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THE STRUCTURE OF THE CAUCHY OPERATOR TO A LINEAR
CONTINUOUS-DISCRETE FUNCTIONAL DIFFERENTIAL SYSTEM
WITH AFTEREFFECT AND SOME PROPERTIES OF ITS COMPONENTS

In this paper, a class of linear functional differential systems with aftereffect, continuous and discrete times,
and impulses (impulse hybrid systems) is considered. The focus of attention is on the structure of the Cauchy
operator to the hybrid system under consideration and the representation of their components. Those allow
one to give the representation of all trajectories of the hybrid system and to formulate conditions of the
solvability for control problems in various classes of controls, to obtain estimates of the attainability sets
under constrained control, and to study general linear boundary value problems for the solvability. A detailed
description of all components to the Cauchy operator is given and their properties are studied. For the
components with continuous time, some conditions of the continuity with respect to the second argument are
obtained which is related to deciding on a class of controls. The main results are based on constructions of
the Cauchy matrices to systems with continuous time and difference systems.
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Introduction

The class of systems under consideration covers many systems that arise in mathematical mod-
elling of economic dynamics processes and includes various kinds of models with aftereffect such as
integro-differential systems, systems with distributed and lumped delay and allows one to take into
account the response of the system to external impulse disturbances.

The system under consideration includes two types of variables simultaneously, namely, the state
variables depending on the continuous time, ¢ € [0,7], and the variables with dependence on the
discrete time, t € {0,t1,...,tn,T}. In such a situation, the term “hybrid systems” is of frequent
use. As this term has many different senses, we follow the author of [1,2] and apply the more
definite term “continuous-discrete systems”. It should be noted that, in the above works, a detailed
motivation for the study of certain classes of continuous-discrete systems as well as some examples
of the urgent applied problems such as stabilization, observability, and controllability problems are
presented. For further results on the problems mentioned we refer the reader to [24-26] and the
references therein.

First we describe the class of continuous—discrete systems in detail and define the operators and
the spaces where they act. The focus of attention is on the representation of the general solution.
We derive the main relationships for the fundamental matrix and the Cauchy operator, investigate
their structure and describe an approach to studying the properties of the separate components.

The results obtained here form the basis for the study of control problems and boundary value
problems for continuous—discrete systems with aftereffect and develop the previous results presented
in [10,15,17-19,21,22]. In the sequel, we follow the notation and the definitions of those works.

§ 1. A class of continuous—discrete functional-differential equations with aftereffect

Let us introduce the Banach spaces where the operators and the equations are considered and
describe the main subject.
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Fix a segment [0,7] € R. We denote by L™ = L"[0,7] the space of summable functions
T

v: [0,T] — R™ with the norm ||v| r» = / |v(s)|n ds, where | -], (or |- | for short if the dimension

0
value is clear) stands for the norm in R"™. The symbol V we use for the integrating operator:
¢

(Vo)(t) = / v(s)ds.
0
Next we fix the set {r,..., 7}, 0 < 7 < ... < 7, < T, and define the space DS™(m) =
= DS"0,71,...,Tm,T| (see [4,7]) as the space of piecewise absolutely continuous functions
x: [0,T] — R™ representable in the form

z(t) = /0 v(s)ds + x(0) + ZX% ) Ax(1y),

where v € L", Ax(ry) = x(1%) — z(7x — 0), X[r,,7(t) is the characteristic function of [, T7:
Xir,,r(t) = 1, il t € [, T] and Xx{5, 71(t) = 0, t & [, T]. Thus the elements of DS™(m) are
absolutely continuous on each of [0,71), [71,72), ..., [Tm,T] and continuous from the right at the
points 7, ..., 7. Under the norm

|z psngm) = Il 2o + [2(0)n + D |Aa(ti)ln

the space DS™(m) is Banach.

Let us recall [6] that, for any linear bounded operator 7: DS™(m) — L™, the operator
Q: L™ — L™ defined by @ = TV is called the principal part of 7.

