
COMPUTER RESEARCH AND MODELING
2023 VOL. 15 NO. 5 P. 1207–1236
DOI: 10.20537/2076-7633-2023-15-5-1207-1236

MODELS IN PHYSICS AND TECHNOLOGY

UDC: 536.75+544.3+577.3

On the kinetics of entropy of a system with discrete
microscopic states

I. G. Minkevich

G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, FRC Pushchino Centre for
Biological Research, Russian Academy of Sciences,
Pushchino, Moscow Region, 142290, Russia

E-mail: minkevich@pbcras.ru

Received 17.05.2023, after completion — 21.07.2023.
Accepted for publication 26.07.2023.

An isolated system, which possesses a discrete set of microscopic states, is considered. The system performs
spontaneous random transitions between the microstates. Kinetic equations for the probabilities of the system
staying in various microstates are formulated. A general dimensionless expression for entropy of such a system,
which depends on the probability distribution, is considered. Two problems are stated: 1) to study the effect
of possible unequal probabilities of different microstates, in particular, when the system is in its internal
equilibrium, on the system entropy value, and 2) to study the kinetics of microstate probability distribution
and entropy evolution of the system in nonequilibrium states. The kinetics for the rates of transitions between
the microstates is assumed to be first-order. Two variants of the effects of possible nonequiprobability of the
microstates are considered: i) the microstates form two subgroups the probabilities of which are similar within
each subgroup but differ between the subgroups, and ii) the microstate probabilities vary arbitrarily around the
point at which they are all equal. It is found that, under a fixed total number of microstates, the deviations
of entropy from the value corresponding to the equiprobable microstate distribution are extremely small. The
latter is a rigorous substantiation of the known hypothesis about the equiprobability of microstates under the
thermodynamic equilibrium. On the other hand, based on several characteristic examples, it is shown that the
structure of random transitions between the microstates exerts a considerable effect on the rate and mode of
the establishment of the system internal equilibrium, on entropy time dependence and expression of the entropy
production rate. Under definite schemes of these transitions, there are possibilities of fast and slow components in
the transients and of the existence of transients in the form of damped oscillations. The condition of universality
and stability of equilibrium microstate distribution is that for any pair of microstates, a sequence of transitions
should exist, which provides the passage from one microstate to next, and, consequently, any microstate traps
should be absent.
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Рассматривается изолированная система, обладающая дискретным множеством микроскопических
состояний, которая совершает спонтанные случайные переходы между микросостояниями. Сформулиро-
ваны кинетические уравнения для совокупности вероятностей пребывания системы в различных мик-
росостояниях. Рассмотрено общее безразмерное выражение для энтропии такой системы, зависящее от
распределения этих вероятностей. Поставлены две задачи: 1) изучить влияние возможной неравноверо-
ятности микроскопических состояний системы, в том числе в состоянии ее общего равновесия, на вели-
чину ее энтропии; 2) изучить кинетику изменения энтропии в неравновесном состоянии системы. Для
скоростей переходов между микросостояниями принята кинетика первого порядка. Влияние возможной
неравновероятности микросостояний системы рассмотрено в двух вариантах: а) микросостояния обра-
зуют две подгруппы с вероятностями, одинаковыми внутри каждой подгруппы, но отличающимися по
величине между подгруппами; б) вероятности микросостояний произвольно варьируют вблизи точки, где
они равны одной и той же величине. Показано, что, когда общее число микросостояний фиксировано, от-
клонения энтропии от значения, соответствующего равновероятному распределению по микросостояни-
ям, крайне малы, что дает строгое обоснование известной гипотезы о равновероятности микросостояний
при термодинамическом равновесии. С другой стороны, на нескольких характерных примерах показано,
что структура случайных переходов между микросостояниями оказывает большое влияние на скорость
и характер установления внутреннего равновесия системы, на временную зависимость энтропии и на вы-
ражение для скорости продукции энтропии. При определенных схемах этих переходов возможно наличие
быстрых и медленных компонент в переходных процессах и существование этих процессов в виде за-
тухающих колебаний. Условием универсальности и устойчивости равновесного распределения является
то, что для любой пары микросостояний должны существовать последовательность переходов из одного
в другое и, соответственно, отсутствие состояний-«ловушек».

