ifaé¢ C,

homomorphism. Then wc is a well-defined homomorphism and if x € @ cc Ea, then mc(x) = .

where mo(xc) = mo(mo(x)) = Vo € A, where 7, is the ath projection

P r o of. An easy check.

Lemma 3. Let {M;}icr be any family of modules. If M; is L-injective, Vi € I and L satisfies
condition (\), then [[;c; M; is L-injective.

P r o o f. This is obvious.

The next corollary immediately follows from Lemma 3.

Corollary 5. Let L satisfy condition (X) and let {M;}icr be any family of L-injective modules.
If I is a finite set, then @, M; is L-injective.

Lemma 4. Let L satisfy conditions («), (i), and (0) and let { Ey}aca be any family of L-injective
modules, where A is an infinite index set. If L satisfies condition (F') for a family {Ey}aca, then
DBoca Ea is an L-injective module.

P ro o f. Suppose that £ satisfies condition (F) for the family { Ey }aca and let (R, I, f, @ c 4 Fa) €
€ L. Thus supp(im(f)) is finite and this implies that f(I) C @, cp Lo, where F is a finite subset
of A. Since E, is L-injective, Ya € F, it follows from Corollary 5 that @ . Fo is L-injective.
Define 7p : @ocp Ba = Pucp Ea by 7p(x) = 2p, for all 2 € @,y Eo, where mo(2r) =
= To(mp(z)) = Ta(@), ?f aclh Va € A, where 7, is the ath projection homomorphism.
0, ifaé¢F,
By Lemma 2, it follows that 7x is a well-defined homomorphism. Since (R,I,f, @ .4 Ea) € L
and £ satisfies condition (§), we have (R,I,7r o f,@ cp Ea) € L. By L-injectivity of @ Fa,
there exists a homomorphism g : R — &, cp Eo such that g(a) = (7p o f)(a), Ya € I. Put
g =i109: R =@, c4 Fo, where iy : @ cp Ea = P,ca Fao is the inclusion homomorphism. Then
for each a € I we have ¢'(a) = 7p(f(a)). Since f(I) C @ cp Ea, we have f(a) € @ cp Ea, Ya € 1.
Thus, by Lemma 2, it follows that 7p(f(a)) = f(a), Ya € I and hence ¢'(a) = f(a), Ya € I. Since

L satisfies conditions (a) and (u), it follows from Theorem 1 that @4 Eq is L-injective.



On L-injective modules 185
MATHEMATICS 2018. Vol. 28. Issue?2

The following proposition generalizes Proposition 8.13 in [13, p. 83].

Proposition 4. Let L satisfy conditions («), (n), and (§) and let {Eqy}aca be any family of
L-ingective modules, where A is an infinite index set. If B .o Eq is an L-injective module for any
countable subset C of A, then @ ¢4 Eo is an L-injective module.

Proof. Let m3 : @,c4 Fa — Es be the natural projection homomorphism. Assume that
PB.,ca Ea is not L-injective, thus by Lemma 4 there exists (R,I,f, @, c4 Fa) € L such that
supp(im(f)) is infinite. Since supp(im(f)) is an infinite set, it follows that supp(im(f)) contains
a countable infinite subset, say C. For any a € C, we have a € supp(im(f)) and this implies
that there exists an x € im(f) such that x, # 0. Thus for any a € C' we have 7, (im(f)) # 0.
Define ¢ @ @ cn Fa — Pocc Pa as in Lemma 2. Note that C = supp(im(rc o f)). Since
(R, 1, f,B,ca Fa) € L and L satisfies condition (), it follows that (R,I,7¢ o f,@ cc Ea) € L.
Since C' is a countable subset of A, it follows from the hypothesis that @ .o Ea is L-injective.
By Theorem 1, there exists an element y € @, .o Eo such that (7¢ o f)(a) = ay, Ya € I. Let
a € supp(im(m¢ o f)), thus there is an r € I such that 7,((7c o f)(r)) # 0. Hence m,(ry) # 0
and this implies that 7, (y) # 0. Thus a € supp(y) and hence supp(im(wc o f)) C supp(y). Since
C = supp(im(m¢ o f)), we have C C supp(y) and this is a contradiction, since supp(y) is finite
(because y € B, Eo) and C is infinite. Thus @4 Fo is an L-injective module.

