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The fast-paced environment of DevSecOps requires integrating security at every stage of software
development to ensure secure, compliant applications. Traditional methods of security testing, often performed
late in the development cycle, are insufficient to address the unique challenges of continuous integration
and continuous deployment (CI/CD) pipelines, particularly in complex, high-stakes sectors such as industrial
automation. In this paper, we propose an approach that automates the analysis and testing of security requirements
by embedding requirements verification into the CI/CD pipeline. Our method employs the ARQAN tool to map
high-level security requirements to Security Technical Implementation Guides (STIGs) using semantic search,
and RQCODE to formalize these requirements as code, providing testable and enforceable security guidelines. We
implemented ARQAN and RQCODE within a CI/CD framework, integrating them with GitHub Actions for real-
time security checks and automated compliance verification. Our approach supports established security standards
like IEC 62443 and automates security assessment starting from the planning phase, enhancing the traceability
and consistency of security practices throughout the pipeline. Evaluation of this approach in collaboration with
an industrial automation company shows that it effectively covers critical security requirements, achieving
automated compliance for 66.15 % of STIG guidelines relevant to the Windows 10 platform. Feedback from
industry practitioners further underscores its practicality, as 85 % of security requirements mapped to concrete
STIG recommendations, with 62 % of these requirements having matching testable implementations in RQCODE.
This evaluation highlights the approach’s potential to shift security validation earlier in the development process,
contributing to a more resilient and secure DevSecOps lifecycle.
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DevSecOps требует интеграции безопасности на каждом этапе разработки программного обеспече-
ния для обеспечения безопасных и соответствующих требованиям приложений. Традиционные методы
тестирования безопасности, часто выполняемые на поздних этапах разработки, недостаточны для реше-
ния задач, связанных с непрерывной интеграцией и непрерывной доставкой (CI/CD), особенно в сложных,
критически важных секторах, таких как промышленная автоматизация. В данной статье мы предлага-
ем подход, который автоматизирует анализ и тестирование требований безопасности путем встраивания
проверки требований в конвейер CI/CD. Наш метод использует инструмент ARQAN для сопоставления
высокоуровневых требований безопасности с Руководствами по технической реализации безопасности
(STIGs) с помощью семантического поиска, а также RQCODE для формализации этих требований в виде
кода, предоставляя тестируемые и поддающиеся исполнению руководства по безопасности. Мы внедри-
ли ARQAN и RQCODE в рамках CI/CD, интегрировав их с GitHub Actions для обеспечения проверки
безопасности в реальном времени и автоматической проверки соответствия. Наш подход поддерживает
стандарты безопасности, такие как IEC 62443, и автоматизирует оценку безопасности, начиная с этапа
планирования, улучшая прослеживаемость и согласованность практик безопасности на протяжении всего
конвейера. Предварительная оценка этого подхода в сотрудничестве с компанией по промышленной ав-
томатизации показывает, что он эффективно охватывает критические требования безопасности, достигая
автоматического соответствия 66,15 % руководств STIG, относящихся к платформе Windows 10. Обрат-
ная связь от отраслевых специалистов подчеркивает его практичность: 85 % требований безопасности
сопоставлены с конкретными рекомендациями STIG, и 62 % из этих требований имеют соответствующие
тестируемые реализации в RQCODE. Эта оценка подчеркивает потенциал подхода для сдвига проверки
безопасности на более ранние этапы разработки, способствуя более устойчивому и безопасному жизнен-
ному циклу DevSecOps.

Ключевые слова: кибербезопасность, DevSecOps, DevOps, непрерывная интеграция, требо-
вания, требования к проектированию, тесты, обработка естественного языка, машинное обуче-
ние, SBERT, RQCODE, ARQAN, GITHUB
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Introduction

DevSecOps is an important step forward in software development. It aims to include security
practices in the fast-paced world of DevOps. DevSecOps builds on the collaborative nature of DevOps,
which traditionally connects development and operations teams, by adding security as a shared
responsibility from the beginning. This change is necessary because traditional security methods, often
applied at the end of the development cycle, cannot keep up with the speed of DevOps [Myrbakken,
Colomo-Palacios, 2017].

