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ON L-INJECTIVE MODULES

Let M = {(M,N, f,Q) |M,N,Q ∈ R-Mod, N ≤M, f ∈ HomR(N,Q)} and let L be a nonempty sub
lass of

M. Jir�asko introdu
ed the 
on
ept of L-inje
tive module as a generalization of inje
tive module as follows:

a module Q is said to be L-inje
tive if for ea
h (B,A, f,Q) ∈ L there exists a homomorphism g : B → Q
su
h that g(a) = f(a), for all a ∈ A. The aim of this paper is to study L-inje
tive modules and some

related 
on
epts. Some 
hara
terizations of L-inje
tive modules are given. We present a version of Baer's


riterion for L-inje
tivity. The 
on
epts of L-M -inje
tive module and s-L-M -inje
tive module are introdu
ed

as generalizations of M -inje
tive modules and give some results about them. Our version of the generalized

Fu
hs 
riterion is given. We obtain 
onditions under whi
h the 
lass of L-inje
tive modules is 
losed under

dire
t sums. Finally, we introdu
e and study the 
on
ept of

∑

-L-inje
tivity as a generalization of
∑

-inje
-

tivity and

∑

-τ -inje
tivity.
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Introdu
tion

Throughout this arti
le, unless otherwise spe
i�ed, R will denote an asso
iative ring with non-

zero identity, and all modules are left unital R-modules. By a 
lass of modules we mean a non-empty


lass of modules. The 
lass of all left R-modules is denoted by R-Mod and by ℜ we mean the set

{(M,N) | N ≤M, M ∈ R-Mod}, where N ≤ M is a notation whi
h means that N is a submodule

ofM . Given a family of modules {Mi}i∈I , for ea
h j ∈ I, πj :
⊕

i∈I Mi →Mj denotes the 
anoni
al

proje
tion homomorphism. Let M be a module and let Y be a subset of M . The left annihilator

of Y in R will be denoted by lR(Y ), i. e., lR(Y ) = {r ∈ R | ry = 0, ∀y ∈ Y }. Given a ∈ M, let
(Y : a) denote the set {r ∈ R | ra ∈ Y }, and let annR(a) := (0 : a). The right annihilator of

a subset I of R in M will be denoted by rM (I), i. e., rM (I) = {m ∈M | rm = 0, ∀r ∈ I}. The 
lass
{I | I is a left ideal of R su
h that annR(m) ⊆ I, for some m ∈M} will be denoted by Ω(M).

An R-module M is said to be inje
tive if, for any module B, every homomorphism f : A → M ,

where A is any submodule of B, extends to a homomorphism g : B →M [3℄. The notation g ↾ A = f
means that g is an extension of f . LetM and N be modules. Re
all that N is said to beM -inje
tive

if every homomorphism from a submodule ofM to N extends to a homomorphism fromM to N [2℄.

A module M is said to be quasi-inje
tive if M is M -inje
tive. The inje
tive envelope of a module

M will be denoted by E(M).

Let τ = (T ,F) be a torsion theory. A submodule B of a module A is said to be τ -dense in

A if A/B is τ -torsion (i. e., A/B ∈ T ). A submodule A of a module B is said to be τ -essential
in B if it is τ -dense and essential in B. A torsion theory τ is said to be Noetherian if for every

as
ending 
hain I1 ⊆ I2 ⊆ . . . of left ideals of R with I∞ =
⋃

∞

j=1 Ij a τ -dense left ideal in R, there
exists a positive integer n su
h that In is τ -dense in R. A module M is said to be τ -inje
tive if

every homomorphism from a τ -dense submodule of B to M extends to a homomorphism from B
to M , where B is any module [8℄. Let M be an R-module. A τ -inje
tive envelope (or τ -inje
tive
hull) of M is a τ -inje
tive module E whi
h is a τ -essential extension of M [6℄. Every R-module M
has a τ -inje
tive envelope and it is unique up to isomorphism [8℄. We use the notation Eτ (M) to
denote an τ -inje
tive envelope of M . A τ -inje
tive module E is said to be

∑

-τ -inje
tive if E(A)
is

τ -inje
tive for any index set A; E is said to be 
ountably

∑

-τ -inje
tive if E(C)
is τ -inje
tive for

http://dx.doi.org/10.20537/vm180204


On L-inje
tive modules 177

MATHEMATICS 2018. Vol. 28. Issue 2

any 
ountable index set C. Let E and M be modules. Then E is said to be τ -M -inje
tive if any

homomorphism from a τ -dense submodule of M to E extends to a homomorphism from M to E.
A module E is said to be τ -quasi-inje
tive if E is τ -E-inje
tive.

Let M = {(M,N, f,Q) | M,N,Q ∈ R-Mod, N ≤ M, f ∈ HomR(N,Q)} and 
onsider the

following 
onditions on L that will be useful later, where L always denotes a nonempty sub
lass

of M:

(α) (M,N, f,Q) ∈ L, (M,N ′, f ′, Q) ∈ M and (M,N, f,Q) � (M,N ′, f ′, Q) implies in
lusion

(M,N ′, f ′, Q) ∈ L, where � is a partial order on M de�ned by:

(M,N, f,Q) � (M ′, N ′, f ′, Q′) ⇐⇒M =M ′, N ⊆ N ′, Q = Q′, f ′ ↾ N = f ;

(β) (M,N, f,A) ∈ L, i : A → B implies (M,N, if,B) ∈ L, where i is an in
lusion homomor-

phism;

(γ) (M,N, f,A) ∈ L, g : A→ B an isomorphism, implies (M,N, gf,B) ∈ L;
(δ) (M,N, f,A) ∈ L, g : A→ B a homomorphism, implies (M,N, gf,B) ∈ L;
(λ) (M,N, f,A) ∈ L, g : A→ B a split epimorphism, implies (M,N, gf,B) ∈ L;
(µ) (M,N, f,Q) ∈ L, implies (R, (N : x), fx, Q) ∈ L∀x ∈ M, where fx : (N : x) → Q is

a homomorphism de�ned by fx(r) = f(rx) ∀r ∈ (N : x).

Jir�asko in [14℄ introdu
ed the 
on
epts of L-inje
tive module as a generalization of inje
tive

module as follows: a module Q is said to be L-inje
tive if for ea
h (B,A, f,Q) ∈ L, there exists a

homomorphism g : B → Q su
h that (g ↾ A) = f . An L-inje
tive module E is said to be an L-
inje
tive envelope (or L-inje
tive hull) of a module M if there is no proper L-inje
tive submodule of

E 
ontaining M [14℄. If a module M has an L-inje
tive envelope and it is unique up to isomorphi


then we will use the notation EL(M) to denote an L-inje
tive envelope of M . Clearly, inje
tive

module and all its generalizations are spe
ial 
ases of L-inje
tivity.
The aim of this arti
le is to study L-inje
tivity and some related 
on
epts.

In Se
tion 1, we give some 
hara
terizations of L-inje
tive modules. For example, in Theorem 1

we give a version of Baer's 
riterion for L-inje
tivity. Also, in Theorem 2 we extend a 
hara
terization

due to [20, Theorem 2, p. 8℄ of L-inje
tive modules over 
ommutative Noetherian rings.

In Se
tion 2, we introdu
e the 
on
epts of L-M -inje
tive module and s-L-M -inje
tive module as

generalizations of M -inje
tive modules and give some results on them. For examples, in Theorem 3

we prove that if L is a nonempty sub
lass of M satisfying 
onditions (α), (β), and (γ) and M,Q ∈
R-Mod su
h that M satis�es 
ondition (EL), then Q is L-M -inje
tive if and only if f(M) ≤ Q,
for all f ∈ HomR(EL(M), EL(Q)) with (M,L, f↾L,Q) ∈ L where L = {m ∈ M | f(m) ∈ Q} =
M

⋂

f−1(Q). Also, in Proposition 2 we generalize [6, Proposition 14.12, p. 66℄, [5, Proposition 1,

p. 1954℄ and Fu
hs's result in [12℄. Moreover, our version of the generalized Fu
hs 
riterion is given

in Proposition 3 in whi
h we prove that if L is a nonempty sub
lass of M satisfying 
onditions (α)
and (µ) andM,Q ∈ R-Mod su
h thatM satis�es 
ondition (L), then a module Q is s-L-M -inje
tive

if and only if for ea
h (R, I, f,Q) ∈ L with ker(f) ∈ Ω(M), there exists an element x ∈ Q su
h

that f(a) = ax ∀a ∈ I.

In Se
tion 3, we study dire
t sums of L-inje
tive modules. In Proposition 4 we prove that for

any family {Eα}α∈A of L-inje
tive modules, where A is an in�nite index set, if L satis�es 
onditions

(α), (µ), and (δ) and

⊕

α∈C Eα is an L-inje
tive module for any 
ountable subset C of A, then
⊕

α∈AEα is an L-inje
tive module. In Theorem 4, we prove that for any nonempty sub
lass L of

M whi
h satis�es 
onditions (α) and (δ) and for any nonempty 
lass K of modules 
losed under

isomorphi
 
opies and L-inje
tive hulls, if the dire
t sum of any family {Ei}i∈N of L-inje
tive R-
modules in K is L-inje
tive, then every as
ending 
hain I1 ⊆ I2 ⊆ . . . of left ideals of R in HK(R)
with I∞ =

⋃∞

j=1 Ij being s-L-dense in R terminates. Also, in Theorem 5 we generalize results

in [17, p. 643℄ and [8, Proposition 5.3.5, p. 165℄ in whi
h we prove that for any nonempty sub
lass

L of M whi
h satis�es 
onditions (α), (µ), (δ), and (I) and for any nonempty 
lass K of modules


losed under isomorphi
 
opies and submodules, if every as
ending 
hain J1 ⊆ J2 ⊆ . . . of left ideals
of R, where (Ji+1/Ji) ∈ K ∀i ∈ N and J∞ =

⋃∞

i=1 Ji is s-L-dense in R, terminates, then every dire
t

sum of L-inje
tive modules in K is L-inje
tive.
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Finally, in Se
tion 4, we introdu
e the 
on
ept of

∑

-L-inje
tivity as a generalization of

∑

-inje
ti-

vity and

∑

-τ -inje
tivity and prove Theorem 6 in whi
h we generalize Faith's result [11, Proposition 3,

p. 184℄ and [6, Theorem 16.16, p. 98℄.

