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We present an inhomogeneous two-dimensional network model of two-phase flow in porous media. The
edges of the network are assumed to be capillary tubes of different radii. We propose a new algorithm for
handling phase fluxes at the nodes of this network model. We perform two test problems and show that the
two-phase flow in this inhomogeneous network model demonstrates properties that are analogous to those of
real porous media: capillary imbibition, dependence of capillary pressure on saturation and effect of capillary
forces in two-phase displacement. The two test problems are: the counter-current imbibition and the two-
phase displacement in a periodically inhomogeneous porous medium. In the former problem, we implement
a network consisting of two regions: a region of low-permeability with thin capillaries surrounded by a region
of high-permeability with thick capillaries, initially saturated with wetting and nonwetting incompressible fluids,
respectively. Capillary equilibrium is established due to counter-current imbibition by a region. We examine the
dependence: of saturation of the wetting fluid with respect to time in the regions, and of capillary pressure on the
current saturation. We have obtained a qualitative agreement with the known experimental and theoretical results,
which will further allow us to use this network model to verify homogenized models of capillary nonequilibrium.
In the latter problem, we consider the two-phase displacement, where the network is initially saturated with non-
wetting fluid. Then wetting fluid is injected through a boundary at a constant rate. We analyze the saturation
with respect to the axis which is along the applied pressure gradient for various moments in time with various
values of coefficients of surface tension. The results show that for lower values of coefficient of surface tension,
the wetting fluid prefers to invade through the thicker tubes, and in the case of higher values, through thinner
tubes.
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Представлена неоднородная двумерная сетевая модель двухфазного течения в пористых средах.
Предполагается, что ребра сети представляют собой капиллярные трубки разного радиуса. Предложен
новый алгоритм управления фазовыми потоками в узлах этой сетевой модели. Показано, что сетевая
модель демонстрирует свойства, аналогичные свойствам реальных пористых сред: капиллярная пропит-
ка, зависимость капиллярного давления от насыщенности и влияние капиллярных сил при двухфазном
течении. Было решено две тестовые задачи: противоточная пропитка пористого блока и двухфазное те-
чение в периодически неоднородной пористой среде. В первой задаче реализована сеть, состоящая из
двух областей: область с низкой проницаемостью и тонкими капиллярами окружена областью с высокой
проницаемостью и толстыми капиллярами, изначально насыщенными смачивающими и несмачивающими
несжимаемыми жидкостями соответственно. Капиллярное равновесие устанавливается за счет противо-
точной пропитки внутренней области. Исследована зависимость насыщенности смачивающей жидкости
в областях от времени и капиллярного давления от текущей насыщенности. Получено качественное со-
ответствие известным экспериментальным и теоретическим результатам, что в дальнейшем позволит ис-
пользовать эту сетевую модель для проверки осредненных моделей капиллярной неравновесности. Во
второй задаче рассматривается двухфазное вытеснение, при котором сеть изначально насыщается несма-
чивающей жидкостью. Затем смачивающая жидкость вводится через границу с постоянным расходом.
Анализируется распределение насыщенности вдоль оси, направленной вдоль приложенного градиента
давления, для различных моментов времени при различных значениях коэффициентов поверхностного
натяжения. Результаты расчетов показывают, что при более низких значениях коэффициента поверхност-
ного натяжения смачивающая жидкость предпочитает проникать через более толстые трубки, а при более
высоких значениях — через более тонкие.