Ключевые слова: термодинамика, микроскопические состояния, случайные переходы, рас-
пределение вероятностей, кинетические уравнения, энтропия, равновесное состояние, переход-
ные процессы
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Introduction

Entropy is an integral index describing the variation of the macroscopic state of
a multicomponent system. In particular, it is used in thermodynamics as a separate quantity and as
a term in expressions of other thermodynamic quantities widely used in descriptions of physicochemical
and biological processes. A well-known property of entropy is its tendency to a maximal value,
which is achieved when an isolated system in the course of time achieves internal equilibrium. In
a phenomenological statement of thermodynamics, this property is considered as a basic experimental
fact without any analysis of its reasons. In statistical thermodynamics, which deals with objects
described by classical or quantum mechanics, the entropy is considered based on the dynamics of
an object’s microscopic states.

A problem inherent in all approaches used is substantiation of mechanisms resulting in an
increase of entropy and its tendency to a maximal value in the case of an isolated system. Besides,
the equiprobable distribution of microscopic states is always assumed for the state of thermodynamic
equilibrium and corresponding entropy value of an isolated system [Balescu, 1975; Kittel, Kroemer,
1980; Landau, Lifshits, 1995; Sethna, 2006; Huang, 2010; Sekerka, 2015; Reichl, 2016; Nolting, 2018;
Sadovskii, 2019; Hoch, 2021; Kennett, 2021; Müller-Kirsten, 2022]. In this connection, the following
questions are of interest: 1) an effect of a possible nonequiprobability of microstates on the value of
isolated system entropy, and 2) an effect of differences in the general structure of transitions between
the microstates on the evolution of microstate probability distribution and the entropy value in time.

The present work is devoted to the study of these questions.

Formulation and the general properties of the model

The work considers the objects, which possess discrete sets of microscopic states (e. g., quantum
mechanical many-particle systems). Transitions between the microstates are randomly spontaneous.
Staying of the system in one microstate or another is a random event described by its probability. The
total state of the system at any point of time is described by the distribution of these probabilities. In
the stationary state of the whole system this distribution is independent of time. In transient processes,
the aggregate of the above-mentioned probabilities depends on time.

An isolated system of magnetic dipoles in a constant external magnetic field may be taken
as an example [Kittel, Kroemer, 1980; Hoch, 2021; Kennett, 2021]. A part of magnetic moments of
the dipoles is oriented along the direction of the external field, the remaining magnetic moments are
opposite. Because of its isolation the system has a fixed total energy value, which depends on the
number of dipoles oriented against the field. The exchange between two differently directed dipoles
consists in the change of both magnetic moment directions to the opposite. It means the transition of the
whole system from one microstate to another, the system energy being invariable. Generally, a random
transition from one microstate to another in this example is the exchange between some number of
randomly selected dipoles directed against the external field and the same number of randomly selected
dipoles “looking” in the opposite direction. Let N be the total number of the dipoles, n of which have
moments oriented against the external field. Then, the number of various microstates of the magnetic
dipole system, when N and n are fixed, equals CN

n — the number of n combinations of an N-set.
In a general case we enumerate the system microstates by an index l and denote their total

quantity as L. It should be emphasized that it is the number of microstates that we consider here. Its
relation to the number of material particles that make up the system is not considered in the general
analysis described.