The space DS™(m) was introduced in the theory of impulse systems by A. Anokhin [4] and
came into use as the basis for a new approach to studying wide classes of problems. Here we
restrict ourselves to some remarks only and refer the reader to [6] for more details. The theory
of differential equations with discontinuous solutions was initiated by J. Kurzweil in [11], where
the “generalized ordinary differential equations” are considered. Nowadays this theory is highly
developed, see, for instance, [5,27]. Within the framework of this theory, the impulse equations are
considered in the class of functions of bounded variation, and the solutions are defined as functions
that satisfy an integral equation with either the Lebesgue-Stieltjes integral or the Perron-Stieltjes
one. The integral equations in the space of functions of bounded variation are studied in detail in the
monograph [28]. Let us recall that any function of bounded variation has the representation as the
sum of an absolutely continuous function, a jump function, and a singular one. Thus, dealing with
functions from DS™(m), we fix a finite number of jump points and omit the singular component
that does not arise in many applied problems, say, in economic dynamics [9,23].

Next we fix the set {to,t1,...,t,}, 0=t <ti <...<t,=T.

Let FDY(pu) = FD"{to,t1,...,t,} be the space of functions z: J — R" under the norm

Izl Fov () = Z‘Z(tz)

=0

=

We consider the system

= Tur + Tiez+ f,

(1.1)
z = Tax + Tez+g,

where the linear operators 7;;, 4,j = 1,2, are defined as follows below.

(T11) Ti1: DS™(m) — L";
(Tiz)(t / Kt 5)i(s) ds + AL0)2(0) + S ALz (DAZ(78), ¢ € [0, T

k=1
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Here the kernel K(t¢,s) is assumed to satisfy the condition K [18]: the elements k}j(t,s) are
Lebesgue measurable on the set 0 < s < ¢t < T and have a common majorant (-) summable
on [0,T] such that |kj;(t,s)] < (1), 4,5 = 1,...,n; (n x n)-matrices A, ..., A}, have elements
summable on [0, 7.

(Ti2) Tio: FDY(u) — L™ (Ti22)(t) = > Bj(t)z(t;), te€[0,T),
{a:t5<t}
where elements of matrices B}, j=0,,...,u,are summable on [0,7]. As usual, we put Zi:k F,=0

for any F;, if [ < k.

(T1) To1: DS™(m) — FD"(u);
t;
(Taz)(t) = | EP(s)i(s)ds + AQe(0) + Y AjAx(r), i=0,1,...,p,
0 k: T <t;
where elements of matrices K? are measurable and essentially bounded on [0,77], A% ,i =0,1,...,pu,
k=0,1,...,m, are constant (u X m)-matrices.
(T22) Taz: FDV () — FD"(1);  (Taaz)(t ZB i=1,..., 0,

with constant (v x v)-matrices ij

§ 2. The Cauchy operator and the fundamental matrix of a continuous-discrete functional
ditferential system with impulse impact

In the sequel we use some results of [7,8,12,13] concerning the equation
T = Tnr + f (2.1)
and results of [3] concerning the equation
z = Tz + g. (2.2)

Recall that the homogeneous equation (2.1) (f(t) = 0,¢ € [0,7]) has the fundamental (nx
X (n + mn))-matrix X (t):
X(t) = 0(t) + Xo(t),

where
@(t) = (En’X[n,T}En""aX[Tm,T]En)a

E, is the identity (n x n)-matrix, each column xzg;(¢) of the (n x (n + mn))-matrix Xo(¢) is the
solution to the Cauchy problem

/K (t,s)i(s)ds +ai(t), x(0)=0, tel0,T).

