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Deep learning’s power stems from complex architectures; however, these can lead to overfitting, where models
memorize training data and fail to generalize to unseen examples. This paper proposes a novel probabilistic approach to
mitigate this issue. We introduce two key elements: Truncated Log-Uniform Prior and Truncated Log-Normal Variational
Approximation, and Automatic Relevance Determination (ARD) with Bayesian Deep Neural Networks (BDNNs). Within
the probabilistic framework, we employ a specially designed truncated log-uniform prior for noise. This prior acts as
a regularizer, guiding the learning process towards simpler solutions and reducing overfitting. Additionally, a truncated
log-normal variational approximation is used for efficient handling of the complex probability distributions inherent in deep
learning models. ARD automatically identifies and removes irrelevant features or weights within a model. By integrating
ARD with BDNNs, where weights have a probability distribution, we achieve a variational bound similar to the popular
variational dropout technique. Dropout randomly drops neurons during training, encouraging the model not to rely heavily on
any single feature. Our approach with ARD achieves similar benefits without the randomness of dropout, potentially leading
to more stable training.

To evaluate our approach, we have tested the model on two datasets: the Canadian Institute For Advanced Research
(CIFAR-10) for image classification and a dataset of Macroscopic Images of Wood, which is compiled from multiple
macroscopic images of wood datasets. Our method is applied to established architectures like Visual Geometry Group
(VGG) and Residual Network (ResNet). The results demonstrate significant improvements. The model reduced overfitting
while maintaining, or even improving, the accuracy of the network’s predictions on classification tasks. This validates the
effectiveness of our approach in enhancing the performance and generalization capabilities of deep learning models.
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Introduction

In the field of image classification, Deep Neural Networks (DNNs) have made remarkable
progress. However, when dealing with small datasets, neural networks tend to become
overparameterized, leading to overfitting due to the abundance of weight parameters in the layers.
To address this issue and mitigate overfitting during training, researchers have proposed various
compression techniques to design lightweight models, including neural network pruning. Dropout
regularization, initially suggested by Hinton et al. as a method to prevent overfitting [Hinton et
al., 2012], involves randomly suppressing the activation levels of certain neurons during network
training. This strategy enhances the model’s feature extraction performance by retaining all neurons
and recovering all training parameters. Zhou and Luo [Zhou, Luo, 2018] have proposed a strategy that
considers the likelihood of node deletion based on the magnitude of the activation value. This approach
enhances the model’s feature extraction capabilities by selectively pruning nodes, thereby improving
overall efficiency.

In addition to overfitting, compression and acceleration present significant challenges for neural
networks, especially when their performance heavily depends on model parameters and computational
cost. Further investigation into variational dropout reveals the possibility of reducing the size of the
original network design and creating an extremely sparse model by examining individual dropout rates
for each weight [Molchanov, Ashukha, Vetrov, 2017].

While general sparsity offers a means of neural network compression, most present-day deep
neural network (DNN)-oriented software struggles to effectively handle sparse matrices, potentially
maintaining the same assessment time for network evaluation. Simultaneously, enforcing organized
sparsity in data tensors or convolutional filters can lead to acceleration. Structured sparsity techniques
vary from the straightforward removal of redundant neurons or adoption of convolutional filters to more
intricate patterns, such as those implemented in Perforated CNNs for eliminating redundant rows in
intermediate dataframe matrices during convolutions [Figurnov et al., 2016]. Group-wise Brain Damage
utilizes group-wise sparsity in convolutional filters [Lebedev, Lempitsky, 2016], and Structured Sparsity
Learning offers a mechanism for selectively pruning entire convolutional filters or layers within residual
networks [Wen et al., 2016]. These approaches facilitate the creation of parsimonious models while
preserving accuracy, providing realistic acceleration with minimal adjustments to the existing model.

A meticulously adapted log-uniform prior, as proposed by Molchanov et al. [Molchanov,
Ashukha, Vetrov, 2017; Kingma, Salimans, Welling, 2015], promotes sparsity while preserving
model correctness and overcoming the drawbacks associated with improper priors [Hron, Matthews,
Ghahramani, 2018]. Going beyond its conventional application, dropout can be viewed through the lens
of variational inference and automatic relevance determination [Mackay, 1995; Neal, 2012], offering
an alternative interpretation that mitigates its known deficiencies.

In this paper, these two methods are combined to create a model with substantial acceleration
in convolutional neural networks, demonstrating an acceptable level of accuracy loss and a high level
of group sparsity. The proposed model is designed based on VGG and ResNet architectures using
CIFAR-10 and a Macroscopic Image of Wood dataset.

