
COMPUTER RESEARCH AND MODELING
2024 VOL. 16 NO. 7 P. 1715–1726
DOI: 10.20537/2076-7633-2024-16-7-1715-1726

SPECIAL ISSUE

UDC: 004.42

A survey on the application of large language models
in software engineering

N. Salem1,a, A. Hudaib1,b, K. Al-Tarawneh1,c, H. Salem2,d, A. Tareef1,e,
H. Salloum2,f, M. Mazzara2,g

1King Abdullah II School for Information Technology, University of Jordan,
Amman, Jordan

2Innopolis University,
1 Universitetskaya st., Innopolis, 420500, Russia

E-mail: a NAD9220478@ju.edu.jo, b ahudaib@ju.edu.jo, c Khawla_t@mutah.edu.jo, d H.salem@innopolis.ru,
e a.tareef@ju.edu.jo, f h.salloum@innopolis.university, g m.mazzara@innopolis.ru

Received 26.10.2024, after completion — 19.11.2024
Accepted for publication 25.11.2024

Large Language Models (LLMs) are transforming software engineering by bridging the
gap between natural language and programming languages. These models have revolutionized
communication within development teams and the Software Development Life Cycle (SDLC) by
enabling developers to interact with code using natural language, thereby improving workflow
efficiency. This survey examines the impact of LLMs across various stages of the SDLC, including
requirement gathering, system design, coding, debugging, testing, and documentation. LLMs have
proven to be particularly useful in automating repetitive tasks such as code generation, refactoring, and
bug detection, thus reducing manual effort and accelerating the development process. The integration
of LLMs into the development process offers several advantages, including the automation of error
correction, enhanced collaboration, and the ability to generate high-quality, functional code based
on natural language input. Additionally, LLMs assist developers in understanding and implementing
complex software requirements and design patterns. This paper also discusses the evolution of LLMs
from simple code completion tools to sophisticated models capable of performing high-level software
engineering tasks. However, despite their benefits, there are challenges associated with LLM adoption,
such as issues related to model accuracy, interpretability, and potential biases. These limitations must be
addressed to ensure the reliable deployment of LLMs in production environments. The paper concludes
by identifying key areas for future research, including improving the adaptability of LLMs to specific
software domains, enhancing their contextual understanding, and refining their capabilities to generate
semantically accurate and efficient code. This survey provides valuable insights into the evolving
role of LLMs in software engineering, offering a foundation for further exploration and practical
implementation.

Keywords: large language model, natural language processing, software development life cycle

Citation: Computer Research and Modeling, 2024, vol. 16, no. 7, pp. 1715–1726.

© 2024 Nadia Salem, Amjad Hudaib, Khawla Al-Tarawneh, Hamza Salem, Afaf Tareef, Hadi Salloum, Manuel Mazzara
This work is licensed under the Creative Commons Attribution-NoDerivs 3.0 Unported License.

To view a copy of this license, visit http://creativecommons.org/licenses/by-nd/3.0/
or send a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

1716 N. Salem, A. Hudaib, K. Al-Tarawneh, H. Salem, A. Tareef, H. Salloum, . . .

Introduction

Human beings possess a remarkable ability to utilize language as a means of self-expression and
interpersonal connection. This capacity begins to develop in early childhood and continues to evolve
throughout an individual’s life. In contrast, machines lack this inherent capability for understanding
and communication, unless they are equipped with advanced artificial intelligence (AI) algorithms.
The quest to enable machines to read, write, and communicate in a manner akin to human beings
has been a significant challenge and aspiration within the field of AI [Chowdhary, Chowdhary, 2020;
Hadi et al., 2023]. Artificial intelligence encompasses the creation of systems that can replicate human
cognitive abilities [Zhao et al., 2023]. In the 18th century, the philosopher Denis Diderot posited
a thought-provoking idea: if a parrot could respond to any inquiry, it could be deemed intelligent [Liu
et al., 2023a]. Although Diderot referred to living beings, his concept highlighted the intriguing notion
that a highly intelligent entity might exhibit human-like behavior. This idea was further expanded
by Alan Turing in the 1950s, who proposed what is now known as the Turing Test. This test remains
a pivotal concept in AI, focusing on determining whether machines can exhibit intelligence comparable
to that of humans [Li et al., 2023]. In AI discourse, the term “agent” frequently arises. Agents serve as
the foundational components of AI systems. An agent can perceive its environment through sensors,
make decisions, and take actions using actuators [Weng, 2023].

The investigation at hand reviews recent advancements in LLMs and their profound implications
for the AI community. It delves into various aspects of LLMs, including pre-training, adaptation,
utilization, and evaluation of capabilities, while emphasizing their significance and potential future
directions. This review highlights the powerful capabilities of pre-trained models, particularly in
addressing diverse natural language processing (NLP) tasks. Moreover, it articulates the central theme
of model scaling, which enhances LLM performance and unveils specialized capabilities not evident in
smaller models. The technological evolution in the LLM domain has revolutionized AI algorithm
development, leading to significant advancements that have garnered substantial attention in both
academia and industry. As progress continues, the discussion will address persisting challenges and
future research directions, delineating the imperative for ongoing exploration and innovation in LLM
studies. In Fig. 1 an evolution process of the four generations of language models from the perspective
of task-solving capacity.