� 1. Some Chara
terizations of L-Inje
tive Modules

One well-known result 
on
erning inje
tive modules states that an R-module M is inje
tive if

and only if every homomorphism from a left ideal of R to M extends to a homomorphism from R to

M if and only if for ea
h left ideal I of R and every f ∈ HomR(I,M) there is an m ∈M su
h that

f(r) = rm ∀r ∈ I. This is known as Baer's 
ondition [3℄. Baer's result shows that the left ideals of

R form a test set for inje
tivity.

The following theorem gives a version of Baer's 
riterion for L-inje
tivity.
Theorem 1 (Generalized Baer's Criterion). Consider the following three 
onditions for an

R-module M :

(1) M is L-inje
tive;
(2) for every (R, I, f,M) ∈ L, there exists an R-homomorphism g ∈ HomR(R,M) su
h that

g(a) = f(a), for all a ∈ I;
(3) for ea
h (R, I, f,M) ∈ L, there exists an element m ∈M su
h that f(r) = rm, ∀r ∈ I.
Then (2) and (3) are equivalent and (1) implies (2). Moreover, if L satis�es 
onditions (α) and

(µ), then all the three 
onditions are equivalent.

P r o o f. (1) ⇒ (2) and (2) ⇔ (3) are obvious.

(2) ⇒ (1). Let L satisfy 
onditions (α) and (µ) and let (B,A, f,M) ∈ L. Let S = {(C,ϕ) | A ≤
C ≤ B , ϕ ∈ HomR(C,M) su
h that (ϕ↾A) = f }. De�ne on S a partial order � by

(C1, ϕ1) � (C2, ϕ2) ⇐⇒ C1 ≤ C2 and (ϕ2 ↾ C1) = ϕ1.

Clearly, S 6= ∅ sin
e (A, f) ∈ S. Furthermore, one 
an show that S is indu
tive in the following

manner. Let F = {(Ai, fi) | i ∈ I} be an as
ending 
hain in S. Let A∞ = ∪i∈IAi. Then for any

a ∈ A∞ there is a j ∈ I su
h that a ∈ Aj , and so we 
an de�ne f∞ : A∞ → M , by f∞(a) = fj(a).
It is straightforward to 
he
k that f∞ is well de�ned and (A∞, f∞) is an upper bound for F in S.
Then by Zorn's Lemma, S has a maximal element, say (B′, g′). We will prove that B′ = B.

Suppose that there exists x ∈ B \ B′
. It is 
lear that (B,A, f,M) � (B,B′, g′,M). Sin
e

(B,A, f,M) ∈ L and L satis�es 
ondition (α), it follows that (B,B′, g′,M) ∈ L. Sin
e L satis�es


ondition (µ), we have (R, (B′ : x), g′x,M) ∈ L. By hypothesis, there exists a homomorphism

g : R → M su
h that g(r) = g′x(r) = g′(rx), ∀r ∈ (B′ : x). De�ne ψ : B′ + Rx → M by

ψ(b + rx) = g′(b) + g(r), ∀b ∈ B′
, ∀r ∈ R. It is 
lear that ψ is a well-de�ned homomorphism

and (B′, g′) � (B′ + Rx,ψ). Sin
e (B′ + Rx,ψ) ∈ S and B′ $ B′ + Rx, we have a 
ontradi
tion

to maximality of (B′, g′) in S. Hen
e B′ = B and this means that there exists a homomorphism

g′ : B →M su
h that (g′↾A) = f . Thus M is L-inje
tive.

Now we will introdu
e the 
on
ept of P -�lter as follows.

De�nition 1. Let ℜ = {(M,N) | N ≤M, M ∈ R-Mod} and let ρ be a nonempty sub
lass of ℜ.
We say that ρ is a P -�lter if ρ satis�es the following 
onditions:

(i) if (M,N) ∈ ρ and N ≤ K ≤M , then (M,K) ∈ ρ;

(ii) for all M ∈ R-Mod, (M,M) ∈ ρ;

(iii) if (M,N) ∈ ρ, then (R, (N : x)) ∈ ρ, ∀x ∈M.

Example 1. All of the following sub
lasses of ℜ are P -�lters.
(1) ρT = {(M,N) ∈ ℜ | N ≤ M su
h that M/N ∈ T , M ∈ R-Mod}, where T is a nonempty


lass of modules 
losed under submodules and homomorphi
 images.

(2) ρ∞ = ℜ = {(M,N) | N ≤M, M ∈ R-Mod}.



On L-inje
tive modules 179

MATHEMATICS 2018. Vol. 28. Issue 2

(3) ρτ = {(M,N) ∈ ℜ | N is τ -dense in M, M ∈ R-Mod}, where τ is a hereditary torsion

theory.

(4) ρr = {(M,N) ∈ ℜ | N ≤ M su
h that r(M/N) = M/N, M ∈ R-Mod}, where r is a left

exa
t preradi
al.

(5) ρmax = {(M,N) ∈ ℜ | N is a maximal submodule in M or N =M, M ∈ R-Mod}.
(6) ρe = {(M,N) ∈ ℜ | N ≤e M, M ∈ R-Mod}.

It is 
lear that the P -�lters from (2) to (5) are spe
ial 
ases of P -�lter in (1). Also, if ρ is a

P -�lter then the sub
lass ρR = {(R, I) ∈ ρ | I is a left ideal of R} of ℜ is also P -�lter.

Notations 1. We will �x the following notations.

� For any two P -�lters ρ1 and ρ2, we will denote by L(ρ1,ρ2) the sub
lass L(ρ1,ρ2) = {(M,N, f,Q) ∈
M |M,N,Q ∈ R-Mod, (M,N) ∈ ρ1 and f ∈ HomR(N,Q) su
h that (M, ker(f)) ∈ ρ2}.

� For any two nonempty 
lasses of modules T and F , we will denote by L(T ,F) the sub-


lass L(T ,F) = {(M,N, f,Q) ∈ M | M,N,Q ∈ R-Mod, N ≤ M su
h that M/N ∈ T and

f ∈ HomR(N,Q) with M/ker(f) ∈ F}. It is 
lear that L(T ,F) = L(ρT ,ρF ), if T and F are 
losed

under submodules and homomorphi
 images.

� For any two preradi
als r and s, we will denote by L(r,s) the sub
lass L(r,s) = {(M,N, f,Q) ∈
M | M,N,Q ∈ R-Mod, N ≤ M su
h that r(M/N) = M/N and f ∈ HomR(N,Q) with

s(M/ker(f)) =M/ker(f)}. It is 
lear that L(r,s) = L(ρr ,ρs), if r and s are left exa
t preradi
als.

� For any torsion theory τ , we will denote by Lτ the sub
lass Lτ = {(M,N, f,Q) ∈ M |
M,N,Q ∈ R-Mod, N is a τ -dense in M and f ∈ HomR(N,Q)}. It is 
lear that Lτ = L(ρτ ,ρ∞), if
τ is a hereditary torsion theory.

Lemma 1. Let ρ1 and ρ2 be two P -�lters. Then L(ρ1,ρ2) satis�es 
onditions (α), (δ), and (µ).

P r o o f. It is obvious.

The following 
orollary is a generalization of Baer's result in [3℄, [19, Proposition 2.1, p. 201℄, [14,

Baer's Lemma 2.2, p. 628℄ and [4, Theorem 2.4, p. 319℄.

Corollary 1. Let ρ1 and ρ2 be two P -�lters. Then the following 
onditions are equivalent for

R-module M :

(1) M is L(ρ1,ρ2)-inje
tive;

(2) for every (R, I, f,M) ∈ L(ρ1,ρ2) there exists an R-homomorphism g ∈ HomR(R,M) su
h that

g(a) = f(a), for all a ∈ I;

(3) for ea
h (R, I, f,M) ∈ L(ρ1,ρ2) there exists an element m ∈M su
h that f(r) = rm, ∀r ∈ I.

P r o o f. By Lemma 1 and Theorem 1.

The following 
hara
terization of L-inje
tivity is a generalization of [18, Proposition 1.4, p. 3℄

and [8, Proposition 2.1.3, p. 53℄.

Proposition 1. Consider the following three 
onditions for R-module M :

(1) Q is L-inje
tive;
(2) for every (M,N, f,Q) ∈ L with N ≤e M , the homomorphism f extends to a homomorphism

from M to Q;

(3) for every (R, I, f,Q) ∈ L with I ≤e R, the homomorphism f extends to a homomorphism

from R to Q.

Then (1) implies (2), (2) implies (3) and, if L satis�es 
onditions (α) and (µ), then (3) im-

plies (1).
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P r o o f. (1) ⇒ (2) and (2) ⇔ (3) are obvious.

(3) ⇒ (1). Let L satisfy (α) and (µ) and let (R, I, f,Q) ∈ L. Let Ic be a 
omplement left ideal of

I in R and let C = I⊕ Ic. Thus, by [1, Proposition 5.21, p. 75℄, C ≤e R. De�ne g : C = I⊕ Ic → Q
by g(a + b) = f(a) , ∀a ∈ I and ∀b ∈ Ic. It is 
lear that g is a well-de�ned homomorphism and

(R, I, f,Q) � (R,C, g,Q). Sin
e L satis�es 
ondition (α), (R,C, g,Q) ∈ L. By hypothesis, there

exists a homomorphism h : R → Q su
h that (h ↾ C) = g. Thus (h ↾ I) = (g ↾ I) = f and this

implies that Q is L-inje
tive, by Theorem 1.

