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A direct algorithm for solving a linear programming problem (LP), given in canonical form, is
considered. The algorithm consists of two successive stages, in which the following LP problems are
solved by a direct method: a nondegenerate auxiliary problem at the first stage and some problem
equivalent to the original one at the second. The construction of the auxiliary problem is based
on a multiplicative version of the Gaussian exclusion method, the very structure of which allows:
identification of incompatibility and linear dependence of constraints; identification of variables whose
optimal values are obviously zero; the actual exclusion of direct variables and the reduction of the
dimension of the space in which the solution of the original problem is determined. In the process
of actual exclusion of variables, the algorithm generates a sequence of multipliers, the main rows of
which form a matrix of constraints of the auxiliary problem, and the possibility of minimizing the
filling of the main rows of multipliers is inherent in the very structure of direct methods. At the same
time, there is no need to transfer information (basis, plan and optimal value of the objective function)
to the second stage of the algorithm and to apply one of the ways to eliminate looping to guarantee
final convergence.

Two variants of the algorithm for solving the auxiliary problem in conjugate canonical form are
presented. The first one is based on its solution by a direct algorithm in terms of the simplex method,
and the second one is based on solving a problem dual to it by the simplex method. It is shown that
both variants of the algorithm for the same initial data (inputs) generate the same sequence of points:
the basic solution and the current dual solution of the vector of row estimates. Hence, it is concluded
that the direct algorithm is similar to the simplex method. It is also shown that the comparison of
numerical schemes leads to the conclusion that the direct algorithm allows one to reduce, according to
the cubic law, the number of arithmetic operations necessary to solve the auxiliary problem, compared
with the simplex method. An estimate of the number of iterations is given.
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PaccmarpuBaeTcs mpsAMOi anTrOpuTM pelIeHuns 3a/1adu JuHeiHoro nporpammuposanns (JIIT), 3a-
JTAHHON B KaHOHHYECKOM BHJE. AJTOPUTM COCTOUT M3 JBYX ITOCIIEIOBATEIbHBIX STANOB, HA KOTOPHIX
MIPSIMBIM METO/IOM PEIIaroTCs MpHBEACHHBIe HIDKe 3ama4un JII1: HeBsIpoKIeHHast BCTIoMoraTeabHas 3a-
JMada (Ha TIepBOM dJTarie) M HEKOTopas 3ajada, paBHOCHIIbHAS MCXOAHOW (Ha BTopoM). B ocHoBe mo-
CTPOEHUS BCIIOMOTATEeNFHON 3a/1a9 JIS)KUT MYJIbTHILIMKATHBHBIA BapHaHT MeToja NckioueHus [ayc-
ca, B CaMOH CTPYKType KOTOPOTO 3aJI0KEHBI BO3MOXKHOCTHU: HJICHTU(HUKALNN HECOBMECTHOCTH U JIH-
HEHHOM 3aBUCUMOCTH OTPaHUYCHHI; UICHTU(UKAIIMN TIEPEMEHHBIX, ONITUMAJIbHBIC 3HAYCHUST KOTOPBIX
3aBEZOMO PaBHbI HYIIO; (PAKTUYECKOTO UCKIIOYCHUS MPSIMBIX IIEPEMEHHBIX U COKPALICHHUS Pa3MEPHO-
CTH TIPOCTPAHCTBA, B KOTOPOM ONPEACICHO pelIeHHE MCXOAHOH 3amauu. B mpouecce daxrndeckoro
UCKJIIOUEHHS TIEPEMEHHBIX aJITOPUTM TE€HEPUPYET MOCIIE0BATENBHOCTh MYJIBTUIUIMKATOPOB, TIIaBHbIE
CTPOKH KOTOPBIX (POPMHUPYIOT MaTpHIly OrpaHHUCHHUI BCIIOMOTaTeIbHON 3a/1a4H, IPHYEM BO3MOKHOCTh
MUHUMM3AIMs] 3aI0IHEHNS TNIABHBIX CTPOK MYJIBTUILIMKATOPOB 3aJI0KEHA B CaMOM CTPYKTYpPE MPSIMBIX
MeTon0B. [Ipr 3ToM O0TCYTCTBYeT HEOOXOAMMOCTH Iepeaadn nHpopmanuu (0a3uc, IiaH U ONTHMAJb-
HOE 3Ha4YeHHUe IeNeBOH (DYHKUMHM) Ha BTOPOM dTall aJropuTMa M MPUMEHEHHUS OJHOTO U3 CIOCOO0B
yYCTpaHEeHUs 3alUKIMBAHUS JUId TapAHTUU KOHEYHOH CXOAMMOCTH.

[IpencraBieHsl 1Ba BapuaHTa ajlrOpPUTMa pEIIEHHs BCIOMOTaTENbHOW 3aJjadyll B COIpPSHKEHHOU
KaHOHUYecKoH (opme. [lepBblif OCHOBaH Ha e€e pEeIICHHH NMPSMBIM AITOPUTMOM B TEPMUHAX CHUMII-
JIEKC-METO/1a, @ BTOPOM — Ha pellIeHUH 3aJja4du, ABOMCTBEHHOM K Hel, cumiiekc-MeroioM. [lokazaHo,
4yT0 00a BapuaHTa aNropyuTMa JJIsl OAWHAKOBBIX HCXOAHBIX JJAHHBIX (BXOIOB) TEHEPUPYIOT OAMHAKOBYIO
MOCJIeIOBATEILHOCTD TOYEK: 0a3MCHOE peIlICHHE U TEeKYyIlee ABOMCTBEHHOE PELICHUE BEKTOPa OLCHOK
ctpok. OTcroa cienaH BbIBOJI, UYTO MPSAMOM alropuT™M — 3TO alITOPUTM THIA CUMIUIEKC-MeTo/a. Tak-
JKe T0Ka3aHO, YTO CPAaBHEHHE BBIYHCIUTEIBHBIX CXEM IMPHUBOAWT K BBIBOAY, YTO MPSIMON aJTOPUTM
MO3BOJISIET YMEHBIIUTH MO0 KyOWYEeCKOMY 3aKOHY YHCIIO apu(pMETHYECKHUX OTeparfii, HeOOXOIUMBIX
JUTSL peIIeHHs BCTIOMOTATEeNbHOM 3a7a4d, 110 CPABHEHUIO C CHMITIEKC-MeTo/ioM. [IprBomuTcs omenka
4yuciia uTeparuu.

KittoueBbie cioBa: JHMHEHHOE MPOrpaMMHPOBAaHUE, alTOPUTM CHMILIEKC-METO/a, MPSIMOH ajro-
PHUTM, YUCIIO UTEPALUH, CHIIBHO TMOJIMHOMHUAJIBHBIA aJITOPUTM

2024 Anacracust bopucosna CBUPHIICHKO

Crarbst noctynHa 1o junensun Creative Commons Attribution-NoDerivs 3.0 Unported License.
YroObl MOTYyUYHUTH TEKCT JIMLICH3UH, TIOCETUTE BeO-calfT http://creativecommons.org/licenses/by-nd/3.0/
win orrpassre mucbMo B Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.



The iterations’ number estimation for strongly polynomial. .. e251

Introduction
The LP problem in canonical form is considered:

min(cx), h+Hx=0, x>0, (1)
XER"

where H — (m X n) is the matrix in which m < n, ¢! € R", h € R™, x is a vector of direct variables, and
the elements of vectors ¢, 4 and matrix H are arbitrary real numbers.

The final algorithm for solving problem (1), based on the simplex method with an inverse
matrix (modified simplex method), consists of two successive stages at which LP problems are solved
using the simplex method: an auxiliary problem at the first stage, and some problem equivalent to
the original one at the second [Aradonoa, /layraser, 2017]. The algorithm does not require any
preliminary calculations or imposition of any additional conditions on ¢, 4, H, including the condition of
nondegeneracy of the problem, which ensures the final convergence of the algorithm. Final convergence
is guaranteed by applying Bland’s rule to avoid loops or any other method of eliminating loops. The
algorithm is based on searching for a solution among the vertices of a polyhedron of feasible solutions.
The search principle is as follows. First, one of the vertices is found, and then the vertex closest to it is
searched for, at which the value of the objective function decreases. As soon as the transition from one
vertex to another with a smaller value of the objective function becomes impossible, it is concluded
that a solution has been found. The main disadvantage of the algorithm is its complexity. Basically, this
is the need to transfer information (basis, plan and optimal value of the objective function [Aradonosa,
Hayragert, 2017]) to the next stage of the algorithm and use one of the methods to eliminate looping to
guarantee final convergence.

In this work, which is a continuation of previous research [CBupuaenko, 2015; CBupuacH-
ko, 2016; Ceupunenxko, 2017; Cupunenko, 2019], the basis for eliminating the shortcomings of the
simplex method with an inverse matrix is the refusal to search for a solution among the vertices of the
polyhedron of feasible solutions and the transition to a direct search. To simplify, we will assume that
¢ > 0, otherwise the following auxiliary quantities will be involved in the description:

Co (—CO < cx*) is an arbitrarily large scalar quantity,

X, (x, > 0) is an additional variable,

¢y — X, + ¢x = 0 is the constraint equation of an additional variable,

m}en(xo), Cg— X tex=0,h+Hx=0,x,>0, x>0, is a problem equivalent to (1).
XER"

Technically, this is done as shown in the description of the computational scheme of the first stage
of the direct algorithm in terms of the simplex method in Section 3.2 and using examples of solving
problems with guaranteed behavior of the simplex method in Section 4. We will also assume that
problem (1), perhaps degenerate, has a unique solution, or any admissible point is optimal, and the
latter occurs if and only if there is a linear combination of ¢ rows of the matrix H, i.e., there is an
m-dimensional row vector w such that ¢ = wH. It follows that the objective function of problem (1)
is a constant (cx = wHx = —wh), and it is impossible to optimize the constant. Strictly speaking, such
a problem is not an LP problem; it is a classical problem of a conditional extremum from the course
of mathematical analysis [benuxos, 2005].