Here a!(t) is the ith column of A' = (4}, AL,... AL).
The solution to (2.1) with the initial condition x(0) = 0 has the representation

z(t) = (C1f)(t /Clts
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where C(t,s) is the Cauchy matrix of the operator d/dt — 71;. This matrix can be defined and
constructed as the solution of the equation

t
%Cl(t,s) = / Kl(t,T)agCl(T,S)dT + Kl(t,s), 0<s<t<T,
s T

with the condition Ci(s,s) = E,, or as the solution of the integral equation
t
Ci(t,s) = / Ci(t,7)K(r,s)dr + E,. (2.3)
Ci(t,s) can be expressed in terms of the resolvent kernel R(t,s) to the kernel K'(¢,s). Namely,

Ci(t,s) = B, + /t R(7,s)dr. (2.4)

The general solution to (2.1) is of the form

z(t) = X(t)a + /0 Ci(t,s)f(s)ds (2.5)

with arbitrary o € R*T™",
As for (2.2), the following analogs of the above given relationships take place: the fundamental
matrix Z(t;), i =0,...,u, to the homogeneous equation (2.2)

i—1
) = SRR, =L
j=0
is the solution of the initial problem
i—1
Z(t;) = ZB%Z(tj), i=1,2,...,p, Z(to)=E,.
j=0

The Cauchy matrix Cs(i,7) is defined by

i—1
Co(i,j) = By + Y BjCalk,j), 1<j<i<y,
k=j

and gives the representation of the solution to (2.2) with the initial condition z(¢9) = 0,
2(ti) = (Cag) (t:) = Y _ Cali,j)g(t;), i=0,1,...,p.
j=1

In the sequel we put Ca(i,j) =0, if j > 1.
Thus the general solution of (2.2) has the representation

2(ti) = Z(t:)B + (Cag) (1), i =0,1,...,p, (2.6)
with arbitrary g € R”.
Now consider the homogeneous equation

T = [7-11 + 7-12027-21]1'. (27)

The principal part of the operator 7 = 711 + 7120272 is integral and Volterra with the kernel
K(t,s) = Kt s) + K2(t, s) (see below (2.10), (2.11)). It is easy to see that this kernel satisfies

the condition K. Recall that the Cauchy matrix of (2.7) is completely defined by the kernel K(t,s).
Denote the fundamental matrix of (2.7) by X, and let Cy be the Cauchy operator of this equation.
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Theorem 1. The general solution of the continuous—discrete system (1.1) has the representation

(2)=x(5)(s)

where the fundamental matrix X and the Cauchy operator C are defined by the equalities
X Xig >
X =
( X1 oo

C— ( Ci1 Ci2 >
Ca Coo )
Here the operator components X;; and C;j;, i,j = 1,2, are defined by the equalities

X=X, Xio = C1 TiaZ, Xy = CyTn X, Xoy = Z + CoyTs1CiTiaZ, (2.8)
C =C, Cia = C) T120s, Co1 = CoT51Ch, Coy = Cy + CyT3.C1T12C5. (2.9)

and

Proof. Letus apply the representation (2.6) to the second equation of (1.1):
z=ZB+ CyTa1z + Cag.
Substituting the right-hand side of the latter equality for z on the right-hand side of (1.1) we obtain
= Tnzr + Ti2ZB + Ti2CoTa1z + Ti2C2g + f,
or, changing the order of terms,
= Tnr + Ti2CoTar + Ti2ZB + Ti2Cag + f.

In what follows we will use the representation of the operator 7;95C572;. This one is obtained
after calculating successively all values for arbitrary x € DS™(m):

(TiCoTara)(t) = 3 Bi(t) S Calf, 1) /O“ K2(s) i(s) ds +
=1

Jiti<t

J
+ > B Y Cali, D) Ay 2(0) + (2.10)
Jiti<t =1

m

J
+ 37 Bt S G 1) Y Al Ax(m) X my (1)
=1

Jrti<t k=1

Let us write the first term on the right-hand side of the latter equality in the form

t
/ K2(t,s) (s) ds,
0
where the kernel
J
K2(t,5) = Y > Bi(t) Xjou)(s) Cald, DEF(s) (2.11)
Jiti<t I=1

satisfies the condition K. It follows from (2.5) that z = Xa + C~’1 TioZ B + C~’1 T12Cog + C~’1 I
Thus, turning back to z, we have

z=7ZB+ CyTx {)N(Oé + C1TiaZ B+ C1TiaCag + CN’lf] + Cag,
or
z = [02751 )N(] a + [Z + 027515'1712Z} B+ [Cz + 027515171202] g + CoTnCh f.
Now with the use of (2.8) and (2.9) we obtain the statement of the theorem. O
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§ 3. The representation of the Cauchy matrix components

