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consider the case when dynamics is determined by a Markov chain. For this game the value function is
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Introduction

Nonzero-sum differential games arise in different areas of science including economics, fi-

nance, engineering and ecology. There are several solution concepts examined for nonzero-sum

games. The most popular concept is the Nash equilibrium. It refers to the case when the players

play noncooperatively and choose the strategies simultaneously. The most tempting approach

to the study of Nash equilibrium for nonzero-sum differential games is the dynamic program-

ming [3, 9]. It reduces the original game-theoretical problem to the system of Bellman equations

which are for this case first-order PDEs. If a solution of the system of Bellman equations exists,

it should provide a so called subgame-perfect Nash equilibrium. However, up to now there are no

general existence results for this system of PDEs. There are only few results concerning games

with simple dynamics [4–6].

The alternative way is given by punishment strategies which extend the concept of folk

theorems to the differential games. In this case the players choose a trajectory, move along

it, whereas any individual deviations are punished by other players [7, 12, 14, 20]. Using the

punishment strategies technique one can prove the existence of a Nash equilibrium. On the other

hand, this approach leads to multiple equilibria. Nowadays, there is no natural way to select a

proper solution from this set. Additionally, the threats required to realize punishment strategies

often look incredible.

Notice that the games with continuous-time stochastic dynamics are simpler. The existence

results for the system of Bellman equations are proved for wide classes of stochastic differential

games [11, 17, 18] and for Markov games [16]. Notice that for a stochastic differential game

the system of Bellman equations is the system of second-order parabolic PDEs, whereas for a

Markov game this system is reduced to the system of ordinary differential inclusions. Thus, the

natural idea is to construct an approximate equilibrium for a nonzero-sum differential game based

on the solution of the game with the dynamics given by a stochastic process. The general theory

which assumes that the solution of a nonzero-sum continuous-time stochastic game is known was

developed in [2]. The proposed construction assumes that the players can observe a common

public signal that is produced by a model stochastic game. The important particular case is the

construction of an approximate Nash equilibrium based on the solution of a stochastic differential

game also examined in [2].

https://doi.org/10.35634/vm200101
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The aim of the paper is to construct an approximate Nash equilibrium based on the solution of

a Markov game, i. e., continuous-time stochastic dynamical game with the dynamics determined

by a Markov chain. Notice that a value function of a Markov game can be obtained as a solution

of the differential inclusion which plays the role of the system of Bellman PDEs. We prove that

given a solution of this inclusion, one can construct an approximate Nash equilibrium for the

original game in the class of stochastic strategies with memory. Additionally, we provide the

method of approximation of the original nonzero-sum game by the nonzero-sum Markov game.

The paper is organized as follows. First, we recall the general construction of approximate

Nash eqilibria based on the solution of continuous-time stochastic games. Then in Section 2 we

show that given a solution of the differential inclusion playing the role of the Bellman equation for

a nonzero-sum Markov game, one can construct an approximate Nash equilibrium in the original

game. In this case an error rate is estamated by the distance between the original and Markov

games. Finally, in Section 3 we introduce the construction of a Markov game approximating the

original differential game.

§ 1. Stochastic strategies for nonzero-sum differential games

We examine a nonzero-sum differential game with the dynamics

d

dt
x(t) = f1(t, x(t), u(t))+f2(t, x(t), v(t)), t ∈ [t0, T ], x(t) ∈ R

d, u(t) ∈ U, v(t) ∈ V. (1.1)

Here u(t) (respectively, v(t)) stands for the control of the first (respectively, second) player;

U and V are sets playing the role of control spaces for the players. It is assumed that player i
tries to maximize γi(x(T )).

Let us informally discuss the strategies used in the paper. The strong formalization is given

below in Definition 1. We consider the case when the players form their controls in a stochas-

tic way using a public signal that a stochastic process observed by both players at each time.

Additionally, we assume that the players’ controls depend on the history, i. e., they depend on

the trajectory x(·) ∈ C([t0, T ];R
d) in the nonanticipative way. This leads to the concept of

public-signal stochastic strategies with memory proposed in [2].