Related work

Pruning techniques in Bayesian neural network

In [Louizos, Ullrich, Welling, 2017], the pruning of neurons and all their incoming and outgoing
weights is achieved through Bayesian modeling using sparsity-inducing priors on hidden units, instead
of individual weights. In contrast, the author in [Neklyudov et al., 2017] primarily applies the Bayesian
model to eliminate certain channels in each layer of the network for pruning purposes. The authors
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in [Zhou et al., 2019] achieved more optimal pruning by accounting for interlayer dependencies during
the pruning process and introduced a novel dropout-based redundancy measure to compute posterior
hypothesis inter-layer relationships. Despite their differences, applying these techniques to the Bayesian
model ultimately optimizes a weight importance metric that directly influences the pruning process.

Variational Dropout, initially proposed by Kingma et al. in 2015 [Kingma, Salimans, Welling,
2015], investigates the relationship between dropout and stochastic gradient variational Bayesian
inference. Subsequent work by Molchanov et al. [Molchanov, Ashukha, Vetrov, 2017] further explores
Variational Dropout, demonstrating its utility as a technique for model compression. This approach
enables neural networks to utilize significantly fewer parameters while maintaining a surprisingly high
level of accuracy.

Gaussian Dropout, as suggested in [Srivastava et al., 2014], represents a local reparameterization
of stochastic gradient variational Bayesian (SGVB). The goal is to treat the dropout ratio as a parameter
that can be learned during training, rather than as a fixed hyperparameter adjusted by the user.

In 2016, Gal and Ghahramani introduced the concept of Monte Carlo Dropout [Gal, Ghahramani,
2016], representing a deep Gaussian process in Bayesian approximation. A deep Gaussian process
generates a probability distribution as its output, and the parameters of this distribution are estimated
during testing using conventional dropout. This approach forms the basis for subsequent research [Gal,
2016; Lakshminarayanan, Pritzel, Blundell, 2017; Zhu, Laptev, 2017; Jungo et al., 2018], which focuses
on characterizing the uncertainty of model outputs to address expressing uncertainty in deep learning
without compromising test accuracy.

The idea that various neurons in a neural network should have varied dropout probabilities
based on their perceived significance for specific characteristics was proposed by Li et al. through
Evolutionary Dropout [Li, Gong, Yang, 2016]. Applied to both shallow and deep neural networks,
Evolutionary Dropout determines the dropout ratio in shallow networks using the second-order statistics
of input data features. In deep networks, the dropout ratio for each layer is determined in real-time using
the output of that layer for each batch. Evolutionary Dropout significantly accelerates convergence
while maintaining better accuracy results compared to ordinary dropout.

Wood identification

There are currently two primary techniques used for wood species identification: automatic
and manual. Identifying the species of wood using the manual method is the conventional and most
popular approach. This technique is based on the morphological (size, shape, color, and wood grain),
mechanical (hardness, strength, and ductility), and chemical (chemical composition) characteristics of
wood. Nevertheless, this method requires a high level of expertise and specialized wood knowledge
from the practitioner [Silva, Bordalo, Pissarra, 2020]. In contrast, the automatic deep learning model for
wood classification offers benefits such as reliability, accuracy, and lower requirements for practitioner
experience [Silva, Bordalo, Pissarra, 2020].

Utilizing a diverse dataset containing 77 Congolese wood species, the authors in [Rosa et
al., 2022] employed the multi-view random forest (MVRF) model to achieve accurate species
identification. This innovative approach incorporated information from three distinct anatomical planes
(cross-sectional, tangential, and radial), ensuring a comprehensive understanding of each wood sample
[Rosa et al., 2022]. For wood species identification, integrating both cross-sectional and tangential
features in the multi-view random forest model resulted in a substantial improvement in accuracy
compared to using only cross-sectional features. While the inclusion of the radial plane also provided
a slight performance gain, it was not as significant as the combined effect of cross-sectional and
tangential features. Unlike traditional methods that rely solely on local phase quantization (LPQ)
features, the MVRF model emerged as a clear winner, achieving significantly superior identification
accuracy. This success can be attributed to the additional information harnessed by the three-plane
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analysis, enriching the model’s understanding of wood anatomy. Acknowledging the complexity of
the wood species identification task and potential biases of k-folds, the authors opted for the leave-k-
tree-out method for a more rigorous and reliable evaluation of their models, ensuring generalizability
beyond the training data.

