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Introduction

Nonzero-sum differential games arise in different areas of science including economics, fi-
nance, engineering and ecology. There are several solution concepts examined for nonzero-sum
games. The most popular concept is the Nash equilibrium. It refers to the case when the players
play noncooperatively and choose the strategies simultaneously. The most tempting approach
to the study of Nash equilibrium for nonzero-sum differential games is the dynamic program-
ming [3,9]. It reduces the original game-theoretical problem to the system of Bellman equations
which are for this case first-order PDEs. If a solution of the system of Bellman equations exists,
it should provide a so called subgame-perfect Nash equilibrium. However, up to now there are no
general existence results for this system of PDEs. There are only few results concerning games
with simple dynamics [4-6].

The alternative way is given by punishment strategies which extend the concept of folk
theorems to the differential games. In this case the players choose a trajectory, move along
it, whereas any individual deviations are punished by other players [7, 12, 14,20]. Using the
punishment strategies technique one can prove the existence of a Nash equilibrium. On the other
hand, this approach leads to multiple equilibria. Nowadays, there is no natural way to select a
proper solution from this set. Additionally, the threats required to realize punishment strategies
often look incredible.

Notice that the games with continuous-time stochastic dynamics are simpler. The existence
results for the system of Bellman equations are proved for wide classes of stochastic differential
games [11,17,18] and for Markov games [16]. Notice that for a stochastic differential game
the system of Bellman equations is the system of second-order parabolic PDEs, whereas for a
Markov game this system is reduced to the system of ordinary differential inclusions. Thus, the
natural idea is to construct an approximate equilibrium for a nonzero-sum differential game based
on the solution of the game with the dynamics given by a stochastic process. The general theory
which assumes that the solution of a nonzero-sum continuous-time stochastic game is known was
developed in [2]. The proposed construction assumes that the players can observe a common
public signal that is produced by a model stochastic game. The important particular case is the
construction of an approximate Nash equilibrium based on the solution of a stochastic differential
game also examined in [2].
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The aim of the paper is to construct an approximate Nash equilibrium based on the solution of
a Markov game, 1. e., continuous-time stochastic dynamical game with the dynamics determined
by a Markov chain. Notice that a value function of a Markov game can be obtained as a solution
of the differential inclusion which plays the role of the system of Bellman PDEs. We prove that
given a solution of this inclusion, one can construct an approximate Nash equilibrium for the
original game in the class of stochastic strategies with memory. Additionally, we provide the
method of approximation of the original nonzero-sum game by the nonzero-sum Markov game.

The paper is organized as follows. First, we recall the general construction of approximate
Nash eqilibria based on the solution of continuous-time stochastic games. Then in Section 2 we
show that given a solution of the differential inclusion playing the role of the Bellman equation for
a nonzero-sum Markov game, one can construct an approximate Nash equilibrium in the original
game. In this case an error rate is estamated by the distance between the original and Markov
games. Finally, in Section 3 we introduce the construction of a Markov game approximating the
original differential game.

§ 1. Stochastic strategies for nonzero-sum differential games

We examine a nonzero-sum differential game with the dynamics

o(t) = filtx(t), u() + fot, 2(t), v(t)), ¢ € [to, T], x(t) € RY wu(t) e U, v(t) € V. (1.1)
Here u(t) (respectively, v(t)) stands for the control of the first (respectively, second) player;
U and V are sets playing the role of control spaces for the players. It is assumed that player ¢
tries to maximize ;(z(7)).

Let us informally discuss the strategies used in the paper. The strong formalization is given
below in Definition 1. We consider the case when the players form their controls in a stochas-
tic way using a public signal that a stochastic process observed by both players at each time.
Additionally, we assume that the players’ controls depend on the history, i.e., they depend on
the trajectory z(-) € C([to, T];R?) in the nonanticipative way. This leads to the concept of
public-signal stochastic strategies with memory proposed in [2].