As is shown in [6, p.68; 8, p.57], the properties we study here are of considerable importance in
different questions of the theory of functional differential equations. In particular, the smoothness of
the Cauchy matrix in the first argument answers the question of differentiability under the integral
in the integral representation for the components with continuous time, the properties of the Cauchy
matrix as a function of the second argument impact onto conditions of the continuous dependence
of solutions on the initial point in time and the true smoothness of the control function under the
study of various classes of control problems. To study the above-mentioned properties, we derive
here an explicit representation for the components of the Cauchy operator to the continuous-discrete
system in the terms of matrices 51 and Cs.

1. The representation of C1; = 51,

(Crn f)(t / Ci(t, ) (3.1)

does not need any discussion since all properties of C~’1(t, s) are defined by the properties of the
kernel K (t,s). Some of them are described below.
2. The representation of the operator Cio = C T12C5. By definition we have

J
Clzg /Clts ZB Z

VE tj<s

With the use of the characteristic function X(tj,T}(S) we rewrite the latter expression in the form

m J
(C129)(t / Ci(t,s ZB;(S) X(t;,7(8) Z Ca2(4,1)g(t1) ds
=1 =1

which is more convenient for the foregoing change of summation order. Once the order has been
changed, we obtain

b
(Crag)(t / Ciltss) SO0 BL(s) x, 11(5) Cali, Da(tr) ds.

=1 j=l
This gives
7
(Cra9)(t Z/ Ci(t,s) Fi(s)ds g(t), (3.2)
where
nw
= > Bj(s)X(,.m(5) C2,D)- (3.3)
j=l

3. The representation of the operator Co; = Co T5,Cy. First we calculate (75151 f)(t;) for an
arbitrary element f € L™

TG D) = [ KX(s) / gél(s,T)f(T)des + [ K2(s) f(s)ds =
0 0o OSs 0

ti

_ / A K2(s) L6y (s,m)ds f(r)dr + [ K2(s) f(s)ds —
0 ) 0s 0
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/ / KX(r 01(7 s)dr f(s) ds+/ K2(s) f(s)ds = /Oti 0i(s) f(s)ds,
where
Vi(s) = / K2(t 01(7 s)dr.

It should be noted that the se~cor1d and the third terms of 73; do not take part in the representation
obtained since any image of C; takes zero initial value and zero jumps Ag. Finally, we get

(Car f)(t Z Cy(i, 7) / 9 (3.4)

4. The representation of the operator Cos = Co + 02751(717'126’2. Let us use the representation
of 712022

fwoop
(TiaCog)(t) = D> Bi(t) X, m)(t) Caljs 1)

I Mt

(see (3.3)).
From this it follows that:

(Ca2 g)(t ZCQZ] (t) ZCQZ]/ 95( Z]:l

Taking into account Cg(z,]) =0, if j > 4, we rewrite this in the form

"

Cagt) = X |Calid) + Y Catid) [ 0565) Fils) ds | gt (3.5)
j=1

=1

The representations (3.1), (3.2), (3.4), (3.5) of the Cauchy operator components for (1.1) make
it possible to describe their properties, which are useful in the study of boundary value problems
and control problems for continuous—discrete systems. In this case the components with continuous
time Cy(t,s) and Cy(t,s) Fi(s) are of principal interest. For the second term, the properties of
the Cauchy matrix depend on the additional factor F;(s) whose properties are derived from (3.2).
That is why we dwell on the properties of C~’1(t,s) in more detail. It should be noted that the
absolutely continuity of this component follows immediately from its definition. It is noted before
that the properties of al(t,s) as a function of the second argument are completely defined by the
corresponding properties of the kernel