In differentiating between Juniperus cedrus and J. phoenicea var. canariensis, the authors
of [Esteban et al., 2009] employed a feedforward multilayer perceptron (MLP) network, a type of
artificial neural network, achieving a remarkable 92% accuracy. However, a limitation of this study is
the lack of data diversity, as the performance of this model significantly decreases when the dataset
is expanded [Silva et al., 2022]. The authors of [Lens et al., 2020] applied the ResNet101 model
combined with an SVM classifier to identify 112 tree species, mainly in the tropics. This model focuses
on microscopic analysis rather than macroscopic analysis and achieved an identification accuracy
of 95.6 % using cross-sections. The authors of [Filho et al., 2014] explored machine learning methods
for wood species identification, proposing a two-level divide-and-conquer strategy for classification.
Experiments on the Forest Species Database — Macroscopic dataset of 41 species yielded a result
of 97.07 %. The authors of [He et al., 2021] proposed a composite model from three convolutional
neural network (CNN) models, using transfer learning to increase training speed. This method achieved
an accuracy of 98.81 % after training on a dataset of 41 wood species and 11,984 images. The results
also highlighted the efficacy of using macroscopic images for high-performance identification, as
opposed to microscopic images. However, both of these studies observed a decrease in accuracy when
the dataset was expanded [Silva et al., 2022].

Methodology

Variational automatic relevance determination for neural network

At the core of our analysis are the weight matrices W =
(
W (l)
)L
l=1

present in L layers, examined

within a data collection D consisting of paired input and output elements (X, Y) = (xn, yn)N
n=1.

Assuming the existence of a parametric model p(D | W) =
N∏

i=1
p(yi | xi, W), where W ∈ RD

establishes a relation between x and y governed by parameters W . Hyperparameters τ ∈ RH act as
levers, adjusting the prior distribution p(W | τ) to influence the possible values of parameters W .
In Bayesian neural networks (BNNs), addressing the intractability of the posterior p(W | D, τ) =
= p(D | W)p(W | τ)/p(D | τ) involves employing a tractable parametric prior p(W | τ). We strategically
optimize its hyperparameters τ to maximize the dataset’s marginal likelihood (evidence), effectively
approximating the posterior [Kharitonov, Molchanov, Vetrov, 2018]:

τ∗ = arg max
τ

p(D | τ) = arg max
τ

∫
p(D | W)p(W | τ)dW. (1)

Doubly Stochastic Variational Inference (DSVI) [Titsias, Lazaro-Gredilla, 2014] provides
a method for approximating intractable posterior distributions in (1) by strategically designing an
approximate posterior q(W | φ) and minimizing the KL-divergence DKL(q(W | φ), ||, p(W | τ)). This
process effectively translates to optimizing the Evidence Lower Bound (ELBO) by considering both
parameters φ and hyperparameters τ, as follows:

log p(D | τ) � L(φ, τ) = Eq(W |φ)[log p(D | W)] − DKL(q(W | φ) || p(W | τ))→ max
φ,τ
. (2)

Incorporating an Automatic Relevance Determination (ARD) prior [Mackay, 1995; Neal, 2012]

given by p(W | τ) = D∏
i=1
N
(
Wi | 0, τ−1

i

)
and leveraging q(W | μ, σ) =

D∏
i=1
N
(
Wi | μi, σ

2
i

)
, we can
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analytically derive the optimal hyperparameter values as τ∗i =
(
μ2

i + σ
2
i

)−1
[Titsias, Lazaro-Gredilla,

2014]. This leads to the simplified Evidence Lower Bound (ELBO) expression of (2) as follows [Titsias,
Lazaro-Gredilla, 2014]:

LARD(μ, σ) =
N∑

i=1

Eq(W |μ,σ)[log p(yi | xi, W)] − 1
2

D∑

j=1

log

⎛⎜⎜⎜⎜⎜⎜⎝1 +
μ2

j

σ2
j

⎞⎟⎟⎟⎟⎟⎟⎠ = LD(μ, σ) + RARD(μ, σ)→ max
μ,σ
.