Figure 1. Evolution process of the four generations of language models (LM) from the perspective of task-solving
capacity [Zhao et al., 2023]

The exploration of LLMs in NLP tasks reveals transformative benefits across multiple domains.
With extensive prior training on diverse datasets, LLMs demonstrate formidable capabilities in
understanding and generating human language, thereby excelling in language understanding and
generation tasks. Specifically, the significantly expanded LLM, which owes its success to its large

КОМПЬЮТЕРНЫЕ ИССЛЕДОВАНИЯ И МОДЕЛИРОВАНИЕ

A survey on the application of large language models . . . 1717

model size, is optimized for linguistic tasks due to its extensive parameter volume. This enables it to
accurately capture and reproduce nuanced linguistic features across tasks such as language translation,
sentiment analysis, question answering, and text generation. Furthermore, applications such as login
software, virtual assistants, and translation systems have been revolutionized by LLMs, promising more
natural and engaging user experiences.

The scale of LLM impacts heralds a new era in AI algorithm development, identifying key
areas beyond traditional NLP tasks that warrant innovation and progress. Notable applications,
including language translation, sentiment analysis, and question answering, exemplify the significant
contributions of larger LLMs across diverse fields. Nevertheless, substantial research remains to address
the challenges that persist within the LLM domain as we strive towards new frontiers of discovery.

Large language models have emerged as pivotal components in various applications. In language
translation, they dramatically enhance the performance of translation software by accurately capturing
subtle linguistic features and generating distinctive translations. Similarly, in sentiment analysis, larger
language models exhibit a profound understanding of the emotional tone within texts, leading to
improved results in sentiment analysis tasks. Additionally, in question-answering scenarios, LLMs
demonstrate enhanced comprehension of nuanced inquiries, thereby increasing overall accuracy. Their
capacity to generate contextually relevant text has facilitated advancements in applications such as
chatbots, virtual assistants, and content creation, representing a significant leap in the functionality of
AI in natural and industrial applications.

AI-driven chatbots, such as ChatGPT, are poised to revolutionize healthcare by improving patient
outcomes through enhanced communication between patients and healthcare professionals. Utilizing
natural language processing, these chatbots facilitate more accessible dissemination of information
regarding patient care and treatment options. For instance, there is an ongoing proposal for a database
focused on repurposing COVID-19 drugs through NLP techniques [Thawkar et al., 2023]. Figure 2
shows the applications of LLMs in research directions, options, and downstream fields [32].

Figure 2. Applications of LLMs in research directions, options, and downstream fields [Zhao et al., 2023]

In summary, larger language models possess a distinct advantage in generating coherent and
contextually appropriate text. This proficiency renders them invaluable for various applications,
including chatbots, virtual assistants, and content creation. Their capability to capture intricate
linguistic details enhances their performance in natural language tasks, ultimately facilitating a deeper
understanding of language dynamics. As they continue to process vast datasets, these models improve
their contextual understanding, allowing for the generation of creative and engaging content across
multiple domains.

2024, Т. 16, № 7, С. 1715–1726

1718 N. Salem, A. Hudaib, K. Al-Tarawneh, H. Salem, A. Tareef, H. Salloum, . . .

The methodology

The methodology employed involved a thorough investigation of 31 pertinent Software
Engineering (SE) papers that utilized LLMs. An automated search strategy incorporating keywords
related to both SE and LLMs was implemented. Zhang [Zhang et al., 2023b] investigates the
utilization of LLMs within Software Engineering, exploring their practical applications throughout the
development process. This section categorizes existing studies in SE that employ LLMs into four main
phases of the SDLC: software requirements and design, software development, software testing, and
software maintenance. Each phase encompasses various code-related tasks, such as fault localization
and program repair.

Software requirements are comprehensive descriptions of conditions or capabilities necessary
for users or system components, typically documented to ensure that developed software meets
user expectations. Software design involves defining the structure, components, and functionalities
of a software system. In the software requirements generation phase, automated processes derive
formal descriptions from unstructured data sources like code comments. LLMs exhibit significant
promise in automating this process, as demonstrated by Xie et al. [Xie et al., 2023a], who employed
few-shot learning techniques for generalization. This study highlights recommendations for future
research aimed at enhancing LLM efficacy in specification generation, including the exploration
of hybrid methodologies that integrate traditional techniques with LLMs. In software specification
repair, LLMs like ChatGPT are employed to address errors in formal declarations of software
requirements or behaviors. Hasan et al. [Hasan et al., 2023] evaluated ChatGPT’s capability in repairing
specifications in the Alloy language, comparing its performance against existing automated repair
methods. The study revealed ChatGPT’s effectiveness in addressing unique errors while identifying
areas for improvement in consistency. Effectively categorizing software requirements is crucial and
encompasses both functional and non-functional dimensions. Functional requirements delineate specific
tasks the software should perform, whereas non-functional requirements encompass broader attributes
such as performance and security. Hey et al. [Hey et al., 2020] introduced NoRBERT, a BERT-
based approach that effectively classifies both types of requirements through transfer learning. By
labeling the functional section of the NFR dataset into categories such as Function, Data, and Behavior,
NoRBERT achieved impressive F1-scores of up to 92 %. Khan et al. [Khan et al., 2023] explored LLMs,
particularly XLNet, for identifying and categorizing non-functional requirements, yielding promising
results in enhancing stability and user satisfaction in mobile banking applications. Overall, the findings
indicate that transfer learning models are highly effective in precisely identifying and categorizing
non-functional requirements within software development projects.