To introduce this we need some additional notations. If s, € [0, 7], then denote by Fy S
£ B(C([s,r],R%)), where B(X) stands for the Borel o-algebra on a metric space (X, o). Further,
recall that if (0, F, {F; }icjro,r)) is a filtered measurable space [19], then the process Z(-) taking
values in some metric space (X, p) is said to be {F;}ici1, r1-adapted if, for any ¢ € [0,77], the
mapping

Q3w Z(t,w) e X

is Fi-measurable [19, D31]. Additionally, the process Z(-) is called {F;}icf, r)-progressively
measurable if, for any ¢ € [0, T, the mapping

0,¢] x 25 (s,w) — Z(s,w) € X

is measurable with respect to B([0,t]) ® F; [19, D45]. Hereinafter, ® stands for the product of
o-algebras. Obviously, the progressively measurable process is adapted. If the {F; }+cp,,11-adapt-
ed process Z(t) takes values in the Euclidean space, then one can construct its {F; };cf,,-pro-
gressively measurable modification [19, T46].

Definition 1. We say that a 6-tuple o = (Q, F, {F; }repo,1): Ua()» Va(), Pe() 18 a profile of
public signal stochastic strategies if

(i) (% F,{Fi}epo,m) is a measurable space with filtration;
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(i) for every z(+) € C([to, T];R?), P, is a probability on F;

(iii) for every z(-) € C([to, T]; RY), Ug(.y (respectively, vy () is a {F; }ie,, 11-progressively mea-
surable process taking values in U (respectively, V');

(iv) if x(t) = y(t) for each ¢ € [to, ], then

e for every Ae F,, Pm(.)(A) = Py(.)(A),
o for every t € [to, 7], Uug()(t) = Uy() (1), Va() () = vy()(t) Pugy-aus.

(v) for any r, the restrictions of functions (x(-),t,w) = Uz (t,w), (@(-),t,w) = vy (t,w) on
C([to, T]; RY) x [to, 7] x £ are measurable with respect to Fy, r @ B([to,7]) @ F;;

(vi) for any A € F, the function z(-) — P,()(A) is measurable with respect to Fy, 7.

Let us briefly explain this definition. We assume that the players’ controls depend both on
a random signal and the trajectory. Additionally, the probabilities of the signal are determined
by the trajectory. Conditions (i)—(iii) and (vi) provide measurability properties of the introduced
objects. Conditions (iv) and (v) state that the dependence of the controls and the probability of
the signal on the trajectory is nonanticipating.

Now let us define the motion produced by the profile of public signal stochastic strategies.
Notice that since we consider stochastic strategies a realization should be a stochastic process and
include also a probability that is consistent with the family of probabilities P,.).

Definition 2. Let ¢ty € (0,71, 79 € R%, 1o = (Q, F, {F; }efto 17, Pe()s Ua()s Va()) be a profile of
public-signal correlated strategies on [to, 7). We say that a pair (X(-), P) is a realization of the
motion generated by 1 and initial position (¢, zo) if

(i) P is a probability on F;

(i) X(-) is a {F¢}epo,17-adapted process taking values in R¢;
(iii) X(tg) = zo P-a.s.;
(iv) for P-a.e. w € (,

%X(t, w) =/ (t, X(ta w)a UX (-w) (tv w)) + /2 (ta X(tv w)v VX (-w) (tv U.)))

(V) Pyy = P(-|X(-) = z(-)), i.e., given A € F,
PA= [ P,
C(fto, TI;RY)

where x is a probability on B(C([ty, T];R?)) defined by the rule: for any A € Fy, r,
x(A) = P{w: X(-,w) € A}.

Below we introduce conditions (conditions (L1)—(L6)) assuring the existence of realization of
the motion produced by the public-signal profile of stochastic strategies in the case of stepwise
strategies.

Now let us turn to the definition of an approximate Nash equilibrium. Recall that the Nash
equilibrium means that every unilateral changing of strategies does lead to the increasing of the
outcome. Thus, we are to introduce the concept of unilateral deviation from the public-signal
profile of strategies. It is reasonable to assume that the deviating player has an access to the
public signal and can produce his own stochastic signal. This leads us to the following definition.
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Definition 3. Given a profile of public-signal correlated strategies
o = (Q, F, {Fi }reto, 1], Pl Ua(), Va())

we say that a profile of strategies w® = (Q°, F¢, {ﬁc}te[to,ﬂ,P;(,),ug(,),vfc(,)) is an unilateral
deviation by the first (respectively, the second) player if there exists a filtered measurable space
(&Y, F',{F }ieto,17) such that

i) QF = Q x
(i) F¢ = F & F
(iii) F¢ = F, ® F| fort € [to, T);
(iv) for any z(-) € C([to, T};R?) and any A € F, Pg (A x Q) = Py (A);

(v) for any z(-) € C([to, T|;RY), t € [to,T], w € Q, ' € vgy(tw,w') = vy (t w)
(respectively, ug ) (t,w,w') = uz()(t,w)).