Let P(l, t) be the probability of the system staying in the lth microstate at time t. To derive the
kinetic equations for P(l, t) we apply the approach used for derivation of Poisson distribution in the
case of radioactive decay [Hudson, 1964] and shot noise [Davenport, Root, 1987].
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Let us introduce a set of quantities α
l,l
, which are the specific rates of spontaneous random

transitions from an lth microstate to an lth one, where l � l. We accept the following rule: the first
index relates to a microstate, which the system leaves, and the second, to the microstate at which
the system arrives. All α

l,l
are nonnegative in value. The rates above are constants [Sokolov, Ternov,

Zhukovsky, 1979; Fermi, 1995; Svelto, 2010].
The kinetic equations for all the probabilities P(l, t) are as follows:

dP(l, t)
dt

= −
⎛
⎜⎜⎜⎜⎜⎜⎜⎝

∑

l�l

α
l,l

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

P(l, t) +
∑

l�l

α
l,l

P(l, t), l = 1 ÷ L, l = 1 ÷ L, (1)

where the first term of the right-hand side describes the system transition from the microstate l to any

other with the summary specific rate

⎛
⎜⎜⎜⎜⎜⎝−

∑

l�l

α
l,l

⎞
⎟⎟⎟⎟⎟⎠ < 0, and the second one describes the arrival of the

system at the lth microstate from all the remaining microstates.
The system of equations (1) in standard form is written as

dP(l, t)
dt

=

L∑

l=1

r
l,l

P(l, t), l = 1 ÷ L, (2)

where r
l,l
is a matrix of specific rates of P(l, t) change. Here r

l,l
= α

l,l
(l � l), rl,l = −

∑

l�l

α
l,l
.

Let us show that the sum of probabilities of the system staying in all the microstates is invariable.
Summation of all Eqs. (1) by l gives

d
dt

L∑

l=1

P(l, t) = −
L∑

l=1

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

∑

l�l

α
l,l

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

P(l, t) +
L∑

l=1

∑

l�l

α
l,l

P(l, t).

Since the summation is done by both indices, we may interchange denotations l and l in the first

right-hand side term, due to which it turns to
L∑

l=1

∑

l�l

α
l,l

P(l, t). Thus, both summands of the right-hand

side contain identical expressions under the double sums. They differ only by the order of summation
and by the fact that the case l = l in both terms is excluded from the sums by different indices. This

results in d
dt

L∑

l=1
P(l, t) = 0, and

L∑

l=1
P(l, t) = const. Since P(l, t) are probabilities, and an aggregate of

the microstates is the full set of random events,

L∑

l=1

P(l, t) = 1. (3)

The equality
L∑

l=1
P(l, t) = const derived from the system of kinetic equations confirms the

correction of the accepted kinetic scheme. Besides, it denotes an important property of the system
of differential equations (2), viz., the existence of a rigid constraint between the variables due to which
the number of degrees of the system freedom is L − 1 but not L. One of the quantities of P(l, t) can be
expressed in terms of the remaining P’s using Eq. (3). We assign the number L to this microstate and
its probability. The system of equations for the remaining L − 1 probabilities P(l, t) is as follows:

dP(l, t)
dt

=

L∑

l=1

r
l,l

P(l, t), l = 1 ÷ (L − 1). (4)
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To exclude the terms with P(L, t) from Eqs. (4) we use Eq. (3) after replacement of l by l: P(L, t) =

= 1 − L−1∑

l=1

P(l, t),

dP(l, t)
dt

=

L−1∑

l=1

(

r
l,l
− rl,L

)

P(l, t) + rl,L, l = 1 ÷ (L − 1). (5)

Let us represent the microstate probabilities as

P(l, t) = Pst(l) + Ptr(l, t), (6)

where the superscripts “st” and “tr” denote quantities related to a stationary (equilibrium) state and
a transient process, respectively. The components Ptr(l, t) are deviations of the probabilities P(l, t)
from their stationary values Pst(l). For these quantities, Eqs. (5) give the following equations:

L−1∑

l=1

(

r
l,l
− rl,L

)

Pst(l) = −rl,L, l = 1 ÷ (L − 1), (7)

dPtr(l, t)
dt

=

L−1∑

l=1

(

r
l,l
− rl,L

)

Ptr(l, t), l = 1 ÷ (L − 1). (8)