Subahi et al. [Subahi, 2023] proposed utilizing BERT to map non-functional requirements,
addressing sustainability issues in software engineering. Their methodology connects requirements
with aspects of green software sustainability, leveraging BERT’s pre-training alongside domain-specific
enhancements during the software development stage. GUI layouts involve the strategic arrangement
and organization of elements such as widgets, images, and icons within a graphical user interface.
The objective is to establish a user-friendly interface by considering spatial relationships, usability, and
aesthetics. Brie et al. [Brie et al., 2023] investigated whether an LLM-based system could enhance
the design process of GUI layouts without introducing irrelevant results. Instigator, an LLM-based
system, was evaluated in a controlled study involving 34 participants. The system parses code from
over 100 000 websites to extract GUI elements, creating a dataset of over 500 000 elements. The results
indicated that Instigator effectively returned relevant GUI layouts based on user instructions while also
revealing positive user perceptions regarding usability, trustworthiness, and efficiency. Despite some
limitations in natural language understanding, Instigator offers significant benefits for practitioners in
generating quality GUI layouts efficiently.

КОМПЬЮТЕРНЫЕ ИССЛЕДОВАНИЯ И МОДЕЛИРОВАНИЕ

A survey on the application of large language models . . . 1719

Software development involves utilizing computer programming languages, methodologies, and
tools to manifest user requirements and functional necessities within computer programs. This section
explores the progressions in code generation facilitated by LLMs, including notable examples like
AlphaCode and CodeGen, which are instrumental in software development. It discusses three primary
categories of advancements in LLMs for code generation:

Requirement-guided code generation involves LLMs generating code snippets based on natural
language requirements. For instance, Li et al. [Li et al., 2023] introduced AceCoder, which employs
requirement-guided generation combined with example retrieval to enhance code comprehension and
implementation. Similarly, ClarifyGPT [Mu et al., 2023] and TurduckenGen [Yang et al., 2023] address
user requirement ambiguity and syntactic constraints in code generation, respectively.

Inspired by human programming, this approach involves iteratively refining code based on
execution results. Zhang et al. [Zhang et al., 2023a] present a technique named Self-Edit, aiming
at improving code quality for competitive programming tasks by leveraging execution outcomes of
code generated by LLMs. The core of their approach is a fault-aware code editor capable of editing
and refining the generated code. Extensive evaluations demonstrate the substantial efficacy of their
method, which enhances code quality by integrating execution results into the code and employing
specialized code editors.

Additionally, Dong et al. [Dong et al., 2024] introduce a self-collaboration framework aimed
at improving the problem-solving abilities of LLMs through collaborative and interactive methods.
They explore how ChatGPT can facilitate collaborative code generation within software development
workflows. Using their proposed framework, they create a basic team comprising three different roles
of ChatGPT, designed to collaborate on code generation tasks. Through extensive experiments, they
demonstrate the effectiveness and adaptability of their self-collaboration framework. They argue that
enabling models to form teams and work together on complex tasks is a significant advancement
towards automating software development.

Developers perform empirical evaluations to assess LLMs’ attention alignment with human
programmers and their efficacy in code generation tasks. Kou et al. [Kou et al., 2023] conduct an
empirical investigation on the alignment of attention between LLMs and human programmers. This
study involves creating a programmer attention dataset by manually annotating crucial words and
phrases in programming tasks from HumanEval. Twelve attention calculation methods across three
categories were implemented to capture attention. The alignment between model and programmer
attention was scrutinized through quantitative comparisons and a user study involving 22 real
programmers. Findings reveal consistent misalignment between LLMs’ and programmers’ attention.
SHAP (SHapley Additive exPlanations), a perturbation-based method, exhibits the best alignment
and is preferred by participants. The study concludes with implications and future research prospects
for enhancing interpretation and performance of LLM-based code generation models. Nonetheless,
challenges such as non-determinism in code generation tasks, particularly in semantic consistency, are
noted, underscoring potential issues in ensuring code correctness and consistency. Searching for code
is like exploring a vast library filled with books on software development. It’s a crucial task where
developers hunt down specific sections of code within extensive collections. This helps them find
particular functionalities, understand how features are implemented, and even discover examples they
can adapt for their projects. Think of it as using a combination of methods, tools, and techniques to
navigate through this library efficiently. The goal is to locate, retrieve, and make use of code snippets
effectively within software projects.