Using this concept of unilateral changing of strategies we receive the following definition of
an approximate Nash equilibrium.

For a given initial position (to,z() and a profile of public-signal correlated strategies to, we
can introduce upper and lower player’s outcomes by the following rules:

i (to, w0, ) £ sup{E~;(X(T)): (X(-), P) generated by v and (to,zo)},
J (to, 70, 0) 2 inf{E~;(X(T)): (X(-), P) generated by tv and (to, o)}

Here E denotes the expectation according to the probability P.

Definition 4. We say that a profile of public-signal correlated strategies tv* is a public-signal
correlated e-equilibrium at the position (tg, z9) € [0,7] x R? if, for any profile of strategies to’
that is an unilateral deviation from to* by the player 7, the following inequality holds true:

Ji—’_(to,l’o,mi) < Ji_(to,l'o,m*) +e.

In [2] the approximate Nash equilibria were constructed based on solutions of continuous
time stochastic games with dynamics determined by generators of the Lévy-Khintchine type.
The general theory of such systems is presented in [13]. In the following, D stands for a linear
subspace of C?(R?) containing CZ(R?), linear functions x +— (a,x) and quadratic functions
x + ||z — al®. Let Asfu,v] be an operator from D to C'(R?) of the form

(A, 016)(z) 2 (Gt 0,0)7, Vo) + (bt 2,0,0), V)o(a) +

+ [ o +3) = o) = . Vo) 1o (e, 0, dy). (12

Here B; stands for the ball of radius 1 centered at the origin; for each t € [0, 7], x € R, v e U,
v € V, G(t,x,u,v) is a nonnegative symmetric d x d-matrix, b(¢,z,u,v) is a d-dimensional
vector, v(t, z,u,v,-) is a measure on R? such that v(t, z,u, v, {0}) = 0. In the following we call
the operator A;[u, v] a generator [13].



Yu. V. Averboukh 7

Let us notice that the Markov chain with the Kolmogorov matrix @), (¢, u, v), defined for all
x,y from at most countable set S C R?, corresponds to the generator

A, v]g(x) = ¢(2)Quz(t,u,v),

z€S

v(t,x,u,v,A) = Z Qupty(t,u,v).

yeESNA, y#x
Here we, without loss of generality, can use scaling and assume that ||z — y|| > 1, for any
r,yeS, v #y.
Remark 1. The dynamics (1.1) corresponds to the generator A;|u, v] such that, for ¢ € D,
A[u,v]p(x) = (fi(t, z,u) + fot, x,v), Vo(x)).

Given a control of players, the generator A; produces the motion that is a stochastic process.
In the following we consider the relaxed controls of both players. It is a stochastic process with
the values in the set of probabilities on U x V' denoted by rpm(U x V'). Note that any metric space
T is naturally embedded into the set of probabilities on T by the Dirac measure. Furthermore,
the set of probabilities on T is compact within the topology of narrow convergence whenever the
space Y is compact.

We use the following definition of control process going back to [8, 10].

Definition 5. Let s,r € [0,7], s < r. We say that a 6-tuple (0, F,{F }ic[s), P, X) is a
controlled system on [s, ] admissible for the generator A,[u, v] if the following conditions hold:

(i) (0 F,{Fitesn, P) is a filtered probability space;
(i) 7 is a {F;}iefs,-progressively measurable stochastic process taking values in rpm(U x V);
(iii) X is a {F;}iefs,1-adapted stochastic process taking values in R¢;

(iv) for any ¢ € D, the process

e o(X ) - [ / (el ) (X ()t )
is a {F; }ie[s,,-martingale.

It is assumed that in the auxiliary game with the dynamics determined by A the players tries
to maximize the values

T
B (X + [ e, X0, u(0), o0t
to
We consider the solution concept for the auxiliary game given by the following condition that
is an analog of stability condition first introduced by Krasovskii and Subbotin for the zero-sum
differential games [15].