Ключевые слова: пористая среда, капиллярное давление, пропитка, многофазный поток,
сетевые модели, периодически неоднородные среды
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1. Introduction

Modeling two-phase flow in porous media is important in a variety of applications in oil
production, hydrology, etc [Labed, Bennamoun, Fohr, 2012]. A porous medium consists of a skeleton
(usually solid) and voids (also called pores). The voids are connected to each other by capillaries. The
voids may contain fluids such as water, oil or gas [Su, Sanchez, Yang, 2012]. The saturation S k of
fluid Fk is defined as the ratio of the volume Vk occupied by the fluid Fk to the total volume of the
void space Vvoid:

S k =
Vk

Vvoid
. (1)

We assume that the void space can be filled with only two fluids. We denote saturation with
a more wetting fluid (for example, water in a hydrophilic rock) as S w, and with a less wetting fluid
(for example, oil in a hydrophilic rock) as S nw. Let these fluids completely fill the space of pores and
capillaries, then S w + S nw = 1. In what follows, we denote the saturation of the wetting fluid as S .
Darcy’s law is a continuum law for linear filtration of fluids in a porous medium [Whitaker, 1986]:

Q = −K
μ
∇P, (2)

where Q is the flow rate, K is the permeability, μ is the coefficient of viscosity, and ∇P is the pressure
gradient.

Permeability in the case of multiphase flows is traditionally considered to be a function of
saturation K = K(S ) [Coussy, 2004].

However, this assumption is only valid when the characteristic time of the fluid flow is much
greater than the characteristic time of relaxation, which is the time required for redistribution of fluids
in the pore and capillary space due to surface tension forces. Here, it is also assumed that the fluid
configuration corresponds to minimum surface energy at every moment in time. Thus, the traditional
models of fluid filtration in a porous medium are also called equilibrium models. The capillary
equilibrium can be disturbed when the saturation changes relatively quickly or the relaxation time
to the equilibrium state is sufficiently long. For example, the relaxation time is long for the continuum
description of filtration in a fractured-porous medium [Barenblatt, Zheltov, Kochina, 1960; Barenblatt,
Patzek, Silin, 2003]. In these cases the assumption that permeability is a function of saturation is
insufficient. Advanced models such as [Hassanizadeh, Gray, 1987] and [Hassanizadeh, 2004] take
capillary nonequilibrium effects (dynamic effects) into account by having K to also be dependent on
the rate of change of saturation:

K = K

(
S ,
∂S
∂t

)
. (3)

However, the process of fluid redistribution in the pore space can occur even at a constant
saturation S = const. This fact can be taken into account by including an internal parameter ξ in the
arguments of K. The relative permeability is of the form

Kα = Kα(S , ξ), (4)

and the kinetic equation for the parameter ξ, such that it relaxes to an equilibrium value for a given
constant saturation S :

∂ξ

∂t
= Ω(S , ξ). (5)

This approach was implemented by Kondaurov in his works [Kondaurov, 2007; Kondaurov, 2009].
Equations of the form (5) have been developed by [Konyukhov, Pankratov, Voloshin, 2017; Konyukhov,
Pankratov, Voloshin, 2019].

In order to better understand the physical meaning of nonequilibrium models and to clarify the
parameters included in them it is necessary to consider the movement of fluids at the scale of pores
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and capillaries. Common methods for modeling the movement of fluids at the pore scale are: the lattice
Boltzmann method [Chen, Doolen, 1998], a direct solution of the Navier – Stokes equation, and network
models [Blunt et al., 2013]. Direct modeling gives fairly accurate results on the distribution of velocity,
pressure and positions of interfaces but it requires significant computing power and time [Liu et al.,
2013]. Network models [Fatt, 1956; Aker et al., 1998; Ramstad, Berg, Thompson, 2019; Shabbir, 2023]
allows us to qualitatively reproduce the observed effects with lower computational effort [Meakin,
Tartakovsky, 2009]. This paper presents a two-dimensional network model that allows us to reproduce
nonequilibrium phenomena during two-phase flow in a porous medium.