When it comes to existing LLMs designed for code search, they generally fall into three main
categories [Xie et al., 2023b].

2024, Т. 16, № 7, С. 1715–1726

1720 N. Salem, A. Hudaib, K. Al-Tarawneh, H. Salem, A. Tareef, H. Salloum, . . .

Improving the semantics of the query text

This involves refining how we understand and express the query. It’s about enhancing the clarity
and depth of meaning in the text, ensuring it accurately captures the intended message. This process
involves extracting semantic information from the text, tailored to the context and more closely aligned
with the functions or concepts embodied in the code.

In 2022, Li et al. [Li et al., 2022a] presented Code Retriever, a system designed to improve code
search capabilities. By training on a large dataset of code-text pairs, Code Retriever learns semantic
representations of code functions. It transforms inputs into vectors, refining them through training
with contrastive losses. Code Retriever performs well in diverse code search tasks across multiple
programming languages, exhibiting high performance even under resource constraints.

Introducing more efficient training techniques

This requires a holistic approach, encompassing both static and dynamic characteristics, along
with evaluating model performance across different programming languages. The aim is to enhance
the performance of LLMs in source code search tasks by introducing training methods that delve into
proficient encoding representation learning.

Salza et al. [Salza et al., 2022] revealed that transfer learning significantly enhances neural
network performance in code search, especially with limited training data. Leveraging the abundance
of code on platforms like GitHub, transfer learning can benefit various source code analysis tasks.
While models like BERT, designed for NLP, can be applied to code problems, they require extensive
pre-training and fine-tuning. In cases with small training sets, a LUCENE model can perform
similarly or better in code search. However, combining LUCENE with a pre-trained model on filtered
search candidates yields the best results. The study also noted that BERT may struggle with short
sequences common in code search queries, suggesting exploration of structured code features like
ASTs. Optimizing preprocessing and exploring cross-lingual pre-training could further enhance model
performance. Finally, understanding BERT’s attention mechanisms in processing code may lead to
improved model architectures for code search and related tasks.

Empirical investigations into the practical effectiveness of LLMs

Although code translation has been extensively studied in natural languages, it has received
relatively little attention in the context of programming languages. In programming languages, code
translation entails leveraging data from one language to improve a model’s performance in another
language. Transfer learning with LLMs has shown promising outcomes in enhancing various software
engineering domains, including code summarization.

LLMs greatly enhance developer productivity in high-resource programming languages by
utilizing both labeled and unlabeled code samples. However, many programming languages lack
sufficient resources, hindering the benefits of LLMs for users of such languages. Cross-lingual transfer,
though extensively studied for natural languages, remains underexplored for programming languages.

Baltaji et al. [Baltaji et al., 2023] present experiments with a transformer-based LLM across
multiple programming languages to address questions regarding cross-lingual transfer effectiveness,
source language selection, and predictive characteristics of language pairs. The study reveals practical
insights, such as Kotlin and JavaScript being highly transferable source languages. Overall, it
demonstrates effective learning transfer across various programming languages.

Code summarization automates the process of generating natural language summaries for code
snippets provided by developers. This technology generates summaries of code snippets in natural
language, improving understanding and streamlining software maintenance. These summaries provide

КОМПЬЮТЕРНЫЕ ИССЛЕДОВАНИЯ И МОДЕЛИРОВАНИЕ

A survey on the application of large language models . . . 1721

higher-level explanations of software systems, leveraging the extensive training of LLMs on textual
data to infer and generate them effectively.

Sun et al. [Sun et al., 2023] assess ChatGPT’s proficiency in code summarization by contrasting it
with NCS, CodeBERT, and CodeT5 models. They prompt ChatGPT to generate comments for code and
evaluate its performance using METEOR and BLEU metrics. ChatGPT achieves lower scores compared
to the baseline models, notably with CodeT5 exhibiting superior results. Nevertheless, ChatGPT
showcases a more profound comprehension of code semantics and delivers more comprehensive
descriptions. However, it encounters challenges with programming language features and intricate code
logic in comparison to CodeT5.

Code edit prediction is the process of foreseeing the modifications or adaptations needed to
transition a code from one version to another. This endeavor centers on predicting the alterations
developers will implement when refining code, such as transitioning from version 1 to version 2
or 3. It holds significant importance in software development, particularly during code refactoring or
when incorporating new features. Gupta et al. [Gupta et al., 2023] address the challenge of predicting
code edits, which is essential for tasks such as bug fixing and feature addition. They propose a method
named Grace (Generation conditioned on Associated Code Edits), which enhances pre-trained LLMs by
incorporating knowledge of relevant prior edits. By leveraging the generative capabilities of LLMs and
conditioning code generation on past edits, their goal is to capture developers’ intents more accurately.
They assess two popular LLMs, Codex and CodeT5, in both zero-shot and fine-tuning scenarios. Their
experiments reveal that Grace notably enhances LLM performance, leading to 29 % and 54 % more
accurately-edited code suggestions compared to state-of-the-art symbolic and neural approaches across
two datasets.