To introduce this we need some additional notations. If s, r ∈ [0, T ], then denote by Fs,r ,

, B(C([s, r],Rd)), where B(X ) stands for the Borel σ-algebra on a metric space (X , ̺). Further,

recall that if (Ω,F , {Ft}t∈[t0,T ]) is a filtered measurable space [19], then the process Z(·) taking

values in some metric space (X , ̺) is said to be {Ft}t∈[t0,T ]-adapted if, for any t ∈ [0, T ], the

mapping

Ω ∋ ω 7→ Z(t, ω) ∈ X
is Ft-measurable [19, D31]. Additionally, the process Z(·) is called {Ft}t∈[t0,T ]-progressively

measurable if, for any t ∈ [0, T ], the mapping

[0, t]× Ω ∋ (s, ω) 7→ Z(s, ω) ∈ X

is measurable with respect to B([0, t]) ⊗ Ft [19, D45]. Hereinafter, ⊗ stands for the product of

σ-algebras. Obviously, the progressively measurable process is adapted. If the {Ft}t∈[t0,T ]-adapt-

ed process Z(t) takes values in the Euclidean space, then one can construct its {Ft}t∈[t0,T ]-pro-

gressively measurable modification [19, T46].

Definition 1. We say that a 6-tuple w = (Ω,F , {Ft}t∈[t0,T ], ux(·), vx(·), Px(·)) is a profile of

public signal stochastic strategies if

(i) (Ω,F , {Ft}t∈[t0,T ]) is a measurable space with filtration;
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(ii) for every x(·) ∈ C([t0, T ];R
d), Px(·) is a probability on F ;

(iii) for every x(·) ∈ C([t0, T ];R
d), ux(·) (respectively, vx(·)) is a {Ft}t∈[t0,T ]-progressively mea-

surable process taking values in U (respectively, V );

(iv) if x(t) = y(t) for each t ∈ [t0, r], then

• for every A ∈ Fr, Px(·)(A) = Py(·)(A),

• for every t ∈ [t0, r], ux(·)(t) = uy(·)(t), vx(·)(t) = vy(·)(t) Px(·)-a.s.

(v) for any r, the restrictions of functions (x(·), t, ω) 7→ ux(·)(t, ω), (x(·), t, ω) 7→ vx(·)(t, ω) on

C([t0, T ];R
d)× [t0, r]× Ω are measurable with respect to Ft0,T ⊗ B([t0, r])⊗Fr;

(vi) for any A ∈ F , the function x(·) 7→ Px(·)(A) is measurable with respect to Ft0,T .

Let us briefly explain this definition. We assume that the players’ controls depend both on

a random signal and the trajectory. Additionally, the probabilities of the signal are determined

by the trajectory. Conditions (i)–(iii) and (vi) provide measurability properties of the introduced

objects. Conditions (iv) and (v) state that the dependence of the controls and the probability of

the signal on the trajectory is nonanticipating.

Now let us define the motion produced by the profile of public signal stochastic strategies.

Notice that since we consider stochastic strategies a realization should be a stochastic process and

include also a probability that is consistent with the family of probabilities Px(·).

Definition 2. Let t0 ∈ [0, T ], x0 ∈ R
d, w = (Ω,F , {Ft}t∈[t0,T ], Px(·), ux(·), vx(·)) be a profile of

public-signal correlated strategies on [t0, T ]. We say that a pair (X(·), P ) is a realization of the

motion generated by w and initial position (t0, x0) if

(i) P is a probability on F ;

(ii) X(·) is a {Ft}t∈[t0,T ]-adapted process taking values in R
d;

(iii) X(t0) = x0 P -a.s.;

(iv) for P -a.e. ω ∈ Ω,

d

dt
X(t, ω) = f1(t,X(t, ω), uX(·,ω)(t, ω)) + f2(t,X(t, ω), vX(·,ω)(t, ω)).

(v) Px(·) = P (·|X(·) = x(·)), i. e., given A ∈ F ,

P (A) =

∫

C([t0,T ];Rd)

Px(·)(A)χ(d(x(·))),

where χ is a probability on B(C([t0, T ];R
d)) defined by the rule: for any A ∈ Ft0,T ,

χ(A) , P{ω : X(·, ω) ∈ A}.

Below we introduce conditions (conditions (L1)–(L6)) assuring the existence of realization of

the motion produced by the public-signal profile of stochastic strategies in the case of stepwise

strategies.

Now let us turn to the definition of an approximate Nash equilibrium. Recall that the Nash

equilibrium means that every unilateral changing of strategies does lead to the increasing of the

outcome. Thus, we are to introduce the concept of unilateral deviation from the public-signal

profile of strategies. It is reasonable to assume that the deviating player has an access to the

public signal and can produce his own stochastic signal. This leads us to the following definition.
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Definition 3. Given a profile of public-signal correlated strategies

w = (Ω,F , {Ft}t∈[t0,T ], Px(·), ux(·), vx(·)),

we say that a profile of strategies w
c = (Ωc,F c, {F c

t }t∈[t0,T ], P
c
x(·), u

c
x(·), v

c
x(·)) is an unilateral

deviation by the first (respectively, the second) player if there exists a filtered measurable space

(Ω′,F ′, {F ′}t∈[t0,T ]) such that

(i) Ωc = Ω× Ω′;

(ii) F c = F ⊗ F ′;

(iii) F c
t = Ft ⊗F ′

t for t ∈ [t0, T ];

(iv) for any x(·) ∈ C([t0, T ];R
d) and any A ∈ F , P c

x(·)(A× Ω′) = Px(·)(A);

(v) for any x(·) ∈ C([t0, T ];R
d), t ∈ [t0, T ], ω ∈ Ω, ω′ ∈ Ω′, vcx(·)(t, ω, ω

′) = vx(·)(t, ω)

(respectively, uc
x(·)(t, ω, ω

′) = ux(·)(t, ω)).