1. Rationale for the algorithm

Let’s denote:
k is the iteration number,
heo=(ly hy - hy)is the kth row of the matrix H,

T , . .
hi + (hik hik g h’,ﬁn) (xk Xeop o xn) = 0 is the constraint equation of the kth row,

2024, T. 16, Ne 2, C. e249-¢285
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T .
X = (x’l‘ xg x’,j o -- 0) is the n-dimensional vector, the solution of a system of
linear equations:
h.+h.x=0, j=1,...,k

e
k k k cee ek ) T Slier
e, = (elkk+ 1 €k elkn) is the the main line of the multiplier:
k
k k k
e e .« .. e
1 k+1 1 k+2 Lin
1
EF = 1
1k
1

Here E/f (n— k)X (n—k—1) is the matrix, the first row of which is arbitrary, and the remaining rows
k

are the rows of the (n — k — 1) X (n — k — 1) identity matrix. E’,‘ (r, 1s the number of the leading line
at the iteration k) coincides with the multiplier in the simplex method algorithm up to the transposition
sign [XakmmoBa, 3emenkoB, P3yn, 2010; Ceupuaenxko, 2015; Ceupunenko, 2017], with the exception
of removing the leading column, all elements of which are equal to zero. The presented form of the
multiplier E{‘ is an artifact and is caused by the assumption r = k that is made below in step 3 of the

first stage of kthe algorithm.

With the introduced notation, the principle of searching for a solution using a two-stage algorithm
is as follows. The polyhedron of feasible solutions is not specified initially, as in the simplex method,
but is formed by constructing the following problem at each iteration k =1, ..., m:

(K k k
i (Ck+1xk+1 T Cpo X o0 Cnxn)’
_ i i i F_
X =+ € ka1 Xkt T O paNpa t ot ey X I= 1k )

x;20, i=1,...,n,

in canonical form, equivalent to the problem:

Erel}el,}(cx), hj+hj.x=0, j=1,...,k x>0.

(2) is based on a multiplicative version of the Gaussian elimination method [Ceupunenko, 2016],
the very structure of which contains the following capabilities: identification of incompatibility and
linear dependence of constraints; identification of variables whose optimal values are known to be
zero; actual elimination of direct variables and reduction of the dimension of the space in which the
solution to the problem (1) is determined. The possibilities listed above determine the construction of
(2) at the first stage of the algorithm, subject to the optional fulfillment of the following conditions:

xi:x;‘ZO, i=1,...,k

The optionality of fulfilling all restrictions for the current solution provides greater flexibility
of the algorithm in the case of “outs” from the admissible region and using the found solution as the
initial one for the same problem with changed conditions.

The initial polyhedron is defined by the conditions for nonnegativity of variables, on which the
minimum value of the objective function is equal to zero. Then the first constraint equation is added to
its system of conditions and the optimum on the formed polyhedron is calculated by increasing (due to
compression of the region of feasible solutions) the value of the objective function by some nonnegative
constant. Calculations continue until m the last constraint is added to the system of conditions at an
iteration. The first stage of the algorithm is described; technically, at each iteration it is done like this
(a detailed description of all operations performed in constructing (2) is given in Section 2.1).
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1.1. The first stage of the algorithm
Step 1. To construct the constraint equations:
i+ B+ Mg Xy + 0+ %, = 0
of the kth line of the system of constraints:
hy + hy o x = 0.

If k = 1, then set
W=h, K.=h;, i=k.. n

If k£ > 2, then calculate using the formulas:

-1 k-1
k_ ‘ ko ok k) ‘
by = =hy + Z hyixis (hkk M1+ hkn) = hy, 1—[ Ellk_]‘
i1 i=1

REMARK. The formulas of step 1 are the result of the substitution:

— i i P i - —
X=X+ T T T

into the kth line of the system of constraints.
Without loss of generality, for simplicity we assume:
hy <0,
otherwise it is enough to set:

k _ k k _ k v
h=-h, h,=-h,; i=k ....n

Step 2. Analyze the constraint equation (identification of inconsistency and linear dependence

of constraints; identification of variables whose optimal values are known to be zero).
Step 3. To calculate the number r of the leading column according to the rule:

k—1

C.
@, =min——, K, >0, i=k ..., n
i hk !
ki
Without loss of generality, we will set:
r=k.
Rewrite the constraint equation:
— v — (K k T
Xp = X =Xt ey . (xk+1 Kew2 7" xn) :
If k=1, then
k _ (k k k) — k
¢ = (Ck+1 Cerz Cn) =cky

T

L=k 0 - 0).

If k > 2, then calculate using the formulas:
k_ [k k K\ _ k=1 gk

c —(ck+1 Chan c)—c E‘k’

i _ k k _ i k i r_
el =€ .Elk’ X xi"'xkelkflk’ i=1, ..., k-1,

P =

xkz(x’f x12€ xi 0 --- ())T.

REMARK. The formulas of step 3 are the result of substitution x, into the conditions of problem (2).

The rule for selecting the leading column guarantees the positivity c* at each iteration k =
= 1, ..., m, therefore, if ¥ > 0, then the algorithm becomes one-stage (see Example 1 in §4 for

looping the simplex method); otherwise, we proceed to the description of the second stage.

2024, T. 16, Ne 2, C. e249-¢285




e254 A.B. Sviridenko

1.2. The second stage of the algorithm

To simplify the description, let us denote by v the number of iterations and set for v = O:

T
X = xV = (xV] sz an) )
M=x=(x X X 0 ’
=X, = v, Vv, Vin ,
m 4 vV Vv 4
= =|(C C C
¢ CV ( Vm+l m+2 V")’
i v _(pY v e v H—
elm- - ev,.o - (ev,.m+l ev,.m+2 eV,»n)’ 1= 1’ -ee, ML

With the introduced notation, we rewrite (2) as

min(cz x, +¢ x +---+c"x),
m+l Tm+l

XVER” Vint2 ™ Vm+2 Vn™Vn
— v 4 . 4 L 3
Xy, Z Xy e Xy T X, e, 0= L ..., m, 3)
x, =20, i=1,...,n

V.
i

From a mathematical point of view, (3) is equivalent to the problem in conjugate canonical form:

min (c” x, +c x +---+c”x),
m+1 m+1

X, ER-m me2” V2 Y™ Vn
x +e x, +€ .x, +---+e x, =0, i=1 m 4)
Vi vim+17v, VmE27V, vinty, Z W > oees M,
x, =20, i=m+1,...,n

Vi
REMARK. x, in (3) can be considered as additional, their values are equal to x} . Section 2.3 shows that
conditions (3) are redefined and that, in fact, (3) and (4) are the same problem. Moreover, an admissible solution
to the problem dual to (4) is known — a zero m-dimensional vector. The algorithm of solving this problem is
discussed in Section 3.

At each iteration of the second stage, a constraint is introduced into the calculation according to

the formula:

+ote) X x, <0,
1

v v
X, =X, +e X
' Vi VA2 Vit Vn’

i

+ e

4
X
v Vim+1 Vm+l

by increasing (due to compression of the region of feasible solutions) the value of the objective function

by some positive constant. Calculations continue until the minimum value of the objective function on

the polyhedron of the final configuration is found. Technically, at each iteration this is done as follows

(a detailed description of all operations performed during the solution (3) is given in Section 2.2).
Step 1. Calculate the number v, of the leading constraint equation using the formula:

_ v v . v v
Xyg = Xy F O Xy T X, Fote, X, X, < 0.

Calculate the number v, of the leading column according to the rule:

c
i i v c_
G)v, —milneT, ey, >0, i=m+1,...,n.
vqi
Set: v=v+1.
Step 2. Calculate:
67
v o _ g v _ v—1 v—1 v .
Xy, = _ev—l s Xy =X + i Xy 1 Fr.
v—1,r
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Set:

If x} > 0, then stop.
Step 3. Rewrite the constraint equation:

+e

m+1

. 4 v 14 e
xv, - xvr + ev,m+1xv v,m+2xvm+2 V,nxv,l‘

Calculate according to the formulas:

v _ -1 v :
e =€ Evr, i#q,

v _ (oY .. v _ v-1lpv
C, = (CV CV Cvn) - CV—lEVr

and go to step 1.

In the case of nonuniqueness of the solution, the direct algorithm, like the simplex method,
provides a solution that belongs to the vertex of the polyhedral set. Without loss of generality, we will
set

x,20, ¢, =0@G=m+1,..., my), CK,' >0(=my+1,...,n).