Definition 6. Let ¢, ¢, : [0,7] x R? — R be continuous functions. We say that the pair (cy, ¢;)
satisfies Condition (C) if, for any s, € [0,7], s < r, there exists a filtered measurable space
(e, For {F]" hepsr)) satisfying the following properties:
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(1) given y € R? one can find processes ny" 17” and a probability ﬁ“ such that the

6-tuple (Qs, For {F7 "Yietsals BT ,Y”) is a control system adm1s51ble for Ayfu, v
and, forv = 1,2,

Ber [( o) + / / halt, V27 (8), v, o) (8, v))dt] ~ ei(s,y):
s UxV

(ii) for any y € R? and v € V, one can find a relaxed stochastic control of the first player
,uzfﬂ a process ? taklng values in ]Rd and a probability P ’i’r such that the 6-tuple
(Qer For {Fr }te[s i, P P zr, ey ® Oy, Y >") is a control system admissible for A;[u, v]
and

E;‘Z” { 2 (1Y 18T / /hz (t, Ylsr , U 'U):uyv(t du)dt} < ea(s,);

(iii) given y € R? and u € U, one can find a second player’s relaxed stochastic control Lz

a process Yy,u and a probability PW such that the 6-tuple

2 ,S,T ~2,8,7
)

g 2 0u @V, Y

y’u ) y’u

(@, F AT bt P

is a control system admissible for A;[u, v] and

=2,8,r 257” 237“ s
E, . {01( / /h1 (t, Y, u, v)vy (t dv)dt| < ei(s,y).

r

2,5,7‘ . . i =
Here E” (respectively, Eyu , E, ., ) denotes the expectation according to the probability P;"

—=1,s,r ==2,s,r

P,

(respectively, P, , P, ).

Let us comment on this condition. The pair of functions (cy, ce) is an analog of the value
function for the auxiliary games. The first part means that both players can maintain the values of
the functions ¢y, ¢, through some trajectory. The second (respectively, third) condition states that
the first (respectively, second) player can punish his partner if he plays with the constant strategy.
These conditions is a stochastic version of the condition introduced in [1]. That condition provides
the existence of a universal Nash equilibrium in the class of strategies with guide.

To construct an approximate Nash equilibrium let us denote

Z(t7x7u7v) éth(t,x,u,’U) +/ ||yH2V(t,LC,’U,,U,dy), (13)
R4
g(t, o, u,v) 2 b(t,z,u,v) +/ yv(t, z,u, v, du). (1.4)
R4\ B;

The value ¥ estimates the randomness of the dynamics determined by the generator A, whereas
g is an effective drift in the auxiliary game.
The following assumptions are imposed.

(L1) U, V are metric compacts;
(L2) the functions fi, fo G, b, 71, 72, h1, ho are continuous and bounded;

(L3) for any ¢ € D, the function [0, T] x R* x U x V' 3 (¢, z,u,v) — [ou d(y)v(t, 2, u,v,dy) is
continuous.
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(L4) there exists a function «(-) : R — [0,400) such that a(d) — 0 as § — 0 and, for any
t,s€[0,T,r e R, ueclU,veV,

Hf(t,a:,u,v) - f(S,.T,U,U)H S Oé(t - 8)7
||g(t,x,u,v) - g(s,x,u, U)H S O./(t - 8)7
(L5) there exists a constant M such that, for any ¢ € [0,7], x € Ry, ueclU,veV,

1f (2w, )| < M, lg(t, z,u,0)]] < M;

(L6) there exists a constant K > 0 such that, for any t € [0, 7], 2/,2”" € R, u e U,v eV,
||f(t,[E/, u, U) - f(t,[L‘”,U, U)H < KHII - :E”H»
Hg(tv 1‘/, u, U) o g(t> x/lu u, U)” < K\W - l‘””;

(L7) there exists a constant R > 0 such that, for any 2/, 2" € R%, i = 1,2,

i(2') = 7i(=")| < Rll2" = 2";

(L8) forany t € [0,T],z e R, ue U,veV,
I2(t, z,u,v)| < 6%,

”f(t7x7u70) — g(t,x,u,v)H? < 2527
|hi(t,[[‘,u’1})| S 0.

In condition (L8) 4 is a small parameter.

Let us briefly comment on the imposed conditions. First, recall that the function g plays
the role of an effective drift, whereas Y. is an analog of the squared violence coefficient. Con-
dition (L1) is rather standard in the theory of differential games. Other conditions provide the
continuity properties. We assume that the dynamics of the original function and the effective
drift are both uniformly continuous w.r.t. time, Lipschitz continuous w.r.t. phase variable and
bounded. Additionally, we assume Lipschitz continuity of the payoff function (condition (L7)).
Finally, condition (L8) states that the original and auxiliary games are close.