K(t,s) = K't,s) + K2(t,s),

where K'(t,s) is the kernel of the principal part to the right-hand side of the subsystem with
continuous time, and the kernel K?(t,s) is defined by (2.11). The theorems we give below are
formulated in the terms of K(t,s), they are analogs to the theorems from [13, p. 58-64]. For
all these theorems, in addition to the condition IC, the following condition BV is assumed to be
fulfilled: N
for almost every ¢ € [0,T], the elements k;;(t,s) of K(t,s) have bounded variation in s on [0, 1],
and
T
/ Var kij(r,s)dr < oo, i,j=1,2,...,n.
0 s€[0,7]
Before we establish some properties of (71(t, s) as a function of the second argument, it should be
noted that in the general case Cy(t,-), being the kernel of an integral operator, is defined in a class
of equivalent functions. So it can be changed on any set of zero measure with no impact on values
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of the integral operator. This is why in studying the properties of 51(16, -) such as the continuity we
have to define this function definitely everywhere on [0, ¢] having in mind the corresponding fixed
representative of the above class. In the case of the condition BV, we define this representative by
(2.3) or (2.4) for each s € [0, t].

Theorem 2. For any t € [0,T)], the matrix C\(t,s) has bounded variation in s on [0,t].
Proof In [16, p. 40-44] it is shown that, for a kernel K K(t,s) with the condition K, its

resolvent kernel R(t, s) satisfies this condition too with another majorant %(t) = dx(t), where the
constant d can be calculated. Taking into account this and (2.4), we can find a nonnegative matrix

M such that the inequality Lél(t, s)J < M holds. Here and in the sequel, for a matrix A = {a;;},
| A| stands for {|a;;|}. For any partition 0 < s1 < --- < s, <t we have

Z \;él(t, SZ'+1) Cl t S M/ Z ’7' Sz+1 - k(’r, S/L'Jrl)J dr
which gives the statement of the theorem. O

Theorem 3. Let t € (0,T] and so € [0,t]. Then Ci(t,s) is continuous in s at a point sg, if for
almost all T € [sg,t] the function K(t,s) is continuous in s at the point sg.

P roof. Consider the difference Cy(t,sq) — Ci(t,s). By (2.3) we have

~ - 50 -
Ci(t,s0) — Ci(t,s) / Ci(t,7) |K(r,s0) — K(, s)] dr — / Cy(t,7) K(r,s)dr.

Let us estimate the left-hand side of the latter:

Lé’l(t,so) - él(t,s)J < / t Wl(“)J {f{(T, s0) — K(r, S)J dr +

SO o [ |awn] [Feo) arl.

Under the conditions of the theorem with the use of the estimate Lé’l(t,s)J < M we can apply
the Lebesgue theorem to the right-hand side of the latter as s — sp, which completes the proof. [

Theorem 4. Assume t1 € (0,T] and so € [0,7]. For any fixed t € [s,t1], the function Ci(t,)
is continuous at the point so if and only if K(t,-) is continuous at the point sy for almost all
tc (So,tl].

P roof For definiteness we consider the case of continuity from the left.
We start with the necessity. Let us use (2.3) as applied to C1(¢t,s) with K (¢, s) having bounded

variation in s for any fixed ¢. For each ¢ € [so, T] there exists lim K(t s) = K(t,so — 0). This
S—S0—

gives the following equality:

s—s9—0 s—s0—0 s—s0—0

t~ ~
lim /Cl(t,T)K(T,S)dT: lim / Ci(t,7)K(r,s)dr + lim /CltT (1,8)dr.

The first term equals zero as the integral is absolutely continuous in the limits. As for the second,
we have

t ~ ~
/ Cy(t,7) K(1,80 — 0)dr.
50

Thus we arrived at

~ t ~ ~
Cy(t,so—0) = / Cl(t,T)K(T,SQ—O)dT + F,, tE[So,T],
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and

~ ~ t ~
Ci(t,s0) — Ci(t,s0 —0) = / Ci(t,7) {K(T,SO) - K(7,s0 —0)] dr, t€[so,T].
50
Therefore, under the conditions of the theorem we obtain
t ~ o~ ~
/ Cl(t,T) [K(T,So) —K(T,SQ—O)] dr :O’ tE[So,tl].
50

Recall that the Cauchy matrix possesses the property that the equality

/t Ci(t,r) f(7)dr =0, € [so,t],

implies f(t) = 0 for almost all ¢ € [sg,¢;] which completes the proof of the necessity.
As for the sufficiency, it can be proved in the same way as in the proof of Theorem 3. O

Funding. The research was supported by the Russian Foundation for Basic Research (project
no. 18-01-00332).