1

This means that the optimal values of the variables
x, i=my+1,...,n)

are obviously equal to zero, so they can be excluded from consideration. Therefore, any solution of the
system

y y . .
, +ev,.m+2xvm+2+"'+evi”me0 (i=1,....m, x, 20@(=1,...,m,)

X, = xxi + el‘jim+lxvm+1
is optimal. Thus, the nonuniqueness of a solution means uncertainty and the possibility of choosing the
best one according to one or another additional criterion, based on unformalized (heuristic) ideas about
the object. It is known that the interior point method and the quadratic penalty function method lead
to different solutions if they are not unique. Interior point methods converge to a solution in which
the strict complementary nonrigidity condition is satisfied . The external quadratic penalty function
method makes it possible to find a solution with a minimum Euclidean norm. The paper shows that
the direct algorithm makes it possible to find all the optimal vertices of a polyhedral set and, therefore,
leads to both an exact normal solution and a solution in which the complementary slackness condition
is satisfied (see Example 4 in §4 and the conclusion).

1.3. Notes on this section

The direct method is a sequence of steps, at each of which zeros are obtained in the required
positions of the next processed column of the matrix of conditions of the direct problem. In this case,
the zeros obtained previously in preceding columns are preserved. This definition fully corresponds to
the construction (3) at the first stage and to the recalculation of the main lines of the multipliers at
the second. The leading column selection rule guarantees nonnegativity ¢}, at each iteration v, and the
uniqueness of solution (1), equivalent to (3), is their positivity. The exclusion of “extra” restrictions and
variables, the optimal values of which are obviously equal to zero, guarantees the nondegeneracy of (3),
and the strict increase of the objective function from iteration to iteration guarantees the finiteness of
the number of iterations. Thus, there is no need to pass the information to the second stage and use one
of the loop removal techniques to guarantee eventual convergence.

Problems (2), generated during the formation of a polyhedron of feasible solutions, determine
options for constructing a direct algorithm. For example, for a one-stage option, solving (2) at each

2024, T. 16, Ne 2, C. e249-¢285
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iteration is sufficient if x* # 0. In other words, by combining stages at each iteration k. Single-stage
algorithms are not considered in this work, because they exclude the possibility of constructing a
two-stage version of the strongly polynomial simplex method with an inverse matrix.

At each iteration of each stage, the algorithm generates a sequence of points that extend beyond
the feasible region in the direction of increasing the objective function, until a feasible solution is
obtained, and the hyperplane of the objective function passing through these points does not intersect
the feasible region. Therefore, in accordance with the terminology of Fiacco and McCormick, it can be
called one of the variants of the external point method [®uakko, Mak-Kopmuk, 1972].

Section 2.1 describes the computational scheme for constructing (2). During the construction
process, the algorithm generates a sequence of multipliers, the main rows of which form the constraint
matrix (2). Minimizing their filling is the main task when constructing the algorithm. The possibility
of such minimization without loss of accuracy of the results is inherent in the very structure of direct
methods, therefore the computational scheme of the first stage can be considered as an implementation
of an algorithm for reducing the dimension of the problem. Section 2.2 presents a computational scheme
for solving (3) in strongly polynomial time, i.e., the number of arithmetic operations (homogeneous
complexity) is limited by a polynomial on the dimension of the problem [Ky3topun, ®omun, 2007].
To prove it, it is enough to show that the iterations do not exceed 5. Section 2.3 presents forms of
notation (3): canonical and conjugate to canonical. Section 2.4 gives a geometric interpretation of (3),
as well as a geometric representation of the iterations of the simplex method and the direct algorithm.
Section 3 discusses the relationship between the direct algorithm and the modified simplex method and
the construction of an upper estimate for the number of iterations. Section 3.1 provides a computational
scheme for the second stage of the modified simplex method, associated with the identification of a
basic system of constraints, regardless of the method of its construction. In Sections 3.2, 3.3, the results
obtained are used to construct computational schemes for the stages of the direct algorithm in terms of
the simplex method. Section 3.4 compares the direct algorithm for solving (4) with the simplex method
for solving the problem dual to (4). It is shown that the algorithms for the same initial data (inputs)
generate the same sequence of points: the basic solution and the current dual solution of the vector of
row estimates. This means that the direct algorithm is a variant of the simplex method. It is also shown
there that a comparison of computational schemes leads to the conclusion that the direct algorithm
makes it possible to reduce, according to the cubic law, the number of arithmetic operations required
to solve the problem dual to (4) in comparison with the simplex method. In Section 3.5, the results
obtained are used to construct an upper bound for the iterations of the simplex method for solving the
problem dual to (4). It is shown that the number of iterations does not exceed 7. This means that the
simplex method, which allows solving problems of the form (1) in strongly polynomial time, can be
constructed from two successive stages at which the following LP problems are solved: constructing (3)
by a direct algorithm at the first stage, and solving the problem dual to (3) in the conjugate canonical
form, using the simplex method, at the second stage.

2. Preliminary information, recording forms and geometric interpretation

Below is a detailed description of all operations performed in constructing (3). If during the
calculations the elements become smaller in absolute value, the so-called critical value &, then it is
proposed to equate them to zero.

2.1. The first stage of the algorithm

Let

x* denote the n-dimensional vector, the solution to the problem (1).

KOMIIBIOTEPHBIE UCCIIEJOBAHUSA U MOJAEJIUPOBAHUE
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Step 0 (initialization). Set:

k=1,
Kl=c= (c1 Cy cn)
Calculate the number ¢ of the leading line:
Hq = maxlhjl, j=k, ..., m

J

Swap the elements of the gth and kth rows of the matrix H and vector 4. Renumber and remember the
order of the lines.

Calculate the elements hi, hii of the constraint equation of the kth row:

hl/§+(h//§k Wi+ hllgn)(xk Xer1 700 xn)T:O’

k _ ko pk kY _
hk - hk’ (hkk hkk+1 hkn) - (hkk hkk+1 hkn)'
Here and in what follows, we will set hi < 0, otherwise it is enough to put:
W =—hk, K= -h, i=k ...,n

Calculate the number r of the leading column:

k-1
Y k .
O,=min—, h; >0, i=k ..., n
l
ki

Swap the elements of the rth and kth columns of the matrix H and the row vector . Renumber and
remember the order of the unknowns.

Rewrite the constraint equation:

_ ok k r
xk_xk+elk-(xk+1 K2 7" xn) ’
k k k R
hk k (hkk+ 1 h kk+2 hkn)
KT T Cle =T T :
kk kk
Calculate:
k _ (K k kY — -1k
¢ = (Ck+1 Cer 77 Cn) =c k.
Set:
T
F=( 0 0)
Go to step 6.

Step 1 (calculation 7%, hii). Calculate the number ¢ of the leading line using the formula:
Hq = max |—h1~ + hj.xk_1|, j=k, ..., m
J o

Swap the elements of the gth and kth rows of the matrix H and vector 4. Renumber and remember the
order of the lines.
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Calculate:

k-1 k-1

k_ i ko opk opk ) i LT SR

hf==he+ D hxd, (WS RE i) = B = e i,
i=1 i=1

REMARK. For manual counting, the leading line selection strategy can be based on simplifying the
calculations.

Step 2 (analysis k, hii). Without loss of generality, in analyzing the elements of the constraint
equation, the identification of the following situations can be excluded from further consideration:

° hi <0, hii <0,i=k, ..., n,— inconsistency of the constraints of problem (1);

° h’,g =0, h’,;. =0,i=k, ..., n,— excluding the kth row from the constraints of problem (1) and,
as a consequence, reducing the number of multipliers;

° hi =0, hii < 0 (or h’,ﬁi > 0), i =k, ..., n, — reducing the dimension of problem (1) and, as
a consequence, reducing the number of nonzero elements of the main lines of the multipliers
obtained in the previous steps.

Step 3 (calculation x’,i, e’lc .). Calculate the number r of the leading column:
k
k=1
@, =min——, K, >0, i=k ..., n
by

Swap the elements of the rth and kth columns of the matrix H and the row vector ¥, renumber and
remember the order of the unknowns.
Rewrite the constraint equation:

x—xk+ek (x X X)T
kK~ Tk 1, o \"k+1 k+2 n) >
k k k L. k )
k hk k (hkk+ 1 hkk+2 hkn
X, = —— e = - .
k hk ’ 1k. hk
kk kk

Step 4 (calculation of ¢, x¥). Calculate:

k _ (K k IR 2 WY 2 B i i . _
C_(Ck+l Chan cn)_c Elk’ x’-‘—xl-+x£e1 e =1 k=1

Set: .
k:(xk & ko 0).

1

X
Step 5 (recalculation e’i ) To calculate:
k-1
i i k _ _
€ e=e .Elk’ i=1,...,k-1.

i

Without loss of generality, when analyzing elements xf, e, , we can exclude from further consideration
k

the identification of the following situations:
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° xf <0, ei . < 0 — inconsistency of the constraints of problem (1);
k

_ i i
° xf—O, elk. <Oorelk.

number of nonzero elements of the main lines of the multipliers obtained in the previous steps.

> 0 — reducing the dimension of problem (1) and, as a consequence, the

Step 6 (recalculation of k). Set: k = k + 1. If k # m, then go to step 1.
Step 7 (calculation of x*). If X > 0, then calculate X" = x* and stop; otherwise, go to step 1 of

the second stage of solving the problem:

m

. m m
mm(chrlxm+1 + CrinXpin t o F cnxn),

YeR" m+2
_ i i e - 5
xi—xT+elmm+1xm+l+elmm+2xm+2+ +e1mnxn>0, i=1,...,m, ®)
x; =20, i=m+1,...,n

1

Below is a detailed description of all operations performed during the solution (5). If during the
calculations the elements become smaller in absolute value, the so-called critical value &, then it is
proposed to equate them to zero.