Using this concept of unilateral changing of strategies we receive the following definition of

an approximate Nash equilibrium.

For a given initial position (t0, x0) and a profile of public-signal correlated strategies w, we

can introduce upper and lower player’s outcomes by the following rules:

J+
i (t0, x0,w) , sup{Eγi(X(T )) : (X(·), P ) generated by w and (t0, x0)},
J−
i (t0, x0,w) , inf{Eγi(X(T )) : (X(·), P ) generated by w and (t0, x0)}.

Here E denotes the expectation according to the probability P .

Definition 4. We say that a profile of public-signal correlated strategies w
∗ is a public-signal

correlated ε-equilibrium at the position (t0, x0) ∈ [0, T ] × R
d if, for any profile of strategies w

i

that is an unilateral deviation from w
∗ by the player i, the following inequality holds true:

J+
i (t0, x0,w

i) ≤ J−
i (t0, x0,w

∗) + ε.

In [2] the approximate Nash equilibria were constructed based on solutions of continuous

time stochastic games with dynamics determined by generators of the Lévy–Khintchine type.

The general theory of such systems is presented in [13]. In the following, D stands for a linear

subspace of C2(Rd) containing C2
b (R

d), linear functions x 7→ 〈a, x〉 and quadratic functions

x 7→ ‖x− a‖2. Let Λt[u, v] be an operator from D to C(Rd) of the form

(Λt[u, v]φ)(x) ,
1

2
〈G(t, x, u, v)∇,∇〉φ(x) + 〈b(t, x, u, v),∇〉φ(x) +

+

∫

Rd

[φ(x+ y)− φ(x)− 〈y,∇φ(x)〉1B1
(y)]ν(t, x, u, v, dy). (1.2)

Here B1 stands for the ball of radius 1 centered at the origin; for each t ∈ [0, T ], x ∈ R
d, u ∈ U ,

v ∈ V , G(t, x, u, v) is a nonnegative symmetric d × d-matrix, b(t, x, u, v) is a d-dimensional

vector, ν(t, x, u, v, ·) is a measure on R
d such that ν(t, x, u, v, {0}) = 0. In the following we call

the operator Λt[u, v] a generator [13].
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Let us notice that the Markov chain with the Kolmogorov matrix Qx,y(t, u, v), defined for all

x, y from at most countable set S ⊂ R
d, corresponds to the generator

Λt[u, v]φ(x) =
∑

z∈S

φ(z)Qx,z(t, u, v),

i. e.,

ν(t, x, u, v, A) =
∑

y∈S∩A, y 6=x

Qx,x+y(t, u, v).

Here we, without loss of generality, can use scaling and assume that ‖x − y‖ ≥ 1, for any

x, y ∈ S , x 6= y.

Remark 1. The dynamics (1.1) corresponds to the generator Λt[u, v] such that, for φ ∈ D,

Λt[u, v]φ(x) = 〈f1(t, x, u) + f2(t, x, v),∇φ(x)〉.

Given a control of players, the generator Λt produces the motion that is a stochastic process.

In the following we consider the relaxed controls of both players. It is a stochastic process with

the values in the set of probabilities on U×V denoted by rpm(U×V ). Note that any metric space

Υ is naturally embedded into the set of probabilities on Υ by the Dirac measure. Furthermore,

the set of probabilities on Υ is compact within the topology of narrow convergence whenever the

space Υ is compact.

We use the following definition of control process going back to [8, 10].

Definition 5. Let s, r ∈ [0, T ], s < r. We say that a 6-tuple (Ω,F , {F}t∈[s,r], P, η,X) is a

controlled system on [s, r] admissible for the generator Λt[u, v] if the following conditions hold:

(i) (Ω,F , {Ft}t∈[s,r], P ) is a filtered probability space;

(ii) η is a {Ft}t∈[s,r]-progressively measurable stochastic process taking values in rpm(U ×V );

(iii) X is a {Ft}t∈[s,r]-adapted stochastic process taking values in R
d;

(iv) for any φ ∈ D, the process

t 7→ φ(X(t))−
∫ t

s

∫

U×V

(Λτ [u, v]φ)(X(τ))η(τ, d(u, v))dτ

is a {Ft}t∈[s,r]-martingale.