REFERENCES

1. Agranovich G. Some problems of discrete/continuous systems stabilization, Funct. Differ. Equ., 2003,
vol. 10, no. 1-2, pp. 5-17. https://zbmath.org/?g=an:1175.93185

2. Agranovich G. Observability criteria of linear discrete-continuous system, Funct. Differ. Equ., 2009,
vol. 16, no. 1, pp. 35-51. https://zbmath.org/?g=an:1172.93010

3. Andrianov D.L. Boundary value problems and control problems for linear difference systems with after-
effect, Russian Mathematics, 1993, vol. 37, no. 5, pp. 1-12.
https://zbmath.org/?gq=an:0836.34087

4. Anokhin A.V. On linear impulse systems for functional differential equations, Soviet. Math. Dokl., 1986,
vol. 33, pp. 220-223. https://zbmath.org/?g=an:0615.34064

5. Ashordia M., Chania M., Kucia M. On the solvability of the periodic problem for systems of linear
generalized ordinary differential equations, Mem. Differ. Equ. Math. Phys., 2018, vol. 74, pp. 7-26.
https://zbmath.org/?gq=an:1398.34036

6. Azbelev N.V., Maksimov V.P., Rakhmatullina L.F. Vvedenie v teoriyu funktsional’no-differentsial’nykh
uravnenii (Introduction to the theory of functional differential equations), Moscow: Nauka, 1991.

7. Azbelev N.V., Maksimov V.P., Rakhmatullina L.F. Elementy sovremennoi teorii f[unktsional’no-
differentsial’nykh uravnenii. Metody i prilozheniya (Elements of the contemporary theory of functional
differential equations. Methods and applications), Moscow—-Izhevsk: Institute of Computer Science, 2002.

8. Azbelev N.V., Maksimov V.P., Rakhmatullina L.F. Introduction to the theory of functional differential
equations: methods and applications, New York—Cairo: Hindawi Publishing Corporation, 2007.

9. Azbelev N.V., Maksimov V.P., Simonov P.M. Theory of functional differential equations and applications,
International Journal of Pure and Applied Mathematics, 2011, vol. 69, no. 2, pp. 203-235.
https://zbmath.org/?g=an:1228.34001

10. Chadov A.L., Maksimov V.P. Linear boundary value problems and control problems for a class of
functional differential equations with continuous and discrete times, Funct. Differ. Equ., 2012, vol. 19,
no. 1-2, pp. 49-62. https://zbmath.org/?g=an:1322.34077

11. Kurzweil Ja. Generalized ordinary differential equations and continuous dependence on a parameter,
Czechoslovak Mathematical Journal, 1957, vol. 7, pp. 418-449.
https://zbmath.org/?gq=an:0090.30002

12. Maksimov V.P. The Cauchy formula for a functional differential equation, Differ. Uravn., 1977, vol. 13,
no. 4, pp. 601-606 (in Russian). http://mi.mathnet.ru/eng/de3033

13. Maksimov V.P. Voprosy obshchei teorii funktsional’no-differentsial’nykh uravnenii (Problems of the
general theory of functional differential equations), Perm: Perm State University, 2003.