2.2. The second stage of the algorithm

Step 0 (initialization). Set:

and rewrite (5) as:

.y y ,
mln(c X, +c¢, x +---+cx)
X, ER" Va1 Vil V2" V2 Y~ Vn)?
= Y i v DY v 5 —
Xy =Xy e Xy T Xy e X, >0, i=1,...,m, (6)
x, 20, i=m+1,...,n

Vi

Step 1 (calculation of v,, v,). Calculate the number v, of the leading constraint equation using
the formula:
0

— H v v ;o
y, = Minx, x, <0, i=1...,m

i i i

Calculate the number v, of the leading column using the formula:

vV
CV.
®, =min—-, el’:ql- >0, i=m+1,...,n.
! evqi
Step 2 (recalculating v). Set v =v + 1.
Step 3 (calculating x}). Calculate:
xv—l
v v=14 v _ -1 v—1 _v .
Xy, = _ev—l R xyi =X 1, te, X, 1 *r.
v=l4r
Set:
T
v — v v DY v DY
X, = (xvl X, x, 0 O) )

If x}, > 0, then calculate x, = x* and stop.
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Step 4 (calculation of e c\‘j). Rewrite the constraint equation of the variable X, > 0:

V.e>
i

Y v v L. v
xv, - xv, + ev,m+1xvm+] + ev,m+2xvm+2 + + ev,nxv,,’
S S T o i
X, =— , € ,= T/, ;== , LFTW
Vr v—1 Vil v—1 Vil v—1
-1 €1 €1
v=1,r v=1,r v=1,r
1
v —_— vV ... vV ... %
Ev,. - evrm+1 evrr ev,n .

Calculate:
eV.:e’;ji EI,,, l;tq,

v _ (v v v\ _ v-1lgv
¢ = (CV Sy CVn) - Cv—lEV,

and go to step 1. Without loss of generality, we can exclude the analysis of elements x], to e}, , from
further consideration to identify the following situations:

e x <0, e, <0— inconsistency of the constraints of problem (6);

" » = 0 — reducing the dimension of the problem (6).

1

o x, =0,e,<0o0re)

REMARK. Ej (n—m)X (n—m)is a matrix, the v,th row of which is arbitrary, and the rest are rows of
the (n — m) X (n — m) unit matrix. Ej coincides with the multiplier in the simplex method algorithm up to the
transposition sign [XakumoBa, 3enenkoB, P3yn, 2010].

2.3. Forms for recording the problem solved at the second stage of the algorithm

Denote:

v=n-m,

0,,, 1s the (m X v) matrix with zero elements,
I, is the (s X s) identity matrix,

0, is the zero s-dimensional vector,

c = (CK 4 c) ) is the v-dimensional row vector,
m+1 m+2 n
= (0;1 c’) is the n-dimensional row vector in block form,
T . . .
b= (x‘v’ X, eeoXx) ) is the m-dimensional vector,
1 2 m

z= (bT OT)T is the n-dimensional vector in block form,

z= (xvl Xy, xvn)T is the n-dimensional vector of variables,
y= (zm 1 Zmen " zn)T is the v-dimensional vector of variables,
e:1m+l e\‘;ln
N = : : | is the (m X v) matrix of rank m,
T

A= (I —N) is the (m X n) matrix of rank m in block form,
K= (—NT —Iv) is the (v X n) matrix in block form.
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With the introduced notation, problem (6) takes the form

min(c’y), z=z-K'y>0, (7

zeR"

where z = Z— KTy is the general solution of a nonhomogeneous system of linear Az = b, Z is a particular
solution of the system, and Ky is the general solution of a homogeneous system Az = 0.
Problem (7) can be written as a standard LP problem where the only restrictions are of the type:

min(c’y), z—K'y>0. (8)
yeRY

Recording (8) is sometimes called a problem with the same type of conditions or a conjugate canonical
form [Moucees, MBanmios, Cronsposa, 1978]. From a mathematical point of view, problem (8) is
equivalent to the LP problem in canonical form:

min(c”’z), Az=b, z>0. 9)

ZER"

Denote:
ker A is the null space (kernel) of the (m X n)-matrix A of rank m:

kerA ={ze R"| Az =0},
im A is the space of rows of matrix A (image of matrix AT):
imAT = (£ e R" | &£ = Ay, ye R™).

The dimension of linear space ker A is equal to v = n — m, the defect of matrix A. The null
space and the row space of a matrix A are orthogonal complements of each other. The space R" is
decomposed into the direct sum of these subspaces:

R" = im AT @ ker A.

The rows of the matrix K are linearly independent by construction, belong to the null space of
the matrix A, and therefore the space spanned by them im A” coincides with the null space (kernel) of
the matrix A. Thus, im K7 it is the orthogonal complement of the space im A”. Therefore,

imK' =kerA, AKT=0_., R'=imA’ @kerA.

mv

Let us show that essentially (8) and (9) are the same problem. To do this, following Golikov
and Evtushenko [Tomikos, Esrymenxo, 2000], for the (n x v)-matrix K7 we define a pseudoinverse

matrix (K T)+ and define the sets

Y={yeR |z-K"y>0},
Z={zeR"|Az=b, z> 0},

Z={zeR"|Az=D}.

The formula
z=z-KTy (10)

can be considered as an affine mapping from RY to R". In this case, the image of a set Y is a set Z.
There is a one-to-one correspondence between Z and Y. Indeed, for any y € Y, formula (10) uniquely
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determines z € Z. For an overdetermined system (10) of full rank, containing n linear equations and v
unknowns Yy, a pseudo-solution is always defined:

o) = (KK") KG-2) = (K7) G -2, (11

which is the only solution to system (8) if and only if z—z € im K T This inclusion takes place if and
only if z € Z. So, for any, z € Z formula (11) defines an affine transformation inverse to (10). Therefore

we can write: .
Y =(K") E-2). (12)

Essentially, (8), (9) are the same problem. The external difference in the notation is associated with the
change of variables (10), which made it possible, using formula (12), to transform the set Z into the
set Y, which is the intersection n of half-spaces.

2.4. Geometric interpretation

First, following Moiseev, Ivanilov and Stolyarova [Moucees, MBanunos, CtomsipoBa, 1978], we
describe the geometric interpretation of problems of the form (9), then the geometric representation of
the iterations of the simplex method and the direct algorithm.

Let us introduce an additional variable for (9):

o ’” ’”
zp=clzyt ezt + ¢z,

and write it in the following form:

min(zo), (13)
“ /! o
O+t +6,2, =72 (14)
ajzy +apzy + -+ a,z, = b, i=1,....m,
z;20, j=1,...,n (15)

J

The right-hand side of equations (13) is a vector:
Ef = (ZO bl “ee bm)T

with m fixed components and one variable component z. The left-hand side is a linear combination of
the extended condition vectors:

, T
el /! .
aJ:(cj balj amj) , Jj=1,...,n,

with nonnegative coefficients z;. Consider a set of (m + 1) dimensional vectors:

T
u:(uo /MEEEE um) ,
the components of which are determined by the relations:
_n ’7” 77
uy=czy +yz, +-- -+, z,
U, =az; +apzy +---+a,z, i=1,...,m,

z].>O, j=1,...,n

Figure 1 shows this set for the case where m = 2, i. e., the problem has two equality type constraints.
Nonnegative linear combinations of extended condition vectors form a polyhedral cone K,
the edges of which will be the vectors @', @, ..., @. Their projections onto the plane u, =0 are,
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A0 ~ l
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Puc. 1. Geometric interpretation

respectively, a', &, ,a@ (columns of the matrix of conditions A). The length of the perpendicular

connecting the end of the vector @/ to the end of its projection @/ is equal to the linear form
coefficient c’].’.

For an arbitrary value, z, the vector b points to a certain point lying on a vertical line [ (see
Fig. 1), passing through the end of the vector:

:([91 b, - bm)T

T
on the plane u, = 0 (point ¢ with coordinates (O b, - bm) in Fig. 1). If z, is a component of

some admissible solution to problem (13)—(15), the vector b will also o belong to the cone K. 1t is also
obvious that if a vector & points to the intersection point of a cone K and a line /, the corresponding
value z, will be a component of some feasible solution. Thus, the admissible set of solutions to
problem (13)—(15) is mapped onto a line segment / belonging to the cone K. If the line [ passes outside
this cone, the problem has no feasible solutions. When the cone K contains the axis u,, the value of
the criterion on the admissible set is not limited from below, however, according to the construction of
problem (7), this is impossible.

The values of the objective function of problem (13)-(15) on any of its admissible solutions
corresponding to a certain vector b coincide and are equal to its first coordinate. Optimal solutions
(there can be a whole set of them) are prototypes of the lower point of intersection of the straight line /
with the cone K (point ¢ in Fig. 1). The coefficients of an arbitrary decomposition of the vector b
pointing to this point into a nonnegative linear combination of extended condition vectors @’/ will be
components of one of the optimal solutions. Obviously, among them, only components that correspond
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to vectors belonging to the same face of the cone K as the point £ can be nonzero @’. If the number
of such vectors does not exceed m and their corresponding vectors a’ are linearly independent, the
problem has a unique solution. Otherwise there will be a continuum of solutions. Geometrically, the
iterations of the simplex method represent a transition from one point to another in the direction of
decreasing the objective function.