2. Numerical model of two-phase flow of incompressible fluids

Figure 1. Scheme of the network model. Showing nodes {νk}, where k = (1, 2, 3, 4, 5). Each tube connecting
2 nodes νi and ν j, can have a different radius Ri j, and contain a maximum of 2 menisci

We consider a network model of a porous medium, which is a set of nodes connected to each
other by capillary tubes. The tubes model the capillary space, and the nodes model the pore space. Each
node is connected to 4 neighboring nodes as shown in Fig. 1. A node can be connected to less than
4 nodes if they are located on the boundaries. In what follows, the double index i j denotes quantities
related to the capillary τi j connecting nodes νi and ν j of the set of nodes {νk}, k = 1, . . . , n, here n
is the total number of nodes in the system. Capillary tubes are considered to be cylinders of circular
cross-section and in general have different radii Ri j [Shabbir, 2023]. The medium is saturated with
two incompressible fluids F1 and F2, with different viscosities μ1 and μ2, and wetting properties. The
volumes of the nodes are neglected. The distribution of fluids in the medium is determined by the
position of the menisci. In the model under consideration the number of menisci in one tube does not
exceed 2. This model has many characteristics similar to [Aker et al., 1998], however, it is different for
example, about the choice of geometry of the capillary, they have used hourglass shaped tubes, while
we have used cylindrical shaped tubes, which allows us to derive accurate flow rate equations. The
volumetric flow rate for a tube τi j is

Qi j = Ai jΔPi j + Bi j, (6)

where the pressure difference at the ends of the tube is equal to ΔPi j = Pi − P j,

Ai j =
πR4

i j

8Mi jl
, (7)

Bi j =
πR4

i j

8Mi jl

2si jσ

Ri j

, (8)
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where l is the length of the tube, σ is the coefficient of surface tension, Mi j =
(μ1l1+μ2l2)i j

l is the average
viscosity of the fluid in the capillary τi j, μk is the coefficient of dynamic viscosity of the fluid Fk,
and (lk)i j is the length occupied by the fluid Fk in the capillary τi j (k = 1, 2). The multiplier si j
takes into account the number and orientation of menisci in the capillary τi j, when calculating the
total capillary pressure jump in the tube. The multiplier si j = 0 if the ends of the tube are filled with
identical fluids, si j = 1 if the end of the tube at node i is filled with a wetting fluid, and the end at
node j is filled with a nonwetting fluid, s = −1 otherwise.

Since Mi j = M ji, and si j = −s ji we have

Ai j = A ji, (9)

Bi j = −B ji. (10)

The average fluid velocity in the capillary τi j is

vi j =
Qi j

πR2
i j

. (11)

The law of conservation of volume at the nodes for a closed system (in the absence of
sources/sinks at the nodes) leads to a system of n linear equations for determining the pressures at
the nodes: ∑

j

Qi j = 0, i = 1, 2, . . . , n, (12)

where j are the indexes of the nodes connected to node νi. For example, in Fig. 1, i = 3, and j =
= (1, 2, 4, 5). Taking equation (6) into account, we have∑

j

Ai j(Pi − P j) = −
∑

j

Bi j, i = 1, 2, . . . , n. (13)

In the problem of counter-current imbibition, we have a closed system, that is, no fluid can enter or
leave the system. The determinant of the matrix of the system of linear equations is equal to zero (the
summation of equations (13), due to (9) and (10) leads to the identity 0 = 0). This case is solved by
adding a constant to the elements of an arbitrary column k of the matrix of the linear equations, which
enforces the additional condition Pk = 0.

The coordinates of the menisci, if present in the τi j tube, satisfy the equation

dxi j

dt
= vi j. (14)

Let us formulate the equations in dimensionless form by introducing the linear scale Lm, the
pressure scale Pm and the dynamic viscosity scale μm, such that: x = Lmx̃, Ri j = LmR̃i j, li j = Lml̃i j,

t = tmt̃, vi j = vmṽi j, P = PmP̃, Mi j = μmM̃i j. We define:

vm ≡
LmPm

μm
, tm ≡

Lm

vm
. (15)

The flow equations in dimensionless form are

dx̃i j

dt̃
= ṽi j, (16)