In the following theorem we extend a 
hara
terization due to [20, Theorem 2, p. 8℄ of L-inje
tive
modules over 
ommutative Noetherian rings.

Theorem 2. Let R be a 
ommutative Noetherian ring, let M be an R-module and suppose that

L satis�es 
onditions (α) and (µ). Then M is L-inje
tive if and only if for every (R, I, f,M) ∈ L,
where I is a prime ideal of R, the homomorphism f extends to a homomorphism from R to M .

P r o o f. (=⇒) This is obvious.

(⇐=) Let (B,A, f,M) ∈ L and let S = {(C,ϕ) | A ≤ C ≤ B, ϕ ∈ HomR(C,M) su
h that

(ϕ ↾ A) = f }. De�ne on S a partial order � by

(C1, ϕ1) � (C2, ϕ2) ⇐⇒ C1 ≤ C2 and (ϕ2 ↾ C1) = ϕ1.

As in the proof of Theorem 1, we 
an prove that S has a maximal element, say (B′, g′). We

will prove that B′ = B. Suppose that there exists an x ∈ B \ B′
. By [20, Theorem 1, p. 8℄, there

exists an element r0 ∈ R su
h that (B′ : r0x) is a prime ideal in R and r0x /∈ B′
. It is 
lear that

(B,A, f,M) � (B,B′, g′,M). Sin
e (B,A, f,M) ∈ L and L satis�es 
ondition (α), it follows that
(B,B′, g′,M) ∈ L. Sin
e L satis�es 
ondition (µ), it follows that (R, (B′ : b), g′b,M) ∈ L, ∀b ∈ B.
Put y = r0x, thus y ∈ B \ B′

and hen
e (R, (B′ : y), g′y,M) ∈ L. By hypothesis, there exists a

homomorphism g : R→M su
h that g(r) = g′y(r) = g′(ry), ∀r ∈ (B′ : y). De�ne ψ : B′ +Ry →M
by ψ(b+ ry) = g′(b) + g(r), ∀b ∈ B′, ∀r ∈ R. As in the proof of Theorem 1, we 
an prove that ψ is

a well-de�ned homomorphism and (B′, g′) � (B′+Ry,ψ). Sin
e (B′+Ry,ψ) ∈ S and B′ $ B′+Ry,
we have a 
ontradi
tion to maximality of (B′, g′) in S. Hen
e B′ = B and this mean that there

exists a homomorphism g′ : B →M su
h that (g′↾A) = f . Thus M is L-inje
tive.

Corollary 2. Let ρ1 and ρ2 be two P -�lters, let R be a 
ommutative Noetherian ring and let M
be an R-module. Then M is L(ρ1,ρ2)-inje
tive if and only if for every (R, I, f,M) ∈ L(ρ1,ρ2), where

I is a prime ideal of R, the homomorphism f extends to a homomorphism from R to M .

P r o o f. By Lemma 1 and Theorem 2.

Corollary 3 (see [20, Theorem 2, p. 8℄). Let R be a 
ommutative Noetherian ring, let M be

an R-module. Then M is inje
tive if and only if every homomorphism f : I → M , where I is a

prime ideal of R, 
an be extended to a homomorphism from R to M .

P r o o f. By taking the two P -�lters ρ1 = ρ2= ℜ and applying Corollary 2.

� 2. L-M-Inje
tivity and s-L-M-Inje
tivity

In this se
tion, we introdu
e the 
on
epts of L-M -inje
tive modules and s-L-M -inje
tive

modules as generalizations of M -inje
tive modules and give some results about them.

De�nition 2. Let M,Q ∈ R-Mod. A module Q is said to be L-M -inje
tive if for every

(M,N, f,Q) ∈ L the homomorphism f extends to a homomorphism from M to Q. A module Q is

said to be L-quasi-inje
tive if Q is L-Q-inje
tive.
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Let M,Q ∈ R-Mod, it is well-known that a module Q is M -inje
tive if and only if f(M) ≤ Q,
for every homomorphism f : E(M) → E(Q) [16, Lemma 1.13, p. 7℄.

For an analogous result for L-M -inje
tivity we �rst �x the following 
ondition.

(EL): Let L be a sub
lass of M. Then a module M satis�es 
ondition (EL) if M has an

L-inje
tive envelope whi
h is unique up to M -isomorphism and (EL(M), N, f,Q) ∈ L whenever

(M,N, f,Q) ∈ L.

The next theorem is the �rst main result of this se
tion in whi
h we give a generalization of [16,

Lemma 1.13, p. 7℄ and [7, Theorem 2.1, p. 34℄.

Theorem 3. Let M,Q ∈ R-Mod and let L satisfy 
onditions (α), (β), and (γ). Consider the

following two 
onditions.

(1) Q is L-M -inje
tive.

(2) f(M) ≤ Q, for all f ∈ HomR(EL(M), EL(Q)) with (M,L, f↾L,Q) ∈ L, where L = {m ∈
M | f(m) ∈ Q} =M

⋂

f−1(Q).

Then (1) implies (2) and, if M satis�es 
ondition (EL), then (2) implies (1).

P r o o f. (1) ⇒ (2). Let f ∈ HomR(EL(M), EL(Q)) with (M,L, f↾L,Q) ∈ L, where L = {m ∈M |
f(m) ∈ Q} = M

⋂

f−1(Q). De�ne g : L → Q by g(a) = f(a), ∀a ∈ L (i. e., g = f↾L). It is


lear that g is a homomorphism and (M,L, g,Q) ∈ L. By L-M -inje
tivity of Q, there exists a

homomorphism h : M → Q su
h that (h↾L) = g. Sin
e Q
⋂

(f -h)(M) = 0 and Q is an essential

submodule of EL(Q) (by [14, Theorem 1.19, p. 627℄), it follows that (f −h)(M) = 0 and this implies

that f(M) = h(M) ≤ Q.

(2) ⇒ (1). Let M satisfy 
ondition (EL) and let (M,N, f,Q) ∈ L, thus (EL(M), N, f,Q) ∈ L.
Sin
e L satis�es 
ondition (β), it follows that (EL(M), N, if,EL(Q)) ∈ L, where i is the in-


lusion mapping from Q into EL(Q). By L-inje
tivity of EL(Q), there exists a homomorphism

h : EL(M) → EL(Q) su
h that h(n) = f(n) ∀n ∈ N . Let L = {m ∈ M | h(m) ∈ Q}. We will

prove that (M,L, g,Q) ∈ L, where g = h ↾ L. Let x ∈ N , thus h(x) = f(x) ∈ Q and hen
e x ∈ L.
Thus N ≤ L and (g ↾ N) = f . Thus (M,N, f,Q) � (M,L, g,Q). Sin
e L satis�es 
ondition (α), it
follows that (M,L, g,Q) ∈ L. By hypothesis, we have h(M) ≤ Q and hen
e h′ = h↾ M :M → Q is

su
h that (h′ ↿ N) = f . Thus Q is an L-M -inje
tive module.

Corollary 4. Let M,Q ∈ R-Mod and let ρ1 and ρ2 be two P -�lters. If M satis�es 
ondition

(EL(ρ1,ρ2)
), then the following two 
onditions are equivalent:

(1) Q is L(ρ1,ρ2)-M -inje
tive;

(2) f(M) ≤ Q, for all f ∈ HomR(EL(ρ1,ρ2)
(M), EL(ρ1,ρ2)

(Q)) with (M,L, f↾L,Q) ∈ L, where

L = {m ∈M | f(m) ∈ Q} =M
⋂

f−1(Q).

P r o o f. By Lemma 1 and Theorem 3.

Let M,Q ∈ R-Mod and let τ be any hereditary torsion theory. A module Q is s-τ -M -inje
tive

if for any N ≤ M every homomorphism from a τ -dense submodule of N to Q extends to a homo-

morphism from N to Q [6, De�nition 14.6, p. 65℄.

As a generalization of s-τ -M -inje
tivity and hen
e of M -inje
tivity we introdu
e the 
on
ept of

s-L-M -inje
tivity as follows.

De�nition 3. Let M,Q ∈ R-Mod. A module Q is said to be s-L-M -inje
tive if Q is L-N -

inje
tive, for all N ≤M . A module Q is said to be s-L-quasi-inje
tive if Q is s-L-Q-inje
tive.
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Fu
hs in [12℄ has obtained a 
ondition similar to Baer's Criterion that 
hara
terizes quasi-inje
tive

modules, Bland in [5℄ has generalized that to s-τ -quasi-inje
tive modules, and Charalambides in [6℄

has generalized that to s-τ -M -inje
tive modules.

Our next aim is to generalize Fu
hs's 
ondition on
e again in order to 
hara
terize s-L-M -inje
tive

modules. We begin with the following 
ondition.

(L): Let L be a sub
lass of M and let M be a module. Then M satis�es 
ondition (L) if for
every (B,A, f,Q) ∈ L we have (Rm, (A : x)m, f(x,m), Q) ∈ L, for all m ∈ M and x ∈ B with

annR(m) ⊆ (ker(f) : x), where f(x,m) : (A : x)m → Q is a well-de�ned homomorphism de�ned by

f(x,m)(rm) = f(rx), for all r ∈ (A : x).

A sub
lass L of M is said to be full sub
lass if every R-module satis�es 
ondition (L).

Example 2. All of the following sub
lasses of M are full sub
lasses.