(3)
The local reparameterization trick [Kingma, Salimans, Welling, 2015] serves as a crucial variance

reduction technique, facilitating efficient optimization of this estimation through stochastic gradient

methods. Under the restricted variational approximation q(W | μ) = D∏
i=1
N
(
Wi | μi, αiμ

2
i

)
, where αi > 0,

the Automatic Relevance Determination (ARD) objective (3) simplifies significantly. The regularizer
term, being constant, no longer impacts optimization. This results in a streamlined objective function
that depends solely on the parameters μ. Mathematically, it can be expressed as

LARD(μ) = LD(μ) =
N∑

i=1

Eq(W |μ)[log p(yi | xi, W)]→ max
μ
. (4)

Connection with Log-Normal Multiplicative Noise Pruning

Log-Normal Multiplicative Noise Pruning is a technique that achieves organized sparsity
within neural networks through a unique approach. This innovative mechanism fosters a structured
pruning process, enabling the removal of entire neurons or convolutional channels for a leaner, more
efficient network architecture. It introduces a distinct dropout-like layer, accompanied by a targeted
regularization term, to strategically inject multiplicative noise θ into the outputs x with I features from
preceding layers:

yi = xi · θi, (5)

θi ∼ pnoise(θi). (6)

A fully-factorized improper log-uniform prior, denoted as LogU∞(·), is selected for the
noise θ with the prior distribution p(θ), ensuring model sparsity and possessing an infinite
domain. This distribution operates effectively for deep neural networks because of its sparsification

properties [Molchanov, Ashukha, Vetrov, 2017]. With θi > 0, p(θ) =
I∏

i=1
p(θi) in (5) and (6), the log-

uniform prior for sparsity is expressed as follows:

p(θi) = LogU∞(θi) ∝
1
θi
.

In order to perform variational inference, an approximation family q(θ | φ) needs to be determined
for the posterior distribution p(θ | D) ≈ q(θ | φ). This variational distribution is chosen to be a fully-
factorized log-normal distribution, with ϕi =

(
μi, σ

2
i

)
:

q(θ | φ) =
I∏

i=1

q(θi | μi, σi) =
I∏

i=1

LogN(θi | ϕi),

θi ∼ LogN(θi | ϕi)⇔ log θi ∼ N(log θi | ϕi).

While the log-normal posterior and log-uniform prior offer enticing advantages, their
combination for variational lower bound maximization presents optimization challenges. The
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log-uniform prior’s improper nature leads to infinite KL-divergence between the log-normal
distribution LogN(ϕ) and a log-uniform distribution LogU∞ for finite parameter ϕ values, rendering
the optimization ill-posed. To resolve this problem, a proper probabilistic model is obtained with the
prior and the posterior:

p(θi) = LogU∞(θi)⇒ LogU[a,b](θi),

q(θi) = LogN(θi | ϕi)⇒ LogN[a,b](θi | ϕi),

LogP[a,b](θi) ∝ LogP∞(θi) · I[a,b](log θi).

Leveraging the defined notation, where LARD(μ) (4) signifies the ARD model loss, q and p
represent truncated distributions, and φ(·) and Φ(·) symbolize the standard normal’s PDF and CDF, the
final loss is computed as follows:

L = LARD(μ) −
L∑

l=1

KL(q(θl | μl, σl) || p(θl)),

where

KL(q(θl | μl, σl) || p(θl)) =
I∑

i=1

KL(q(θl,i | μl,i, σl,i) || p(θl,i)),

KL(q(θl,i | μl,i, σl,i) || p(θl,i)) = log
b − a√
2πeσ2

l,i

− log(Φ(βl,i) − Φ(αl,i)) −
αl,iφ(αl,i) − βl,iφ(βl,i)

2(Φ(βl,i) − Φ(αl,i))
,

αl,i =
a − μl,i

σl,i

, βl,i =
b − μl,i

σl,i

.

Experimental results

The performance of the proposed method is assessed on two datasets: the standard CIFAR-10
benchmark and a real-world dataset of macroscopic wood images.

Dataset

Four individual datasets were integrated to create the comprehensive dataset used in this study:
the Tropical Forest Species1, the Brazilian Flora Species2, the Wood Species Dataset3, and the Forest
Species Database4. This integration was aimed at broadening the diversity for classification. During
data preparation, images from classes with identical names were merged. Additionally, naming errors
introduced by collectors were addressed by verifying and correcting the accurate species names, leading
to the consolidation of corresponding image collections. The final dataset comprises 16,346 images
from 75 species.