14. Maksimov V.P. Theory of functional differential equations and some problems in economic dynamics,
Proceedings of Conference on Differential and Difference Equations and Applications, New York-Cairo:
Hindawi Publishing Corporation, 2006, pp. 757-765.


https://zbmath.org/?q=an:1175.93185
https://zbmath.org/?q=an:1172.93010
https://zbmath.org/?q=an:0836.34087
https://zbmath.org/?q=an:0615.34064
https://zbmath.org/?q=an:1398.34036
https://zbmath.org/?q=an:1228.34001
https://zbmath.org/?q=an:1322.34077
https://zbmath.org/?q=an:0090.30002
http://mi.mathnet.ru/eng/de3033

The structure of the Cauchy operator 49
MATHEMATICS 2019. Vol. 29. Issuel

15. Maksimov V.P. Some questions of the control theory for functional differential systems, lzvestiya In-
stituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, 2015, issue 2 (46),
pp. 112-119 (in Russian). http://mi.mathnet.ru/eng/iimi310

16. Maksimov V.P. Continuous mathematical models, Perm: Perm State University, 2015.

17. Maksimov V.P. On a linear optimal control problem for linear functional differential systems with con-
tinuous and discrete times, Functional Differential Equations: Theory and Applications: Proceedings
of Conference Dedicated to the 95th Birthday Anniversary of Professor N.V. Azbelev, Perm National
Research Polytechnic University, Perm, 2018, pp. 134-141 (in Russian).
https://elibrary.ru/item.asp?id=35107826

18. Maksimov V.P. On a class of optimal control problems for functional differential systems, Tr. Inst. Mat.
Mekh. Ural. Otd. Ross. Akad. Nauk, 2018, vol. 24, no. 1, pp. 131-142 (in Russian).
https://doi.org/10.21538/0134-4889-2018-24-1-131-142

19. Maksimov V.P. Reliable computing experiment in the study of functional-differential equations: theory
and applications, Journal of Mathematical Sciences, 2018, vol. 230, issue 5, pp. 712-716.
https://doi.org/10.1007/s10958-018-3775-3

20. Maksimov V.P. Attainable values of on-target functionals for a functional differential system with im-
pulses, Vestn. Tambov. Univ. Ser. Estestv. Tekh. Nauki, 2018, vol. 23, no. 123, pp. 441-447 (in Russian).
https://doi.org/10.20310/1810-0198-2018-23-123-441-447

21. Maksimov V.P., Chadov A.L. Hybrid models in problems of economic dynamics, Perm University Herald.
Economy, 2011, no. 2, pp. 13-23 (in Russian).
https://elibrary.ru/item.asp?id=17328178

22. Maksimov V.P., Chadov A.L. A class of controls for a functional—differential continuous—discrete system,
Russian Mathematics, 2012, vol. 56, issue 9, pp. 62-65.
https://doi.org/10.3103/S1066369X12090083

23. Maksimov V.P., Rumyantsev A.N. Boundary value problems and problems of pulse control in economic
dynamics. Constructive study, Russian Mathematics, 1993, vol. 37, no. 5, pp. 48-62.
https://zbmath.org/?q=an:0835.90017

24. Marchenko V.M. Hybrid discrete-continuous systems with control: II. State space method, Differential
Equations, 2015, vol. 51, no. 1, pp. 54-68. https://doi.org/10.1134/50012266115010061

25. Marchenko V.M. Controllability and observability of hybrid discrete-continuous systems in the simplest
function classes, Differential Equations, 2015, vol. 51, no. 11, pp. 1461-1475.
https://doi.org/10.1134/5S0012266115110075

26. Marchenko V.M. Modal control of hybrid differential-difference systems and associated delay systems of
neutral type in scales of differential-difference controllers, Differential Equations, 2017, vol. 53, no. 11,
pp. 1458-1474. https://doi.org/10.1134/50012266117110088

27. Schwabik S. Generalized ordinary differential equations, Singapore: World Scientific, 1992.

28. Schwabik S., Tvrdy M., Veivoda O. Differential and integral equations. Boundary value problems and
adjoints, Prague: Academia, 1979.

Received 01.02.2019

Maksimov Vladimir Petrovich, Doctor of Physics and Mathematics, Professor, Department of Information
Systems and Mathematical Methods in Economics, Perm State National Research University, ul. Bukireva,
15, Perm, 614990, Russia.