Software testing involves running a program or system to uncover errors or assess its attributes
and capabilities, ensuring it delivers the expected outcomes.

In software engineering, fault localization is crucial as it assists developers in identifying the
exact location of bugs for faster debugging. Researchers have investigated the use of LLMs, such
as BERT and GPT, for this purpose. While LLMs have demonstrated remarkable effectiveness in
numerous software engineering tasks, their application to Fault Localization (FL) remains relatively
limited. FL entails identifying the specific code element responsible for a bug within a potentially
extensive codebase. Nonetheless, harnessing LLMs for FL shows potential in improving both
performance and interpretability for developers.

Mohsen et al. [Mohsen et al., 2023] present a phased bug localization method to overcome
current limitations. The approach comprises three primary phases: raw data preparation, package
classification, and source code recommendation. It takes a bug report and the source code of previous
versions of the target system as input. Various details from the bug report, including summary,
description, stack traces, and fixed source code files, are utilized and restructured during the raw data
preparation phase. The package classification phase aims to identify the package containing the source
code to be modified, thereby reducing the time required to locate the relevant files. Bidirectional
Encoder Representations from Transformers (BERT) are applied in both the package classification
and source code recommendation phases. Experimental findings illustrate that the proposed approach
surpasses existing methods in terms of TOP-N rank and Mean Reciprocal Rank (MRR) evaluation
metrics.

Vulnerability detection concentrates on identifying potential security vulnerabilities in software.
This procedure is essential for protecting against malicious attacks and ensuring prompt patching of
reported security flaws before they can be exploited. Steenhoek et al. [Steenhoek et al., 2023] conduct
an empirical study to examine how learning models perform in identifying software vulnerabilities.
They analyze and replicate nine learning-based Vulnerability Detection (VD) approaches, including

2024, Т. 16, № 7, С. 1715–1726

1722 N. Salem, A. Hudaib, K. Al-Tarawneh, H. Salem, A. Tareef, H. Salloum, . . .

two LLM-based methods. This research offers valuable insights into the current capabilities and
effectiveness of LLMs in the field of vulnerability detection.

Test generation encompasses the creation of a set of test cases to evaluate the functionality
of newly developed or updated software applications. Within this domain, unit test generation is
a specialized focus area that revolves around generating test cases designed specifically for individual
code units. In a detailed comparison conducted by Tang et al. [Tang et al., 2023] between ChatGPT and
the advanced SBST tool EvoSuite, several notable findings emerge. ChatGPT successfully generates
unit test cases for all 207 Java classes, with 69.6 % of them compiling and executing without
manual intervention. However, certain cases encounter compilation errors due to ChatGPT’s incomplete
understanding of the entire project. SpotBugs detection reveals 403 potential defects among 204 test
cases, most of which are low-priority issues. Nevertheless, the test suite generated by ChatGPT
violates coding style conventions, particularly in indentation, indicating a need for improvement in
code consistency and maintainability.

Graphical User Interface (GUI) testing is essential to ensure the accuracy and reliability of
a mobile app’s interface. This involves verifying that interactions with elements such as buttons and
text boxes yield the expected results. GUI testing can be conducted manually or automatically, often
employing metrics such as error detection to evaluate performance. Its primary goal is to guarantee
the resilience and reliability of the app’s interactive elements. Liu et al. [Liu et al., 2023b] present
GPTDroid, a framework that transforms the GUI testing task into a question-answer format, utilizing
LLMs as human-like testers. GPTDroid simplifies the process by feeding the application’s GUI
information to LLMs, allowing them to generate suitable testing scripts and provide feedback based
on the obtained execution results. Evaluation of GPTDroid on 93 apps from Google Play demonstrates
significant success, showcasing a 32 % enhancement in activity coverage. Additionally, GPTDroid
identifies 53 previously undiscovered bugs on Google Play, with 35 of them being confirmed and
addressed.

Natural Language Processing (NLP) testing entails assessing and scrutinizing the performance,
precision, and resilience of NLP systems, encompassing tasks such as text generation and language
comprehension. The objective is to verify the efficacy of these systems in comprehending and
processing natural human language. Liu et al. [Liu et al., 2022] discuss the challenges encountered
by modern question-answering (QA) systems due to their wide range of topics and task formats,
complicating test collection and labeling tasks, consequently affecting their quality. To tackle this
issue, the authors introduce QATest, a fuzzing framework based on metamorphic testing theory. The
framework aims to automatically generate tests with oracle information for various QA systems.
Additionally, they propose N-Gram coverage and perplexity priority to enhance testing efficiency
and generate more tests capable of detecting erroneous behaviors based on question data features.
Evaluation conducted on four QA systems illustrates that tests generated by QATest effectively detected
hundreds of errors, while the testing criteria have enhanced both the diversity of testing and the
efficiency of fuzzing.