Figure 1. DevSecOps paradigm (adapted from [Moyón et al., 2020])

DevSecOps (Fig. 1) is a continuous cycle where security is integrated into every aspect of
software development. The process can be understood through the “infinite loop” model, emphasizing
its continuous and iterative nature [Moyón et al., 2020]. In the PLAN stage, the project scope is defined,
requirements are gathered, and security considerations are established from the outset. This involves
threat modeling, risk assessment, and defining security requirements as integral parts of user stories.
Collaboration between security experts, developers, and operations teams is crucial to ensure security is
embedded in the project’s foundation. During the CODE stage, developers write a code while adhering
to security best practices and incorporating security controls defined in the planning stage. This includes
using secure coding libraries, implementing security features, and following security guidelines. Static
code analysis tools are employed to identify potential vulnerabilities early in the development process.
The Build stage involves compiling the code and creating a build artifact. Security considerations
focus on ensuring the integrity and security of the build process, which includes using secure build
environments, verifying the authenticity of dependencies, and scanning the build artifact for known
vulnerabilities. In the TEST stage, the software undergoes rigorous testing to ensure functionality and
identify security vulnerabilities. This includes static analysis, dynamic analysis, and penetration testing.
Automated security testing tools are essential for maintaining the speed of DevSecOps, enabling rapid
feedback and remediation of security issues. The DEPLOY stage involves deploying the software to
the target environment, which could be production, staging, or testing. Security considerations include
securing the deployment process and ensuring the software is deployed in a secure configuration.
Automated deployment tools, security settings configuration, and monitoring the deployed application
for security issues are key activities. In the OPERATE stage, the software is monitored for performance,
stability, and security. Continuous monitoring is emphasized to detect and respond to security incidents
promptly. Activities include log analysis, security event monitoring, and incident response. Finally, the
MONITOR stage involves continuously collecting and analyzing data to identify security threats and
vulnerabilities. Feedback from this stage informs future planning and development cycles, ensuring
continuous improvement of the DevSecOps process.
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The importance of DevSecOps comes from several factors. First, the quick deployment cycles
in DevOps can lead to security issues being missed or poorly addressed. DevSecOps aims to fix this
by integrating security practices from the start, allowing organizations to deliver software that is both
fast and secure [Myrbakken, Colomo-Palacios, 2017]. By including security considerations from the
planning phase, DevSecOps encourages a proactive approach to risk management [Moyón et al., 2020].
This means anticipating potential security threats and vulnerabilities early in the development process,
so teams can address risks before they become major problems. Second, DevSecOps also promotes
a culture of shared responsibility for security, breaking down the barriers between development,
operations, and security teams [Mohan, Othmane, 2016; Myrbakken, Colomo-Palacios, 2017]. This
improved collaboration leads to better communication and knowledge sharing, resulting in a more
comprehensive understanding of security throughout the organization. Third, DevSecOps promotes
automation to streamline security practices, allowing teams to integrate security controls without
slowing down development and deployment [Myrbakken, Colomo-Palacios, 2017]. Automation can
include tasks like security testing, vulnerability scanning, and compliance monitoring, freeing up
security experts to focus on more strategic tasks.

The integration of security requirements analysis into the DevSecOps process is essential for
ensuring that security is addressed from the beginning of the development lifecycle and continuously
throughout. This approach shifts security considerations to the forefront, embedding them into
every stage of the DevSecOps pipeline. Authors indicate the importance of incorporating security
requirements from the planning stage, as reflected in the PLAN stage of the Security Standard
Compliant DevOps Pipeline for the IEC 62443 Standard [ISA, 2018; Moyón et al., 2020]. This
involves treating security requirements as integral components of user stories and involving security
experts in requirement elicitation. The emphasis on threat modeling and risk assessment from the
outset [Myrbakken, Colomo-Palacios, 2017] underscores the need for proactive identification and
mitigation of potential security risks.

The automation capabilities analysis for the IEC 62443 standard reveals that while some
security activities can be fully automated (31 %), others require partial or complete manual
intervention (69 %) [Moyón et al., 2020]. This challenge is particularly valid for the PLAN stage. The
challenge remains in conducting rapid security requirements assessment in a DevSecOps environment
due to the speed of continuous deployments. To address this, the concept of continuous security
assessment is emphasized, where security is continuously monitored and addressed throughout the
lifecycle, rather than only at the end [Rajapakse et al., 2022].