The forward algorithm generates a sequence of points outside the feasible region until a feasible
solution is obtained. Thus, the points generated by the direct algorithm are prototypes of the points on
a ¢Z line segment [ (see Fig. 1), which do not belong to the cone K, with the exception of the point .
Geometrically, the iterations of the direct algorithm represent a transition from one point to another in
the direction of increasing the objective function.

3. The relation between the direct algorithm and the modified one using
the simplex method and constructing an upper estimate for the number
of iterations

To describe the relation, the computational scheme of the multiplicative algorithm of Malkov’s
simplex method was chosen [Mainkos, 1977], as the most suitable (describes the computational scheme
of the second stage of the algorithm associated with the selection of a basic system of constraints,
regardless of the method of its construction) in comparison with the known ones, for example, [Ara-
(onosa, Jlayraset, 2017; 3omoteix, Kybapes, 2012; Mao3émos, 2017a].

3.1. The second stage of the simplex method algorithm

Let us relate the description of the computational scheme of the algorithm for solving problems
of the form:

n n
maX[ZCix,-], Dap<b, j=1...m x>0, i=1...n (16)
i=1 i=1
to the identification of the basic system of restrictions as follows. Let there be a basis: (x”l e xnm)
and a basis matrix B, = (a. n, T e nm), as well as a multiplicative representation of the matrix B;l,
where
1 il

erk:

-1 _ v pv-1,  rl s _ _ sl .l
B, =EJE---El, E} = . X =B Elag.

xr»,k

_ kg 1

X,
ryks

Here r, k, are the numbers of leading rows and columns at sth iteration of the algorithm. In order not
to go into details of storing multipliers, we will recalculate the inverse basis matrix rather than present
it as a product. Below is a detailed description of all operations performed in the course of solving
problem (16) by the multiplicative algorithm of the simplex method.

Step 1. To calculate the current dual solution of the vector of row estimates using the formula:

v _ vp-1
u =c"B,,

where ¢” = (Cnl e Cnm) is the vector of prices of basic variables.
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Step 2. Determine the leading column, the column to be entered into the basis:

d, = min{d}, d;},

dy = mind} = min(u'a,, - c,), (17)
l l
7N 7
dy, —mjlndj —mjmuj. (18)
If d > &, then the optimum has been achieved, where &, is the minimum permissible value of the

leading element, selected for reasons of stability of the computational process.
Step 3. Expand the leading column using the formula:

X, = B, 'a,,
if the number k£ was determined from (17), and according to the formula:
X, =B,'E,,

if the number k was determined from (18). Here E, is the kth column of the identity matrix E.
Step 4. Calculate the leading line number from the relation:

r_ )%
Q:x—zl’njln x—k, xjk>spiv ,

where £ . is the minimum permissible value of the leading element, selected for reasons of stability
of the computational process.
Step 5. Recalculate the basic solution:

— — . —r
xj:xj—ijk, jJ*EL X.=6,

recalculate the inverse basis matrix using the formula:

-1 _ pv+l p-1
B Erv+]Bv ’

v+l T

where EX*i is the elementary matrix, multiplier:

v+

1 T
Xk
EV+ 1 _ L
Tyi1 Yk
_ Kk 1

Steps 1 to 5 are repeated until the optimum is reached, or until it turns out in step 4
that, X < & i j=1, ..., m, in other words, the solution to the problem is not limited.

The simplex method for solving LP problems, which uses the multiplicative representation of
the inverse basis matrix as an algorithm for solving a system of equations, is mathematically attractive,
but computationally vulnerable. As an example, consider a system consisting of one equation: 7x =

21

= 21. The best way to solve this system is to divide: x = = = 3, but using the inverse matrix results

in calculating: x = (7‘1) 21 = 2.99997, which requires more arithmetic and produces a less accurate
result. All of the above is also true for systems with many equations. Unnecessary actions are the main
reason why this work focuses on direct multiplicative methods for solving systems, and not on methods
of representing the inverse basis matrix.

When constructing a direct algorithm in terms of the simplex method, we will assume that at
each iteration of the algorithm another one is added to the sequence of multipliers and that the size of
this sequence is inconveniently large, but not precisely known.

2024, T. 16, Ne 2, C. e249-¢285




€266 A.B. Sviridenko

3.2. The first stage of the direct algorithm

Let’s consider the direct problem:

m nm
min[ijuj], L = Y au—c>0, i=1...n >0, j=1..,m (19
j=1

J=1

i.e., the dual problem (16). In the process of solving (19), an arbitrarily large scalar quantity is
involved c; it is introduced to reduce compensation errors (see Example 1 in §4).
Step 0. Put v = 0 and determine the number of the leading line using the formula:
0 = x;, =minx;, =minb;.

i j

If 6 < 0, then calculate the initial dual solution of the vector of row estimates using the formula:

_ Xmy 1

rv

set v = 1 and go to step 1 of the first stage. If 8 > 0, then calculate the dual solution of the vector of
row estimates using the formula: 40 = 0, calculate the inverse basis matrix using the formula: By '=E,
where E is the identity matrix, calculate the basic solution using the formula: X; = X, put v =1 and
go to step 1 of the second stage.

Step 1. Determine the leading column, the column to be entered into the basis:

d, = min {dl, d,%},

d = min d = min (wa,;-c)). (20)
di = mjjn d; = mjjn . 1)

If d; > £, then the solution to the problem is unlimited.
Step 2. Expand the leading column using the formula:

X, = B;'a,,,
if the number £ is determined from (20), and by the formula:
Xy =B, 1Ek’

if the number £ is determined from (21).
Step 3. Calculate the leading line number from the relation:

f=x,=min x .
kg ek
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If 0 < Epiys Xk <€y then the conditions of the problem are inconsistent; if 0 < &
set r = 7 and go to step 4; if 6 > & then go to step 4.
Step 4. Recalculate the current dual solution of the vector of row estimates:

pive Xk > € then

d
MV+1 — l/lv _ _k(Er)TB;l,
Y

where E, is the rth column of the identity matrix.
Step 5. Recalculate the inverse basis matrix:

-1 v+1 p—1
B, =E"B
v+l raov o

where E‘,’+} is the elementary matrix, multiplier:
v+

— S 1
xrk

Step 6. If r # 7, then set v = v+ 1 and go to step 1 of the first stage; otherwise calculate the

basic solution:
X. ]
— Jk . —
X;=—-—, J*EL X, =—,
- X X
rk

set v=v+ 1 and go to step 1 of the second stage.
Steps 1 to 6 are repeated until it becomes clear that:

e the solution to the problem is unlimited (step 1);
e the conditions of the problem are inconsistent (step 3);
e the condition for transition to step 1 of the second stage (step 6) has been fulfilled.

3.3. The second stage of the direct algorithm

Step 1. Determine the leading column, the column to be entered into the basis:

d, = min {d;, d,%},

dy = mind} = min (u'q, - c;), (22)
l l
dr = mjjn d; = mjjn . (23)

If d; > £, then the optimum has been achieved.
Step 2. Expand the leading column using the formula:

X =B, 'a,.

if the number k was determined from (22), and according to the formula:
X, =B,'E,,

if the number k was determined from (23).
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Step 3. Calculate the leading line number from the relation:

E
0=—=minq{—, x; >& .
X i |x, 7 p

Jjk

If X S Eppyo j =1, ..., m, then the conditions of the problem are inconsistent.
~ Step 4. Recalculate the current dual solution of the vector of row estimates:

d
uv+l — MV _ —k(Er)TB;l,
xrk

where E, is the rth column of the identity matrix.
Step 5. Recalculate the basic solution:

- _ = . - _
X;=X; Oxjk, JERL X.=0,

recalculate the inverse basis matrix:
-1 _ v+l p-1
B Erv+]Bv ’

v+l T

where EX*i is the elementary matrix, multiplier:
v+

1 _ Tk

EV+1 — —_

v+l Yk

Xk

Steps 1 to 5 are repeated until the optimum is reached, or until it turns out in step 3 that the
conditions of the problem are inconsistent.
3.4. Comparison of algorithms

Let us prove that for the same initial data (inputs), the algorithms generate the same sequence of
points: the basic solution and the current dual solution of the vector of row estimates.

Statement 1. Second stage algorithms for the same initial data generate the same sequence of

points.
Proof. The statement is true if and only if:
V+1EV+1B—1 4 dk ETB—l
¢ rHlv_u_x_krv‘
r

Assuming u’ = ¢"B;!, we get:
d
CV+1EI+1 _ CV _ k ET

= re

1
v+ xrk
Since c}"+1 = ¢, j # r, it remains to prove that:
mo vty v+1
Z J jk | Cr v dk
_ + =c - —
j=1, j#r Xrk Xk Xk
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There are two possible cases. In the first, the number k was determined from (20), and in the second
from (21).
In the first case:

-1
) dk o, uva.k—cZ o, B, a.k—cZ ~
Ty T T Tt T T
rk rk rk
c"(x X )T—c" m o vty v+l
Y 1k mk k i ik
=cl - =- + :
xrk j=1, j#r xrk xrk

In the second case:

v % v -1

v %, W, WE "B, E; _

T T T T T e T T T T T
rk rk rk rk

T
Vv m v m v+1 +1
, € (xlk xmk) X jk Yk
=c) - =- = - + :
xrk j=1, j#r xrk j=1, j#r xrk xrk
The statement has been proven. O

From this, in particular, it follows that the direct algorithm is an algorithm like the simplex
method.