By Proposition 4 and Lemma 1 we can prove the following corollary.

Corollary 6. Let p1 and ps be two P-filters and let {Ey}aca be any family of modules, where A
is an infinite index set. If P, co Lo is an L (5, ps)tnjective module for any countable subset C of A,

then @ cq Fo is an L,, ,,)-injective module.

Now we can state the following result, found in [13, Proposition 8.13, p. 83] as a corollary.

Corollary 7. Let {Ey}aca be any family of T-injective modules, where A is an infinite indez set.
If @ e Eo is a T-injective module for any countable subset C' of A, then @ 4 Eo is a T-injective
module.

P roof. By taking the two P-filters p; = p; and p2 = R and applying Corollary 6.

Since the class of L-injective modules is closed under isomorphism, when £ satisfies (), it follows
from Proposition 4 that we have the next corollary.

Corollary 8. Consider the following three conditions, where K is a nonempty class of R-modules.
(1) Every direct sum of L-injective R-modules in K is L-injective.
(2) Every countable direct sum of L-injective R-modules in K is L-injective.
(3) For any family {E;}ien of L-injective R-modules in K, @, Ei is L-injective.
Then (1) implies (2) and (2) implies (3), and if L satisfies conditions («), (p), and (8), then (2)
implies (1). Moreover, if L satisfies condition (v), then (3) implies (2).

Definition 4. A submodule N of a module M is said to be strongly £-dense in M (shortly,
s-L-dense) if (M, N,In,N) € L, where Iy is the identity homomorphism from N into N.

The following lemmas are clear.

Lemma 5. If N < K < M are modules such that N is s-L-dense in M and L satisfies conditions
() and (B), then K is s-L-dense in M.

Lemma 6. Let p be any P-filter. Then (M, N) € p if and only if N is 5-L, »)-dense in M.
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Following [10, p. 21], for any module M, denote by Hx (M) the set of left submodules N of
M such that (M/N) € K, where K is any nonempty class of modules (i.e., Hx(M) = {N < M |
(M/N) € K}). In particular, Hc(R) ={I < R | (R/I) € K}.

The following theorem is the first main result of this section.

Theorem 4. Let L satisfy conditions («) and (0) and let KC be any nonempty class of modules
closed under isomorphic copies and L-injective hulls. If the direct sum of any family {FE;}ien of
L-injective R-modules in K is L-injective, then every ascending chain Iy C Iy C ... of left ideals of
R in Hi(R) with 1o = 72, Ij s-L-dense in R, terminates.

Proof Let I; C I, C ... be any ascending chain of left ideals of R in Hy(R) with I, = U?’;l I;
being a s-L-dense left ideal in R. Thus (R/I;) € K Vj € N. Since L satisfies conditions («),
(8), and (7), it follows from [14, Theorem 1.12, p. 625] that every R-module M has an L-
injective hull which is unique up to M-isomorphism. Let E;(R/I;) be the L-injective hull of
R/I;, Vj € N. Since K is closed under L-injective hulls, it follows that Ez(R/I;) € K,Vj € N.
Define f : Ino = U2, I; — D)2, Ec(R/I;) by f(r) = (r + Ij)jen, for r € I. Note that
f is a well-defined mapping: for any r € I, let n be the smallest positive integer such that
r € I,. Since I,, C I,4, Yk € N, we have r € I,,. Vk € N and so r + I+ = 0, Vk € N. Thus
(T‘ + Ij)jGN = (T‘ +Li,r+1Is,...,7+ 1,_1,0,0,.. ) € @;‘;1 El:(R/IJ) Thus f(I) - @;‘;1 Eﬁ(R/I])
and hence f is a well-defined mapping. It is clear that f is a homomorphism. Since [
is a s-L-dense left ideal in R, it follows that (R,Ix,Ir,Is) € L. Since L satisfies condi-
tion (), we have (R, I, f,@;2 Ec(R/I;)) € L. Since Eg(R/I;) is an L-injective R-module
in K, Vj € N, it follows from the hypothesis that 2, Ec(R/I;) is an L-injective R-module.
Thus, by Theorem 1, there exists an element x € P2, Ec(R/I;) such that f(r) =rz Vr € Ix.
Since x € @j2, Ec(R/1;), we have z = (v1,22,...,2,,0,0,...), for some n € N, and hence
(r+1I;)jen = (rzy,122,...,72,,0,0,...) and this implies that r + I,4; = 0, Vk > 1 and Vr € I,
Thus, r € L,k, Vk > 1 and Vr € I, and so I, = U]"il I; C Inyk, Yk > 1. Since Ipyp C In,
it follows that I = I,,1%,Vk > 1, I; = I;1;, Vj € N. Therefore the ascending chain I1 C I, C ...
terminates.