In this paper, we present an approach towards enhancing the PLAN stage with automating the
security requirements analysis integrated into the Continuous Integration and Deployment pipeline.

Approach

In our approach, we shift security activities further left by focusing on the early phases of the
DevSecOps lifecycle. Specifically, we emphasize automating security requirements analysis during the
PLAN phase, integrating this process directly into the Continuous Integration/Continuous Deployment
(CI/CD) pipeline. This method moves beyond the typical automation of verification tasks by addressing
security concerns at the requirements stage. Figure 2 illustrates our overall approach.

To manage security requirements, we utilize the GitHub Issue Tracking system. Security
requirements are captured as GitHub Issues, which allows for collaborative tracking and management.
These requirements are then semantically mapped to Security Technical Implementation Guides
(STIGs) [DoD, 2022] using Natural Language Processing (NLP).

STIGs are detailed guidelines aimed at securing IT systems and products used by the US
Department of Defense (DoD) and other governmental agencies. STIGs provide specific instructions
for configuring and securing a wide array of systems, including network devices, databases, operating
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Figure 2. Automating security requirements analysis and testing

systems, and software. The goal of these guidelines is to minimize cybersecurity risks by enforcing
secure configurations. For example, they cover areas such as database management systems, firewalls,
virtualization, email servers, web servers, and identity and access management systems. The guidance
includes specific settings and configurations aimed at mitigating cybersecurity threats.

STIGs provide platform-specific security recommendations, and we ensure that security
requirements from, e. g., IEC 62443 are linked to the most relevant STIG guidance based on the
deployment environment. To operationalize this, we created a repository of security tests aligned with
the STIG guidelines. These tests are formulated using the Requirements as Code (RQCODE) concept.
Here, STIG recommendations are formalized as security requirements, represented by Java objects.
Each requirement object is linked with corresponding security tests, making the requirement both
verifiable and reusable across different contexts. This formalization enhances traceability, ensuring that
security requirements can be tested consistently throughout the CI/CD pipeline.

The automation of this process is achieved through GitHub Actions. These actions invoke our
system, ARQAN, which leverages NLP to conduct semantic searches across a vectorized database of
STIGs. Once relevant STIGs are identified, GitHub Actions are used to query the RQCODE repository
for matching test classes. These security tests can then be integrated into the user’s repository, enabling
automated execution during the build or deployment stages, ensuring continuous validation of security
requirements.

In the following subsections, we provide detailed explanations of the ARQAN and RQCODE
processes, highlighting their role as the core components of our contribution to automating security
requirements analysis.

ARQAN for sematic search in Security Technology Implementation Guides (STIGs)

A common challenge in security requirements engineering is the general nature of standard
specifications. For instance, IEC 62443 [ISA, 2018] includes broad directives such as, “Components
shall provide the capability to uniquely identify and authenticate all human users”. While this
flexibility allows developers to choose architectures and recommendations, it introduces potential
vulnerabilities, as critical guidelines can be overlooked. To address this, our approach de-generalizes
security requirements by mapping them to practical recommendations, tests, and fixes from the Security
Technical Implementation Guides (STIGs) [DoD, 2022] database.

We developed a prototype called ARQAN, leveraging the SBERT [Reimers, Gurevych, 2019]
architecture for semantic search across the Security Technical Implementation Guides (STIGs) [DoD,
2022]. This prototype enables engineers to map project-specific security requirements to concrete,
platform-specific security recommendations found in STIGs. By identifying semantically similar
guidelines, ARQAN aids in connecting project requirements with recognized standards, making security
practices more traceable and actionable.

In the context of Natural Language Processing (NLP), semantic search identifies conceptual
proximity between text elements. This approach is well-suited for linking general security requirements
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to specific countermeasures or guidelines, addressing the issue of vague requirements in security
standards. Unlike traditional keyword-based search techniques that rely on word frequency or simple
string matching, semantic search evaluates the underlying meaning of the text, providing deeper insights
into the connections between requirements and standards [Wei, Barnaghi, Bargiela, 2008].

