АНАЛИЗ И МОДЕЛИРОВАНИЕ СЛОЖНЫХ ЖИВЫХ СИСТЕМ

Нелинейная динамика трансмембранного потенциала и рН в примембранной области клетки харовых водорослей

А. И. Лаврова^{1,а}, Т. Ю. Плюснина¹, А. В. Украинец², Г. Ю. Ризниченко¹, А. Б. Рубин¹

¹ Московский государственный университет им. М. В. Ломоносова, биологический факультет, 119991, ГСП-1, г. Москва, Ленинские горы, МГУ, д. 1, стр. 12 ² Московский физико-технический институт (государственный университет), 141700, г. Долгопрудный Московской обл., Институтский переулок, д. 9

E-mail: ^a aurebours@googlemail.com

Получено 29 июня 2008 г.

В данной работе развивается предложенная ранее модель [1] потенциалозависимого протонного переноса через мембрану клетки водоросли *Chara*. В предыдущем варианте модели [1] в качестве переменных рассматриваются концентрация протонов снаружи клетки и трансмембранный потенциал. В предлагаемом варианте модели вводится новая переменная — концентрация протонов в цитоплазме. При исследовании модели получены колебательная и хаотическая динамики трансмембранного потенциала. Обсуждается физиологическая роль наблюдаемых режимов.

Ключевые слова: харовые водоросли, трансмембранный потенциал, рН, колебания

Nonlinear dynamic of the transmembrane potential and pH along the cell membrane of *Chara* alga

A. I. Lavrova¹, T. Yu. Plusnina¹, A. V. Ukrainetz², G. Yu. Riznichenko¹, A. B. Rubin¹

Abstract. — The model of potential dependent proton transfer trough the cell membrane of *Chara* alga developed in [1] is considered. In the last version of the model we considered two variables: proton concentration near the surface cell and transmembrane potential. In present version we introduce the new variable — proton concentration in cytoplasm. Oscillative and chaotic dynamic of transmembrane potential was obtained in calculations. The physiological role of these patterns is discussed.

Key words: Chara alga, transmembrane potential, pH, oscillations

Citation: Computer Research and Modeling, 2009, vol. 1, no. 2, pp. 233–239 (Russian).

¹ Moscow State University, Biological Faculty, MSU, 1, building 12, GSP-1, Leninskiye Gory, Moscow, 119991, Russia

² Moscow Institute of Physics and Technology (State University), Institutskii pereulok 9, 141700, Dolgoprudny, Moscow Region, Russia

Введение

Для исследования динамики трансмембранного потенциала в растительных клетках используются одноклеточные водоросли *Chara corallina* и *Nitellopsys abtusa*. Эти клетки являются удобным объектом для изучения различных электрофизиологических явлений. Они обладают большими размерами (диаметром 0.6–1.0 мм и длиной 40–80 мм) и имеют более простое строение по сравнению с клетками высших растений или животных. Физиология этих клеток достаточно хорошо исследована.

Имеются многочисленные экспериментальные данные о нелинейных режимах изменения мембранного потенциала и рН вблизи мембраны [2–12]. Распределения потенциала и рН могут характеризоваться как пространственной неоднородностью [2–7], так и колебательной динамикой во времени [8, 9]. Колебания потенциала и рН обычно измеряются в выбранной точке вблизи внешней стороны мембраны [8, 9]. Колебания могут быть как затухающими [8, 9], так и незатухающими [10, 11], период составляет 2–3 мин. [9–11], а также носить хаотический характер [9]. Колебания могут возникать как спонтанно [8], так и при внешних воздействиях, например, при изменении интенсивности освещения [9] или действии электрических стимулов [12].

Изменения трансмембранного потенциала и pH снаружи клетки происходят в основном за счет работы протонной АТФазы плазматической мембраны, которая переносит протоны из цитоплазмы во внешнюю среду, и зависят от интенсивности света. Экспериментально было показано, что pH цитоплазмы является одним из регуляторов протонной АТФазы [13, 14, 15]. Повидимому, цитоплазматическое pH — один из «индикаторов» процессов, происходящих в хлоропластах на свету, так как при освещении происходит уменьшение концентрации протонов в цитоплазме в результате их оттока в хлоропласты [16, 17]. Для того чтобы связать процессы внутри и снаружи клетки в ранее предложенную модель, была введена третья переменная — pH цитоплазмы.