Now we will state the condition (I) on £ as follows:
(I) : (R,J,f,Q) € L implies that J is s-L-dense in R. That is, (R,J, f,Q) € L implies
(R, J,1;,J) € L.

Proposition 5. Consider the following two conditions, where K is a nonempty class of R-
modules.
(1) Every ascending chain I C I C ... of left ideals of R in Hx(R) with Ic = J;Z, I; s-L-dense
m R, terminates.
(2) The following conditions hold:
(a) Hic(R) has ACC on s-L-dense left ideals in R;
(b) for every ascending chain I; C Iy C ... of left ideals of R in Hi(R), where I, = U]Oi1 I;
is s-L-dense in R, there exists a positive integer n such that I, is s-L-dense in R.
If L satisfies conditions (o) and (), then (1) and (2) are equivalent.

P roof. This is obvious.
Now we will give the second main result of this section.

Theorem 5. Let L satisfy conditions («), (u), (6), and (I) and let KC be any nonempty class of
modules closed under isomorphic copies and submodules. If every ascending chain J; C Jo C ... of
left ideals of R, where (Jiy1/J;) € K, Vi € N and Joo = ;2 Ji is s-L-dense in R, terminates, then
every direct sum of L-injective modules in IC is L-injective.
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Proof. Let {E;}en be any family of L-injective modules in K and let (R, J, f, @,y Ei) € L. For
anyn € Nyput J, = {z € J | f(x) e B, E;} = fHPL, E;). Itis clear that J; C Jo C .... Also,
we have Joo = Uperydn = Unen(F (@ B)) = - Unen( @7y Fi) = £, Ey). Since
(R, J, f,B,cn Ei) € L and L satisfies condition (), it follows that J = (J;cy Ji is s-L-dense in R. For
all n € N, define o, : Joy1/Jn =@ Ei) @1 Ei by an(x + Jy) = f(z) + (@), E), Vo € Ly1.
Then a,, is a well-defined monomorphism, since J, = f~1(@", E;). Since (D] Ei/ @), E;) ~
Eny1 € K and K is closed under isomorphic copies, we have (@' E;/@" | E;) € K. Since
im(ay,) < (@M E;/ @, E;) € K, and K is closed under submodules, it follows that im(a,,) € K.
Since (Jp41/Jn) ~ im(ay,) and K is closed under isomorphic copies, we obtain (J,41/J,) € K.
Thus we have the following ascending chain J; C Jy C ... of left ideals of R such that
(Jix1/di) € K, Vi € N and Jo = ;2 J;i is s-L-dense in R. By hypothesis, there exists a pos-
itive integer n such that J, = Ju14, Vi € N. Thus J = J = Uf; J; = J,. This implies that
f(J) C @, Ei. Thus supp(im(f)) is finite and hence £ satisfies condition (F) for a family {E; }ien.
Thus by Lemma 4 we see that @,y E; is an L-injective module. Thus for any family {E;}ien of
L-injective R-modules in K, we have @, E; is L-injective. Since L satisfies conditions (), (1),
and (6), it follows from Corollary 8, that every direct sum of L-injective modules in K is L-injective.

A nonempty class I of modules is said to be a natural class if it is closed under submodules, arbi-
trary direct sums and injective hulls [9]. Examples of natural classes include R-Mod, any hereditary
torsionfree classes, and stable hereditary torsion classes.

Now we can state the following result, found in [17, p. 643] as a corollary.

Corollary 9. Let K be a natural class of modules closed under isomorphic copies. Then the
following statements are equivalent:

(1) every direct sum of injective modules in K is injective;

(2) Hi(R) has ACC.