It is assumed that in the auxiliary game with the dynamics determined by Λ the players tries

to maximize the values

E

[
γi(X(T )) +

∫ T

t0

hi(t,X(t), u(t), v(t))dt

]
.

We consider the solution concept for the auxiliary game given by the following condition that

is an analog of stability condition first introduced by Krasovskii and Subbotin for the zero-sum

differential games [15].

Definition 6. Let c1, c2 : [0, T ]×R
d → R be continuous functions. We say that the pair (c1, c2)

satisfies Condition (C) if, for any s, r ∈ [0, T ], s < r, there exists a filtered measurable space

(Ω̂s,r, F̂ s,r, {F̂ s,r
t }t∈[s,r]) satisfying the following properties:
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(i) given y ∈ R
d, one can find processes ηs,ry , Ŷ s,r

y and a probability P̂ s,r
y such that the

6-tuple (Ω̂s,r, F̂ s,r, {F̂ s,r
t }t∈[s,r], P̂ s,r

y , ηs,ry , Ŷ s,r
y ) is a control system admissible for Λt[u, v]

and, for i = 1, 2,

Ê
s,r
y

[
ci(r, Ŷ

s,r
y (r)) +

∫ r

s

∫

U×V

hi(t, Ŷ
s,r
y (t), u, v)ηs,ry (t, d(u, v))dt

]
= ci(s, y);

(ii) for any y ∈ R
d and v ∈ V , one can find a relaxed stochastic control of the first player

µs,r
y,v, a process Y

1,s,r

y,v taking values in R
d and a probability P

1,s,r

y,v such that the 6-tuple

(Ω̂s,r, F̂ s,r, {F̂ s,r
t }t∈[s,r], P

1,s,r

y,v , µs,r
y,v ⊗ δv, Y

1,s,r

y,v ) is a control system admissible for Λt[u, v]
and

E
1,s,r

y,v

[
c2(r, Y

1,s,r

y,v (r)) +

∫ r

s

∫

U

h2(t, Y
1,s,r

y,v (t), u, v)µs,r
y,v(t, du)dt

]
≤ c2(s, y);

(iii) given y ∈ R
d and u ∈ U , one can find a second player’s relaxed stochastic control νs,r

y,u,

a process Y
2,s,r

y,u and a probability P
2,s,r

y,u such that the 6-tuple

(Ω̂s,r, F̂ s,r, {F̂ s,r
t }t∈[s,r], P

2,s,r

y,u , δu ⊗ νs,r
y,u, Y

2,s,r

y,u )

is a control system admissible for Λt[u, v] and

E
2,s,r

y,u

[
c1(r, Y

2,s,r

y,u (r)) +

∫ r

s

∫

V

h1(t, Y
2,s,r

y,u (t), u, v)νs,r
y,u(t, dv)dt

]
≤ c1(s, y).

Here Ê
s,r
y (respectively, E

1,s,r

y,u , E
2,s,r

y,u ) denotes the expectation according to the probability P̂ s,r
y

(respectively, P
1,s,r

y,u , P
2,s,r

y,u ).

Let us comment on this condition. The pair of functions (c1, c2) is an analog of the value

function for the auxiliary games. The first part means that both players can maintain the values of

the functions c1, c2 through some trajectory. The second (respectively, third) condition states that

the first (respectively, second) player can punish his partner if he plays with the constant strategy.

These conditions is a stochastic version of the condition introduced in [1]. That condition provides

the existence of a universal Nash equilibrium in the class of strategies with guide.

To construct an approximate Nash equilibrium let us denote

Σ(t, x, u, v) , trG(t, x, u, v) +

∫

Rd

‖y‖2ν(t, x, u, v, dy), (1.3)

g(t, x, u, v) , b(t, x, u, v) +

∫

Rd\B1

yν(t, x, u, v, du). (1.4)

The value Σ estimates the randomness of the dynamics determined by the generator Λ, whereas

g is an effective drift in the auxiliary game.

The following assumptions are imposed.