Semantic search goes beyond matching terms based on their surface-level similarity, focusing
instead on the meaning behind words and phrases. By embedding both queries and documents into
a high-dimensional vector space, semantic search finds the closest vectors, representing the most
semantically similar content [Reimers, 2022a]. This vector space represents the deeper meanings of
words, capturing the relationships between various security requirements and standards.

To measure similarity between these vectors, we use cosine similarity, which calculates the
angle between vectors in an inner product space. A smaller angle indicates greater semantic similarity,
making cosine similarity an effective metric for comparing text pairs such as security requirements
and corresponding guidelines. The cosine similarity score ranges from −1 to 1, with higher values
indicating closer alignment between the meanings of the text elements [Han, Pei, Tong, 2022].

In developing ARQAN’s search functionality, a key challenge was selecting the most
appropriate model for representing security requirements. After evaluating models such as MPNet
and DistilRoBERTa, which are optimized for semantic search [Reimers, 2022b], we found that the
vector representations produced by these models offered the best results for this task. By embedding
both the security requirements from the STIGs database and user queries into the same vector space,
ARQAN is able to retrieve the most relevant recommendations based on their semantic similarity.

In practice, the search process begins with transforming the STIGs database into vector
representations using the chosen model. Queries are then embedded into the same vector space, and
cosine similarity is applied to compare the query vectors with the STIG vectors. The results are sorted
based on similarity scores, allowing the system to retrieve the most relevant security guidelines.

RQCODE for security requirements formalization and verification

Requirements as Code (RQCODE) approach [Ismaeel et al., 2021] is a novel method that
applies the Seamless Object-Oriented Requirements (SOOR) paradigm [Naumchev, 2019] to implement
security requirements in the Java programming language. RQCODE formalizes security requirements
by representing them as Java classes. Each class encapsulates various representations of the
requirement, including its natural language description and a set of methods to verify compliance,
such as acceptance tests. This structure allows for direct traceability between a requirement and its
implementation, enabling continuous verification through the execution of the embedded tests.

A key advantage of RQCODE is its alignment with object-oriented principles, which facilitates
the reuse and extension of requirements. By leveraging inheritance, a requirement can extend or
specialize another, making it easier to create templates for similar types of requirements. For instance,
a generic security requirement class can serve as the foundation for more specific requirements by
initializing it with different parameters. This modularity also simplifies the organization of related
requirements, supporting efficient updates and maintenance in a security-sensitive environment.

In RQCODE, a properly specified requirement must be verifiable. Figure 3 outlines the main
concepts in RQCODE. At the core is the abstract Requirement class, which includes a mandatory
statement attribute to store the textual representation of the requirement. The class also implements
the Checkable interface, which mandates the implementation of the check() method. This method
is responsible for verifying the requirement’s compliance. The results of this verification process are
categorized into three possible outcomes: PASS, FAIL, or INCOMPLETE. A PASS indicates successful
verification, while a FAIL signifies that the requirement was not met. An INCOMPLETE result occurs
when the verification process cannot be completed, such as when necessary data is unavailable.
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Figure 3. RQCODE concept classes (UML Class Diagram) [Sadovykh et al., 2023a]

In addition to the Checkable interface, RQCODE introduces an Enforceable interface for
requirements that can modify the environment to achieve compliance. The enforce() method in
this interface attempts to apply necessary changes and returns a result in the form of SUCCESS,
FAILURE, or INCOMPLETE, depending on whether the modifications were successfully applied. This
enforcement mechanism is particularly useful for security requirements, where automatic remediation
(e. g., applying security patches or configuring settings) may be necessary to meet the requirement.

The object-oriented nature of RQCODE allows multiple related requirements to be grouped as
class hierarchies, making it easier to manage and reuse them in various security specifications. This
structure also enhances traceability, as references to related requirements can be easily identified and
navigated.