Proof (1) = (2). By taking £ = M and applying Lemma 1, Lemma 6 and Theorem 4.
(2) = (1). By taking £ = M and applying [17, Lemma 7, p. 637] and Theorem 5.

Corollary 10. Let p be any P-filter and let K be any nonempty class of modules closed under
isomorphic copies and submodules. If every ascending chain Jy C Jo C ... of left ideals of R such
that (Jiy1/Ji) € K, Vi € N and Joo = |J;2 Ji is 8-L(p,00)-dense in R terminates, then every direct
sum of L, )-injective modules in K is L, .)-injective.

Proof By Lemma 1, Lemma 6 and Theorem 5.

Let 7 be a hereditary torsion theory. A nonempty class K of modules is said to be 7-natural
class if I is closed under submodules, isomorphic copies, arbitrary direct sums and 7-injective
hulls [8, p. 163].

Corollary 11 (see [8, Proposition 5.3.5, p. 165]). Let K be a T-natural and suppose that ev-
ery ascending chain J; C Jo C ... of left ideals of R such that (Ji11/J;) € K,Vi € N and
Joo = U2, Ji is T-dense in R terminates. Then every direct sum of T-injective modules in K is
T-injective.

Proof Take p= p, and apply Corollary 10.

The following corollary, in which we give conditions under which the class of L-injective modules
is closed under direct sums, is one of the main aims of this section.

Corollary 12. Consider the following three conditions:
(1) the class of L-injective R-modules is closed under direct sums;
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(2) every ascending chain Iy C Iy C ... of left ideals of R, where I, = U]O’;l I; is s-L-dense in
R, terminates;
(3) the following conditions hold:
(a) every ascending chain Iy C Iy C ... of s-L-dense left ideals of R terminates;
(b) for every ascending chain Iy C Iy C ... of left ideals of R, where I, = U;’;l I; is s-L-dense
in R, there exists a positive integer n such that I, is s-L-dense in R.
If L satisfies conditions (o) and (§), then (1) implies (2) . Also, (2) implies (3b) and if L satisfies
conditions (o) and (f3), then (2) implies (3a). Moreover, if L satisfies conditions («), (u), (6), and
(I), then all above three conditions are equivalent.

P roof. By taking = R-Mod and applying Theorem 4 and Proposition 5.

Corollary 13. Let p be any P-filter. Then the following statements are equivalent.
1) The class of L -injective R-modules is closed under direct sums.
(p,poo)
(2) Every ascending chain I; C Iy C ... of left ideals of R, where I, = U;’;l I is s-L(, p..)-dense
i R, terminates.
(3) The following conditions hold.
(a) Every ascending chain Iy C Iz C ... of s-L(, p..)-dense left ideals of R terminates.
(b) For every ascending chain Iy C Iy C ... of left ideals of R, where I = U5
poc)

=1 I is s-

-dense in R, there erists a positive integer n such that I, is s-L(, ,..)-dense in R.

L

s Poo

(4) For any family {E;}ien of L, p..)-injective R-modules, @;cn Ei s L -injective.

Prpoo)
Proof ByLemma 1 and Lemma 6, it follows that L, , ) satisfies conditions (), (1), (6), and
(I). Thus, by Corollary 12 and Corollary 8, we have the equivalence of above four statements.

Corollary 14 (see [8, Theorem 2.3.8, p. 73|). The following statements are equivalent:
(1) R has ACC on T-dense left ideals and T is Noetherian;

(2) the class of T-injective R-modules is closed under direct sums;

(3) the class of T-injective R-modules is closed under countable direct sums.

Proof. Take p= p, and apply Corollary 13.
§4. > -L-injective modules

Carl Faith in [11] introduced the concepts of > -injectivity and countably > -injectivity as follows.
An injective module F is said to be ) -injective if E) is injective for any index set A; E is said to
be countably S -injective in case E(©) is injective for any countable index set C. Faith in [11] proved
that an injective R-module F is ) -injective if and only if R satisfies ACC on the FE-annihilator
left ideals if and only if F is countably > -injective. Charalambides in [6] introduced the concept of
> -r-injectivity and generalized Faith’s result.