Предложенная в данной работе модель потенциалозависимого протонного переноса качественно описывает экспериментально найденные нелинейные режимы. С помощью модели исследуется динамика потенциала и pH снаружи и внутри клетки в зависимости от интенсивности света.

Модель

Для исследования колебательных и хаотических режимов мы развили модель потенциалозависимого протонного переноса через плазмалемму, разработанную нами ранее [1]. Для получения конкретного вида потока протонов была использована кинетическая схема работы транспортной системы, включающей в себя потоки наружу клетки через $AT\Phi$ азу, а также поток протонов через каналы (рис. 1a). Чтобы получить выражение для изменения концентрации протонов снаружи и внутри клетки за счет работы транспортной системы, был применен метод Кинга—Альтмана (метод графов).

Модель представляет собой систему трех обыкновенных дифференциальных уравнений. Переменными модели являются концентрация протонов вблизи внешней стороны мембраны (h_o) и трансмембранный потенциал (ψ) и концентрация протонов в цитоплазме (h_i) . Система уравнений имеет следующий вид:

$$\begin{split} \frac{dh_o}{d\tau} &= J_{ATPase} - \gamma h_o, \\ \frac{d\psi}{d\tau} &= -J_{ATPase} z - J_l, \\ \frac{dh_i}{d\tau} &= -J_{ATPase} - J_{Chl}. \end{split} \tag{1}$$

Первое уравнение описывает изменение концентрации протонов вблизи внешней стороны

мембраны. Выражение
$$J_{ATPase} = \frac{h_i^2 h_o e^{i \psi} K_3}{h_i (1 + h_o)^2 e^{2 \psi} (2 + K_3 h_i) + 2 (1 + h_i)^2 K_2 h_o}$$
 описывает изменение кон-

центрации протонов за счет работы транспортной системы. В ходе вывода было сделано допущение о том, что процессы переноса протонов с одной стороны мембраны на другую происходят гораздо медленнее по сравнению с процессами присоединения и отщепления протонов (рис. 1а). Для описания общего изменения концентрации протонов снаружи мембраны клетки учитывались также отток протонов из примембранной области в среду ућ. Второе уравнение описывает изменение трансмембранного потенциала за счет тока протонов через транспортную систему $J_{{}_{ATPase}}z$ и пассивного тока утечки $J_l = g(\psi - \psi_0)$. Третье уравнение описывает изменение концентрации протонов в цитоплазме за счет потоков через транспортную систему $J_{\it ATPase}$ и мембрану хлоро-

пластов
$$J_{\mathit{Chl}} = \frac{(ah_i - 1)me^{-I}}{1 + h_i b},$$
 где $I = \frac{\tilde{I}}{I_0}$. \tilde{I} — величина интенсивности света, которая меняется

в эксперименте. I_0 выбиралась таким образом, чтобы модельные результаты были сопоставимы с экспериментальными данными [18]. Выражение для потока J_{Chl} выводилось согласно кинетике Михаэлиса-Ментен (рис. 16).

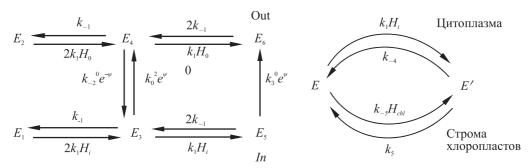


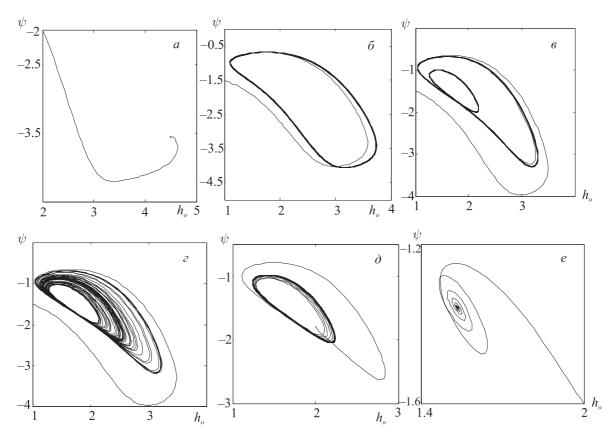
Рис. 1а. Кинетическая схема работы транспортной системы. *Out* — внешняя сторона мембраны, *In* внутренняя сторона мембраны, H_{in} — концентрация плазмы в строму хлоропластов: H_i — концентрапротонов в цитоплазме, H_{out} — концентрация протонов вблизи внешней стороны мембраны. E_1 , E_2 , E_3 , E_4 , E_5, E_6 — конформационные состояния транспортной системы. $k_2^0 e^{\psi}$, $k_{-2}^0 e^{-\psi}$, $k_3^0 e^{\psi}$ — потенциалозависимые константы переноса протона через мембрану