Summation of Eq. (6) over all l gives:
L∑

l=1
P(l, t) =

L∑

l=1
Pst(l) +

L∑

l=1
Ptr(l, t). As Eq. (3) is valid for all t’s,

L∑

l=1
Pst(l) = 1, and, hence, the interrelation

L∑

l=1

Ptr(l, t) = 0 (9)

is valid at all times.
Evidently, it is always possible to assign the index L to a microstate for which at least one of

the quantities rl,L is nonzero. Then, Eqs. (7) are an inhomogeneous system of equations due to which

the vector Pst(l) is nonzero. The solution of a linear differential system of equations (8) for a transient
process, as is well known, is searched for in the following form: Ptr(l, t) = C(l)eλt. Substituting these
expressions into Eqs. (8) results in a system of linear algebraic equations for C(l):

L−1∑

l=1

(

r
l,l
− rl,L − δl,lλ

)

C(l) = 0, l = 1 ÷ (L − 1), (10)

where δ
l,l
is a unit matrix of the size of (L− 1)× (L− 1). A nonzero solution C(l) of Eqs. (10) is known

to exist under the condition
det

(

r
l,l
− rl,L − δl,lλ

)

= 0. (11)

The number of different solutions λ in a general case is L− 1, i. e., it is highly large. This means
that the behavior of the probability distribution P(l, t) can be extremely complex. It depends on the
values of matrix r

l,l
elements, i. e., on the pattern of transitions between the microstates.

Entropy as a macroscopic index of system evolution is expressed by a known formula:

S = −
L∑

l=1

P(l) ln P(l). (12)
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Here S is a dimensionless quantity. For description of physicochemical systems the dimensional
entropy, S dim = kBS , is used, where kB = 1.38 · 10−23 J/K is the Boltzmann constant. In information
theory, the quantity S inf = kSS is used, where kS =

1
ln 2 [Kennett, 2021]. In a transient process the

entropy of the system depends on time:

S (t) = −
L∑

l=1

P(l, t) ln P(l, t). (13)

Similarly to Eq. (6), we represent entropy as a sum of its stationary (equilibrium) value S st and
a deviation from it, S tr(t):

S (t) = S st + S tr(t).

In a stationary state S (t) = S st, and then

S st = −
L∑

l=1

Pst(l) ln Pst(l).

Substituting Eq. (6) into Eq. (13) gives the following expression for S tr(t):

S tr(t) = S (t) − S st = −
L∑

l=1

Pst(l) ln

(

1 +
Ptr(l, t)
Pst(l)

)

−
L∑

l=1

Ptr(l, t) ln Pst(l) −
L∑

l=1

Ptr(l, t) ln

(

1 +
Ptr(l, t)
Pst(l)

)

.

(14)
From here, it can be seen that S tr(t) depends not only on transient components of the microstate
probabilities, but also on the stationary ones. In the neighborhood of the stationary state when
all Ptr(l, t) � Pst(l), an approximate equality, ln

(
1 + Ptr(l, t)

Pst(l)

)
≈ Ptr(l, t)

Pst(l) , takes place. Using also Eq. (9),
we find from Eq. (14) that in the neighborhood of the stationary state

S tr(t) = −
L∑

l=1

Ptr(l, t)

[

ln Pst(l) +
Ptr(l, t)
Pst(l)

]

.

The rate of entropy production,
diS
dt , in an isolated system equals the total rate of entropy change.

It can be easily obtained by differentiation of Eq. (13) over time and substitution of Eq. (4):

diS

dt
=

dS
dt
= −

L∑

l=1

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

L∑

l=1

r
l,l

P(l, t)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(ln P(l, t) + 1).

Then, using the expressions r
l,l
= α

l,l
(l � l), rl,l = −

∑

l�l

α
l,l
, we find the expression of

diS
dt over the

quantities α:

diS

dt
= −

L∑

l=1

∑

l�l

α
l,l

P(l, t) ln P(l, t) +
L∑

l=1

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

∑

l�l

α
l,l

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

P(l, t) ln P(l, t)−

−
L∑

l=1

∑

l�l

α
l,l

P(l, t) +
L∑

l=1

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

∑

l�l

α
l,l

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

P(l, t).