ṽi j =
R̃2

i j

8M̃i j̃li j

⎛⎜⎜⎜⎜⎜⎜⎝ΔP̃i j +
1
N

2si j

R̃i j

⎞⎟⎟⎟⎟⎟⎟⎠, (17)
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where N is the capillary number, which is a dimensionless parameter characterizing the relationship
between the viscous and the capillary forces:

N =
vmμm

σ
=

LmPm

σ
. (18)

Note that the capillary number N can be expressed in terms of the radius Rref and the length lref
of the tube, with a pressure difference at the ends of the capillary of scale Pm:

ṽi j =
R̃2

i j

8M̃i j̃li j

⎛⎜⎜⎜⎜⎜⎜⎝ΔP̃i j +
α

Nc

2si j

R̃i j

⎞⎟⎟⎟⎟⎟⎟⎠, (19)

Nc ≡
R2
refPm

8lrefσ
, α =

Nc

N
=

R2
ref

8lrefLm
. (20)

In the problem of capillary imbibition we choose the value Pm =
σ

Rref
as the pressure scale

and Lm = Rref as the length scale, then N = 1 and equations (16) and (17) take dimensional form. The
distribution of wetting and nonwetting fluids along the outgoing flows at each node is determined from
the condition of minimum contact energy of the nonwetting fluid with the walls of the capillaries, the
implementation of which in a network model is the novelty. A brief version of the algorithm:

1. Calculation of pressure at all nodes for the given configuration of menisci by solving the system
of linear equations (13).

2. Determination of the time integration step Δt, such that Δt = ctl
vmax
, here vmax is the maximum

velocity among all tubes, for all results in this article we have used ct = 0.1.

3. Integration of equation (14) per time step Δt to calculate the displacements of menisci and the
volumetric inflow and outflow in each node νk.

4. Distribution of fluids in each node νk according to the novel method, which is the wetting fluid
is first distributed into the tubes according to the ascending order of their radii, and then the
non-wetting fluid.

5. Recalculation of the position of the meniscus (merging of drops) when more than 2 menisci
appear in a tube, such that the center of mass of each fluid in the tube remains the same.

In what follows all quantities are dimensionless, so the sign “∼” is omitted.

3. Imbibition of an inclusion at a constant saturation

Using the developed algorithm, we solve the problem of imbibition of an inclusion inside a region
with closed boundaries. Initially, the wetting fluid is located in the outer region and the nonwetting
fluid is located in the inner region as shown in Fig. 2, a. During simulation, we calculate the saturation
of the wetting fluid S (t) in the inner region and the average capillary pressure Pc in the inner region
were for various equilibrium values of S .

The computational domain consists of a grid of 30 × 30 tubes. The tubes in the outer region
have radii of Router = 6. The inner region (inclusion) consists of thinner tubes with radii consisting
of Rinner = (2, 3, 4, 5). The volume of the inner region is approximately equal to the volume of the
outer region, Vinner ≈ Vouter, where Vsys = Vinner + Vouter.

Random small values are added to the initial radii of the tubes R0
i j that is Ri j = R0

i j + ΔRi j, thus
preventing the case of two identical tubes being connected to a node, and thus ensuring that there
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(a) S sys = 0.29, S inner = 0 (b) S sys = 0.29, S inner = 0.30

Figure 2. Flow visualization for counter-current imbibition, in 30× 30 grid of tubes. S sys is saturation of wetting
fluid in the whole system, which remains constant, S inner is saturation of wetting fluid in the inner region.
All boundaries are closed. (a) Initial distribution, where the inner region of low-permeability is saturated with
nonwetting, and outer region of high-permeabality with wetting fluid. The wetting fluid invades the inner region
solely due the capillary forces. (b) Final distribution, wetting fluid prefers to rest in the thinner capillaries

(a) Saturation vs time (b) Capillary pressure vs saturation

Figure 3. Results for counter-current imbibition. (a) Dependence of saturation S of the wetting fluid in the inner
region with respect to dimensionless time t. (b) The dependence of average capillary pressure P (dimensionless)
with respect to equilibrium saturation S

always exists a unique way of distributing fluids according to the novel method. In all results shown

here,
ΔRi j

R0
i j
≈ ±10−3. The other constants used were: μ1 = μ2 = 0.05, σ = 1 and l = 20.