The combined dataset and detailed statistical information about the data sources are presented in
Table (1) and Fig. (1). The distribution of image counts for each wood type in the combined dataset is
depicted in Fig. (2). As indicated in Table (1) and Fig. (2), each species is represented by an average
of 218 images, with a range from 24 to 1332 images per species. The Tropical Forest Species source
contributes over 65 % of the dataset’s images, whereas the Wood Species Dataset accounts for only
about 4 % of the total.
1 https://web.inf.ufpr.br/vri/databases/forest-species-database-macroscopic (accessed 18-03-2023).
2 https://zenodo.org/record/2545611 (accessed 18-03-2023).
3 https://data.mendeley.com/datasets/yzzcbyvgmh/3 (accessed 18-03-2023).
4 https://data.mendeley.com/datasets/cc78ftcdf9/1 (accessed 18-03-2023).
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Table 1. Statistical analysis of dataset

Dataset Number of images Percentage Number of species Average
Forest Species Database 2942 17.99 % 41 71.76
Wood Species Dataset 709 4.34 % 12 59.08
Tropical Forest Species 10,795 66.04 % 11 981.36

Brazillian 1901 11.63 % 46 41.32
Total 16,346 100 % 75 217.95

Figure 1. Number of images per species in each datasets

Figure 2. Number of images per species in the total dataset
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Experiment setup

We built models based on the VGG-19 [Simonyan, Zisserman, 2014] and ResNet-18 [He et
al., 2016] architectures and trained them on the CIFAR-10 and Macroscopic Image of Wood datasets
for 300 epochs, with a batch size of 2048. We selected Adam as our optimizer, starting with a learning
rate of 10−3 and employing Cosine Annealing for a smooth decay to 10−5 by the end of training. To
prevent underfitting, we carefully scaled the regularizer terms by 0.05 and fine-tuned the truncation
parameters a and b to ensure model regularization without amplifying input signals. We constrained θ
to the range [0, 1], setting the right truncation threshold b to 0, as empirical evidence shows minimal
impact from the left truncation parameter a, which was set at a = −20 consistently throughout
the experiments. The proposed method was implemented with the optimal parameter configuration
described in the original study [Neklyudov et al., 2017] for comparative analysis. We divided the
Macroscopic Image of Wood dataset into training, validation, and testing sets, allocating 60 %, 20 %,
and 20 % of the data, respectively. The experiments were conducted using Python (v.3.9) and PyTorch
(v.2.1) as the computational backbone, with the NVIDIA GeForce RTX 3090 graphics card, which
features a 24 Gb memory capacity.

Evaluation

On CIFAR-10

Table 2. Evaluation on CIFAR-10 testing set

Model Accuracy Sparsity
Pruning ARD ResNet-18 96.352 0.931
Pruning ARD VGG-19 95.048 0.932

In Table 2, we report accuracy and sparsity for ResNet-18 and VGG-19 trained with Automatic
Relevance Determination (ARD) combined with Structured Bayesian Pruning. Figure 3 depicts
a comparison between the accuracy of the original model and the model trained with ARD combined
with Structured Bayesian Pruning. It is evident that the proposed network model exhibits high sparsity
with negligible degradation in classification accuracy. Specifically, ResNet-18 and VGG-19, trained
with ARD combined with Structured Bayesian Pruning, achieve accuracies of 96.352 % and 95.048 %,
respectively. Furthermore, the accuracy of the suggested models decreases by only 2–3 % compared to
the original models. Both models, built with the new technique, exhibit more than 93 % sparsity. Higher
sparsity helps networks reduce numbers of active connections by eliminating connections entirely, the
model bypassed the need to explicitly multiply each input. This eliminates unnecessary computations,
leading to improved efficiency. In Bayesian statistics, hierarchical priors are a way to introduce prior
information not just about the model parameters, but also about the hyperparameters themselves.
The approach also accommodates the application of hierarchical priors to hyperparameters, providing
a mechanism for optimizing the sparsity-accuracy trade-off. Notably, the original model exhibits an
inadequate level of generalization on the test set despite satisfactory performance on the training set.
In contrast, the suggested model mitigates overfitting issues. Within the first 50 epochs, the proposed
model demonstrates notable acceleration in achieving accurate predictions, transitioning to a slower
approach and ultimately reaching optimal performance. The ARD model attains a training accuracy of
over 80 % after just 30 epochs, outperforming other models that require a more extended training period
to reach similar accuracy levels. Overall, these findings suggest that the ARD technique effectively
improves the accuracy of deep learning models. ARD models appear less prone to overfitting than
other models, achieving high accuracy on both training and test datasets.