Earlier, during the calculation of d
dt

L∑

l=1
P(l, t), it was found that the sum of two last terms of the equation

above equals zero. Using this fact and Eq. (1), we obtain

diS

dt
=

L∑

l=1

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∑

l�l

(

αl,lP (l, t) − α
l,l

P
(
l, t
))
⎤
⎥⎥⎥⎥⎥⎥⎥⎦

ln P (l, t) = −
L∑

l=1

ln P (l, t)
dP (l, t)

dt
. (15)
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For different sets of transition rates between the microstates the expressions (14) and (15) take
different forms. Some thematic examples of them are considered below.

Entropy values at nonequiprobable distribution of the microscopic states

It is well known that the maximal entropy value takes place at the equiprobable distribution
of the system staying in various microstates. This property is found when searching for the form of
the distribution P(l) providing a maximum of the expression (12) under the condition of Eq. (3). The

criterion for finding the conditional extremum of S is a quantity V = −∑
l

P(l) ln P(l) + χ

(
∑

l
P(l) − 1

)

,

where χ is the Lagrange multiplier. Equating all the derivatives of V by P(l) to zero results in ∂V
∂P(l) =

= − ln P(l) − 1 + χ = 0. Since χ has a similar value for all l, all the P(l) equal one another. Therefore,

according to the normalizing condition
L∑

l=1
P(l) = 1, all P(l) = 1

L .

This probability distribution of the microstates results in a unique S extremum having the known
value S = ln L. It is a maximum which is checked by calculation of S for another P(l) different from
the found extremal one. For example, if the system stays in one of the microstates with P(l) = 1, all
the remaining P(l) = 0. Then, according to Eq. (12) and the known interrelation lim

x→0
x ln x = 0, we

obtain S = 0, which proves that the found S extremum is maximum.
As already mentioned above, the statement that any isolated system being in an internal

equilibrium has equiprobable distribution of all its microstates, is present in every description of
statistical physics. Nevertheless, the equilibrium distribution Pst(l), as can be seen from Eqs. (7),
depends on the set of rates r

l,l
. Therefore, it is interesting to study the effect of possible microstate

nonequiprobability on the equilibrium value of entropy.
Consider the case when the microstates are subdivided into two subgroups with the probabilities

uniform inside every subgroup but different between the subgroups. Let the first and the second
subgroups contain L(1) and L(2) microstates, respectively, where L(1) + L(2) = L. Denote the microstate
probabilities in the subgroups 1 and 2 as P

(
l(1)

)
and P

(
l(2)

)
, where l(1) and l(2) are separate numerations

in the subgroups. Then Eq. (3) takes the form
∑

l(1)

P
(
l(1)

)
+
∑

l(2)

P
(
l(2)

)
= L(1)P

(
l(1)

)
+ L(2)P

(
l(2)

)
= 1, (16)

from which P
(
l(2)

)
=

1−L(1)P(l(1))
L(2) . The formula (12) for the entropy in this case is as follows:

S = −L(1)P
(
l(1)

)
ln P

(
l(1)

)
− L(2)P

(
l(2)

)
ln P

(
l(2)

)
. (17)

This simple variant of P(l) inhomogeneity makes it possible to evaluate the effect of microstate
nonequiprobability on the entropy deviation from its maximal value S = ln L. The inhomogeneity of
the P(l) distribution is characterized by two parameters: interrelations between the microstate numbers
in the subgroups and between P

(
l(1)

)
and P

(
l(2)

)
.

Consider first an extremal case where one of the subgroups (let it be subgroup 2) has zero
probabilities of its microstates: all P

(
l(2)

)
= 0. This means that microstates of subgroup 2 are

inaccessible for the whole macroscopic system. Then 1−L(1)P
(
l(1)

)
= 0, and Eq. (16) results in P

(
l(1)

)
=

= 1
L(1) , S = ln L(1), which is natural for this situation. If L(1) = 1, then S = 0.

Next, we consider the case where the probabilities of microstates in both subgroups are nonzero.
Let us introduce deviations of these probabilities from the uniform distribution when all P(l) = 1

L .