Now let us discuss the existence of the motion. The public-signal profile of stochastic
strategies 0 = (Q, F, {Ft hicpo,11: Po()s Un(); Va(y) s called stepwise, if there exists a parti-
tion A = {t;}¥, of the time interval [ty,T] such that, for any n = 0,..., N — 1, and every
z(+),y(-) € C([to, T);R?) the condition z(t;) = y(t;), ¢ = 0,...,n implies that P, (A4) =
Pyy(A), when A € F; and ug()(t) = uy()(t) Py — a.s. when t € [to,t,41). It can be proved
that under conditions (L1)—(L8), given a stepwise public-signal profile of stochastic strategies
w = (Q,F, {ft}te[tmﬂ, Py, ug(), V2(.y), there exists at least one realization of the motion gener-
ated by tv and initial position (¢g, z). The proof is by induction.

Now let us present the theorem proved in [2] providing the existence of an approximate Nash
equilibrium and the estimates of the approximation rate. Set

B = (5+2K), (1.5)
C £ 2VTesT. (1.6)

Theorem 1. Let continuous functions ¢y, ¢y : [0, 7] x RY — R be such that
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o ¢i(T,x) = i(x);
e (c1,co) satisfies Condition (C).

Then, for any (to, 7o) € [0,T] x R%, and € > (RC + T, there exists a profile of public-signal
correlated strategies w* that is e-equilibrium at (¢g, z9). Moreover, if X* and P* are generated
by ro* and (to, zo), E* denotes the expectation according to P*, then

[E*yi(X*(T)) — cilto, zo)| < &.

§2 Markov games

In this section we examine a nonzero-sum two-player continuous time Markov game. We will
show that the solution of the Bellman system for the Markov game satisfies condition (C).
Let S be at most countable set of states. We assume that there exist Kolmogorov matrices
2y(tiw), Q3 (t,v) satisfying the following property: for some natural number /, given = € S,
there exist Y'(z) C S such that |[Y(z)| = I and Q] ,(t,u) = Q2 ,(t,v) = 0 when y ¢ Y (x).
Notice that this Markov chain corresponds to the generator

= 6()QL. (¢ w) + Q2. (E0)). 2.1)

zZES

We assume that the first player tries to maximize the value

E [vl(x(T)) + /OT hq(t, z(t), u(t))dt} :

when the second player wishes to maximize

E [72(:5(T)) + /OT ho(t, z(t), v(t))dt} :

Further, let us introduce an analog of Bellman equation for the controlled Markov chain. To
this end, givent € [0,T], 2 € S,{: S > R, pn € P(U), v € P(V) set

Fu(t, 2,6, p) & / STQL, (1w, W) + hatw,u) | pldu),
LyeS |

ﬁg(t,x,f,y)é/‘/ ZQ (t, 2, 0)E(y) + hao(t, z,u) | v(du).

LyeS i

The functions H 1, H, play the role of pre-Hamiltonians. Further, put

Ol(t> z, f) é Argmaxj—:rl(t? xZ, 57 ﬂ)? 02<t7 xz, 5) = ArgmaXf[Q(t? xz, 57 y),
nePU) veP (V)

Finally, if &, & are real valued functions defined on S, denote

H1(t,$,§1,fz) = Mg;)ax ﬁl(tvrvfla {/ Zme t €, U )V(du) Ve 02(t7x7€2)}7

() ves

Hg(t,$,€1,£2) £ VIEI%DaX f[g(f,l’,fg, {/ ZQ t xz, U )M(du) e € Ol(t7ma€1)} .

V) ves



Yu. V. Averboukh 11

The multifunctions H; and H, are analogs of Hamiltonians.

Below we consider the following differential inclusions which are natural analogs of Bellman
equation
d .
%gz(tv :U) € _Hi(taxvgla 52)7 51(T7 .’L’) = 71(3:)7 L= 17 2. (22)

Theorem 2. Assume that Q' (¢, u) and Q*(¢, v) are continuous. Then, if the pair (&;(-,-), &(+, +))
solves (2.2), then it satisfies condition (C).

Proof. Let s,r € [0,T], s < r. First, set
Q5" 2 D([s,r]: S).