(1) L(T,F ), where T and F are nonempty 
lasses of modules 
losed under submodules and ho-

momorphi
 images.

(2) L = M.

(3) Lτ , where τ is a hereditary torsion theory.

(4) L(ρ,σ), where ρ and σ are left exa
t preradi
als.

In following proposition, we generalize [6, Proposition 14.12, p. 66℄, [5, Proposition 1, p. 1954℄

and Fu
hs's result in [12℄, and it is ne
essary for our version of the Generalized Fu
hs 
riterion.

Proposition 2. Consider the following statements, where M,Q ∈ R-Mod:

(1) Q is s-L-M -inje
tive;

(2) if m ∈ M with (Rm,K, f,Q) ∈ L, then the homomorphism f extends to a homomorphism

from Rm to Q;

(3) if K ≤ N are modules, not ne
essarily submodules of M su
h that (N,K, f,Q) ∈ L and

Ω(N) ⊆ Ω(M), then the homomorphism f extends to a homomorphism from N to Q.
Then (1) implies (2) and (3) implies (1). Moreover, if L satis�es 
ondition (α) and M satis�es


ondition (L), then all above statements are equivalent.

P r o o f. (1) ⇒ (2). Let m ∈ M with (Rm,K, f,Q) ∈ L. Thus Q is L-Rm-inje
tive, sin
e Q is

s-L-M -inje
tive and hen
e there exists a homomorphism g : Rm→ Q su
h that (g↾K) = f .

(2) ⇒ (3). Let L satisfy 
ondition (α) and M satisfy 
ondition (L). Let K ≤ N be modules,

not ne
essarily submodules of M with (N,K, f,Q) ∈ L and Ω(N) ⊆ Ω(M). Let S = {(C,ϕ) |
K ≤ C ≤ N, ϕ ∈ HomR(C,M) su
h that (ϕ ↾ K) = f}. De�ne on S a partial order � by

(C1, ϕ1) � (C2, ϕ2) ⇐⇒ C1 ≤ C2 and (ϕ2 ↾ C1) = ϕ1.

As in the proof of Theorem 1, we 
an prove that S has a maximal element, say (X,h). It su�
es

to show that X = N . Suppose that there exists an n ∈ N \ X. It is 
lear that (N,K, f,Q) �
(N,X, h,Q). Sin
e (N,K, f,Q) ∈ L and L satis�es 
ondition (α), it follows that (N,X, h,Q) ∈ L.
Sin
e annR(n) ∈ Ω(N) and Ω(N) ⊆ Ω(M) (by assumption), we have annR(n) ∈ Ω(M) and this

implies that there exists an m ∈ M su
h that annR(m) ⊆ annR(n). Sin
e annR(n) ⊆ (ker(h) : n),
we obtain annR(m) ⊆ (ker(h) : n). Sin
e m ∈M and n ∈ N \X su
h that annR(m) ⊆ (ker(h) : n)
and sin
e M satis�es 
ondition (L), we get (Rm, (X : n)m,h(n,m), Q) ∈ L. By hypothesis, there

exists a homomorphism ϕ∗ : Rm→ Q su
h that ϕ∗(am) = h(n,m)(am) for all am ∈ (X : n)m. De�ne

h∗ : X+Rn→ Q by h∗(x+rn) = = h(x)+ϕ∗(rm), ∀x ∈ X and ∀r ∈ R. Clearly, h∗ is a well-de�ned
homomorphism. For all a ∈ K we have h∗(a) = h∗(a + 0.n) = h(a) + ϕ∗(0.m) = h(a) = f(a) and
hen
e (h∗↾K) = f . Sin
e K ≤ X + Rn ≤ N , it follows that (X + Rn, h∗) ∈ S. Sin
e (h∗ ↾ X) = h
and X ≤ X + Rn ≤ N , we have (X,h) � (X + Rn, h∗). Sin
e n ∈ X + Rn and n /∈ X, it follows
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that X $ X +Rn and this 
ontradi
ts the maximality of (X,h) in S. Thus X = N and this implies

that there exists a homomorphism h : N → Q su
h that (h↾K) = f .
(3) ⇒ (1). Let N ≤ M with (N,K, f,Q) ∈ L. Let I ∈ Ω(N), thus there exists an element

n ∈ N su
h that annR(n) ⊆ I and hen
e there exists an element n ∈M su
h that annR(n) ⊆ I and
this implies that I ∈ Ω(M) and so Ω(N) ⊆ Ω(M). By hypothesis, there exists a homomorphism

g : N → Q su
h that (g↾K) = f . Thus Q is L-N -inje
tive module, for all N ≤ M and this implies

that Q is s-L-M -inje
tive.

There follows the last main result of this se
tion in whi
h we generalize [6, Proposition 14.13,

p. 68℄, [5, Proposition 2, p. 1955℄ and [12, Lemma 2, p. 542℄. It is our version of generalized Fu
hs


riterion.

Proposition 3 (Generalized Fu
hs 
riterion). Consider the following 
onditions, where M ,

Q ∈ R-Mod:

(1) Q is s-L-M -inje
tive;

(2) for ea
h (R, I, f,Q) ∈ L with ker(f) ∈ Ω(M), the homomorphism f extends to a homomor-

phism from R to Q;
(3) for ea
h (R, I, f,Q) ∈ L with ker(f) ∈ Ω(M), there exists an element x ∈ Q su
h that

f(a) = ax ∀a ∈ I.
Then (2) ⇔ (3) and if M satis�es 
ondition (L) then (1) implies (2). Moreover, if L satis�es


onditions (α) and (µ), then (2) implies (1).

P r o o f. (2) ⇔ (3). This is obvious.
(1) ⇒ (2). Let M satisfy 
ondition (L) and let (R, I, f,Q) ∈ L with ker(f) ∈ Ω(M). Thus

there exists an element m ∈ M su
h that annR(m) ⊆ ker(f). Sin
e ker(f) = (ker(f) : 1), where 1

is the identity element of R, we have annR(m) ⊆ (ker(f) : 1). Sin
e M satis�es 
ondition (L), we
get (Rm, (I : 1)m, f(1,m), Q) ∈ L and hen
e (Rm, Im, f(1,m), Q) ∈ L. Sin
e Q is s-L-M -inje
tive, it

follows from Proposition 2 that there exists a homomorphism h : Rm→ Q su
h that h ◦ i2 = f(1,m),

where i2 is the in
lusion mapping from Im into Rm. De�ne v1 : I → Im by v1(a) = am, ∀a ∈ I,
and de�ne v2 : R→ Rm by v2(r) = rm, ∀r ∈ R. It is 
lear that v1 and v2 are homomorphisms and

for all a ∈ I we have (v2 ◦ i1)(a) = (i2 ◦ v1)(a), where i1 is the in
lusion mapping from I into R.
De�ne g : R → Q by g(r) = (h ◦ v2)(r), ∀r ∈ R. It is 
lear that g is a homomorphism and for

all a ∈ I we have that (g ◦ i1)(a) = f(1,m)(v1(a)) = f(1,m)(am) = f(a.1) = f(a). Thus there exists

a homomorphism g : R→ Q su
h that (g↾I) = f .
(2) ⇒ (1). Let L satisfy 
onditions (α) and (µ). Let K ≤ N ≤ M su
h that (N,K, f,Q) ∈ L

and let S = {(C,ϕ) | K ≤ C ≤ N, ϕ ∈ HomR(C,M) su
h that (ϕ↾K) = f}. De�ne on S a partial

order � by

(C1, ϕ1) � (C2, ϕ2) ⇐⇒ C1 ≤ C2 and (ϕ2 ↾ C1) = ϕ1.

As in the proof of Theorem 1, we 
an prove that S has a maximal element, say (X,h). It su�
es

to show that X = N . Suppose that there exists an n ∈ N \ X. It is 
lear that (N,K, f,Q) �
(N,X, h,Q). Sin
e (N,K, f,Q) ∈ L and L satis�es 
ondition (α), we have (N,X, h,Q) ∈ L. Sin
e
L satis�es 
ondition (µ) and n ∈ N \X, we get (R, (X : n), hn, Q) ∈ L. Sin
e (0 : n) ⊆ ker(hn) and
n ∈ M , it follows that ker(hn) ∈ Ω(M). By hypothesis, there exists a homomorphism ϕ∗ : R → Q
su
h that (ϕ∗↾(X : n)) = hn. De�ne h

∗ : X+Rn→ Q by h∗(x+rn) = h(x)+ϕ∗(r), ∀x ∈ X, ∀r ∈ R.
We 
an prove that h∗ is a well-de�ned homomorphism, (X,h) � (X+Rn, h∗) and (X+Rn, h∗) ∈ S.
Sin
e n ∈ X + Rn and n /∈ X, it follows that X $ X + Rn and this 
ontradi
ts the maximality

of (X,h) in S. Thus X = N and this implies that there exists a homomorphism h : N → Q su
h

that (h↾K) = f . Thus Q is L-N -inje
tive module for all N ≤ M and hen
e Q is s-L-M -inje
tive

R-module.

� 3. Dire
t Sums of L-Inje
tive Modules

The dire
t sums of L-inje
tive modules is not L-inje
tive, in general. For example: let {Ti}i∈I
be a family of rings with unit and let R =

∏

i∈I Ti be the ring produ
t of the family {Ti}i∈I ,
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where addition and multipli
ation are de�ned 
omponentwise. Let A = ⊔i∈ITi be the dire
t sum

of Ti, ∀i ∈ I. If ea
h Ti
Ti is inje
tive, ∀ i ∈ I and I is in�nite, then RA is a dire
t sum of inje
tive

modules, but RA is not itself inje
tive, by [15, p. 140℄. Hen
e we have that RA is a dire
t sum of

L-inje
tive modules, but RA is not itself L-inje
tive where L = M.