The probabilities of the first-group microstates are P
(
l(1)

)
= 1

L + ΔP1, those of the second group
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microstates are P
(
l(2)

)
= 1

L + ΔP2. The deviations ΔP1 and ΔP2 are interrelated by the normalizing

condition of Eq. (16). In this P
(
l(1)

)
and P

(
l(2)

)
representation it gives: L(1)ΔP1 + L(2)ΔP2 = 0, from

which ΔP2 = − L(1)

L(2)ΔP1: the deviations from
1
L in subgroup 2, naturally, have an opposite sign compared

with ΔP1.

We introduce the following parameters: 1) ρ1 =
L(1)

L and 2) κ1 according to ΔP1 =
1
Lκ1. The

parameter ρ1 is the fraction of the first-subgroup microstates in the total microstate number. Then L(1) =

= ρ1L, L(2) = (1 − ρ1)L (0 � ρ1 � 1). The parameter κ1 is a relative deviation of P
(
l(1)

)
from the

equiprobable value 1
L . Its minimal value is −1 (an extremal case where P

(
l(1)

)
= 0 and therefore

the first subgroup is inaccessible). The maximal κ1 value is restricted by the case where ΔP2 = − 1
L ,

i. e., P
(
l(2)

)
= 0 and the second subgroup of microstates is inaccessible. Using the expression ΔP2 =

= − L(1)

L(2)ΔP1 = −
ρ1

1−ρ1

1
Lκ1, we find that in the latter case κ1 =

1−ρ1
ρ1
. Hence, −1 < κ1 <

1−ρ1
ρ1
.

Substituting ΔP1 =
1
Lκ1 and ΔP2 = −

ρ1
1−ρ1

1
Lκ1 into Eq. (17), we obtain:

S = ln L − S 1, where S 1 = ρ1(1 + κ1) ln(1 + κ1) + (1 − ρ1)

(

1 − κ1
ρ1

1 − ρ1

)

ln

(

1 − κ1
ρ1

1 − ρ1

)

. (18)

In the case of unequal microstate probabilities P
(
l(1)

)
and P

(
l(2)

)
the entropy value is diminished by

the value S 1. It can be seen from Eq. (18) that S 1 = 0 when κ1 = 0
(
microstate probabilities in both

subgroups are similar and equal to 1
L

)
independently of ρ1, i. e., the total microstate set subdivision by

the subgroups.

Figure 1. Dependence of S 1 (difference of an isolated system entropy from the case of equiprobable microstate
distribution) on the parameter κ1 at various ρ1 values. Boundary points of all plots correspond to the limiting κ1
values

Dependences of S 1 on the parameters κ1 and ρ1 are shown in Figs. 1 and 2. It can be seen from

Fig. 1 that, when κ1 � 0
(
P
(
l(1)

)
� P

(
l(2)

))
, the values of S 1 are positive, i. e., the inequality of these

probabilities, naturally, diminishes the entropy of the whole system. However, an important question
arises: how much is this decrease compared with the case P

(
l(1)

)
= P

(
l(2)

)
, i. e., S = ln L.

Consider this question using the above-mentioned example of the system of magnetic dipoles
in the constant external magnetic field. First, we calculate the entropy of this system in the case of
equiprobable microstate distribution when S = ln L. Let the number of the dipoles be N. The n of them
have moments oriented against the external field and therefore have a higher energy compared with the
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Figure 2. Dependence of S 1 (difference of an isolated system entropy from the case of equiprobable microstate

distribution) on the parameter ρ1 in the cases where one of the microstate probabilities P
(
l(1)

)
or P

(
l(2)

)
is close

to zero

remaining dipoles. As mentioned above, the number of different microscopic states, L, corresponding
to the same energy (i. e., the same n) equals CN

n , the number of n combinations of an N-set, where CN
n =

= N!
n!(N−n)! . According to the Stirling formula, the quantity ln K! at large K can be represented as ln K! =

= K ln K − K with high precision. Then, if N, (N − n) and n are large numbers, then

S = ln Cn
N = NKE, where KE = −

n
N

ln
n
N
− ln

(

1 − n
N

)

+
n
N

ln
(

1 − n
N

)

.