In this section, we introduce the concept of Y -L-injectivity as a general case of > -injectivity
and ) -7-injectivity and prove the result (Theorem 6) in which we generalize Faith’s result |11,
Proposition 3, p. 184] and [6, Theorem 16.16, p. 98].

We start this section with the following definition of a ) _-L-injective module.
Definition 5. Let F be an L-injective module. We say that E is Y -L-injective if EW is £-
injective for any index set A. On the other hand, if E(©) is L-injective for any countable index set

C, we say that E is countably > -L-injective.

The following corollary is a special case of Corollary 8, by taking K = {E'}.
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Corollary 15. Consider the following conditions.
(1) E is Y -L-injective.
(2) E is countably » -L-injective.
(3) EM) s L-injective.
Then: (1) implies (2) and (2) implies (3). If L satisfies conditions (), (n), and (9), then (2)
implies (1). Moreover, if L satisfies condition (7y), then (3) implies (2).

The next corollary is immediately follows from Lemma 1 and Corollary 15.

Corollary 16. Let p1 and ps be any two P-filters. Then the following conditions are equivalent
for a module E.

(1) E is 3 -L(p, pp)-injective.

(2) E is countably Y -L(,, ,,)-injective.

(3) E™ s £

p1.p2) "INJECEIVE.

Let £ be a module. A left ideal I of R is said to be an F-annihilator if there is N C E such
that I = (0: N) ={r € R|rN =0} (i.e., I is the annihilator of a subset of F).

The following theorem is the main result of this section in which we generalize [6, Theorem 16.16,
p. 98] and [11, Proposition 3, p. 184].

Theorem 6. Consider the following three conditions for an L-injective module E:
(1) E is countably Y -L-injective;
(2) every ascending chain Iy C Iy C ... of E-annihilators in R, where I, = U]Oi1 I; is s-L-dense
m R, terminates;
(3) The following conditions hold.
(a) Every ascending chain Iy C Iy C ... of E-annihilators in R, where I; is s-L-dense in R
Vj € N, terminates.
(b) For every ascending chain Iy C Iy C ... of E-annihilators in R, where I, = U]“;l I; is
s-L-dense in R, there exists a positive integer n such that I, is s-L-dense in R.
Then: if L satisfies condition (9), then (1) implies (2). Also, (2) implies (3b) and if L satisfies
conditions (o)) and (f3), then (2) implies (3a). Moreover, if L satisfies conditions (), (n), (B),
and (I), then (3) implies (1).

Proof (1) = (2). Let £ satisfy condition (§). Assume that (2) does not hold. Then there
exist E-annihilators Iy, Ip,... in R such that I} S I, & ... and I, = U]Oi1 I; is s-L-dense in R.
Hence we have the following descending chain rg(I1) 2 re(l2) 2 .... For every n € N, choose
zp € rp(l,) —rE(Ini1), thus £ = (z,)neny € EVN. Define f : I, — EN by f(a) = ax, Va € I. It is
clear that f is a homomorphism. For a fixed a € I, let n be the smallest positive integer such that
a € I,,. Then, for every k > 0, a € I, C I,,1%. Since x4k € rp(Ih1k), we have ax,1, = 0, VE > 0.
Hence az € E™. Thus f is a homomorphism from I, into EWM . Since I is s-L-dense in R, it
follows that (R, Ino, I1,Is) € L. Since £ satisfies condition (8), we get (R, I, f, EN) € L. Since
E®) is L-injective, it follows from Theorem 1 that there exists an element y € E™ such that
f(a) = ay, Va € I. Since y € EM, we have y = (y1,92,...,%0,0,...), for some ¢t € N. Since
ax = f(a) = ay, Va € I, it follows that (az,azs,...) = (ay1,ays,...,ay:,0,0,...) and this implies
that aziy1 = 0, Va € I and hence x4y € rp(ls). Since Ii1o G I, we have rp(le) € 75(Ity2)
and so x41 € rg(li+2). This contradicts the fact that z441 € rg(li41) — re(liye).

(2) = (3b). Let I; C I, C ... be any ascending chain of F-annihilators in R, where I, = U]Oi1 I;
is s-L-dense in R. By hypothesis, there exists a positive integer n such that I, = I,,4, Vk € N and
so I,, = I.. Hence I,, is s-L-dense in R.