When comparing algorithms, we assume that the inverse matrix B! is completely filled.
Obviously, the difference in the number of arithmetic operations occurs at step 1 of the simplex
method algorithm and step 4 of the direct algorithm. It follows that the gain in the number of arithmetic
operations of multiplication and addition in one iteration is equal to m> — m — 1.

3.5. The number of iterations

Let us consider problem (6) in the form of an LP problem with restrictions of only the type of
inequalities:
mlien(c’y), b+Ny=>0, y=0. (24)
YERY

By virtue of construction (6), problems of the form (24) satisfy the conditions:
e (' >20,Fb #0;

e the rows in the matrices N are linearly independent by constructing equations for connecting

N 2
of the uniqueness of the solution to problem (1), which is equivalent to (6);

z, = b, + ey ,y of the variables z, > 0, and the rows in the matrix in N” = by the assumption

7

e there are either no v or fewer linearly dependent rows in the matrix ( ) or v+ 1 or fewer linearly

I

v

dependent rows in ( (i ;\7)

v

In particular, the LP problem in this model will be nondegenerate. Let’s denote:
p = —b" is the m-dimensional row vector,

G= (N —Im)T is the (n X m) matrix of rank m in block form,

T
g= (c’ OL) is the n-dimensional vector in block form.
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With the introduced notation, the problem dual to (24) takes the form:
max(pu), Gu<g. (25)
ueR™

We limit ourselves to deriving an upper bound 5 for problems of the form (25), which is consistent
with the almost linear increase in the number of iterations of the simplex method in practice. The model
is natural. Along with a linear program of the form (25), an initial vertex #” (the initial value of the
iteration counter v = 0) is given. Then choose a row vector p that satisfies the condition:

pu’ = max(pu), Gu<g. (26)
ueR™

REMARK. For an arbitrary vertex u” it is easy to find some row vector p satisfying condition (26), for
example, you can add rows G in which equality is achieved in the system Gu” < g [CxpeiiBep, 1991]. The
function u — pu is called a co-objective function.

Then one of the rules for calculating the leading line is selected: Danzig or according to the
largest contribution to the change in the value of the objective function. The first rule is simpler,
however, the choice of the second when solving ill-conditioned problems leads to an increase in
the accuracy of the solution, and when sequences of iterations arise in which the objective function
practically does not change, to a significant reduction in the number of iterations. Thus, the mechanism
for selecting the leading line can be described as follows. When solving ill-conditioned problems, the
second rule is chosen, otherwise the first one is chosen. If the second rule is selected, the selection
mechanism is described. Otherwise, the choice of the leading line is ensured by the internal structure
of the algorithm as follows. At each iteration of the algorithm, the increment of the objective function
is estimated. If it is less than a given threshold value, then the second rule is selected, otherwise the
first one.

The direct algorithm for solving the nondegenerate problem (24) and the simplex method
algorithm for solving (25) generate (from Statement 1) the same sequence of points (the basic solution
and the current dual solution of the vector of row estimates). Moreover, geometrically, the iterations of
the direct algorithm represent a transition from one point to another in the direction of increasing the
objective function. Thus, the mechanism for selecting the leading line satisfies the conditions:

(i) the problem (25) is degenerated;

(i1) geometrically the iterations of the simplex method represent a transition
from one point #” to another »’*!' in the direction of increasing objective
function u — pu, therefore in the direction of decreasing the co-objective 7)
function u — pu;

(ii1) for any fixed p reversing the signs of some inequalities, in which equality is
achieved in the system Gu” < g (so that the maximum pu on the modified
polyhedron is finite) or replacing p to —p does not depend on G, g, p, p.

The practical meaning of conditions (27) can be questioned if one does not take into account
ill-conditioned problems that arise in practice with strong instability of numerical solutions regarding
errors in source data or machine rounding. However, this is, first of all, the subjective point of view of
the author.

REMARK (RATIONALE). Without loss of generality, we will assume that at the next iteration of the
algorithm a system with a Hilbert matrix is solved. These matrices are interesting because they are poorly
conditioned even for relatively small values of their order. This feature allows them to be used for testing and
debugging various computational algorithms. Systems with ill-conditioned matrices are usually called unstable or
ill-conditioned. In general, they are characterized by the fact that a slight change in the conditions of the account
can lead to unacceptably large errors in the solution. Moreover, it is known that the use of “long number”
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mathematics makes it possible to obtain the main characteristics of Hilbert matrices (for example, the values
of norms, condition numbers, etc.) up to the hundredth order and higher [Maiictpenko, CBetakoB, UepenaHos,
2011]. It is impossible in principle to obtain similar results using single, double or maximum machine precision.
Thus, constructing an algorithm for solving such large-scale problems using single, double, maximum machine
precision or “long number” mathematics is also impossible.

Now one can carry out the leading operation and find u**!.
Since (from (27), (i) puw’*' # pu’, pu’*' # pu’ and (from (27), (ii)) puw’*' > pu*, pu’*' < pu’
and the programm (25) is unlimited, we have:

pu’t > put, put <pu’,  pe = (u"+l - u") >0, pe<0. (28)

Statement 2. [f the leading row selection mechanism satisfies (27), then the simplex method
solves problems of the form (25) in no more than 7 iterations.

Proof. Suppose we are given problem (25), a vertex ©” of a polyhedron P and a row vector p,
for which ©#” maximizes pu on the set Gu < g. Let n and m be the number of rows and columns of the
matrix G, respectively.

Let w', ..., o' be vectors from R", which are solutions of subsystems of # linearly independent
equations of the system Gu = g. Thus, t = C}".

Let us consider the class L of LP problems of the form:

max(pu), Gu<g,

ueR™
formed from program (25) by inverting some (possibly empty) set of inequalities and (or) replacing
the vector p by —p, for which the maximum is finite:

m%x(ﬁu), Gu<g (29)
ueR™

Let’s show that |L| = 2C7". Indeed, from the condition of Statement 1 it follows that each maximum
(29) is achieved at a single vertex Gu < g and, therefore, at one of the vectors w®. Moreover, for each
w* there is exactly one choice of system Gu < g, for which the maximum (29) is achieved at «* since
exactly n inequalities from the system Gu < g, say G'u < ¢, are satisfied w* as equalities. Thus, in
the remaining n — m inequalities, the inequality sign during substitution w* will be strict and therefore
cannot be reversed. Moreover, the row vector p must belong to the cone generated by the rows G and,
therefore, the signs are uniquely defined here. Thus, to «* there correspond the programs:

max(pu), Gu<g, max(—pu), Gu<73.
ueR™ ueR™

Hence, |L| = 2C".

Now consider the set of all finite and infinite edges of all polyhedra defined by systems Gu < g
Each set of m — 1 equations of the system Gu = g generates a line (one-dimensional affine subspace)
in R™ containing n —m + 1 points from «*, divide it into n — m edge-segments and two infinite edges-
rays. Let [ be such a straight, and let w*® and w* be two neighboring points on /, i. e., suppose that the
segment w’w” contains no other points from w!, ..., w'. Then the edge w’w* is traversed in one of the
class programs exactly once. Let’s assume the opposite, namely, that wSw# is traversed in more than
one program:

max(pu), Gu<3g.
UeR™
For a point w* we find a row vector p satisfying the condition:
W’ = m%x(]_)u), ueP=1{u|Gu< g},
ueR™
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and for the polyhedron P the following inequality holds:
pu < pw’. (30)

From (27) it follows that exactly m — 1 from the inequalities of the system Gu < ‘¢ turn into equalities
on w'wH. Let’s denote the matrix of coefficients of the subsystem of such inequalities of rank m —

-1 by aeq(iju). Thus, the inequality signs in other inequalities of the system cannot be reversed.

Moreover, there is exactly one (m — 1)-dimensional row vector w satisfying wG

:q(m) = p. Since
inequality (30) specifies the support subspace, it follows that w’ > 0. The uniqueness of w implies the
uniqueness of inequality signs in Gu < g. Finally, if pw® > pw*, then it follows from (28) that 7 = p.
If pw*® < pw*, then it follows from (28) that p = —p. Thus, for p there is also a unique choice, so that
the edge w’w* is traversed in the only program from L.

Similarly, it follows from (28) that each ray «w® + @R, is traversed only if py > 0, and therefore
only in one program from L.

On each straight line defined by m — 1 equations from the system Gu = g there are n — m edges
and one ray w® + @R, with pp > 0. Thus, the total number of such rays and edges is equal to (n — m +
+ 1)1 = mC™, so the number of iterations is no more than mchl,'f = %m

This proves the statement. O

In particular, it follows from this and Statement 1 that the direct algorithm solves problems of
the form (24) in no more than 73 iterations.

4. Examples of problem solutions with guaranteed behavior of the simplex
method

Let’s consider a direct algorithm using examples of solutions to problems with guaranteed
behavior of the simplex method in a phenomenological sense (the sense of understanding the
phenomenon) and in a constructive sense (how the thing to be defined is structured and how to work
with it) [Jlauuaos, [TomskoB, 1999].