Рис. 16. Кинетическая схема работы транспортера, осуществляющего перенос протонов из цитоция протонов в цитоплазме, H_{chl} — концентрация протонов в строме хлоропластов. Т — свободный транспортер (без субстрата), T_1 — с субстратом. $k_{4},\ k_{-4},\ k_{5},\ k_{-5}$ — константы переноса протона из цитоплазмы в строму хлоропластов

Безразмерные переменные модели: $h_o = \frac{[H_{out}]}{K}$ — концентрация протонов вблизи внешней

стороны мембраны, $\psi = \frac{\varphi F}{2RT}$ — трансмембранный потенциал, $h_i = \frac{[H_i]}{K_i}$ — концентрация протонов в цитоплазме, $\tau = \frac{tk_{-2}[E_0]}{K_1}$ — время.

Параметры модели, выраженные через элементарные константы кинетической схемы и электрические характеристики мембраны:


$$K_{1} = \frac{k_{-1}}{k_{1}}, K_{2} = \frac{k_{-2}^{0}}{k_{2}^{0}}, K_{3} = \frac{k_{3}^{0}}{2k_{2}^{0}}, g = \frac{\tilde{g}K_{1}}{Ck_{-2}[E_{0}]}, z = \frac{pF^{2}K_{1}}{CRT}, \psi_{0} = \frac{\varphi_{0}F}{2RT}, m = \frac{t_{0}k_{2}^{0}E_{Chl}k_{-4}k_{-5}H_{Chl}}{K_{1}k_{5}(k_{-4} + k_{-5}H_{chl} + k_{5})}, a = \frac{k_{4}k_{5}K_{1}}{k_{-4}k_{-5}H_{chl}}, b = \frac{k_{4}K_{1}}{k_{-4} + k_{-5}H_{chl} + k_{5}}.$$

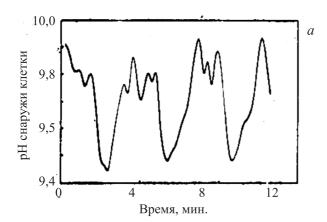
Здесь H_{chl} — концентрация протонов в строме хлоропластов. E_0 — полная концентрация всех состояний транспортера на плазматической мембране (моль · м $^{-3}$). T_{Chl} — полная концентрация всех состояний транспортера на мембране хлоропласта (моль · м $^{-3}$). \tilde{g} — проводимость пассивных каналов (Ом $^{-1}$ · м $^{-2}$), C — емкость мембраны (мк Φ · м $^{-2}$), p — диаметр клетки (м), φ_0 — потенциал покоя на плазматической мембране (В), R_i — сопротивление цитоплазмы (Ом·м). Константы k_1 (моль · с $^{-1}$ · м $^{-3}$) и k_{-1} (с $^{-1}$) — характеризуют присоединение и отщепление протона, константы k_2 (с $^{-1}$), k_3 (с $^{-1}$) характеризуют перенос протона через мембрану во внешнюю среду за счет работы АТФазы, k_{-2} (с $^{-1}$) — перенос протонов в клетку через каналы (рис. 1a). k_4 , k_{-4} , k_5 , k_{-5} — константы переноса протона из цитоплазмы в строму хлоропластов.

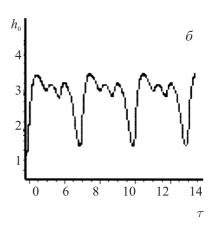
Параметры модели оценивались в работе [19] по экспериментальным данным и соответствовали условиям освещения $\tilde{I}=40~{\rm Br/m^2}.$

Результаты

Для численного решения системы обыкновенных дифференциальных уравнений использовались пакеты программ DBSolve 7.0 и TRAX.