An important feature of RQCODE is that the formalization of security requirements as Java
classes allows for several built-in validation mechanisms. First, Java compilers perform semantic
checks, ensuring that the code follows the language’s syntax and type rules. Additionally, static
analysis tools integrated into Java Integrated Development Environments (IDEs) can identify potential
issues such as dead code or unreachable branches in the requirements specification. Object-Oriented
Programming (OOP) analysis techniques can also be applied to evaluate the clarity and structure of
the security requirements. Established OOP metrics, such as those presented in [Chidamber, Kemerer,
1994; Succi et al., 2005], can be used to detect issues like duplicate requirements, circular dependencies,
excessive coupling, or deep inheritance hierarchies. These analyses help ensure that the requirements
are clear, atomic, non-contradictory, and verifiable.

When it comes to STIG, we focus on the guidelines description in natural language and two
main components: Check Text and Fix Text. The Check Text provides detailed steps for verifying
that a system meets the required security conditions, such as ensuring correct operating-system
configurations. The Fix Text outlines specific actions for remedying security deficiencies, such as
applying patches or adjusting system settings. This combination of instructions ensures both the
identification and resolution of security issues.

We applied the Seamless Object-Oriented Requirements (SOOR) paradigm to formalize these
STIG guidelines using the RQCODE framework. RQCODE translates security requirements into Java
classes, with methods designed to check and enforce compliance. In this case, the STIG Check Text
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maps to the check() method in the RQCODE implementation, which verifies the correct configuration
of the system, while the Fix Text is represented in the enforce() method, which applies necessary
changes to meet the security requirement. This formalization allows the automatic verification and
remediation of STIG guidelines, providing a structured and reusable approach for security compliance.

Figure 4 illustrates this formalization in a UML class diagram. The Requirement abstract class in
RQCODE is extended to represent a specific STIG requirement. The check() method ensures that the
system adheres to the security configuration specified in the STIG, and the enforce() method enables
automatic remediation where applicable. Each STIG requirement is thus directly tied to its associated
tests and fixes, facilitating traceability and enabling continuous verification within the CI/CD pipeline.

Figure 4. STIG structure with RQCODE in Java (UML Class Diagram)

The overall structure of the RQCODE framework is depicted in Fig. 5. This framework includes
core packages that define baseline concepts and temporal patterns, which serve as the foundation for
any RQCODE-specified requirement. The baseline concepts provide general abstractions for defining
security requirements, while temporal patterns facilitate the definition of dynamic security conditions,
such as precedence, universality or eventuality. These core packages are extensible and can be combined
with any specific security requirement to define a comprehensive security policy for an IT system.

Figure 5. RQCODE Framework Structure (UML Class Diagram) [Sadovykh et al., 2023b]

For experimentation and validation, we prototyped specific implementations of STIGs for
Windows 10 and Ubuntu 18.4 platforms. These implementations were organized into platform-specific
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packages within the RQCODE framework, allowing for modularity and reuse across different system
environments. The platform-specific STIG classes contain the tailored logic for verifying and enforcing
security guidelines relevant to the respective operating systems. By automating these processes, our
approach reduces the likelihood of human error in implementing security configurations and ensures
that systems remain compliant with evolving security standards.

The RQCODE framework inherently supports several validation mechanisms due to its basis
in Java. Java compilers perform semantic checks on the requirement specifications, while static
analysis tools integrated into Java IDEs can identify potential issues like duplicate code or unreachable
conditions. Furthermore, Object-Oriented Programming (OOP) analysis techniques can be applied to
evaluate the structure of the requirements, ensuring that they are atomic, clear, and non-contradictory.
By applying these methods, we can systematically detect problems such as circular dependencies
or excessive coupling in the security requirements, making it easier to maintain and evolve the
requirements over time.

Formalizing STIG security guidelines as requirements using the RQCODE framework provides
a structured and verifiable method for integrating security into the software development lifecycle. By
transforming security guidelines into code, this approach enables continuous monitoring, automatic
enforcement, and traceability of security requirements. This formalization ensures that security is
maintained consistently across different platforms, providing a robust solution for automating security
compliance in a DevSecOps context. The following section will explore further details of the
implementation and validation of RQCODE using specific STIG examples.

Example

For demonstration purposes, we provide a full pipeline example in [Sadovykh, 2024], where
automated security requirements analysis and testing for CI/CD pipelines are illustrated using ARQAN
and RQCODE.