Further we study 
onditions under whi
h the 
lass of L-inje
tive modules is 
losed under dire
t

sums.

Let {Eα}α∈A be a family of modules and let E =
⊕

α∈A Eα. For any x = (xα)α∈A ∈ E, we de�ne
the support of x as the set {α ∈ A| xα 6= 0} and denote it by supp(x). For any X ⊆ E, we de�ne

supp(X) as the set
⋃

x∈X

supp(x) = {α ∈ A | (∃x ∈ X)xα 6= 0}.

The following 
ondition will be useful later.

(F ): Let {Eα}α∈A be a family of modules, where A is an in�nite index set and let L be a sub
lass

of M.We say that L satis�es 
ondition (F ) for a family {Eα}α∈A, if for any (R, I, f,
⊕

α∈A Eα) ∈ L
the set supp(im(f)) is �nite.

Lemma 2. Suppose that A is any index set, C is any 
ountable subset of A, and {Eα}α∈A is

any family of modules. De�ne πC :
⊕

α∈AEα →
⊕

α∈C Eα by πC(x) = xC , for all x ∈
⊕

α∈AEα

where πα(xC) = πα(πC(x)) =

{

πα(x), if α ∈ C,

0, if α /∈ C,
∀α ∈ A, where πα is the αth proje
tion

homomorphism. Then πC is a well-de�ned homomorphism and if x ∈
⊕

α∈C Eα, then πC(x) = x.

P r o o f. An easy 
he
k.

Lemma 3. Let {Mi}i∈I be any family of modules. If Mi is L-inje
tive, ∀ i ∈ I and L satis�es


ondition (λ), then
∏

i∈I Mi is L-inje
tive.

P r o o f. This is obvious.

The next 
orollary immediately follows from Lemma 3.

Corollary 5. Let L satisfy 
ondition (λ) and let {Mi}i∈I be any family of L-inje
tive modules.

If I is a �nite set, then

⊕

i∈I Mi is L-inje
tive.

Lemma 4. Let L satisfy 
onditions (α) , (µ), and (δ) and let {Eα}α∈A be any family of L-inje
tive
modules, where A is an in�nite index set. If L satis�es 
ondition (F ) for a family {Eα}α∈A, then
⊕

α∈AEα is an L-inje
tive module.

P r o o f. Suppose that L satis�es 
ondition (F ) for the family {Eα}α∈A and let (R, I, f,
⊕

α∈A Eα) ∈
∈ L. Thus supp(im(f)) is �nite and this implies that f(I) ⊆

⊕

α∈F Eα, where F is a �nite subset

of A. Sin
e Eα is L-inje
tive, ∀α ∈ F, it follows from Corollary 5 that

⊕

α∈F Eα is L-inje
tive.
De�ne πF :

⊕

α∈AEα →
⊕

α∈F Eα by πF (x) = xF , for all x ∈
⊕

α∈A Eα, where πα(xF ) =

= πα(πF (x)) =

{

πα(x), if α ∈ F,

0, if α /∈ F,
∀α ∈ A, where πα is the αth proje
tion homomorphism.

By Lemma 2, it follows that πF is a well-de�ned homomorphism. Sin
e (R, I, f,
⊕

α∈A Eα) ∈ L
and L satis�es 
ondition (δ), we have (R, I, πF ◦ f,

⊕

α∈F Eα) ∈ L. By L-inje
tivity of

⊕

α∈F Eα,
there exists a homomorphism g : R →

⊕

α∈F Eα su
h that g(a) = (πF ◦ f)(a), ∀a ∈ I. Put
g′ = i1 ◦ g : R→

⊕

α∈AEα, where i1 :
⊕

α∈F Eα →
⊕

α∈AEα is the in
lusion homomorphism. Then

for ea
h a ∈ I we have g′(a) = πF (f(a)). Sin
e f(I) ⊆
⊕

α∈F Eα, we have f(a) ∈
⊕

α∈F Eα, ∀a ∈ I.
Thus, by Lemma 2, it follows that πF (f(a)) = f(a), ∀a ∈ I and hen
e g′(a) = f(a), ∀a ∈ I. Sin
e
L satis�es 
onditions (α) and (µ), it follows from Theorem 1 that

⊕

α∈A Eα is L-inje
tive.
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The following proposition generalizes Proposition 8.13 in [13, p. 83℄.

Proposition 4. Let L satisfy 
onditions (α), (µ), and (δ) and let {Eα}α∈A be any family of

L-inje
tive modules, where A is an in�nite index set. If

⊕

α∈C Eα is an L-inje
tive module for any


ountable subset C of A, then
⊕

α∈A Eα is an L-inje
tive module.

P r o o f. Let πβ :
⊕

α∈A Eα → Eβ be the natural proje
tion homomorphism. Assume that

⊕

α∈AEα is not L-inje
tive, thus by Lemma 4 there exists (R, I, f,
⊕

α∈A Eα) ∈ L su
h that

supp(im(f)) is in�nite. Sin
e supp(im(f)) is an in�nite set, it follows that supp(im(f)) 
ontains

a 
ountable in�nite subset, say C. For any α ∈ C, we have α ∈ supp(im(f)) and this implies

that there exists an x ∈ im(f) su
h that xα 6= 0. Thus for any α ∈ C we have πα(im(f)) 6= 0.
De�ne πC :

⊕

α∈A Eα →
⊕

α∈C Eα as in Lemma 2. Note that C = supp(im(πC ◦ f)). Sin
e
(R, I, f,

⊕

α∈A Eα) ∈ L and L satis�es 
ondition (γ), it follows that (R, I, πC ◦ f,
⊕

α∈C Eα) ∈ L.
Sin
e C is a 
ountable subset of A, it follows from the hypothesis that

⊕

α∈C Eα is L-inje
tive.
By Theorem 1, there exists an element y ∈

⊕

α∈C Eα su
h that (πC ◦ f)(a) = ay, ∀a ∈ I. Let
α ∈ supp(im(πC ◦ f)), thus there is an r ∈ I su
h that πα((πC ◦ f)(r)) 6= 0. Hen
e πα(ry) 6= 0
and this implies that πα(y) 6= 0. Thus α ∈ supp(y) and hen
e supp(im(πC ◦ f)) ⊆ supp(y). Sin
e
C = supp(im(πC ◦ f)), we have C ⊆ supp(y) and this is a 
ontradi
tion, sin
e supp(y) is �nite

(be
ause y ∈
⊕

α∈C Eα) and C is in�nite. Thus

⊕

α∈AEα is an L-inje
tive module.

By Proposition 4 and Lemma 1 we 
an prove the following 
orollary.

Corollary 6. Let ρ1 and ρ2 be two P -�lters and let {Eα}α∈A be any family of modules, where A
is an in�nite index set. If

⊕

α∈C Eα is an L(ρ1,ρ2)-inje
tive module for any 
ountable subset C of A,
then

⊕

α∈A Eα is an L(ρ1,ρ2)-inje
tive module.

Now we 
an state the following result, found in [13, Proposition 8.13, p. 83℄ as a 
orollary.

Corollary 7. Let {Eα}α∈A be any family of τ -inje
tive modules, where A is an in�nite index set.

If

⊕

α∈C Eα is a τ -inje
tive module for any 
ountable subset C of A, then
⊕

α∈AEα is a τ -inje
tive
module.

P r o o f. By taking the two P -�lters ρ1 = ρτ and ρ2 = ℜ and applying Corollary 6.

Sin
e the 
lass of L-inje
tive modules is 
losed under isomorphism, when L satis�es (γ), it follows
from Proposition 4 that we have the next 
orollary.

Corollary 8. Consider the following three 
onditions, where K is a nonempty 
lass of R-modules.

(1) Every dire
t sum of L-inje
tive R-modules in K is L-inje
tive.
(2) Every 
ountable dire
t sum of L-inje
tive R-modules in K is L-inje
tive.
(3) For any family {Ei}i∈N of L-inje
tive R-modules in K,

⊕

i∈N Ei is L-inje
tive.
Then (1) implies (2) and (2) implies (3), and if L satis�es 
onditions (α), (µ), and (δ), then (2)

implies (1). Moreover, if L satis�es 
ondition (γ), then (3) implies (2).

De�nition 4. A submodule N of a module M is said to be strongly L-dense in M (shortly,

s-L-dense) if (M,N, IN , N) ∈ L, where IN is the identity homomorphism from N into N.

The following lemmas are 
lear.

Lemma 5. If N ≤ K ≤M are modules su
h that N is s-L-dense in M and L satis�es 
onditions

(α) and (β), then K is s-L-dense in M.

Lemma 6. Let ρ be any P -�lter. Then (M,N) ∈ ρ if and only if N is s-L(ρ,∞)-dense in M.
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Following [10, p. 21℄, for any module M, denote by HK(M) the set of left submodules N of

M su
h that (M/N) ∈ K, where K is any nonempty 
lass of modules (i. e., HK(M) = {N ≤ M |
(M/N) ∈ K}). In parti
ular, HK(R) = {I ≤ R | (R/I) ∈ K}.

The following theorem is the �rst main result of this se
tion.

Theorem 4. Let L satisfy 
onditions (α) and (δ) and let K be any nonempty 
lass of modules


losed under isomorphi
 
opies and L-inje
tive hulls. If the dire
t sum of any family {Ei}i∈N of

L-inje
tive R-modules in K is L-inje
tive, then every as
ending 
hain I1 ⊆ I2 ⊆ . . . of left ideals of

R in HK(R) with I∞ =
⋃

∞

j=1 Ij s-L-dense in R, terminates.