EXAMPLE 1 (SHEVCHENKO —ZOLOTYKH [LLIEBYEHKO, 30JI0TBIX, 2002]). Find a solution
to problem (1) for looping the simplex method with Dantzig’s rule:

c:(O 0 0 0 —200 —175 1100 2),

1
0o 100 -3 -3 7 & 0
1 1 1
O I T T N1 I ¢
75 25 175 1) :
0010 F -3 7 g 0
0O 001 0 0 0 1 -1

Let us show that the solution to the Shevchenko — Zolotykh problem is achieved at the first stage
of the algorithm. The following auxiliary quantities are involved in the solution process:

Co (—co < cx*) is an arbitrarily large scalar quantity which is introduced to reduce compensation
errors;

X, (x, > 0) is an additional variable;

¢y — X, + ¢x = 0 is the constraint equation of an additional variable;

min(x,), ¢,—x,+cx =0, h+ Hx =0, x, > 0, x > 0, is a problem equivalent to the Shevchenko —

XER"

Zolotykh problem.
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REMARK. Among arithmetic operations there are those that can lead to relative errors that exceed the
value of machine precision many times, for example, calculating the differences of almost identical rounded
numbers. The errors associated with them are usually called compensation errors [['mi1, Mioppeii, Paiit, 1985].

Step 0 (initialization). Calculate the number r of the leading column (the number of the leading
row g = 0) using the formula:

O,= min ¢ =c5=-200.
i=1,..,8, c,.<0

Rewrite the constraint equation of an additional variable x, > 0:

T
_ -0 0
x5 = XS + 650. (Xl X2 X3 X4 XO X6 X7 X8) .
1
1
1
1
0 _
Es = 1 111
200 8 2 100
1
1
1

Set:

=000 0 e, 0 0 0).

Step 1 (calculation x!). Calculate the elements of the constraint equation of the fourth row (select
the number of the leading row g = 4):

h}‘+(h}l1 h}lg)(xl Xy Xy Xy Xy Xgo Xy x8)T=O,
hy=hy+hys =1 (B oo hig)=hE$ =(0 0 0 1.0 0 0 1).

Rewrite the constraint equation of the fourth row (to simplify the calculations, we choose the number
of the leading column to be r = 8):

_ 1l r
x8_x8+e810('x1 X2 X3 X4 XO X6 X7) ,
x=1 e,=(0 00 -1 00 0)
1
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e274
Recalculate the elements of the constraint equation:
_ 1,0 r
XS—X5+€51.(X1 X2 X3 X4 XO X6 X7) .
1 1
1 _ 0 _ 0 gl _ 1 1 701
Xs—m-i-ﬁco, 651.—650.E81—(0 0 0 —700 ~30 "% 7),
1
1
|
0 rl I
Es Eg = _1 _1 71 1
00 ~200 8 2
1
|
-1
Set: .
1_ 1 1
=000 0 f5+55¢ 0 0 1) .

Step 2 (calculation x?). Calculate the elements of the constraint equation of the first line (select

qg=1):
2 (12 2 2 r_
h1+(h11 his h17)(x1 Y A3 X Xy Y x7) =0,
1 3
2
hy = hy + hysxs + hygxg = 100 ~ 2000
) 2\ = 0 pl _ 030 _19
(3, h)=hESE =0 1 0 w5 55 § —%)

Rewrite the constraint equation of the first line (select r = 2):

T
_ 2
x2—x%+e22.(x1 Xy X, Xy Xg x7) ,

1 3
x§:m+ﬁco, ei.z(O 0 —ﬁ —2%)0 —% %),

1
_1 _3 _u 1
100 200 8 2

5 1
E22: 1
1
1

1

Recalculate the elements of the constraint equations:

x_x2+el(xxxxxxT
g =gt eg ol X5 Xy Xy Xo X)

_ 1 _ 1 2 _ _
=1 e =e 3 =(0 0 -1 0 0 0),
_ 0 T
xs—xg+esz,(x1 X3 Xy Xy X x7) ’
2o+ 1
> 100 200

ool
S o
~

0 _ 0 g2 _ - L _
652.—651.E22—(0 0 - ~7m
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1

_1 _3 _u D
100 200 8 2

1

P 1
5 8172 _1 1 7 1
100 200 8 2
1

1

-1

Set:
2 1 3 1 1 T
x _(o st e, 00 w45k, 000 1).

Step 3 (calculation x%). Calculate the elements of the constraint equation of the second line
(select g = 2):

3 3 3 3 r_
h, + (h21 hy, - hzs) (xl X3 Xy Xy X x7) =0,
1 1
3 2
1y = hy + 25 + hysxs = 60~ 600”
353 3\ _ 0 ol 2 _ 11 1 _s
(h21 hy - h26) - hz-EsoElez2 = (—1 0 -% &0 8 _6)'

Rewrite the constraint equation of the second line (select r = 5):

3, 3 r
x6=x6+e63_(x1 Xy X, X x7) ,
2 1
3 _ 3 2 L 20
X ="15 T 75 8630_(8 0 % -% %)
1
1
1
3 _
E63— |
2 120
8 0 5 ~75 3
1

Recalculate the elements of the constraint equations:

T
_ 3,1
Xg = Xg + e o (x1 Xy X, X, x7) ,
3 _ 1 _ 1 3 _ 3
=1 e, =e Eg = (0 0 -1 0 ())’
Xz = )g + 60 (X X X X X, )T
57— 75 530 1 3 4 0 7 5
19 1
— 3 3 53 19 1 1
= - —0 e =e2 E) = (_7 o L2 L __)’
57150 150 90 TSie T U506, 50 150 3
T
_ 2
Xy = );2 + 623 o (xl X3 X, X, x7) R

29 1 2 2 3 29 1 1
2= 750 ~ 300" 623-2622-E63:(_11 0 - o 3)-
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1
29 1 1
-1 -5 w3
1
57817270 T g I S U |
150 150 3
3 _2 2 2
15 150 3
-1

Set:
T
3 _ 2 1 19 1 _2 .2
x —(0 50 ~30% 0 0 15— 150% is + 1556 O 1) :

Step 4 (calculation x*). Calculate the elements of the constraint equation of the third row:

4 T
hy + (hgl h§2 e hgs) (xl X3 Xy X x7) =0,
35 1
4 3
hy = hy + h32£2 + hysxs + h36);6 + h38);8 =% 3%
4 14 4\ _ 0 1 2 3 _ (625 351 325
(h31 CON h3s) - h3,E50E81E22E63 - (_T I -5 3 _T)~

Rewrite the constraint equation of the third line (r = 2):

do B4 es s 1 oms
3= 6 30’ 3,0 2 6 3 6 )
625 35 _1 35
4 2 6 3 6
E. =
3, 1
|
|

Recalculate the elements of the constraint equations:

_ 4.0 T
xs—xs+es4.(x1 X, X, x7) ,

9 1
4 _ 72 - 0
BTI50 1500 S

0 A (7 19 1 1
4.—653.]534—( 7 3)’

150 150

X_X4+63XXXXT
6 =% TC,e\X1 M4 KXo X7) >

2 1
4 _ 3 _ 3 g4 o_ 2 2
Y6 =15 T 75 6640_8630E34_(8 5 7150 T)’
4 2 T
x2=x2+ez4.(xl X, X, x7) ,
29 1
4_ 2 _ 2 oA 29 1
5 =150 q00% Ae=aeB, =01 % ww 3)

VN T
Xg=xgteg X X X X)),

H=1 e .=e E5 =(0 -1 0 0).

4
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Rewrite the constraint equation of the variable x; > 0 (x‘s‘ < 0):

w=xhreh (o x o ox)
X=-19+¢) ¢ ,=(1050 19 150 50),
1
1
Ej = 1 :
1050 19 150 50
1

Recalculate the elements of the constraint equations:

Set:
T
X=x'=(0 {5 500 % 0 1) >0 o=-19

REMARK. Compensation errors are minimized by eliminating an additional variable x, in the process of
calculating x*.

EXAMPLE 2 (SHEVCHENKO — ZOLOTYKH [LIIEBYEHKO, 30JI0TBIX, 2002]). Find a solution
to the simplex method looping problem with Dantzig’s rule:

c:(600 00 0 0 =75 500 —2),
1 1
9 1000 {1 -2 -4 0
1 1
H:30100§_3_%,h20
0 0010 0 0 1 1
_25 000 0 1 -25 200 1 0

R
Let us show that the solution to the Shevchenko —Zolotykh problem is achieved at the second
stage of the algorithm. Below we will use the superscript v as an iteration counter. The initial value of

this counter is v = 0, and the problem constructed at the fourth step of the first stage of solving the
Shevchenko — Zolotykh problem [CBupuaenko, 2017] can be rewritten as:

. _ v v v v
min XO = 601X1 + 602X2 + 603X3 + 604X4,
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v 4
X5 X5 C5q)[*1
X X/ el |l x
ol=|"6|+|%||"2|>0,
X7 A7 €741 %3
v 4
Xg g €ge/ \ Ay
20, x>0, x>0, x,20,

¢y, = (1925 100 100 8), =(0 0 0 0 3 -& -3 1),
e,=(82 -100 0 -3), ¢, =(104 12 -8 £)
.=(-2 2 -1 3). =0 0 0 -1)

Step 1 (calculation x'). Calculate the number ¢ of the leading constraint equation using the
formula: )
0 = min WO=x0=_—
1 iser80<0 L 025

Calculate the number r of the leading column using the formula:

0 L0
i _ ‘o _ 2
i=1.2.3.4,0>0 €0, €), 3

0, = min

Rewrite the constraint equation of the variable x; > 0 (xg < 0):

T
S|
x2—x2+e2.(xl Xg Xy x4),

26 1L 2 l)
3 ”

-2 1 2 _2
E'=|"3 12 3 75
? 1

Recalculate the elements of the constraint equations:

xs=xtel (x, x x x)
s = AT es |\ X X X3 Xy) .

| —— -0 gl —(_215 25 _200 _
x5—3’ eso—es-Ez—( 6 3 3 )

Recalculate the elements of the objective function:

1 _ 0 pl _ (3175
eo-—eo-Ez—( 3

vl
wn
|2
3

>
SN—

Set: ,
=0 % 00 %0 -7 1).
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Step 2 (calculation x?). Calculate the number ¢ of the leading constraint equation using the

formula:
6= min xl=xo-_—L
T 2,578 x1<0 7 150
Calculate the number r of the leading column using the formula:
1 1
e.. e
®,=  min % = % = 50.
— 0
i=1,6,3,4, e7[>0 €7i 676

Rewrite the constraint equation of the variable x; > 0 (x; < 0):

T
_ 2
x6_xé+e6-(xl X7 X3 x4)’

cg.=(209 6 -2 -%).