(L1) U , V are metric compacts;

(L2) the functions f1, f2 G, b, γ1, γ2, h1, h2 are continuous and bounded;

(L3) for any φ ∈ D, the function [0, T ]×R
d ×U × V ∋ (t, x, u, v) 7→

∫
Rd φ(y)ν(t, x, u, v, dy) is

continuous.
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(L4) there exists a function α(·) : R → [0,+∞) such that α(δ) → 0 as δ → 0 and, for any

t, s ∈ [0, T ], x ∈ R
d, u ∈ U , v ∈ V ,

‖f(t, x, u, v)− f(s, x, u, v)‖ ≤ α(t− s),

‖g(t, x, u, v)− g(s, x, u, v)‖ ≤ α(t− s);

(L5) there exists a constant M such that, for any t ∈ [0, T ], x ∈ R
d, u ∈ U , v ∈ V ,

‖f(t, x, u, v)‖ ≤ M, ‖g(t, x, u, v)‖ ≤ M ;

(L6) there exists a constant K > 0 such that, for any t ∈ [0, T ], x′, x′′ ∈ R
d, u ∈ U , v ∈ V ,

‖f(t, x′, u, v)− f(t, x′′, u, v)‖ ≤ K‖x′ − x′′‖,

‖g(t, x′, u, v)− g(t, x′′, u, v)‖ ≤ K‖x′ − x′′‖;

(L7) there exists a constant R > 0 such that, for any x′, x′′ ∈ R
d, i = 1, 2,

|γi(x′)− γi(x
′′)| ≤ R‖x′ − x′′‖;

(L8) for any t ∈ [0, T ], x ∈ R
d, u ∈ U , v ∈ V ,

|Σ(t, x, u, v)| ≤ δ2,

‖f(t, x, u, v)− g(t, x, u, v)‖2 ≤ 2δ2,

|hi(t, x, u, v)| ≤ δ.

In condition (L8) δ is a small parameter.

Let us briefly comment on the imposed conditions. First, recall that the function g plays

the role of an effective drift, whereas Σ is an analog of the squared violence coefficient. Con-

dition (L1) is rather standard in the theory of differential games. Other conditions provide the

continuity properties. We assume that the dynamics of the original function and the effective

drift are both uniformly continuous w.r.t. time, Lipschitz continuous w.r.t. phase variable and

bounded. Additionally, we assume Lipschitz continuity of the payoff function (condition (L7)).

Finally, condition (L8) states that the original and auxiliary games are close.

Now let us discuss the existence of the motion. The public-signal profile of stochastic

strategies w = (Ω,F , {Ft}t∈[t0,T ], Px(·), ux(·), vx(·)) is called stepwise, if there exists a parti-

tion ∆ = {ti}Ni=0 of the time interval [t0, T ] such that, for any n = 0, . . . , N − 1, and every

x(·), y(·) ∈ C([t0, T ];R
d) the condition x(ti) = y(ti), i = 0, . . . , n implies that Px(·)(A) =

Py(·)(A), when A ∈ Ft and ux(·)(t) = uy(·)(t) Px(·) − a.s. when t ∈ [t0, tn+1). It can be proved

that under conditions (L1)–(L8), given a stepwise public-signal profile of stochastic strategies

w = (Ω,F , {Ft}t∈[t0,T ], Px(·), ux(·), vx(·)), there exists at least one realization of the motion gener-

ated by w and initial position (t0, x0). The proof is by induction.

Now let us present the theorem proved in [2] providing the existence of an approximate Nash

equilibrium and the estimates of the approximation rate. Set

β , (5 + 2K), (1.5)

C , 2
√
TeβT . (1.6)

Theorem 1. Let continuous functions c1, c2 : [0, T ]× R
d → R be such that
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• ci(T, x) = γi(x);

• (c1, c2) satisfies Condition (C).

Then, for any (t0, x0) ∈ [0, T ] × R
d, and ε > (RC + T )δ, there exists a profile of public-signal

correlated strategies w
∗ that is ε-equilibrium at (t0, x0). Moreover, if X∗ and P ∗ are generated

by w
∗ and (t0, x0), E

∗ denotes the expectation according to P ∗, then

|E∗γi(X
∗(T ))− ci(t0, x0)| ≤ ε.

§ 2 Markov games

In this section we examine a nonzero-sum two-player continuous time Markov game. We will

show that the solution of the Bellman system for the Markov game satisfies condition (C).
Let S be at most countable set of states. We assume that there exist Kolmogorov matrices

Q1
x,y(t, u), Q

2
x,y(t, v) satisfying the following property: for some natural number l, given x ∈ S ,

there exist Y (x) ⊂ S such that |Y (x)| = l and Q1
x,y(t, u) = Q2

x,y(t, v) = 0 when y /∈ Y (x).
Notice that this Markov chain corresponds to the generator

Λt[u, v]φ(x) =
∑

z∈S

φ(z)[Q1
x,z(t, u) +Q2

x,z(t, v)]. (2.1)

We assume that the first player tries to maximize the value

E

[
γ1(x(T )) +

∫ T

0

h1(t, x(t), u(t))dt

]
,

when the second player wishes to maximize

E

[
γ2(x(T )) +

∫ T

0

h2(t, x(t), v(t))dt

]
.