E-mail: maksimov@econ.psu.ru

B.II. Makcumos
Crpykrypa onepatopa Komu nuHeliHON HenpepbIBHO- TUCKPETHOH (PYyHKLHOHAJIBHO- NP epeHIHaIbHON
CUCTEMBI C I0CJeIeCTBAEM U CBOMCTBA €ro0 KOMIIOHEHT

Iurara: BecTHuk Yamyprckoro yHuBepcutera. Martematuka. Mexanuka. Komnbiotepusle Hayku. 2019. T. 29.
Buin. 1. C. 40-51.

Karouesvie crosa: nuHedHble CUCTEMBI C TOCJENEHCTBHEM, HENPEPbIBHO-AUCKPETHBIE (PYHKIHOHAIBbHO- 1 (e-
peHLMa/NbHble CUCTEMEI, NIPeACTaBIEHNE pelleHuH, oneparop Komu.

YIK 517.929


http://mi.mathnet.ru/eng/iimi310
https://elibrary.ru/item.asp?id=35107826
https://doi.org/10.21538/0134-4889-2018-24-1-131-142
https://doi.org/10.1007/s10958-018-3775-3
https://doi.org/10.20310/1810-0198-2018-23-123-441-447
https://elibrary.ru/item.asp?id=17328178
https://doi.org/10.3103/S1066369X12090083
https://zbmath.org/?q=an:0835.90017
https://doi.org/10.1134/S0012266115010061
https://doi.org/10.1134/S0012266115110075
https://doi.org/10.1134/S0012266117110088
mailto:maksimov@econ.psu.ru

50 V. P. Maksimov
MATHEMATICS 2019. Vol. 29. Issuel

DOI: 10.20537/vm190104

B craTbe paccmarpuBaeTcs KJacc JHHEHHBIX CUCTeM (PYHKLHOHAAbHO-AH((epeHInaNbHBIX YPAaBHEHHH ¢ TToce-
IefCTBHEM, HEMPEPBIBHBIM U IUCKPETHLIM BPEMEHEM M MMITY/JIbCHBIMH BO3AEHCTBUSAMH (MMIYJIbCHBIE THOPUAHBIE
ON1Y). B ueHtpe BHUMaHHsI HAXOISTCS KOHCTPYKIHH OMEPaTOPOB, MO3BOJISIIOUIMX IaTh MOJHOE OMHCAHHE BCEX
TpPaeKTOpPHH T'MOPUIHOH CHUCTeMbl, U B TePMHHAX 3TUX OMNepaTopoB (hOPMYJHUPOBATH YCJIOBHS Pa3pelinMOCTH
3ajau yrpaBjeHHs C BbIOOPOM YIpaBJE€HHH M3 pasJHUHBIX KJaCCOB, NaBaThb OMHCaHWe (OUEHKH) MHOXKECTB
JNOCTHXKUMOCTH NPU HAJHMUYUU OTPaHUUEHHH Ha yIpaBjeHHUe, a TaKKe M0JaydaTh YCJIOBHS Pa3peliMMOCTH OOLIHX
JIMHEeHHBIX KpaeBblX 3ajad. llaercs meTajbHOe OMHCaHHMe BCeX KOMIIOHEHT omepartopa Koluu, u3ydaioTcss HX
cBoiicTBa. I/ KOMIIOHEHT C HeNpepbiBHBIM BpeMeHeM MOoJy4eHbl YCJIOBHS WX HeNpepblBHOCTH MO BTOPOMY
apryMeHTy, BJHUSIOILKME Ha BO3MOXKHOCTb BbIOOpa Kjacca yNpaB/siolIUuX BO3AeHCTBUH. YNOMSHYTble KOHCTPYK-
UM CHCTEMATHYECKH HCMOJB3YIOT pe3ysbraThl 0 Marpuuax Kowmwn cucrtem @JIY ¢ HempepblBHBIM BpeMeHEM U
CUCTEM Pa3HOCTHBIX YPaBHEHHUH C NTHUCKPETHHIM BpeMeHeM.

duHaHcupoBaHue. Pabora BbinosiHeHa npu moaaepkke Poccuiickoro ¢oHaa GpyHIaMeHTanbHbIX HCCIeI0BaHUMI
(mpoexT Ne 18-01-00332).
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