P r o o f. Let I1 ⊆ I2 ⊆ . . . be any as
ending 
hain of left ideals of R in HK(R) with I∞ =
⋃∞

j=1 Ij
being a s-L-dense left ideal in R. Thus (R/Ij) ∈ K ∀j ∈ N. Sin
e L satis�es 
onditions (α),
(β), and (γ), it follows from [14, Theorem 1.12, p. 625℄ that every R-module M has an L-
inje
tive hull whi
h is unique up to M -isomorphism. Let EL(R/Ij) be the L-inje
tive hull of

R/Ij , ∀j ∈ N. Sin
e K is 
losed under L-inje
tive hulls, it follows that EL(R/Ij) ∈ K, ∀j ∈ N.
De�ne f : I∞ =

⋃∞

j=1 Ij →
⊕∞

j=1EL(R/Ij) by f(r) = (r + Ij)j∈N, for r ∈ I∞. Note that

f is a well-de�ned mapping: for any r ∈ I∞, let n be the smallest positive integer su
h that

r ∈ In. Sin
e In ⊆ In+k, ∀k ∈ N, we have r ∈ In+k ∀k ∈ N and so r + In+k = 0, ∀k ∈ N. Thus
(r + Ij)j∈N = (r + I1, r + I2, . . . , r + In−1, 0, 0, . . .) ∈

⊕

∞

j=1EL(R/Ij). Thus f(I) ⊆
⊕

∞

j=1EL(R/Ij)
and hen
e f is a well-de�ned mapping. It is 
lear that f is a homomorphism. Sin
e I∞
is a s-L-dense left ideal in R, it follows that (R, I∞, II∞ , I∞) ∈ L. Sin
e L satis�es 
ondi-

tion (δ), we have (R, I∞, f,
⊕∞

j=1EL(R/Ij)) ∈ L. Sin
e EL(R/Ij) is an L-inje
tive R-module

in K, ∀j ∈ N, it follows from the hypothesis that

⊕∞

j=1EL(R/Ij) is an L-inje
tive R-module.

Thus, by Theorem 1, there exists an element x ∈
⊕∞

j=1EL(R/Ij) su
h that f(r) = rx ∀r ∈ I∞.

Sin
e x ∈
⊕∞

j=1EL(R/Ij), we have x = (x1, x2, . . . , xn, 0, 0, . . .), for some n ∈ N, and hen
e

(r + Ij)j∈N = (rx1, rx2, . . . , rxn, 0, 0, . . .) and this implies that r + In+k = 0, ∀k ≥ 1 and ∀r ∈ I∞,
Thus, r ∈ In+k, ∀k ≥ 1 and ∀r ∈ I∞, and so I∞ =

⋃∞

j=1 Ij ⊆ In+k, ∀k ≥ 1. Sin
e In+k ⊆ I∞,

it follows that I∞ = In+k,∀k ≥ 1, It = It+j, ∀j ∈ N. Therefore the as
ending 
hain I1 ⊆ I2 ⊆ . . .
terminates.

Now we will state the 
ondition (I) on L as follows:

(I) : (R, J, f,Q) ∈ L implies that J is s-L-dense in R. That is, (R, J, f,Q) ∈ L implies

(R, J, IJ , J) ∈ L.

Proposition 5. Consider the following two 
onditions, where K is a nonempty 
lass of R-
modules.

(1) Every as
ending 
hain I1 ⊆ I2 ⊆ . . . of left ideals of R in HK(R) with I∞ =
⋃∞

j=1 Ij s-L-dense
in R, terminates.

(2) The following 
onditions hold:

(a) HK(R) has ACC on s-L-dense left ideals in R;
(b) for every as
ending 
hain I1 ⊆ I2 ⊆ . . . of left ideals of R in HK(R), where I∞ =

⋃∞

j=1 Ij
is s-L-dense in R, there exists a positive integer n su
h that In is s-L-dense in R.

If L satis�es 
onditions (α) and (β), then (1) and (2) are equivalent.

P r o o f. This is obvious.

Now we will give the se
ond main result of this se
tion.

Theorem 5. Let L satisfy 
onditions (α), (µ), (δ), and (I) and let K be any nonempty 
lass of

modules 
losed under isomorphi
 
opies and submodules. If every as
ending 
hain J1 ⊆ J2 ⊆ . . . of
left ideals of R, where (Ji+1/Ji) ∈ K, ∀i ∈ N and J∞ =

⋃∞

i=1 Ji is s-L-dense in R, terminates, then

every dire
t sum of L-inje
tive modules in K is L-inje
tive.
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P r o o f. Let {Ei}i∈N be any family of L-inje
tive modules in K and let (R, J, f,
⊕

i∈NEi) ∈ L. For
any n ∈ N, put Jn = {x ∈ J | f(x) ∈

⊕n
i=1Ei} = f−1(

⊕n
i=1Ei). It is 
lear that J1 ⊆ J2 ⊆ . . .. Also,

we have J∞ =
⋃

n∈N Jn =
⋃

n∈N(f
−1(

⊕n
i=1Ei)) = f−1(

⋃

n∈N(
⊕n

i=1Ei) = f−1(
⊕

∞

i=1Ei). Sin
e
(R, J, f,

⊕

i∈NEi) ∈ L and L satis�es 
ondition (I), it follows that J =
⋃

i∈N Ji is s-L-dense in R. For

all n ∈ N, de�ne αn : Jn+1/Jn →
⊕n+1

i=1 Ei/
⊕n

i=1Ei by αn(x+ Jn) = f(x) + (
⊕n

i=1Ei), ∀x ∈ In+1.
Then αn is a well-de�ned monomorphism, sin
e Jn = f−1(

⊕n
i=1Ei). Sin
e (

⊕n+1
i=1 Ei/

⊕n
i=1Ei) ≃

En+1 ∈ K and K is 
losed under isomorphi
 
opies, we have (
⊕n+1

i=1 Ei/
⊕n

i=1Ei) ∈ K. Sin
e
im(αn) ≤ (

⊕n+1
i=1 Ei/

⊕n
i=1Ei) ∈ K, and K is 
losed under submodules, it follows that im(αn) ∈ K.

Sin
e (Jn+1/Jn) ≃ im(αn) and K is 
losed under isomorphi
 
opies, we obtain (Jn+1/Jn) ∈ K.
Thus we have the following as
ending 
hain J1 ⊆ J2 ⊆ . . . of left ideals of R su
h that

(Ji+1/Ji) ∈ K, ∀i ∈ N and J∞ =
⋃∞

i=1 Ji is s-L-dense in R. By hypothesis, there exists a pos-

itive integer n su
h that Jn = Jn+i, ∀i ∈ N. Thus J = J∞ =
⋃∞

i=1 Ji = Jn. This implies that

f(J) ⊆
⊕n

i=1Ei. Thus supp(im(f)) is �nite and hen
e L satis�es 
ondition (F ) for a family {Ei}i∈N.
Thus by Lemma 4 we see that

⊕

i∈NEi is an L-inje
tive module. Thus for any family {Ei}i∈N of

L-inje
tive R-modules in K, we have

⊕

i∈N Ei is L-inje
tive. Sin
e L satis�es 
onditions (α), (µ),
and (δ), it follows from Corollary 8, that every dire
t sum of L-inje
tive modules in K is L-inje
tive.

A nonempty 
lass K of modules is said to be a natural 
lass if it is 
losed under submodules, arbi-

trary dire
t sums and inje
tive hulls [9℄. Examples of natural 
lasses in
lude R-Mod, any hereditary

torsionfree 
lasses, and stable hereditary torsion 
lasses.

Now we 
an state the following result, found in [17, p. 643℄ as a 
orollary.

Corollary 9. Let K be a natural 
lass of modules 
losed under isomorphi
 
opies. Then the

following statements are equivalent:

(1) every dire
t sum of inje
tive modules in K is inje
tive;

(2) HK(R) has ACC.

P r o o f. (1) ⇒ (2). By taking L = M and applying Lemma 1, Lemma 6 and Theorem 4.

(2) ⇒ (1). By taking L = M and applying [17, Lemma 7, p. 637℄ and Theorem 5.

Corollary 10. Let ρ be any P -�lter and let K be any nonempty 
lass of modules 
losed under

isomorphi
 
opies and submodules. If every as
ending 
hain J1 ⊆ J2 ⊆ . . . of left ideals of R su
h

that (Ji+1/Ji) ∈ K, ∀i ∈ N and J∞ =
⋃

∞

i=1 Ji is s-L(ρ,∞)-dense in R terminates, then every dire
t

sum of L(ρ,∞)-inje
tive modules in K is L(ρ,∞)-inje
tive.

P r o o f. By Lemma 1, Lemma 6 and Theorem 5.

Let τ be a hereditary torsion theory. A nonempty 
lass K of modules is said to be τ -natural

lass if K is 
losed under submodules, isomorphi
 
opies, arbitrary dire
t sums and τ -inje
tive
hulls [8, p. 163℄.

Corollary 11 (see [8, Proposition 5.3.5, p. 165℄). Let K be a τ -natural and suppose that ev-

ery as
ending 
hain J1 ⊆ J2 ⊆ . . . of left ideals of R su
h that (Ji+1/Ji) ∈ K, ∀i ∈ N and

J∞ =
⋃∞

i=1 Ji is τ -dense in R terminates. Then every dire
t sum of τ -inje
tive modules in K is

τ -inje
tive.

P r o o f. Take ρ = ρτ and apply Corollary 10.

The following 
orollary, in whi
h we give 
onditions under whi
h the 
lass of L-inje
tive modules

is 
losed under dire
t sums, is one of the main aims of this se
tion.