Further, let us introduce an analog of Bellman equation for the controlled Markov chain. To

this end, given t ∈ [0, T ], x ∈ S , ξ : S → R, µ ∈ P(U), ν ∈ P(V ) set

Ĥ1(t, x, ξ, µ) ,

∫

U

[
∑

y∈S

Q1
x,y(t, x, u)ξ(y) + h1(t, x, u)

]
µ(du),

Ĥ2(t, x, ξ, ν) ,

∫

V

[
∑

y∈S

Q2
x,y(t, x, v)ξ(y) + h2(t, x, u)

]
ν(du).

The functions Ĥ1, Ĥ2 play the role of pre-Hamiltonians. Further, put

O1(t, x, ξ) , Argmax
µ∈P(U)

Ĥ1(t, x, ξ, µ), O2(t, x, ξ) , Argmax
ν∈P(V )

Ĥ2(t, x, ξ, ν).

Finally, if ξ1, ξ2 are real valued functions defined on S , denote

H1(t, x, ξ1, ξ2) , max
µ∈P(U)

Ĥ1(t, x, ξ1, µ) +

{∫

V

∑

y∈S

Q2
x,y(t, x, v)ξ(y)ν(du) : ν ∈ O2(t, x, ξ2)

}
,

H2(t, x, ξ1, ξ2) , max
ν∈P(V )

Ĥ2(t, x, ξ2, ν) +

{∫

U

∑

y∈S

Q1
x,y(t, x, u)ξ(y)µ(du) : µ ∈ O1(t, x, ξ1)

}
.
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The multifunctions H1 and H2 are analogs of Hamiltonians.

Below we consider the following differential inclusions which are natural analogs of Bellman

equation
d

dt
ξi(t, x) ∈ −Hi(t, x, ξ1, ξ2), ξi(T, x) = γi(x), i = 1, 2. (2.2)

Theorem 2. Assume that Q1(t, u) and Q2(t, v) are continuous. Then, if the pair (ξ1(·, ·), ξ2(·, ·))
solves (2.2), then it satisfies condition (C).

Proof. Let s, r ∈ [0, T ], s < r. First, set

Ω̂s,r , D([s, r];S).

Here D([s, r],S) stands for the set of càdlàg functions with values in S . To define a filtration,

for t1, . . . , tk ∈ [s, r], C1, . . . , Ck ⊂ S , denote by As,r
t1,...,tk,C1,...,Ck

the set of càdlàg functions

x(·) ∈ D([s, r];S) such that, for each ti, x(ti) ∈ Ci. Now, put

F̂ s,r
t , B({As,r

t1,...,tk;C1,...,Ck
: t1, . . . , tk ∈ [s, t]}),

F̂ s,r , F̂ s,r
r .

Further, let µ̂ be a weakly measurable function from [0, T ]× S to P(U) such that

µ̂(t, x) ∈ O1(t, x, ξ1(·, ·)).

Similarly, pick a weakly measurable function ν̂ : [0, T ]× S → P(V ) satisfying

ν̂(t, x) ∈ O2(t, x, ξ2(·, ·)).

If y0 is a given initial position, then let P̂ s,r
y0

be a distribution of paths for the Markov chain with

the Kolmogorov matrix

Q̂x,y(t) ,

∫

U

Q1
x,y(t, u)µ̂(t, x, du) +

∫

V

Q2
x,y(t, v)ν̂(t, x, dv)

and the initial distribution equal to δy0 . Here δy0 stands for the Dirac measure concentrated at y0.

Now, define the process Ŷ s,r
y0

by the rule, for t ∈ [s, r], ω ∈ Ω̂s,r = D([s, r],S),

Ŷ s,r
y0

(t, ω) , ω(t).

Finally, put

ηs,ry0
(t, ω, d(u, v)) , µ̂(t, ω(t), du)⊗ ν̂(t, ω(t), dv).

By construction (Ω̂s,r, F̂ s,r, F̂ s,r
t , P̂ s,r

y0
, ηs,r, Ŷ s,r

y0
) is a control process admissible for the gener-

ator Λt[u, v] given by (1.2).

This implies the equality

Ês,r
y0
ξ1(r, Ŷ

s,r
y0

(r))− ξ1(s, y0) = Ês,r
y0

∫ r

s

ξ̇1(t, Ŷ
s,r
y0

(t))dt+

+Ês,r
y0

∫ r

s

∫

U

∫

V

∑

z∈S

ξ1(t, z)
[
Q1

Ŷ s,r
y0

(t),z
(t, u) +Q2

Ŷ s,r
y0

(t),z
(t, v)

]
µ̂(t, Ŷ s,r

y0
(t), du)ν̂(t, Ŷ s,r

y0
(t), dv) dt.
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Using the definition of H1, and the fact that (ξ1, ξ2) solves (2.2), we get

Ês,r
y0
ξ1(r, Ŷ

s,r
y0

(r))− ξ1(s, y0) = −Ês,r
y0

∫ r

s

∫

U

[h1(t, Ŷ
s,r
y0

(t), u)]µ̂(t, Ŷ s,r
y0

(t), du)dt.