Patch correctness assessment

Numerous contemporary program repair methodologies heavily rely on test suites created by
developers to evaluate the accuracy of generated patches. However, these test suites often encompass
only a fraction of the program’s behavioral spectrum, resulting in an incomplete specification.
Consequently, repair techniques may encounter the challenge of patch overfitting, wherein patches pass
existing test suites but fail to generalize to other potential test scenarios. This limitation significantly
hampers the practical applicability and acceptance of such repair methods in real-world contexts.
Therefore, ensuring the correctness of patches becomes imperative for developers to effectively identify
and discard overfitting patches post-generation.

КОМПЬЮТЕРНЫЕ ИССЛЕДОВАНИЯ И МОДЕЛИРОВАНИЕ

A survey on the application of large language models . . . 1723

Tian et al. [Tian et al., 2023] investigated the feasibility of employing representation learning
models and supervised learning algorithms to statically predict the accuracy of patches generated
by Program Repair (PR) tools. Their objective was to provide insights for enhancing the quality of
repair candidates. Initially, they explored various distributed representation learning techniques, such
as BERT, to capture the similarity between faulty and patched code fragments. Subsequent experiments
focused on selecting threshold similarity scores to identify potentially incorrect patches produced by
Automated Program Repair (APR) tools. They developed a framework named Leopard to forecast
patch correctness, utilizing machine learning classifiers such as Decision Trees, Logistic Regression,
Naı̈ve Bayes, Random Forest, XGBoost, and Deep Neural Networks (DNN) with embeddings derived
from BERT, Doc2Vec, and CC2Vec. Leopard, particularly with XGBoost and DNN utilizing BERT
embeddings, demonstrated promising performance in predicting patch correctness, achieving high
metrics such as Recall and F-Measure. Furthermore, they introduced Panther, an enhanced version of
Leopard that combines learned embeddings with engineered features to improve classification accuracy.
Utilizing SHAP (SHapley Additive exPlanations), they analyzed the rationales behind prediction
outcomes to gain insights into identifying patch correctness. The study suggests integrating this
approach with APR tools to efficiently explore a vast patch space in future endeavors.

Code review is a pivotal stage in software development aimed at ensuring the integrity of code.
It involves developers meticulously scrutinizing code to assess factors such as logic, functionality, and
style. Recent advancements in LLMs, notably the T5 model, have spurred innovations in automating
code review processes. These advancements primarily seek to enhance code quality and review
efficiency by focusing on tasks such as data collection, pre-training, and performance assessment.
Li et al. [Li et al., 2022b] introduced CodeReviewer, a Transformer-based model inspired by the
T5 architecture and initialized with parameters from CodeT5. CodeReviewer is designed to automate
the code review process, thereby ensuring code quality. They gathered a comprehensive dataset from
GitHub encompassing nine programming languages. Using this dataset, they pre-trained CodeReviewer
on four tasks tailored for code review scenarios, focusing on comprehending code differences and
generating relevant review comments. The model was evaluated on both the training dataset and
a processed dataset, demonstrating superior performance compared to T5 and CodeT5-base. Overall,
CodeReviewer enhances code review tasks, presenting promising advancements in automating and
improving code quality assessment.

Bug reproduction is an essential phase in the software bug-fixing process, which entails
recreating the environment where the bug originally occurred. This process involves a collaborative
effort wherein developers gather information from users, including screenshots, logs, and issue
descriptions. Despite its importance in software maintenance, reproducing bugs can be challenging,
particularly when replicating the client-side context. To overcome these challenges, there is a need
for a human-centered approach in research and tool design to assist developers effectively in bug
reproduction.

Various automated test generation techniques have been devised to aid developers in test creation,
with a primary emphasis on enhancing coverage or generating exploratory inputs. Nonetheless, these
techniques frequently fail to fulfill semantic goals, such as accurately replicating bugs from bug reports.
Kang et al. [Kang, Yoon, Yoo, 2023] emphasize the importance of bug reproduction, highlighting
that approximately 28 % of tests added to open-source repositories stem from issue reports. Existing
techniques primarily address program crashes due to challenges in transforming bug report semantics
into test oracles. In response to this challenge, they propose LIBRO, a framework that harnesses
LLMs capable of performing code-related tasks. Although LLMs cannot directly execute faulty code,
LIBRO incorporates post-processing steps to discern effective LLM outputs and rank them based on
validity. Evaluations conducted on the Defects4J benchmark indicate that LIBRO can generate failure-
reproducing test cases for 33 % of the analyzed cases, recommending bug-reproducing tests as top

2024, Т. 16, № 7, С. 1715–1726

1724 N. Salem, A. Hudaib, K. Al-Tarawneh, H. Salem, A. Tareef, H. Salloum, . . .

candidates for 149 bugs. Additionally, LIBRO’s performance when compared against post-training bug
reports suggests its potential to significantly enhance developer efficiency by automatically generating
tests from bug reports.