Corollary 12. Consider the following three 
onditions:

(1) the 
lass of L-inje
tive R-modules is 
losed under dire
t sums;
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(2) every as
ending 
hain I1 ⊆ I2 ⊆ . . . of left ideals of R, where I∞ =
⋃∞

j=1 Ij is s-L-dense in

R, terminates;

(3) the following 
onditions hold:

(a) every as
ending 
hain I1 ⊆ I2 ⊆ . . . of s-L-dense left ideals of R terminates;

(b) for every as
ending 
hain I1 ⊆ I2 ⊆ . . . of left ideals of R, where I∞ =
⋃∞

j=1 Ij is s-L-dense
in R, there exists a positive integer n su
h that In is s-L-dense in R.

If L satis�es 
onditions (α) and (δ), then (1) implies (2) . Also, (2) implies (3b) and if L satis�es


onditions (α) and (β), then (2) implies (3a). Moreover, if L satis�es 
onditions (α), (µ), (δ), and
(I), then all above three 
onditions are equivalent.

P r o o f. By taking K = R-Mod and applying Theorem 4 and Proposition 5.

Corollary 13. Let ρ be any P -�lter. Then the following statements are equivalent.

(1) The 
lass of L(ρ,ρ∞)-inje
tive R-modules is 
losed under dire
t sums.

(2) Every as
ending 
hain I1 ⊆ I2 ⊆ . . . of left ideals of R, where I∞ =
⋃

∞

j=1 Ij is s-L(ρ,ρ∞)-dense

in R, terminates.

(3) The following 
onditions hold.

(a) Every as
ending 
hain I1 ⊆ I2 ⊆ . . . of s-L(ρ,ρ∞)-dense left ideals of R terminates.

(b) For every as
ending 
hain I1 ⊆ I2 ⊆ . . . of left ideals of R, where I∞ =
⋃∞

j=1 Ij is s-
L(ρ,ρ∞)-dense in R, there exists a positive integer n su
h that In is s-L(ρ,ρ∞)-dense in R.

(4) For any family {Ei}i∈N of L(ρ,ρ∞)-inje
tive R-modules,

⊕

i∈N Ei is L(ρ,ρ∞)-inje
tive.

P r o o f. By Lemma 1 and Lemma 6, it follows that L(ρ,ρ∞) satis�es 
onditions (α), (µ), (δ), and
(I). Thus, by Corollary 12 and Corollary 8, we have the equivalen
e of above four statements.

Corollary 14 (see [8, Theorem 2.3.8, p. 73℄). The following statements are equivalent:

(1) R has ACC on τ -dense left ideals and τ is Noetherian;

(2) the 
lass of τ -inje
tive R-modules is 
losed under dire
t sums;

(3) the 
lass of τ -inje
tive R-modules is 
losed under 
ountable dire
t sums.

P r o o f. Take ρ = ρτ and apply Corollary 13.

� 4.

∑

-L-inje
tive modules

Carl Faith in [11℄ introdu
ed the 
on
epts of

∑

-inje
tivity and 
ountably

∑

-inje
tivity as follows.

An inje
tive module E is said to be

∑

-inje
tive if E(A)
is inje
tive for any index set A; E is said to

be 
ountably

∑

-inje
tive in 
ase E(C)
is inje
tive for any 
ountable index set C. Faith in [11℄ proved

that an inje
tive R-module E is

∑

-inje
tive if and only if R satis�es ACC on the E-annihilator
left ideals if and only if E is 
ountably

∑

-inje
tive. Charalambides in [6℄ introdu
ed the 
on
ept of

∑

-τ -inje
tivity and generalized Faith's result.

In this se
tion, we introdu
e the 
on
ept of

∑

-L-inje
tivity as a general 
ase of

∑

-inje
tivity

and

∑

-τ -inje
tivity and prove the result (Theorem 6) in whi
h we generalize Faith's result [11,

Proposition 3, p. 184℄ and [6, Theorem 16.16, p. 98℄.

We start this se
tion with the following de�nition of a

∑

-L-inje
tive module.

De�nition 5. Let E be an L-inje
tive module. We say that E is

∑

-L-inje
tive if E(A)
is L-

inje
tive for any index set A. On the other hand, if E(C)
is L-inje
tive for any 
ountable index set

C, we say that E is 
ountably

∑

-L-inje
tive.

The following 
orollary is a spe
ial 
ase of Corollary 8, by taking K = {E}.
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Corollary 15. Consider the following 
onditions.

(1) E is

∑

-L-inje
tive.
(2) E is 
ountably

∑

-L-inje
tive.
(3) E(N)

is L-inje
tive.
Then: (1) implies (2) and (2) implies (3). If L satis�es 
onditions (α), (µ), and (δ), then (2)

implies (1). Moreover, if L satis�es 
ondition (γ), then (3) implies (2).

The next 
orollary is immediately follows from Lemma 1 and Corollary 15.

Corollary 16. Let ρ1 and ρ2 be any two P -�lters. Then the following 
onditions are equivalent

for a module E.
(1) E is

∑

-L(ρ1,ρ2)-inje
tive.

(2) E is 
ountably

∑

-L(ρ1,ρ2)-inje
tive.

(3) E(N)
is L(ρ1,ρ2)-inje
tive.

Let E be a module. A left ideal I of R is said to be an E-annihilator if there is N ⊆ E su
h

that I = (0 : N) = {r ∈ R | rN = 0} (i. e., I is the annihilator of a subset of E).
The following theorem is the main result of this se
tion in whi
h we generalize [6, Theorem 16.16,

p. 98℄ and [11, Proposition 3, p. 184℄.

Theorem 6. Consider the following three 
onditions for an L-inje
tive module E:
(1) E is 
ountably

∑

-L-inje
tive;
(2) every as
ending 
hain I1 ⊆ I2 ⊆ . . . of E-annihilators in R, where I∞ =

⋃

∞

j=1 Ij is s-L-dense
in R, terminates;

(3) The following 
onditions hold.

(a) Every as
ending 
hain I1 ⊆ I2 ⊆ . . . of E-annihilators in R, where Ij is s-L-dense in R
∀j ∈ N, terminates.

(b) For every as
ending 
hain I1 ⊆ I2 ⊆ . . . of E-annihilators in R, where I∞ =
⋃∞

j=1 Ij is

s-L-dense in R, there exists a positive integer n su
h that In is s-L-dense in R.
Then: if L satis�es 
ondition (δ), then (1) implies (2). Also, (2) implies (3b) and if L satis�es


onditions (α) and (β), then (2) implies (3a). Moreover, if L satis�es 
onditions (α), (µ), (β),
and (I), then (3) implies (1).

P r o o f. (1) ⇒ (2). Let L satisfy 
ondition (δ). Assume that (2) does not hold. Then there

exist E-annihilators I1, I2, . . . in R su
h that I1 $ I2 $ . . . and I∞ =
⋃

∞

j=1 Ij is s-L-dense in R.
Hen
e we have the following des
ending 
hain rE(I1) % rE(I2) % . . .. For every n ∈ N, 
hoose
xn ∈ rE(In) − rE(In+1), thus x = (xn)n∈N ∈ EN. De�ne f : I∞ → EN

by f(a) = ax, ∀a ∈ I∞. It is

lear that f is a homomorphism. For a �xed a ∈ I∞ let n be the smallest positive integer su
h that

a ∈ In. Then, for every k ≥ 0, a ∈ In ⊆ In+k. Sin
e xn+k ∈ rE(In+k), we have axn+k = 0, ∀k ≥ 0.
Hen
e ax ∈ E(N). Thus f is a homomorphism from I∞ into E(N). Sin
e I∞ is s-L-dense in R, it
follows that (R, I∞, II∞ , I∞) ∈ L. Sin
e L satis�es 
ondition (δ), we get (R, I∞, f, E

(N)) ∈ L. Sin
e
E(N)

is L-inje
tive, it follows from Theorem 1 that there exists an element y ∈ E(N)
su
h that

f(a) = ay, ∀a ∈ I∞. Sin
e y ∈ E(N), we have y = (y1, y2, . . . , yt, 0, 0, . . .), for some t ∈ N. Sin
e
ax = f(a) = ay, ∀a ∈ I∞, it follows that (ax1, ax2, . . .) = (ay1, ay2, . . . , ayt, 0, 0, . . .) and this implies

that axt+1 = 0, ∀a ∈ I∞ and hen
e xt+1 ∈ rE(I∞). Sin
e It+2 $ I∞, we have rE(I∞) ⊆ rE(It+2)
and so xt+1 ∈ rE(It+2). This 
ontradi
ts the fa
t that xt+1 ∈ rE(It+1)− rE(It+2).

(2) ⇒ (3b). Let I1 ⊆ I2 ⊆ . . . be any as
ending 
hain of E-annihilators in R, where I∞ =
⋃

∞

j=1 Ij
is s-L-dense in R. By hypothesis, there exists a positive integer n su
h that In = In+k, ∀k ∈ N and

so In = I∞. Hen
e In is s-L-dense in R.
(2) ⇒ (3a). Let L satisfy 
onditions (α) and (β) and let I1 ⊆ I2 ⊆ . . . be any as
ending 
hain

of E-annihilators in R su
h that Ij are s-L-dense left ideals of R. Sin
e I1 ⊆ I∞ and L satis�es


onditions (α) and (β), we have from Lemma 5 that I∞ is a s-L-dense left ideal of R. By hypothesis,

the 
hain I1 ⊆ I2 ⊆ . . . terminates.
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(3) ⇒ (1). Let L satisfy 
onditions (α), (µ), (β), and (I) and let (R, J, f,E(N)) ∈ L. Sin
e E is L-
inje
tive, we have from Lemma 3 that EN

is L-inje
tive. Sin
e E(N)
is a submodule of EN, it follows

that g = i ◦ f : J → EN
is a homomorphism, where i : E(N) → EN

is the in
lusion homomorphism.