Series of calculations were carried out for different saturations of the wetting fluid in the whole
system S sys, where a system consists of the inner and the outer region. An example of the initial and
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equilibrium configuration of fluids in a tube system is shown in Fig. 3. It can be seen that the wetting
fluid preferentially penetrates the tubes of smaller radius.

Figure 3, a shows an example of the evolution of the saturation of the wetting fluid in the inner
region over time for the case of maximum saturation 0.53. The calculated curve can be approximated
quite well using the function

S (t) = C1 +C2

(
1 − e−C3t

)
, (21)

where C1, C2 and C3 are fitting coefficients. In Fig. 3, b, we see that the average capillary pressure
decreases with increase in equilibrium saturation, this is in agreement with the well-known theory and
experimental results [Fatt, 1956].

4. Flow in a periodically inhomogeneous medium

Let us consider the process of displacement of a nonwetting fluid by a wetting fluid in
a periodically inhomogeneous porous medium. Heterogeneity is modeled by varying the radii of the
tubes. The radius of a tube is a function of the coordinate of its center (shown in Fig. 4, a):

R(x, y) = A(1 + B cos(kx x) cos(kyy)), (22)

where A = 4, B = 0.8, kx = ky =
2π
λ , λ = 10δ, δ is the distance between two adjacent nodes, δ =

√
2l,

and l is the length of the tube.

(a) Dimensions (b) Thickness of radii

Figure 4. Radius distribution for filtration. (a) Simplified view of 40 × 40 tubes, with marked centers of 3 tubes
τ32, τ33, and τ23. The center of τ23 located at (x23, y23). δ is the distance between any two adjacent nodes along
an axis. (b) Periodical nonhomogeneity, heat map of radius distribution produced by equation (22), the numbers
along the horizontal and vertical axes denote the kth row and column of the grid formed by tubes

The setup and boundary conditions are shown in Fig. 5. The top and bottom rows of nodes are
closed boundaries, while the left and right column of nodes are open boundaries. The wetting fluid is
injected at a constant flow rate Q from the left. All open nodes on the left boundary are maintained at
the same input pressure Pin(t), which are calculated at each computation step, in order to achieve Q =
= const for various different distributions of menisci. Fluids are drained from the right open nodes,
which is always maintained at a pressure Pout = const. We terminate the simulation when we have
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Figure 5. Boundary conditions for filtration. 40 × 40 tubes, N = 1, t = 1000, where N is the capillary number
according to equation (18), and t is time in dimensionless form. Q is the volumetric injection rate, Pin(t) is the
input pressure, and Pout is the output pressure, all quantities are in dimensionless form

injected the wetting fluid of volume approximately equal to the total volume of the system Vsys. The
physical time tmax for the simulation is

tmax∫
0

Q dt = Vsys; (23)

since Q = const, we have

tmax =
Vsys
Q
, (24)

where Vsys =
∑
i
πR2

i l for all tubes i.

For all results of filtration we have used: a grid of size 40 × 40 tubes; μ1 = μ2 = 0.01; l =
= 100; Pout = 10.0; Q = 1000. We calculate Vsys = 9.7 · 106 ≈ 107, and therefore from equation (24),

tmax ≈ 107

103 = 104.
We see flow visualization for the high capillary number N = 1 and the low capillary number