Software testing is essential in software development; however, test cases often lag behind
production code changes, resulting in increased maintenance costs and the potential for bugs. To
address this issue, Hu et al. [Hu et al., 2023] introduced CEPROT (Co-Evolution of Production-
Test Code), a method designed to automatically update outdated test cases. CEPROT consists of two
stages: identifying obsolete tests and updating them. The method utilizes two datasets sourced from
Java projects with extensive unit tests for its training process. During training, CEPROT learns from
both positive and negative samples, where positive samples necessitate updating due to production code
changes, while negative samples do not. When compared to various baseline models such as KNN,
SITAR, LSTM, and NMT, CEPROT achieves impressive precision, recall, and F1 scores of 98.3 %,
90.0 %, and 94.0 %, respectively, in identifying obsolete test cases.

Conclusion

Researchers have extensively applied LLMs across numerous software engineering (SE) tasks,
spanning 43 different areas. These tasks encompass a wide spectrum, ranging from traditional ones
like program repair to more intricate tasks such as fuzzing and GUI testing. While LLMs demonstrate
proficiency in foundational SE tasks, including software testing and development, there is a need for
more targeted efforts to address domain-specific challenges. This could involve designing specialized
LLMs or integrating them into existing research workflows. Despite their widespread application in
software testing and development, the utilization of LLMs in software requirements remains relatively
underexplored, presenting a promising area for future exploration and research within the SE domain.

References

Baltaji R., Pujar S., Mandel L., Hirzel M., Buratti L., Varshney L. Learning transfers over several
programming languages // arXiv preprint. — 2023. — arXiv:2310.16937

Brie P., Burny N., Sluÿters A., Vanderdonckt J. Evaluating a large language model on searching for
gui layouts // Proceedings of the ACM on Human-Computer Interaction. — 2023. — Vol. 7,
No. EICS. — P. 1–37.

Chowdhary K., Chowdhary K. R. Natural language processing // Fundamentals of artificial
intelligence. — 2020. — P. 603–649.

Dong Y., Jiang X., Jin Z., Li G. Self-collaboration code generation via ChatGPT // ACM Transactions
on Software Engineering and Methodology. — 2024. — Vol. 33, No. 7. — P. 1–38.

Gupta P., Khare A., Bajpai Y., Chakraborty S., Gulwani S., Kanade A., Tiwari A. GrACE: generation
using associated code edits // arXiv preprint. — 2023. — arXiv:2305.14129

Hadi M. U., Qureshi R., Shah A., Irfan M., Zafar A., Shaikh M. B., Mirjalili S. A survey on
large language models: Applications, challenges, limitations, and practical usage // Authorea
Preprints. — 2023.

Hasan Md. R., Li J., Ahmed I., Bagheri H. Automated repair of declarative software specifications in
the era of large language models // arXiv preprint. — 2023. — arXiv:2310.12425

Hey T., Keim J., Koziolek A., Tichy W. F. Norbert: Transfer learning for requirements classification //
2020 IEEE 28th international requirements engineering conference (RE). — 2020. — P. 169–179.

Hu X., Liu Z., Xia X., Liu Z., Xu T., Yang X. Identify and update test cases when production code
changes: A transformer-based approach // 2023 38th IEEE/ACM International Conference on
Automated Software Engineering (ASE). — 2023. — P. 1111–1122.

КОМПЬЮТЕРНЫЕ ИССЛЕДОВАНИЯ И МОДЕЛИРОВАНИЕ

A survey on the application of large language models . . . 1725

Kang S., Yoon J., Yoo S. Large language models are few-shot testers: Exploring LLM-based general
bug reproduction // 2023 IEEE/ACM 45th International Conference on Software Engineering
(ICSE). — 2023. — P. 2312–2323.

Khan M. A., Khan M. S., Khan I., Ahmad S., Huda S. Non functional requirements identification and
classification using transfer learning model // IEEE Access. — 2023.

Kou B., Chen S., Wang Z., Ma L., Zhang T. Is model attention aligned with human attention? An
empirical study on large language models for code generation // arXiv preprint. — 2023. —
arXiv:2306.01220

Li J., Zhao Y., Li Y., Li G., Jin Z. Acecoder: Utilizing existing code to enhance code generation // arXiv
preprint. — 2023. — arXiv:2303.17780

Li X., Gong Y., Shen Y., Qiu X., Zhang H., Yao B., Qi W., Jiang D., Chen W., Duan N. Coderetriever:
A large scale contrastive pre-training method for code search // Proceedings of the 2022
Conference on Empirical Methods in Natural Language Processing. — 2022a. — P. 2898–2910.

Li Z., Lu S., Guo D., Duan N., Jannu S., Jenks G., Sundaresan N. Automating code review
activities by large-scale pre-training // Proceedings of the 30th ACM Joint European Software
Engineering Conference and Symposium on the Foundations of Software Engineering. — 2022b. —
P. 1035–1047.