(2) = (3a). Let L satisfy conditions («) and (5) and let I; C Is C ... be any ascending chain
of E-annihilators in R such that I; are s-L-dense left ideals of R. Since I} C I, and L satisfies
conditions («) and (3), we have from Lemma 5 that I, is a s-L-dense left ideal of R. By hypothesis,
the chain I; C I, C ... terminates.
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(3) = (1). Let £ satisfy conditions (a), (1), (8), and (I) and let (R, J, f, EM) € L. Since E is £-
injective, we have from Lemma 3 that EN is L-injective. Since E™ is a submodule of EV, it follows
that g =40 f: J — EN is a homomorphism, where i : E®™ — EN ig the inclusion homomorphism.
Since L satisfies condition (3), we have (R,J,i o f,EN) € L. Thus, by Theorem 1, there is an
element x = (z1,%2,...) € EN such that g(a) = ax, Va € J. Thus f(a) = g(a) = ax, Ya € J. Let
X ={z1,29,...} and Xy = = X \ {z1,22,..., 2} = {&g41, Tkt2,...} for all & > 1. Thus we have
the following descending chain of subsets of X : X O X; D X, D ...; this yields an ascending
chain of E-annihilators in R: [r(X) C Ir(X;) C lg(X2) C .... Let Jyp1 = Ir(Xg), for all
k > 0, where Xog = X and Jo = U2, J;. Since f(J) € EM™ it follows that, for any a € J,
either axp = 0, Vk € N, or there is a largest integer n € N such that ax, # 0. If there is a largest
integer n € N such that ax, # 0, then ax, 1 = 0, Vk > 1. Therefore, a € Ir(X,,) = Jnt1 € Joo-
Thus for any a € J, we have a € J, and this implies that J C J. Since (R, J, f,E(N)) e L
and L satisfies condition (I), it follows that J is s-L-dense left ideal in R. Since J C Jy and £
satisfies conditions («) and (), we have from Lemma 5 that J is s-L£-dense left ideal in R. Thus
we have the following ascending chain J; C Js C ... of E-annihilators in R such that J is s-
L-dense left ideal in R. By applying condition (3b), there is an s € N such that Js is s-L-dense
left ideal in R. Since J; C Jeik, Yk € N and £ satisfies conditions («) and (3), it follows from
Lemma 5 that Jgip is s-L-dense left ideal in R, V& € N. Thus we have the following ascending
chain Jy C Jgp1 C ... of E-annihilators in R such that Jg i is s-L-dense left ideal in R Vk € N.
By applying condition (3a), the chain Js C Jg11 C ... becomes stationary at a left ideal of R,
say J; = lr(X;—1) and so J; = Jw. Thus for any a € J, we have axyyp = 0, Vk > 0 and then
a(0,0,...,0,z¢, 41,...) = 0. Take y = (z1,2,...,24-1,0,0,...). It is clear that y € E™ and for
any a € J, then f(a) = ax = ax — a(0,0,...,0,2¢,2441,0,0,...) = a(z1,z2,...,2¢-1,0,0,...) = ay.
Thus for every (R, J, f, EM)) € L there exists an element y € E™ such that f(a) = ay, Va € J.
Since £ satisfies conditions () and (u), it follows from Theorem 1 that E®™ is L-injective. Since £
satisfies condition (), it follows from Corollary 15 that E is countably > -L-injective.

Corollary 17. Let p be any P-filter. Then the following conditions are equivalent.
(1) E is countably Y -L(, ~)-injective.
(2) Every ascending chain Iy C Iy C ... of E-annihilators in R, where I, = U]O’;l I is 8-Lp o0)-
dense left ideal in R, terminates.
(3) The following conditions hold.
(a) Every ascending chain Iy C I, C ... of E-annihilators in R, where I; is 5-L(p,00)-dense
left ideals of R ¥j € N, terminates.
(b) For every ascending chain Iy C Iy C ... of E-annihilators in R, where I, = U;’il I; s
8-L(p,00)-dense left ideal in R, there exists a positive integer n such that I, 1s s-L(, )-dense in R.
(4) E is Y -L( 00)-injective.