To illustrate the process, let us consider a requirement from IEC 62443: “The access via
untrusted networks requirements are component-specific and can be located as requirements for each
specific component type”. This requirement highlights the need for stringent controls when accessing
components over untrusted networks.

In this approach, ARQAN is employed to semantically analyze the requirement and retrieve
relevant Security Technical Implementation Guide (STIG) controls that could address the specific
security concerns implied by the IEC 62443 standard. ARQAN returns several relevant guidelines:

• V-220818: Systems must at least attempt device authentication using certificates.

• V-220804: Hardened UNC Paths must be defined to require mutual authentication and integrity
for at least the \SYSVOL and \NETLOGON shares.

• V-220942: The system must be configured to use FIPS-compliant algorithms for encryption,
hashing, and signing.

• V-220807: Connections to non-domain networks when connected to a domain-authenticated
network must be blocked.

• V-220914: Outgoing secure channel traffic must be encrypted or signed.

It is important to note that ARQAN does not rely on keywords or simple lexical matching to
locate relevant requirements. For example, the recommendation that “Outgoing secure channel traffic
must be encrypted or signed” has no lexical similarities to the original IEC 62443 statement, yet it is
highly relevant from a security perspective. This ability to identify semantically similar requirements
improves the accuracy and depth of the analysis.
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Figure 6. Example: ARQAN’s recommendations for an IEC 62443 requirement

Following the identification of relevant guidelines, the GitHub bot searches the RQCODE
repository for available tests and fixes associated with each identified STIG control. In this case,
RQCODE provides verification and remediation options for the following guidelines: V-220818,
V-220942, V-220807, and V-220914. Each of these tests and fixes can then be automatically imported
into the CI/CD pipeline.

Once integrated into the pipeline, these verification tests and fixes will be executed at each
relevant stage, such as during build, deployment, or post-deployment checks. This integration ensures
continuous security validation by automating both the detection and remediation of configuration issues
aligned with specific security requirements, enhancing compliance and security readiness throughout
the software lifecycle.

Figure 7. Example: Tests and fixes located in the RQCODE repository

Evaluation

We evaluated our approach to automating security requirements analysis and testing in CI/CD
pipelines through a collaboration with a large company in the industrial automation sector. This
company, which needs secure setups for its industrial PCs (IPCs), required a way to implement Security
Technical Implementation Guides (STIGs) for the Windows 10 platform in their systems.

To cover the relevant security guidelines, we integrated ARQAN with a complete database
of STIG recommendations. In RQCODE, we developed 172 test and fix classes specifically for
Windows 10 STIGs, covering 66.15 % of the 260 recommendations for that platform. This allowed
us to address a substantial part of the Windows 10 security guidelines.

For the evaluation, the company provided a set of 40 standard security requirements specific
to their work environment. Using ARQAN, we identified corresponding security recommendations
for 85 % of these requirements. Within RQCODE, 62 % of these identified recommendations had
available tests and fixes, enabling automated verification and remediation.

Afterwards, we held an interview with the company’s representatives to discuss the approach
and results. They considered the recommendations and test coverage useful and effective for their
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context. Overall, they evaluated our method as suitable for automating security requirements analysis
and testing in their CI/CD workflows.

Related work

NLP for requirements engineering

In the context of requirements engineering (RE), applying Natural Language Processing (NLP)
techniques is a natural fit due to their capability for comprehensive linguistic analysis. NLP, which deals
with how computers process human language, has led to the emergence of NLP4RE, a field dedicated
to supporting various RE tasks across different phases [Jurafsky, Manning, 2012; Liddy, 2001; Zhao et
al., 2020].

The RE process involves analyzing diverse documents such as interview transcripts, standards,
and legislation. The methods for automating RE vary significantly depending on the stage of RE.
For instance, early stages involve processing raw information, while later stages focus on documents
produced during the RE process [Sawyer, Rayson, Cosh, 2005]. NLP methods in RE aim to address
tasks like detecting language issues, identifying key domain concepts, and establishing traceability
links among requirements.