Sin
e L satis�es 
ondition (β), we have (R, J, i ◦ f,EN) ∈ L. Thus, by Theorem 1, there is an

element x = (x1, x2, . . .) ∈ EN
su
h that g(a) = ax, ∀a ∈ J. Thus f(a) = g(a) = ax, ∀a ∈ J. Let

X = {x1, x2, . . .} and Xk = = X \ {x1, x2, . . . , xk} = {xk+1, xk+2, . . .} for all k ≥ 1. Thus we have

the following des
ending 
hain of subsets of X : X ⊇ X1 ⊇ X2 ⊇ . . .; this yields an as
ending


hain of E-annihilators in R: lR(X) ⊆ lR(X1) ⊆ lR(X2) ⊆ . . .. Let Jk+1 = lR(Xk), for all

k ≥ 0, where X0 = X and J∞ =
⋃∞

i=1 Ji. Sin
e f(J) ⊆ E(N), it follows that, for any a ∈ J,
either axk = 0, ∀k ∈ N, or there is a largest integer n ∈ N su
h that axn 6= 0. If there is a largest

integer n ∈ N su
h that axn 6= 0, then axn+k = 0, ∀k ≥ 1. Therefore, a ∈ lR(Xn) = Jn+1 ⊆ J∞.
Thus for any a ∈ J, we have a ∈ J∞, and this implies that J ⊆ J∞. Sin
e (R, J, f,E(N)) ∈ L
and L satis�es 
ondition (I), it follows that J is s-L-dense left ideal in R. Sin
e J ⊆ J∞ and L
satis�es 
onditions (α) and (β), we have from Lemma 5 that J∞ is s-L-dense left ideal in R. Thus
we have the following as
ending 
hain J1 ⊆ J2 ⊆ . . . of E-annihilators in R su
h that J∞ is s-
L-dense left ideal in R. By applying 
ondition (3b), there is an s ∈ N su
h that Js is s-L-dense
left ideal in R. Sin
e Js ⊆ Js+k, ∀k ∈ N and L satis�es 
onditions (α) and (β), it follows from

Lemma 5 that Js+k is s-L-dense left ideal in R, ∀k ∈ N. Thus we have the following as
ending


hain Js ⊆ Js+1 ⊆ . . . of E-annihilators in R su
h that Js+k is s-L-dense left ideal in R ∀k ∈ N.
By applying 
ondition (3a), the 
hain Js ⊆ Js+1 ⊆ . . . be
omes stationary at a left ideal of R,
say Jt = lR(Xt−1) and so Jt = J∞. Thus for any a ∈ J, we have axt+k = 0, ∀k ≥ 0 and then

a(0, 0, . . . , 0, xt, xt+1, . . .) = 0. Take y = (x1, x2, . . . , xt−1, 0, 0, . . .). It is 
lear that y ∈ E(N)
and for

any a ∈ J, then f(a) = ax = ax− a(0, 0, . . . , 0, xt, xt+1, 0, 0, . . .) = a(x1, x2, . . . , xt−1, 0, 0, . . .) = ay.
Thus for every (R, J, f,E(N)) ∈ L there exists an element y ∈ E(N)

su
h that f(a) = ay, ∀a ∈ J.
Sin
e L satis�es 
onditions (α) and (µ), it follows from Theorem 1 that E(N)

is L-inje
tive. Sin
e L
satis�es 
ondition (γ), it follows from Corollary 15 that E is 
ountably

∑

-L-inje
tive.

Corollary 17. Let ρ be any P -�lter. Then the following 
onditions are equivalent.

(1) E is 
ountably

∑

-L(ρ,∞)-inje
tive.

(2) Every as
ending 
hain I1 ⊆ I2 ⊆ . . . of E-annihilators in R, where I∞ =
⋃∞

j=1 Ij is s-L(ρ,∞)-

dense left ideal in R, terminates.

(3) The following 
onditions hold.

(a) Every as
ending 
hain I1 ⊆ I2 ⊆ . . . of E-annihilators in R, where Ij is s-L(ρ,∞)-dense

left ideals of R ∀j ∈ N, terminates.

(b) For every as
ending 
hain I1 ⊆ I2 ⊆ . . . of E-annihilators in R, where I∞ =
⋃

∞

j=1 Ij is

s-L(ρ,∞)-dense left ideal in R, there exists a positive integer n su
h that In is s-L(ρ,∞)-dense in R.

(4) E is

∑

-L(ρ,∞)-inje
tive.

P r o o f. By Lemma 1, Lemma 6 and Theorem 6, we have the equivalen
e of (1), (2), and (3).

(1) ⇔ (4). By Corollary 15.

Corollary 18 (see [6, Theorem 16.16, p. 98℄). Let τ be any hereditary torsion theory and let

E be τ -inje
tive module. Then the following 
onditions are equivalent.

(1) E is 
ountably

∑

-τ -inje
tive.

(2) Every as
ending 
hain I1 ⊆ I2 ⊆ . . . of E-annihilators in R, where I∞ =
⋃∞

j=1 Ij is τ -dense
left ideal in R, terminates.

(3) The following 
onditions hold.

(a) Every as
ending 
hain I1 ⊆ I2 ⊆ . . . of E-annihilators in R, where Ij is τ -dense left ideals

of R ∀j ∈ N, terminates.

(b) For every as
ending 
hain I1 ⊆ I2 ⊆ . . . of E-annihilators in R, where I∞ =
⋃∞

j=1 Ij is

τ -dense left ideal in R, there exists a positive integer n su
h that In is τ -dense in R.

(4) E is

∑

-τ -inje
tive.
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P r o o f. By taking a P -�lter ρ = ρτ and applying Corollary 17.

Corollary 19 (see [11, Proposition 3, p. 184℄). The following 
onditions on an inje
tive mod-

ule E are equivalent.

(1) E is 
ountably

∑

-inje
tive.

(2) R satis�es the ACC on the E-annihilators left ideals.

(3) E is

∑

-inje
tive.

P r o o f. By taking ρ = ℜ and applying Corollary 17.

Corollary 20. Let L satisfy 
onditions (α), (µ), and (δ), and let {Ei | 1 ≤ i ≤ n} be a family of

modules. If Ei is
∑

-L-inje
tive ∀i = 1, 2, . . . , n, then
⊕n

i=1Ei is
∑

-L-inje
tive.

P r o o f. By Corollary 5 and Corollary 15.

Corollary 21. Let ρ1 and ρ2 be any two P -�lters and let {Ei | 1 ≤ i ≤ n} be a family of modules.

If Ei is
∑

-L(ρ1,ρ2)-inje
tive ∀i = 1, 2, . . . , n, then
⊕n

i=1Ei is
∑

-L(ρ1,ρ2)-inje
tive.

P r o o f. By Lemma 1 and Corollary 20.
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À.�. Ìåõäè

Îá L-èíúåêòèâíûõ ìîäóëÿõ

Öèòàòà: Âåñòíèê Óäìóðòñêîãî óíèâåðñèòåòà. Ìàòåìàòèêà. Ìåõàíèêà. Êîìïüþòåðíûå íàóêè. 2018.

Ò. 28. Âûï. 2. Ñ. 176�192.

Êëþ÷åâûå ñëîâà: èíúåêòèâíûé ìîäóëü, îáîáùåííûé êðèòåðèé Ôóêñà, íàñëåäñòâåííàÿ òåîðèÿ êðó÷åíèÿ,

t-ïëîòíûé, ïðåðàäèêàë, åñòåñòâåííûé êëàññ.

ÓÄÊ 512.553.3

DOI: 10.20537/vm180204

Ïóñòü M = {(M,N, f,Q) | M,N,Q ∈ R-Mod, N ≤ M, f ∈ HomR(N,Q)} è ïóñòü L � íåïóñòîé ïîä-

êëàññ M. Jir�asko ââåë ïîíÿòèå L-èíúåêòèâíîãî ìîäóëÿ êàê îáîáùåíèå èíúåêòèâíîãî ìîäóëÿ: ìîäóëü

Q íàçûâàåòñÿ L-èíúåêòèâíûì, åñëè äëÿ êàæäîãî (B,A, f,Q) ∈ L ñóùåñòâóåò ãîìîìîð�èçì g : B → Q
òàêîé, ÷òî g(a) = f(a) äëÿ âñåõ a ∈ A. Öåëüþ äàííîé ðàáîòû ÿâëÿåòñÿ èçó÷åíèå L-èíúåêòèâíûõ ìîäó-
ëåé è íåêîòîðûõ ñâÿçàííûõ ñ íèìè ïîíÿòèé. Äàíû íåêîòîðûå õàðàêòåðèñòèêè L-èíúåêòèâíûõ ìîäóëåé.
Ïðèâîäèòñÿ âåðñèÿ êðèòåðèÿ Áýðà äëÿ L-èíúåêòèâíîñòè. Â êà÷åñòâå îáîáùåíèé M -èíúåêòèâíûõ ìî-

äóëåé ââîäÿòñÿ ïîíÿòèÿ L-M -èíúåêòèâíîãî ìîäóëÿ è s-L-M -èíúåêòèâíîãî ìîäóëÿ è äàþòñÿ íåêîòîðûå

ðåçóëüòàòû î íèõ. Äàíà íàøà âåðñèÿ îáîáùåííîãî êðèòåðèÿ Ôóêñà. Ïîëó÷åíû óñëîâèÿ, ïðè êîòîðûõ

êëàññ L-èíúåêòèâíûõ ìîäóëåé çàìêíóò îòíîñèòåëüíî ïðÿìûõ ñóìì. Íàêîíåö, ìû ââîäèì è èçó÷àåì

ïîíÿòèå

∑

-L-èíúåêòèâíîñòè êàê îáîáùåíèå

∑

-èíúåêòèâíîñòè è

∑

-τ -èíúåêòèâíîñòè.
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