for N = 0.05 in Fig. 6 and Fig. 7, respectively. In Fig. 6, it is clear that the fluid prefers to flow
through the path of least resistance, which are the thicker tubes. In Fig. 6, a, the flow (front) is the least
progressed along the horizontal axis of symmetry as the region there has thinner capillaries. In Fig. 6, b,
we see formation of zones with nonwetting fluid located in the intersection of the thinner capillaries
temporarily surrounded by the wetting fluid on all its sides. In Fig. 7, the wetting fluid prefers to flow
through the thinner tubes with higher capillary forces. In Fig. 7, a, the flow through the thinner tubes
has moved the furthest ahead, partially surrounding the zones of intersection of the thicker tubes. In
Fig. 7, b, we see the formation of zones with the nonwetting fluid located in the intersection of the
thicker capillaries temporarily surrounded by the wetting fluid on all its sides.

In Fig. 8 we see three positions of the saturation front at different times for N = 1. Satura-
tion S (x, t) was calculated from the volume fraction of the wetting fluid within a vertical strip of
thickness δ2 . In Fig. 9, we see a comparison of the positions of saturation fronts at the same time t =
= 4000 for different N. Oscillations in saturation graphs are associated with the heterogeneity of the
medium. It can be seen that for lower capillary numbers the oscillations are stronger. This is due to the
fact that the volume of tubes in the region with thin tubes is much less than the volume of tubes in the
region with thicker tubes.

2024, Т. 16, № 4, С. 913–925
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(a) t = 2000 (b) t = 6000

Figure 6. Flow visualization for filtration. 40 × 40 tubes, N = 1, high capillary number, corresponding to low
capillary force, at various t, where N is the capillary number according to equation (18), and t is time in
dimensionless form

(a) t = 2000 (b) t = 6000

Figure 7. Visualization of flow for filtration in inhomogeneous porous medium. 40 × 40 tubes, N = 0.05, low
capillary number, corresponding to high capillary force, at various t, where N is the capillary number according
to equation (18), and t is time in dimensionless form

5. Conclusion

We developed a network model which uses a novel method of distributing phases at the nodes.
We proposed two test problems: the problem of counter-current imbibition in an inclusion, and the
problem of displacement in a periodically inhomogeneous porous media. We have observed the
following properties: capillary imbibition, dependence of capillary pressure on saturation, the effect
of capillary forces in two-phase displacement, which are analogous in real porous media. In the second
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Figure 8. Results for filtration in inhomogeneous porous medium. 40 × 40 tubes, N = 1. S versus coordinate x
for various t. Here, N is the capillary number according to equation (18), and t is time in dimensionless form.
S = S (x, t) is the saturation of the wetting fluid in the column of tubes located at x, where x is the number of
tubes along the horizontal from the origin O, about O and x shown in detail in Fig. 4, a

Figure 9. Results for filtration in inhomogeneous porous medium. 40×40 tubes, at t = 4000. S versus coordinate x
for various N. Here, N is the capillary number according to equation (18), and t is time in dimensionless form.
S = S (x, t) is the saturation of the wetting fluid in the column of tubes located at x, where x is the number of
tubes along the horizontal from the origin O, about O and x shown in detail in Fig. 4, a

problem about filtration in a periodically inhomogeneous porous medium, the result shows that, for
higher value of capillary number, the wetting fluid prefers to invade through the thicker tubes, which
is the path of the least resistance and in the case of lower, through thinner tubes. It is clear that at low
capillary numbers the fluid predominantly moves through thin capillaries. At low capillary numbers
the redistribution of fluids in the pore space occurs faster than at high capillary numbers. Thus, the
flow with small capillary numbers is closer to the equilibrium case. Most importantly, the method of
distributing fluids in a node is valid and can be extended to an arbitrary number of connections, which
will be used in developing a network model for three dimensions. For the dependence of average
capillary pressure vs saturation in the problem of counter-current imbibition, a qualitative agreement
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with known experimental and theoretical results has been obtained. This will further allow the network
model to be used to verify other homogenized models of capillary nonequilibrium.

6. Appendix

The source code used is located here: https://github.com/kafiulshabbir/porus-fluid.
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