1
2

1

Recalculate the elements of the constraint equations:

X_X2+€2 X X. X. X ’
2 =T 6\ Xy A3 Ay) s
» 3 2 _ 1 g2 _ (35 1 1 3
X2 - 100’ 620 - eZOEG - (T 2 2 _W)’
—x2+2(x X, X xT
X5 = Xs T C54\ Xy X7 A3 Xy)

=0, e, =e E=(-32 -50 -50 0),

T
_ 2
xs—x§+68-(x1 X7 X3 x4),

=1 e.=e E=(0 0 0 -1).

Recalculate the elements of the objective function:

€. = ey Eg = (2800 50 150 5).

Set:
. 16

o — 3 1 r
=x=(0 3 000 % 0 1) >0, ==,

EXAMPLE 3 (KLEE - SCHRIJVER [YAN, 2020]). Schrijver proved that the simplex method

for solving the problem:

min(cx), h+Hx>0, x>0,
xeR"

c= (—2"—1 2 . 2 —1),

-1 5

-2 52
H = . ’ h = . ’

_on _2n—1 X _22 -1 5n
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with Dantzig’s rule is not polynomial: the number of iterations of the algorithm grows exponentially
fast [CxpeiiBep, 1991]. The feasible domain of this problem is a deformed n-dimensional cube, so the
simplex method sequentially passes through all its 2" vertices. The reason for this is the combinatorial
nature of the simplex method, which sequentially enumerates the vertices of the polyhedron of feasible
solutions when searching for the optimal solution. Thus, this method is effective on a small set of input
data, but as it increases, the complexity of the algorithm will increase abruptly.

REMARK. x* = (O o 0 5")T is the only optimal solution to the Klee — Schrijver problem [Cxpeiisep,
1991].

Let us show that the direct algorithm with Dantzig’s rule finds a solution to the Klee — Schrijver
problem at the first step of the first stage. The following auxiliary quantities are involved in the solution
process:

<o (—co < cx*) is an arbitrarily large scalar quantity,

X (xo > O) is an additional variable,
¢y — X, + ¢x = 0 is the constraint equation of an additional variable,

m}en(xo), Co—Xgtcx=0,h+Hx >0, x, > 0, x > 0, is a problem equivalent to the Klee - Schrijver
XE n

problem,
X, 20,...,x, > 0are additional variables to reduce the Klee - Schrijver problem to canonical
form by adding to the right-hand side of each equation, respectively.
Step 0 (initialization). Calculate the number r of the leading column (the number of the leading
row g = 0) using the formula:
®,= min ¢=c =-2""
i=1,...,n, c[<0

Rewrite the constraint equation of an additional variable x;, > 0:

T
X, :x(l)+e(1)0.(x0 Xy e xn) ,
X? — 2_n+1c()9 6? .= (_2—n+l _2—1 L. _2—n+2 _2—n+l)’
0
_2—n+1 _2—1 . _2—n+2 _2—n+1
1
0
E =
1
1
Set: ,
=2y 0 e 0) .
Step 1 (calculation x!). Calculate the number g of the leading line using the formula:
0, = min (hj+h;ox®) =y + by ox® = 5" = 2,

Jj=1,..,n, hj+hj.xo<0

Calculate the elements of the constraint equation of the nth row:

T
hy+(hh B, e L) (kg x e x,) =,
1 0 0
hy=hy+ hyx) =5"=2¢,  (hh B, - hL)= E) = (20 -0 1)
Calculate the number r of the leading column using the formula:
0, = max h}u- =n =1
i=1,...,n, h! >0, i#1

ni
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Rewrite the constraint equation of the nth row:

T
xn:xrli"'eili]o(xo x2 xn—l xln) ’
Xy = =5" + 2¢,, e}ﬁ,:(—Z 0O --- 0 1),

1
1
1
Enlz
1

Recalculate the elements of the constraint equation:

X _xl+€0 X X e X X ’
1= M 1,e\70 2 n—1 2n)

1 _ —-n+1 -n+lgn 0o _ 0 1 _ (~-n+l -1 —-n+2 —-n+1
X ==2""¢y +27"5", ell.—elo.En] —(2 -2 - ) -2 )

Rewrite the constraint equation of the variable x; > 0 (x% < 0):

1 1 T
xO:xO+eO].(x1 Xy cttoX xzn),
X=-5"4cy e =270 2 e 200),

2n—l 2)1—2 o201
1
I _
EOI—
1
1

Recalculate the elements of the constraint equation:

T
xn=x,21+e,112,(x1 Xy X, xzn),
1 1 1 —
=5 e =e By = (=20 -2 22 ),
Set: .
=x'=(0 0 - 0 5) >0, cx=-5"

EXAMPLE 4 (SVIRIDENKO [CBUPUAEHKO, 2017]). Large LP problems, as a rule, have
a nonunique solution. Various methods for solving such problems (simplex method, interior point
method, quadratic penalty function method) lead to different solutions in the case of nonuniqueness.
The simplex method provides a solution that belongs to the vertex of a polyhedral set. Interior point
methods converge to a solution in which the condition of strict complementary nonrigidity is satisfied.
The external quadratic penalty function method makes it possible to find an exact normal solution (in
other words, a solution with a minimum Euclidean norm). Note that finding a normal solution is closely
related to the regularization method [ITonsik, 2006] and the quadratic penalty function method [®Puaxko,
Mak-Kopmuk, 1972].

An approach to constructing all the vertices of {xl*, e xs*} of a polyhedral set of solutions to
an LP problem using a direct algorithm is considered using a problem of type (1) with an infinite set
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of solutions [Cupunenko, 2017]:

X = (O % % 0 O)T, ex! = ?,

. 10
Z=0 3040, =3
Y = (O g 0 0 %)T, X = ?

Now consider the approach to calculating the normal solution x* as a solution to the problem of
the projection of zero onto the set of solutions to the Sviridenko problem:

1 2 3* _ _
{a/lx + @, x” +azx |a/1+a/2+a/3—1,afs>0,s—1,2,3}.

The solution to this problem exists and is unique [Manozémos, 2017b]. Its solution is

and hence

Conclusion

The direct method is a sequence of steps, at each of which zeros are obtained in the required
positions of the next processed column of the matrix of the conditions of the direct problem. In this
case, the zeros obtained previously in preceding columns are preserved.

Lachinov and Polyakov in [Jlaunnos, Ilomsko, 1999] noted that any modern programming
language has the “taste” and “smell” of its predecessors, and so does the direct algorithm, which
inevitably bears the features of the simplex method with an inverse matrix. Moreover, two variants
of the algorithm for solving the problem obtained at the first stage in conjugate canonical form are
proposed. The first is based on solving it using a direct algorithm in terms of the simplex method, and
the second is based on solving the problem dual to it using the simplex method. It has been proven
that both options are equivalent: with the same initial data, they generate the same sequence of points
— the basic solution and the current dual solution of the vector of row estimates. Hence, the following
conclusion follows: a direct algorithm is an algorithm similar to the simplex method.

At each iteration of each stage, the direct algorithm generates a sequence of points that extend
beyond the feasible region in the direction of increasing the objective function, until a feasible solution
is obtained, and the hyperplane of the objective function passing through these points does not intersect
the feasible region. Therefore, in accordance with the terminology of Fiacco and McCormick, the direct
algorithm is one of the variants of the external point method [®wnakko, Mak-Kopmuk, 1972].

The simplex method, the interior point method and the quadratic penalty function method lead
to different solutions if they are not unique . The simplex method provides a solution that belongs to
the vertex of a polyhedral set. Interior point methods converge to a solution in which the condition of
strict complementary nonrigidity is satisfied . The external quadratic penalty function method makes
it possible to find a solution with a minimum Euclidean norm (exact normal solution). By solving the
problem from Example 4 in §4 (an approach to calculating a normal solution), we will show that the
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direct method makes it possible to find all the optimal vertices (xl* , X, x3*) of a polyhedral set and,
therefore, leads to both an exact normal solution and a solution in which the complementary slackness
condition is satisfied. The solution (xl*), belonging to the vertex of the polyhedral set, is achieved at
the second iteration of the first stage:
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To find the remaining solutions (x2 , x3*), belonging to the vertices of the polyhedral set, we solve LP
problems (the optimal value x, is obviously zero):
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Their solutions are
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