Рис. 2. Фазовые портреты системы при изменении интенсивности света: a - I = 0 (устойчивый узел); $\delta - I = 0.75$ (предельный цикл); $\epsilon - I = 0.8495$ (удвоение периода колебаний); $\epsilon - I = 0.9$ (странный аттрактор); $\delta - I = 0.855$ (предельный цикл); $\epsilon - I = 2.25$ (устойчивый фокус). Параметры системы: z = 4, $K_2 = 0.001$, $K_3 = 0.5$, a = 0.0596, b = 0.01, m = 1.95, $\gamma = 0.339$, g = 1.81, $\psi_0 = -0.21$


В интервале интенсивностей от 0.8495 до 0.86 (2.6–3.1 Вт/м 2) наблюдается хаотическая динамика (странный аттрактор, рис. 26, ε) и при дальнейшем увеличении света до 0.9 (8 Вт/м 2) устанавливается режим автоколебаний (предельный цикл). При увеличении интенсивности освеще-


ния от 2.206 до 2.218 (8–34 $\rm BT/m^2$) колебания вновь теряют периодический характер, и устанавливается хаотическая динамика (странный аттрактор). При I=0.855 (35.2 $\rm BT/m^2$) колебания вновь становятся периодическими (автоколебания малой амплитуды, рис. 2∂) и при дальнейшем увеличении интенсивности затухают (рис. 2e).

Была исследована динамика поведения трансмембранного потенциала и концентрации протонов снаружи и внутри клетки в зависимости от интенсивности света. Значения интенсивности света постепенно изменялись от 0 (свет выключен) до $2.24~(37~{\rm BT/m^2})$ — интенсивность света в размерном виде). В темноте, I=0, наблюдается устойчивое стационарное состояние (устойчивый узел, рис. 2a). При изменении интенсивности света от 0 до $0.75~(1~{\rm BT/m^2})$ возникают затухающие колебания рН и потенциала (устойчивый фокус). При изменении интенсивности света от $0.75~{\rm дo}$ $0.845~(1-2.6~{\rm BT/m^2})$ возникают автоколебания (рис. 26, предельный цикл).

Таким образом, при постепенном изменении интенсивности света наблюдается широкий спектр нелинейных режимов, включающий как периодические, так и непериодические (хаотические) колебания.

В результате исследования кинетики потенциала и рН были найдены режимы, сходные с полученными экспериментальными данными (рис. 3a, δ).

Рис. 3. Хаотическая динамика pH снаружи клетки харовой водоросли: a — лабораторный эксперимент [9]; δ — модельный эксперимент. Параметры системы: z = 4, K_z = 0.001, K_z = 0.5, a = 0.0596, b = 0.01, m = 1.95, γ = 0.339, g = 1.81, ψ_0 = -0.21, I = 2.202

Обсуждение

В предыдущем варианте модели [1] мы исследовали динамику трансмембранного потенциала и рН снаружи клетки. Были получены периодические колебания этих величин, обусловленные обратной связью между трансмембранным потенциалом и рН снаружи клетки. В данной работе была введена третья переменная — рН цитоплазмы для того, чтобы учесть взаимосвязь процессов внутри и снаружи клетки. Введение третьей переменной позволило получить квазихаотические режимы. Таким образом, рН цитоплазмы обусловливает возникновение нерегулярности в колебаниях рН снаружи клетки, что позволяет описать экспериментально наблюдаемые непериодические колебания (рис. 3a, δ).

На основании полученных результатов можно сделать некоторые предположения о роли колебательных и хаотических режимов в физиологии клетки. Переход от темновых условий к условиям интенсивного освещения имеет сложный характер и состоит из нескольких этапов. Этапы перехода представляют собой колебательные и квазихаотические режимы, которые, по-видимому, возникают тогда, когда клетке «необходимо» установить некий баланс процессов, нарушенный в результате внешних воздействий. То есть такие режимы являются переходными процессами, позволяющими живой системе при резком изменении внешних условий (например, при включении или выключении света) перейти в новое состояние не скачкообразно, что могло бы негативно отразиться на физиологических функциях клетки, а постепенно «подстраивая» все параметры к новому состоянию.

Авторы благодарят А. И. Лобанова, А. А. Полежаева, А. А. Булычева и А. А. Черкашина за полезные обсуждения.

Работа поддержана грантом РФФИ, № 03-04-04000.