NLP solutions in RE can be categorized into detection, classification, clustering, pattern
extraction, and modeling [Zhao et al., 2020]. Detection focuses on identifying ambiguities in
requirements to ensure clarity and correctness. Classification involves predicting categorical classes,
such as functional or non-functional requirements, and can include sentiment analysis of user
feedback [Hastie, Tibshirani, Friedman, 2009]. Extraction retrieves specific terms from requirement
texts for glossaries, aiding in consistency checking and classification. Clustering organizes documents
or requirements into cohesive subsets. Modeling uses extracted data to generate models like UML for
analysis and design, supporting tasks such as feature synthesis and security testing.

In the security context, NLP techniques are applied to tasks like vulnerability detection
and repair, and specification analysis. Vulnerability detection identifies vulnerable code sequences,
while vulnerability repair transforms vulnerable code into secure code by learning from examples.
Specification analysis assesses security risks in product specifications before code is written, using
NLP to process vulnerability descriptions [Kommrusch, 2019].

Transfer learning has emerged as a promising approach to address generalization problems in RE.
Hey et al. [Hey et al., 2020] highlight that existing classification methods often fail on unseen projects
due to variations in requirements formulation and style. Transfer learning, particularly using models
like BERT, helps overcome this by fine-tuning pre-trained models on specific tasks with minimal
data. BERT-based models, such as NoRBERT, have shown significant improvements in classification
performance, achieving high F1-scores for functional and non-functional requirements [Devlin et al.,
2018; Cleland-Huang et al., 2007].

Ajagbe et al. [Ajagbe, Zhao, 2022] introduced BERT4RE, a BERT-based model retrained on
requirements texts, which outperforms the base BERT model in tasks like identifying key domain
concepts. Ameri et al. [Ameri et al., 2021] and Ranade et al. [Ranade et al., 2021] further fine-tuned
BERT for specific domains, achieving notable improvements in classification accuracy and specialized
entity recognition. Li et al. [Li et al., 2022] applied a graph attention network (GAT) to enhance BERT’s
performance in requirements classification, reporting high F1-scores on both seen and unseen projects.

For the requirements similarity analysis, early methods relied on traditional corpus-based
techniques to calculate word similarity, as noted by Alnajem et al. [Alnajem, Binkhonain, Shamim
Hossain, 2024]. These methods, including word frequency-based techniques, term-based matching,
and encoding requirements in XML, were effective but labour-intensive and lacked the efficiency and
scalability of modern deep-learning approaches.
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Recent advancements have leveraged machine learning and deep learning to improve the
efficiency and accuracy of SRS detection. Das et al. [Das et al., 2021] introduced two domain-specific
sentence embedding models based on the BERT architecture: PUBER, trained on the PURE dataset
of 79 natural language requirements documents, and FiBER, which uses a pre-trained BERT model
fine-tuned on the PURE dataset to find cosine similarity between requirement pairs.

Malik et al. [Malik et al., 2024] developed a supervised, two-phase framework called
the Supervised Semantic Similarity-based Conflict Detection Algorithm (S3CDA). The first phase
identifies conflict candidates through textual similarity using sentence embeddings and cosine
similarity, while the second phase refines these candidates by measuring overlapping entities in the
requirement texts. Additionally, Malik et al. presented an unsupervised variant, UnSupCDA, which
handles unlabeled requirements and identifies conflicts using core elements of S3CDA.

Alnajem et al. [Alnajem, Binkhonain, Shamim Hossain, 2024] also proposed a novel metric-
based learning method using Siamese Neural Networks (SNNs). This approach combines a sentence
Transformer model and Long Short-Term Memory (LSTM) networks with a backward network layer
to measure SRS.

Requirements formalization and verifiability

To make requirements precise and verifiable, researchers have long advocated mathematics-based
notations and methods, known as “formal” methods. Various approaches to requirement formalization
exist, differing in style, scope, and applicability.