Here D([s,r|,S) stands for the set of cadlag functions with values in S. To define a filtration,
for t1,...,tx € [s,7], C1,...,Cy C S, denote by A7" - the set of cadlag functions
z(+) € D([s,r];S) such that, for each ¢;, x(¢;) € C;. Now, put

‘Fts’T = B({A;T,tk ;C14e,Cie et € [S7t]})’

For & Fe,
Further, let i be a weakly measurable function from [0,7] x S to P(U) such that
/l(tu I) S Ol(tv z, 51('7 ))
Similarly, pick a weakly measurable function 7 : [0,7] x & — P (V) satisfying

ﬁ(t,l’) € 02(t7‘r7€2('7 ))

If yo is a given initial position, then let ﬁyso’r be a distribution of paths for the Markov chain with
the Kolmogorov matrix

Q:py /Q i(t, z, du) + /Q o(t, z, dv)

and the initial distribution equal to J,,. Here ¢, stands for the Dirac measure concentrated at ;.
Now, define the process Y,;" by the rule, for t € [s,7], w € Q*" = D([s,7],S),

As,r A

Finally, put
et (tw, d(u, v)) £ (t,w(t), du) @ D(t,w(t), dv).

By construction (Q”, For JFy For PS ne YS »") is a control process admissible for the gener-
ator A4[u, v] given by (1.2).
This implies the equality

BT 00) o) = By [ &t 5 opars

E”///Zgltz Qb (1) + @y (6,0)] e,V (1), du), V3 (1), o) .

z€S
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Using the definition of #;, and the fact that (£, &) solves (2.2), we get

Borey(r T2 (1) — Ea(s,w0) = — B / (£, 737 (1), w)a(t, V27 (1), dus) .

Analogously, one can prove that

By a(r: T3 ) = &alovm) = =E57 [ [ Ihat, ), 0)lot0.730). oyt
This proves part (i) of Condition (C).

To prove the second part, pick v € V' and consider the probability on distribution of paths
F;j; produced by the Markov chain with the Kolmogorov matrix

/ Qay fi(t, z, du) + Q2 ,(t,v)
and initial distribution equal to ¢,,. Put
7;;”(7:,@ £ w(t), iyt w,du) £ it w(t), du)

Notice that (Q57, 5, ]—"t”,P UET R Oy, Y,

Yo,V ? y v Yo0,v )
ator A¢[u,v] given by (1.2). As above, we have that

is a control process admissible for the gener-

—1,s,r —1,s,7

Ey0v€2<r Yyov( )) - 52(8 yO)
;OSUT / 52 t Y;USUT )
;OSUT/ /262 t z |:Q ;sr(t) (t ’LL) ‘l‘Q lsr(t) ( ,U):| ﬂ(t Y;OSUT( )’du)dt
z€S v Yo
Since
/ [252 t Z t ’LL) +Q ( ):| + hg(t,ﬂ?,@)]ﬂ(t,l’,d’d) S H?(thaglag?)a
z€S

using the assumption that the pair (£, &2) is a solution of (2.2), we conclude that

——=l,s,r

—=1,s,r 1 ,8,T 1,8,
Byl Tl (0) ~ Glson) < - [ Iha(e. Y 0.0
This shows part (ii) of Condition (C). The third part is proved in the same way. O

§3 Construction of approximating Markov game

The aim of this section is to present an example of Markov games approximating the original
nonzero-sum differential game with the dynamics given by (1.1), where player ¢ tries to maximize

(2 (T))-

Let us rewrite dynamics (1.1) in a coordinate-wise form:

%xj(t) = fl,j(t>x1<t)7 s ,de(t),u) + f2,j(tal'l(t)v s 7xd(t)7v)'

Here z;(t) stands for the j-th coordinate of the vector z(¢), whilst

fl(taxau) = (fl,l(taajau)a ey fl,d(taxau»?
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fa(t,z,v) = (for(t,x,u), ..., foult, z,v)).

Let s be a positive number. Further, denote by ¢’ the j-th coordinate vector.
Put

. A ;%'dfl,J'(t?:E’u)’a y:x+%sgn(f17j(t,a:,u))-ej,
Quy(tiu) = ¢ =2 205 [fu(t,2,u)], y=uz
0, otherwise.
Analogously, set
) A ,%lZ;Q,j(t,l’,u)’, y:x—i—%sgn(fzj(t,:l:,v))-ej,
m,y(t>v) = _iZj:1|f27j(t’x7v)|7 y=x
0, otherwise.