Liu R., Yang R., Jia C., Zhang G., Zhou D., Dai A. M., Yang D., Vosoughi S. Training socially aligned
language models in simulated human society // arXiv. — 2023a. — https://arxiv.org/abs/2305.16960

Liu Z., Chen C., Wang J., Chen M., Wu B., Che X., Wang Q. Make LLM a testing expert: Bringing
human-like interaction to mobile GUI testing via functionality-aware decisions // arXiv preprint. —
2023b. — arXiv:2310.15780

Liu Z., Feng Y., Yin Y., Sun J., Chen Z., Xu B. QAtest: A uniform fuzzing framework for question
answering systems // Proceedings of the 37th IEEE/ACM International Conference on Automated
Software Engineering. — 2022. — P. 1–12.

Mohsen A. M., Hassan H., Wassif K., Moawad R., Makady S. Enhancing bug localization using phase-
based approach // IEEE Access. — 2023.

Mu F., Shi L., Wang S., Yu Z., Zhang B., Wang C., Liu S., Wang Q. ClarifyGPT: Empowering LLM-
based code generation with intention clarification // arXiv preprint. — 2023. — arXiv:2310.10996

Salza P., Schwizer C. Gu J., Gall H. C. On the effectiveness of transfer learning for code search //
IEEE Transactions on Software Engineering. — 2022.

Steenhoek B., Rahman M. M., Jiles R., Le W. An empirical study of deep learning models for
vulnerability detection // 2023 IEEE/ACM 45th International Conference on Software Engineering
(ICSE). — 2023. — P. 2237–2248.

Subahi A. F. BERT-based approach for greening software requirements engineering through non-
functional requirements // IEEE Access. — 2023.

Sun W., Fang C., You Y., Miao Y., Liu Y., Li Y., Chen Z. Automatic code summarization via ChatGPT:
How far are we? // arXiv preprint. — 2023. — arXiv:2305.12865

Tang Y., Liu Z., Zhou Z., Luo X. ChatGPT vs SBST: A comparative assessment of unit test suite
generation // arXiv preprint. — 2023. — arXiv:2307.00588

Thawkar O., Shaker A., Mullappilly S. S., Cholakkal H., Anwer R. M., Khan S., Laaksonen J., Shahbaz
Khan F. XrayGPT: chest radiographs summarization using medical vision-language models //
arXiv. — 2023. — https://arxiv.org/abs/2306.07971

Tian H., Liu K., Li Y., Kaboré A. K., Koyuncu A., Habib A., Bissyandé T. F. The best of both
worlds: Combining learned embeddings with engineered features for accurate prediction of correct
patches // ACM Transactions on Software Engineering and Methodology. — 2023. — Vol. 32,
No. 4. — P. 1–34.

2024, Т. 16, № 7, С. 1715–1726

1726 N. Salem, A. Hudaib, K. Al-Tarawneh, H. Salem, A. Tareef, H. Salloum, . . .

Weng L. LLM-powered autonomous agents // 2023. — lilianweng.github.io
Xie D., Yoo B., Jiang N., Kim M., Tan L., Zhang X., Lee J. S. Impact of large language models on

generating software specifications // arXiv preprint. — 2023a. — arXiv:2306.03324
Xie Y., Lin J., Dong H., Zhang L., Wu Z. Survey of code search based on deep learning // ACM

Transactions on Software Engineering and Methodology. — 2023b. — Vol. 33, No. 2. — P. 1–42.
Yang G., Zhou Y., Chen X., Zhang X., Xu Y., Han T., Chen T. A syntax-guided multi-task learning

approach for Turducken-style code generation // Empirical Software Engineering. — 2023. —
Vol. 28, No. 6. — P. 141.

Zhang K., Li Z., Li J., Li G., Jin Z. Self-edit: Fault-aware code editor for code generation // arXiv
preprint. — 2023a. — arXiv:2305.04087

Zhang Q., Fang C., Xie Y., Zhang Y., Yang Y., Sun W., Yu S., Chen Z. A survey on large language
models for software engineering // arXiv preprint. — 2023b. — arXiv:2312.15223

Zhao W. X., Zhou K., Li J., Tang T., Wang X., Hou Y., Min Y., Zhang B., Zhang J., Dong Z., Du Y.,
Yang C., Chen Y., Chen Z., Jiang J., Ren R., Li Y., Tang X., Liu Z., Liu P., Nie J.-Y., Wen J.-R.
A survey of large language models // arXiv preprint. — 2023. — arXiv:2303.18223

КОМПЬЮТЕРНЫЕ ИССЛЕДОВАНИЯ И МОДЕЛИРОВАНИЕ

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 15%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Coated FOGRA39 \050ISO 12647-2:2004\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (Coated FOGRA27 \050ISO 12647-2:2004\051)
 /PDFXOutputConditionIdentifier (FOGRA27)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU ([Based on 'RCD'] [Based on 'RCD'] [Based on 'RCD'] [Based on 'RCD'] [Based on 'RCD'] [Based on 'RCD'] [Based on 'RCD'] Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /RUS ()
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName (Coated FOGRA27 \(ISO 12647-2:2004\))
 /DestinationProfileSelector /WorkingCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
]
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [595.276 841.890]
>> setpagedevice