Список литературы

- 1. Plyusnina T. Yu., Lavrova A. I., Price C. B., Riznichenko G. Yu., Rubin A. B. Nonlinear dynamics near the cell membrane of *Chara corallina* // J. of Biol. Systems. 2008. Vol. 16. P. 197–217.
- 2. *Lucas W. J. and Nuccitelli R.* HCO₃⁻ and OH⁻ transport across the plasmalemma of *Chara* // Planta. 1980. Vol. 150. P. 120–131.
- 3. *Lucas W. J.* Plasmalemma transport HCO₃ and OH in *Chara corallina*: non-antiporter systems // J. Exp. Bot. 1976. Vol. 27. P. 19–31.
- 4. *Lucas W. J.*, *Dainty J.* Spatial Distribution of Functional OH⁻ Carriers Along a Characean Internodal Cell: Determined by the Effect of Cytochalasin B on H¹⁴CO₃⁻ Assimilation // J. Membrane Biol. 1977. Vol. 32. P. 75–92.
- 5. Walker N. A., Smith F. A. Circulating electric current between acid and alkaline zones associated with HCO₃ assimilation in Chara // J. Exp. Bot. 1977. Vol. 28. P. 1190–1206.
- 6. *Lucas W. J.* Mechanism of acquisition of exogenous bicarbonate by internodal celles of *Chara corallina* // Plant Physiol. 1982. Vol. 156. P. 181–192.
- 7. Leonetti M., Pelce P. On the theory of pH bands in characean algae // C. R. Acad. Sci. Paris. 1994. Vol. 317. P. 801–805.
- 8. *Fisahn J., Hansen U. P., Mikschl E.* Separate oscillations of the electrogenic pump and of a K-channel in Nitella as revealed by simultaneous measurement of membrane potential and of resistance // J. Exp. Botany. 1986. Vol. 37. P. 34–47.
- 9. *Fisahn J., Lucas W. J.* Oscillations in extracellular current, external pH and membrane potential and conductance in the alkaline bands of *Nitella* and *Chara // J.* Exp. Botany. 1989. Vol. 40. P. 1185–1193.
- 10. *Lefebre J.*, *Gillet C.* Periodic variations of the chloride electrochemical potential difference during spontaneous oscillations of the membrane potential in Nitella // BBA. 1970. Vol. 103. P. 575–578.
- 11. *Hayashi H., Hirazawa K.* Nitella fluctuation and instability in the membrane potential near threshold // Biophysical Journal. 1980. Vol. 31. P. 31–44.
- 12. *Boels H. D., Hansen U. P.* Light and electrical current stimulate the same feed-back system in Nitella // Plant and Cell Physiol. 1982. Vol. 23. P. 343–346.
- 13. *Morsomme P., Boutry M.* The plasma membrane H⁺-ATPase: sttucture, function and regulation // BBA. 2000. Vol. 1465. P. 1–16.
- 14. *Mimura T., Kirino Y.* Light-induced membrane hyperpolarization and adenine nucleotide levels in perfused characean cells // Plant Cell Physiol. 1984. Vol. 25. P. 813–820.
- 15. *Tazawa M*. Cell Physiological Aspects of the Plasma Membrane Electrogenic H⁺ pump // J. Plant Res. 2003. Vol. 116. P. 419–442.

- 16. *Vanselow K. H., Kolbowski J., Hansen U.-P.* Further evidence for the relationship between light-induced changes of plasmalemma transport and transthylakoid proton uptake // J. Exp. Bot. 1989. Vol. 40. P. 239–245.
- 17. *Felle H.*, *Bertl A.* Light-induced cytoplasmic pH changes and their interrelation to the activity of the electrogenic proton pump in *Riccia fluitans* // BBA. 1986. Vol. 848. P. 176–182.
- 18. *Булычев А. А.*, *Черкашин А. А.*, *Рубин А. Б.*, *Мюллер С*. Распределение кислых и щелочных зон на поверхности клеток *Chara corallina* при стационарном и локальном освещении // Физиология растений. 2002. Т. 49. С. 805–813.
- 19. *Takeuchi Y., Kishimoto U., Ohkawa T. and Kami-ike N.* A kinetic analysis of the electrogenic pump of *Chara corallina*: II. Dependence of the pump activity on external pH // J. Membrane Biol. 1985. Vol. 86. P. 17–26.