Notice that if we consider the Markov chain with the Kolmogorov matrix @), ,(t,u,v) =
iyy(t, u) + Qi’y(t, v) and assume that the initial state lies at hZ<, then the state of the Markov

chain will always belong to »Z¢. Thus, we can put S £ »Z<.
Now let us compute g and Y. We have that

d
v(t,z,u,v,du) = Z | f15(t 2, W) 0 Cosgn(pr; (b)) (AY)

j=1
d
) o (b 2, 0) |0 esgn(fo (e ()
j=1
Thus, we have that
g(t,x,u,v) = f(t,z,u,v), (3.1)
whereas .
Stz u,v) = 2> (it z,u)] + | fa(t, 2, 0)]) < 2M e, (3.2)
j=1

This implies that if fi (¢, z, u)+ fa(t, z, v) is Lipschitz continuous and bounded by M, then the
proposed Markov approximation provides the stochastic system satisfying conditions (L1)—(L8).
Notice that

d
(€Q (u)e) = D It (€ + sesgnl o (t,7,1)) — €(a),
(€Q @) = 3 Lot 5, 0I(Ew + sesgn(fogt,,0)) = €2))

This provides the precise formulas for H; and for H; for any appropriate choice of func-
tions hy, he. One can plug them into inclusion 2.2. Any solution of this inclusion (&;,&s)
satisfies condition (C) (see Theorem 2) and, thus, provides an approximate Nash equilibrium by
Theorem 1. If ||A]],]|ha|| < /3¢, the approximation rate is of order /> (see condition (L8),
(3.1), (3.2)).

Notice that we have considered the case when S is equal to »Z¢ and, thus, countable. How-
ever, one can easily construct the Markov approximation with the finite state space. To this end
assume that we are interested in the value function only in the subset of state space A C R
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Since f is bounded by M, we have that every trajectory started at A does not leave the set
Ay & A + By, where B, stands for the ball of radius r centered at the origin. Further, let
Ay 2 Ay + By Forz € A; U (R%\ A,), we define the functions
! A fl(tax7u)7 xEAl; ! A fg(t,x,’l}), mEAla
fl(t,I,U)—{ 0 $¢Rd\A27 fQ(t,I7U)— 0 x%Rd\A%

The function f'(t,x,u,v) = fi(t,x,u) + f5(t,z,v) is continuous, bounded by M, uniformly
continuous w.r.t. time, Lipschitz continuous w.r.t. x with the constant K and equal to zero on
R\ A,. It can be extended to the whole space with the same Lipshitz constant and the same

modulus of continuity w.r.t. to t. Since f'(t,x,u,v) = f(t,z,u,v) for x € Ay, we have that the
solutions of the nonzero-sum game for the original dynamics and the dynamics given by

d
ax(t) = f'(t,x(t),u,v)

coincide for x € A. On the other hand, we can consider the Markov game for the function f’ only
for the set B 2 A+B MT+M/K+Ms () 27 due to the fact that outside this state the dynamics is

equal to zero.

§4 Conclusion

The paper deals with the Markov approximations of the nonzero-sum differential game. The
cornerstone of our consideration is the general result proved in [2] stating that, given an auxiliary
continuous-time stochastic game, and a pair of functions satisfying stability condition (C) for
this auxiliary game, one can construct an approximate Nash equilibrium for the original game.
The principal example here is Markov game, i.e., the game with the dynamics determined by a
continuous-time Markov chain. We write down the system of differential inclusions playing the
role of the system of Bellman equations for the Markov game and prove that every its solution
satisfies condition (C). Finally, we introduce the method of construction of a Markov game
by the given differential game and estimate the approximation rate for the corresponding Nash
equilibrium.
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Kurouesvie cnosa: Heantaronuctuieckne auddepeHnuanpHble UTphl, TPUOIKEHHOE paBHOBecHs mo Ho-
11y, MapKOBCKHE HUTPHI, T PepeHIInaTbHbIEe BKIIOYESHNUS.
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B crarpe paccmarpuBaroTcs NMpUOMMKEHHBIE PEIICHUS HEAHTAarOHWCTHYECKHX IU((EepeHINaTbHBIX HIP.
[TpubamxenHoe paBHOBecHe 1Mo Hamry MoxeT ObITH HOCTPOEHO MO 3aJJaHHOMY PELICHUIO BCIIOMOTaTellb-
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