The impressive complexity-learning capabilities of large networks are undermined by their
vulnerability to overfitting and their unsuitability for devices lacking computational muscle. Pruning,
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Figure 3. Training and Testing Accuracy after each epoch on CIFAR-10 dataset

a technique that optimizes network size with minimal impact on learning complex functions, serves
as a bridge between powerful yet resource-intensive networks and efficient but limited models.
Specifically addressing the issue of Binary Neural Network (BNN) complexity, our proposed pruning
method takes a significant step forward by successfully eliminating a substantial portion of the network
parameters. However, the current approach to structured pruning, though successful in shrinking the
model, carries the risk of generating sparse structures that may negate potential computational benefits.
To address this concern, our suggested method outperforms other studies [Mathew, Rowe, 2023;
Beckers et al., 2023] in terms of accuracy and sparsity, offering better results. This method represents
a promising advancement in overcoming the challenges associated with pruning BNNs and enhancing
their efficiency.

On Macroscopic Image of Wood

Table 3. Evaluation on Macroscopic Image of Wood testset

Model Accuracy F1 Score Precision Recall Sparsity
Pruning ARD ResNet-18 91.876 0.901 0.903 0.923 0.933

Original ResNet-18 91.572 0.913 0.907 0.919 0.226
Pruning ARD VGG-19 90.538 0.889 0.892 0.887 0.932

Original VGG-19 90.782 0.899 0.897 0.901 0.235

Table 3 and Fig. 4 present information on four metrics related to the training process of four
models. These metrics encompass accuracy, F1 Score, Precision, and Recall. In order to assess model
performance on imbalanced datasets, macro-averaging is relied upon for precision, recall, and F1-score.
This technique is particularly effective because it considers the size of each class, ensuring a fair
evaluation even when some classes have far fewer samples [Mortaz, 2020]. While accuracy might
seem like a straightforward metric, it can be misleading for imbalanced data. A model could simply
predict the majority class all the time and achieve high accuracy, yet completely miss the mark on
the minority classes that are often more important. Accuracy is therefore employed for visualization
purposes in Fig. 4. It serves to illustrate general trends, such as how the model’s overall performance
changes with increasing class imbalance in the training data. Additionally, accuracy’s simplicity makes
it an accessible way to convey the results. As observed, the suggested models achieve high accuracy
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Figure 4. Training, Validation and Testing Accuracy after each epoch on Macroscopic Image of Wood dataset

without any reduction in these metrics when compared to the original model. The Automatic Relevance
Determination (ARD) model demonstrates rapid convergence, surpassing a training accuracy of 80 %
within 50 epochs. This swift learning pace highlights its efficient learning capabilities, outperforming
other models. While the test accuracy gap narrows slightly compared to training, ARD maintains its
advantage, showcasing superior generalizability. In comparison to the original model, the proposed
method achieves a substantial 4 times compression in sparsity. This implies that the ARD model has
four times as many zeros for the same number of parameters, leading to a fourfold boost in calculation
speed due to efficient zero-computation. This significant improvement in efficiency surpasses the
original model’s performance.

Despite achieving high accuracy in wood classification based on macroscopic images, the
proposed model falls short of previous studies [Esteban et al., 2009; Lens et al., 2020], due to
data imbalance and data expansion. To enhance its performance and potentially surpass previous
studies, future work will address data imbalance using techniques such as Focal Loss or Upsample.
This approach holds promise for further improvements in accuracy and metrics, including F1 score,
precision, and recall.

Conclusion

This work introduces a groundbreaking approach that combines variational Automatic Relevance
Determination (ARD) approximation with fully factorized Gaussian variational posterior distributions,
along with a dropout-like layer for noise introduction. Its iterative pruning mechanism stands out,
and enables the model to achieve sparsity of over 90 % while maintaining as accuracy loss of less
than 1–2 %. Demonstrably effective on VGG and ResNet, the flexibility of this technique extends to
a wider realm of Convolutional Neural Network (CNN) architectures. Its impact is poised to reshape
the future of CNN design, paving the way for architectures like MobileNet, ConvNet, and ConvNeXt to
leverage its power. In this study, we construct the architecture of deep learning models and compare the
effectiveness of this model to the original models that achieved high accuracy in wood classification
based on macroscopic images. The ResNet-ARD model, designed to identify wood species by analyzing
visual images, achieves an accuracy of 91.876 % on the test set, demonstrating the superiority of the
model over its predecessors. The ARD technique enables the creation of models with fewer nonzero
elements, reducing storage requirements, and potentially improving computational efficiency, all while
maintaining the same level of accuracy.
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