Analogously, one can prove that

Ês,r
y0
ξ2(r, Ŷ

s,r
y0

(r))− ξ2(s, y0) = −Ês,r
y0

∫ r

s

∫

V

[h2(t, Ŷ
s,r
y0

(t), v)]ν̂(t, Ŷ s,r
y0

(t), dv)dt.

This proves part (i) of Condition (C).
To prove the second part, pick v ∈ V and consider the probability on distribution of paths

P
1,s,r

y0,v
produced by the Markov chain with the Kolmogorov matrix

Q
1,v

x,y(t) ,

∫

U

Q1
x,y(t, u)µ̂(t, x, du) +Q2

x,y(t, v)

and initial distribution equal to δy0 . Put

Y
1,s,r

y,v (t, ω) , ω(t), µs,r
y,v(t, ω, du) , µ̂(t, ω(t), du).

Notice that (Ω̂s,r, F̂ s,r, F̂ s,r
t , P

1,s,r

y0,v
, µs,r

y,v ⊗ δv, Y
1,s,r

y0,v
) is a control process admissible for the gener-

ator Λt[u, v] given by (1.2). As above, we have that

E
1,s,r

y0,v
ξ2(r, Y

1,s,r

y0,v
(r))− ξ2(s, y0)

=E
1,s,r

y0,v

∫ r

s

ξ̇2(t, Y
1,s,r

y0,v
(t))dt

+ E
1,s,r

y0,v

∫ r

s

∫

U

∑

z∈S

ξ2(t, z)

[
Q1

Y
1,s,r

y0,v
(t),z

(t, u) +Q2

Y
1,s,r

y0,v
(t),z

(t, v)

]
µ̂(t, Y

1,s,r

y0,v
(t), du)dt

Since
∫

U

[∑

z∈S

ξ2(t, z)
[
Q1

x,z(t, u) +Q2
x,z(t, v)

]
+ h2(t, x, v)

]
µ̂(t, x, du) ≤ H2(t, x, ξ1, ξ2),

using the assumption that the pair (ξ1, ξ2) is a solution of (2.2), we conclude that

E
1,s,r

y0,v
ξ2(r, Y

1,s,r

y0,v
(r))− ξ2(s, y0) ≤ −E

1,s,r

y0,v

∫ r

s

[h2(t, Y
1,s,r

y0,v
(t), v)]dt.

This shows part (ii) of Condition (C). The third part is proved in the same way. �

§ 3 Construction of approximating Markov game

The aim of this section is to present an example of Markov games approximating the original

nonzero-sum differential game with the dynamics given by (1.1), where player i tries to maximize

γi(x(T )).
Let us rewrite dynamics (1.1) in a coordinate-wise form:

d

dt
xj(t) = f1,j(t, x1(t), . . . , xd(t), u) + f2,j(t, x1(t), . . . , xd(t), v).

Here xj(t) stands for the j-th coordinate of the vector x(t), whilst

f1(t, x, u) = (f1,1(t, x, u), . . . , f1,d(t, x, u)),
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f2(t, x, v) = (f2,1(t, x, u), . . . , f2,d(t, x, v)).

Let κ be a positive number. Further, denote by ej the j-th coordinate vector.

Put

Q1
x,y(t, u) ,





1
κ
|f1,j(t, x, u)|, y = x+ κ sgn(f1,j(t, x, u)) · ej,

− 1
κ

∑d
j=1 |f1,j(t, x, u)|, y = x

0, otherwise.

Analogously, set

Q2
x,y(t, v) ,





1
κ
|f2,j(t, x, u)|, y = x+ κ sgn(f2,j(t, x, v)) · ej,

− 1
κ

∑d
j=1 |f2,j(t, x, v)|, y = x

0, otherwise.

Notice that if we consider the Markov chain with the Kolmogorov matrix Qx,y(t, u, v) ,

Q1
x,y(t, u) + Q2

x,y(t, v) and assume that the initial state lies at hZd, then the state of the Markov

chain will always belong to κZ
d. Thus, we can put S , κZ

d.

Now let us compute g and Σ. We have that

ν(t, x, u, v, du) =
d∑

j=1

|f1,j(t, x, u)|δ(κ sgn(f1,j(t,x,u)))ej(dy)

+
d∑

j=1

|f2,j(t, x, v)|δ(κ sgn(f2,j(t,x,v)))ej(dy).