Bruel et al. [Bruel et al., 2021] categorize these approaches into five types: Natural language,
Semi-formal, Automata/Graphs, Mathematical, and Seamless (programming-language-based). Natural
language approaches express requirements in human languages like English. This method is crucial
for understanding system domain knowledge, often through documents, text analysis, or stakeholder
interviews. Validation is typically done through discussions and interpretations with stakeholders
[Rolland, Proix, 2006]. Semi-formal approaches use partially formalized notations, such as SysML,
to represent requirements as artifacts and demonstrate semantic relations like dependency or
refinement [Bruel et al., 2021]. Analysis remains mostly manual. Automata/Graphs methods are
based on automata or graph theory, formalizing requirements as finite automata, which are idealized
machines used to recognize patterns within input from a character set [Nelson, 2022]. Mathematical
methods use mathematical and algebraic formalisms, such as Event-B [Abrial, 2010], Alloy [Jackson,
2011], Form-L [Bouskela et al., 2022], VDM [Bjørner, 1979], and Tabular Relations [Parnas, 2011].
Seamless methods, based on programming languages, apply constraint logic and programming by
contract [Naumchev, Meyer, 2017].

Verifiability is crucial for requirement quality, impacting understandability and traceability.
A correctly specified requirement must be verifiable, implying the presence of a specification
for the verification method — static and dynamic. Static approaches work at the design or
implementation level without running the system, while dynamic approaches generate and run
security tests. Static approaches include model-checking, which uses a formal model of the system
to check desired properties such as formalized security requirements. This approach requires an
architectural or behavioural model, while code analysis works with candidate program implementations.
Dynamic approaches include model-based testing, which generates tests based on architectural and
behavioural models, facilitating test-driven development, and vulnerability testing, which attacks
running applications, either directly or based on identified security risks and requirements.

Discussion and conclusions

The proposed automated approach enables the dynamic adaptation of security checks within
CI/CD pipelines, ensuring that security requirements evolve alongside software development changes
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while remaining aligned with recognized standards like IEC 62443. By integrating ARQAN and
RQCODE, we embed security requirements analysis and verification directly into the CI/CD process.
This structure promotes a proactive approach to security compliance, addressing security issues
early in development and reducing the likelihood of vulnerabilities in production environments. This
evaluation indicates broad applicability of the approach, especially in fields like industrial automation,
where secure configurations and automated compliance checks are essential. In collaboration with our
industrial partner, we demonstrated the feasibility of integrating ARQAN and RQCODE into CI/CD
workflows for effective platform-specific security.

Advantages and practicality

One of the primary benefits of our approach lies in ARQAN’s ability to generate specific,
actionable recommendations tailored to high-level security requirements. ARQAN matches high-level
standards with specific platform security guidelines, ensuring that even generic requirements are
made concrete and actionable. Through RQCODE, a large number of pre-built tests and fixes are
available, making implementation straightforward within CI/CD processes. The demonstration indicates
the method’s suitability for automating security assessments as early as the planning stage in the
DevSecOps lifecycle, supporting a proactive security.

Limitations

While promising, there are limitations in the current implementation. ARQAN’s
recommendations rely heavily on the STIG database, so the system is limited by the scope of
guidelines available for specific platforms, which may not fully align with all security needs. The
STIG database is updated periodically, and ARQAN thus requires consistent updates to remain
effective.

RQCODE, implemented in Java, requires a Java Runtime Environment (JRE) on the target
system, which may be resource-intensive for some environments. Additionally, certain tests and fixes
within RQCODE require administrative privileges, adding a layer of complexity for environments with
limited access permissions. Presently, RQCODE primarily supports Windows 10, with only partial
coverage for Ubuntu 18. Expanding support for additional platforms would enhance the approach’s
applicability.

Future work

Future development of ARQAN could include incorporating broader security recommendations,
such as those from the Open Web Application Security Project (OWASP), as well as experimenting
with advanced models, including those based on large language models (LLMs). ARQAN’s capabilities
could be expanded to include security threat analysis and recommendations based on NIST standards
to create a more comprehensive security tool.

For RQCODE, we plan to explore implementing the Seamless Object-Oriented Requirements
(SOOR) paradigm in more lightweight object-oriented programming (OOP) languages, which may
make it more adaptable to environments with limited resources. Extending RQCODE’s library to
support Linux platforms beyond Ubuntu 18 would also be beneficial. Additional explorations include
adapting RQCODE to support containerized deployments, such as in Docker environments, to support
secure development practices across a broader range of modern deployment architectures.

Overall, the proposed approach offers a practical step forward in shifting security verification
leftward in the DevSecOps lifecycle, helping to identify and address security issues earlier in the
software development process.
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