Proof By Lemma 1, Lemma 6 and Theorem 6, we have the equivalence of (1), (2), and (3).
(1) < (4). By Corollary 15.

Corollary 18 (see [6, Theorem 16.16, p. 98]). Let 7 be any hereditary torsion theory and let
E be t-injective module. Then the following conditions are equivalent.
(1) E is countably > -T-injective.
(2) Ewvery ascending chain Iy C Iy C ... of E-annihilators in R, where I, = U]“;l I; is T-dense
left ideal in R, terminates.
(3) The following conditions hold.
(a) Every ascending chain Iy C Iy C ... of E-annthilators in R, where I; is T-dense left ideals
of RVj € N, terminates.
(b) For every ascending chain Iy C Iy C ... of E-annihilators in R, where I, = U]“;l I; is
T-dense left ideal in R, there exists a positive integer n such that I, is T-dense in R.
(4) E is > -T-injective.
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P roof. By taking a P-filter p = p, and applying Corollary 17.

Corollary 19 (see [11, Proposition 3, p. 184]). The following conditions on an injective mod-
ule E are equivalent.

(1) E is countably _-injective.

(2) R satisfies the ACC' on the E-annihilators left ideals.

(3) E is Y -injective.

P r o o f. By taking p = R and applying Corollary 17.

Corollary 20. Let L satisfy conditions (o), (i), and (8), and let {E; | 1 <1i < n} be a family of
modules. If E; is Y -L-injective Vi =1,2,...,n, then @;_, E; is y_-L-injective.

P roof. By Corollary 5 and Corollary 15.

Corollary 21. Let p; and py be any two P-filters and let {E; | 1 < i < n} be a family of modules.
If B is 3 -Lp, po)-injective Vi = 1,2, ..., n, then @i E; is Y -L(p, p,)-injective.

Proof By Lemma 1 and Corollary 20.
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Karouesvie cA060: THBEKTUBHBIN MOILY/b, 0000IeHHbIH KpuTepnit DyKca, HACTEACTBEHHAS TEOPHUs KPYIeHN,
{-TJIOTHBIN, TpepaguKall, €CTECTBEHHBII KJIacC.

VIK 512.553.3
DOT: 10.20537/vm180204

IMycts M = {(M,N, f,Q) | M,N,Q € R-Mod, N < M, f € Homg(N,Q)} u nycrs £ — Hemycroii mos-
kmacc M. Jirdsko BBenm monsaTne L-WHBHEKTHBHOIO MOIY/Is KakK 0000IIEHNEe MHHEKTUBHOTO MOIYJS: MOIY/Ib
Q) HasbIBaercss L-MHBEKTUBHBIM, ecqin 1ist Kaxaoro (B, A, f,Q) € L cymecrsyer romomopdusm g: B — @
takoit, uro g(a) = f(a) mas Beex a € A. lenbio ganHO# paboTh! sIBIsIETCS N3y4YeHne L-WHbHEKTHBHBIX MOJLY-
JIeil 1 HEKOTOPBIX CBSI3AHHBIX C HUMU MOHATHH. [|aHbl HEKOTOPBIE XaPAKTEPUCTUKY L-NHHEKTUBHBIX MOILYJIEH.
[IpuBonurcs Bepcusi kpurepusi Bapa mins L-uabekTuBHOCTH. B KadecrBe 06001enwit M-uHBEKTUBHBIX MO-
Jyneit BBogaTcs noHaTus L- M-uHbeKTUBHOTO MO st U $-L- M -UHBEKTUBHOTO MOJIY/IsI U JAIOTCA HEKOTOPHIE
pe3ynbraTel 0 HEX. /lana Hamma Bepcusa obobiennoro kpurepus ®@ykca. Ilomydenbr yeioBus, IpH KOTOPBIX
KJIaCC L-WHBEKTUBHBIX MOIYJIEH 3aMKHYT OTHOCHTEJIHHO MPSIMBIX CyMM. HakoHel, MbI BBOIUM U H3ydaeM
noHsiTHe » -L-WHHEeKTHBHOCTH KaK 0000IIeHNe Y ~-MHHEKTUBHOCTH W Y -T-WHbEKTHBHOCTH.
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