Thus, we have that

g(t, x, u, v) = f(t, x, u, v), (3.1)

whereas

Σ(t, x, u, v) = κ

d∑

j=1

(|f1(t, x, u)|+ |f2(t, x, v)|) ≤ 2Mκ. (3.2)

This implies that if f1(t, x, u)+f2(t, x, v) is Lipschitz continuous and bounded by M , then the

proposed Markov approximation provides the stochastic system satisfying conditions (L1)–(L8).

Notice that

(ξQ1(t, u))(x) =
d∑

j=1

1

κ
|f1,j(t, x, u)|(ξ(x+ κ sgn(f1,j(t, x, u)))− ξ(x)),

(ξQ2(t, v))(x) =
d∑

j=1

1

κ
|f2,j(t, x, v)|(ξ(x+ κ sgn(f2,j(t, x, v)))− ξ(x)).

This provides the precise formulas for Hi and for Hi for any appropriate choice of func-

tions h1, h2. One can plug them into inclusion 2.2. Any solution of this inclusion (ξ1, ξ2)
satisfies condition (C) (see Theorem 2) and, thus, provides an approximate Nash equilibrium by

Theorem 1. If ‖h1‖, ‖h2‖ ≤ √
κ, the approximation rate is of order

√
κ (see condition (L8),

(3.1), (3.2)).

Notice that we have considered the case when S is equal to κZ
d and, thus, countable. How-

ever, one can easily construct the Markov approximation with the finite state space. To this end

assume that we are interested in the value function only in the subset of state space A ⊂ R
d.
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Since f is bounded by M , we have that every trajectory started at A does not leave the set

A1 , A + BMT , where Br stands for the ball of radius r centered at the origin. Further, let

A2 , A1 + BM/K . For x ∈ A1 ∪ (Rd \ A2), we define the functions

f ′
1(t, x, u) ,

{
f1(t, x, u), x ∈ A1,

0 x /∈ R
d \ A2,

f ′
2(t, x, v) ,

{
f2(t, x, v), x ∈ A1,

0 x /∈ R
d \ A2,

The function f ′(t, x, u, v) , f ′
1(t, x, u) + f ′

2(t, x, v) is continuous, bounded by M , uniformly

continuous w. r. t. time, Lipschitz continuous w. r. t. x with the constant K and equal to zero on

R
d \ A2. It can be extended to the whole space with the same Lipshitz constant and the same

modulus of continuity w. r. t. to t. Since f ′(t, x, u, v) = f(t, x, u, v) for x ∈ A1, we have that the

solutions of the nonzero-sum game for the original dynamics and the dynamics given by

d

dt
x(t) = f ′(t, x(t), u, v)

coincide for x ∈ A. On the other hand, we can consider the Markov game for the function f ′ only

for the set Bκ

2 , A+BMT+M/K+Mκ ∩ κZ
d due to the fact that outside this state the dynamics is

equal to zero.

§ 4 Conclusion

The paper deals with the Markov approximations of the nonzero-sum differential game. The

cornerstone of our consideration is the general result proved in [2] stating that, given an auxiliary

continuous-time stochastic game, and a pair of functions satisfying stability condition (C) for

this auxiliary game, one can construct an approximate Nash equilibrium for the original game.

The principal example here is Markov game, i. e., the game with the dynamics determined by a

continuous-time Markov chain. We write down the system of differential inclusions playing the

role of the system of Bellman equations for the Markov game and prove that every its solution

satisfies condition (C). Finally, we introduce the method of construction of a Markov game

by the given differential game and estimate the approximation rate for the corresponding Nash

equilibrium.
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Марковские аппроксимации неантагонистических дифференциальных игр

Ключевые слова: неантагонистические дифференциальные игры, приближенное равновесия по Нэ-

шу, марковские игры, дифференциальные включения.

УДК 517.977.8

DOI: 10.35634/vm200101

В статье рассматриваются приближенные решения неантагонистических дифференциальных игр.

Приближенное равновесие по Нэшу может быть построено по заданному решению вспомогатель-

ной стохастической игры с непрерывным временем. Мы рассматриваем случай, когда динамика

вспомогательной игры задается марковской цепью с непрерывным временем. Для этой игры функ-

ция цены определяется решением системы обыкновенных дифференциальных включений. Таким

образом, мы получаем конструкцию приближенного равновесия по Нэшу с выигрышами игроков,

близкими к решениям системы обыкновенных дифференциальных включений. Также предложен

способ построения марковской игры с непрерывным временем, аппроксимирующей исходную игру.
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