This representation is suitable since the coefficient KE depends only on the fraction of high-
energy microstates in any of their total numbers. When n is close to zero or to N the Stirling formula
becomes imprecise and the initial form for the combination number should be used: S = ln CN

n =

= ln
(

N!
n!(N−n)!

)
. At n = 0 and n = N the value of S becomes zero (taking the equality 0! = 1 into

account). The reason is that in these cases the system stays in a single microstate. At n
N =

1
2 the

coefficient KE takes the maximal value ln 2. The dependence of KE on
n
N is shown in Fig. 3.

Figure 3. The dependence of KE, the proportionality coefficient between the number of magnetic dipoles and
entropy of the dipole system, on n

N , the fraction of the magnetic moments oriented against the external field

Let us compare the values of the expression S = NKE with the quantity S 1, the entropy decrease
at nonequiprobable microstate distribution (see Eq. (18)). At one-molar number of the microscopic
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objects (magnetic dipoles in this case) N = NA, where NA = 6.02 · 1023 mol−1 is the Avogadro
number. Then the maximal value of S equal to S = NA ln 2 has the order of magnitude 1023. On the
other hand, S 1, according to Figs. 1 and 2, within a wide range of ρ1 and κ1 values has the order
of magnitude from very small values compared with unity up to 10. Hence, any deviations from the
regularity S = ln L can be noticeable only in extreme cases where either the number of microscopic
objects composing the system is rather small, or the energy of the system is very close to its boundary
value (n or N − n close to zero), or, finally, a very small fraction of microstates has a high probability
of realization but the overwhelming majority of the microstates are extremely improbable (the last case
is most likely unrealistic).

Next, we consider a general form of the distribution P(l). In this case the quantity S 1 in
the neighborhood of the point P(l) = 1

L can be expressed as a formula only approximately. Let us

represent P(l) as P(l) = 1
L + ΔP(l). Then

L∑

l=1
ΔP(l) = 0, S = − L∑

l=1

(
1
L + ΔP(l)

)
ln
(

1
L + ΔP(l)

)
. It is found

in Appendix 1 that

S ≈ ln L − 1
2

1
L

L∑

l=1

(
ΔPl

Pl

)2

. (19)

The quantity γ = 1
L

L∑

l=1

(
ΔPl
Pl

)2
is an average square of a relative deviation of the probabilities P(l) from 1

L .

The order of the γ value is from very small to about 1. Therefore, at an arbitrary ΔPl distribution the
subtrahend in Eq. (19) is extremely small compared with ln L for a system with a high number of
microstates.

Hence, the assumption about the equiprobability of a system staying in various microstates
restricts neither the generality of reasoning nor the accuracy of entropy calculation (except extreme
cases described above) when the total number of the system microstates remains constant. Therefore,
the expression S = ln L is correct and suitable for entropy calculation.

Kinetics of microstate probabilities and entropy value change

1◦. Consider first the simplest case where the rates of all possible transitions between the
microstates are identical: α

l,l
= αl,l = a at l � l. Diagonal elements of the matrix on the right-hand side

of Eq. (2) are rl,l = −(L − 1)a. Then the coefficients at Pst(l) and Ptr(l, t) in Eqs. (7) and (8) become as

follows. When l � l, all the terms r
l,l
− rl,L = a − a = 0. When l = l: rl,l − rl,L = −(L − 1)a − a = −La.

Then Eq. (7) takes the form −LaPst(l) = −a, from which we obtain a natural result: all Pst(l) = 1
L ,

which is the case of maximal entropy.

For a transient process the set of Eqs. (8) is as follows: dPtr(l, t)
dt = −LaPtr(l, t), from which

all Ptr(l, t) = Ptr(l, 0)e−Lat. It can be seen from here that under this form of matrix α the stationary
value of the vector P(l, t) is a stable node. The system of microscopic objects uniformly spreads along
the whole set of microscopic states. A value of the rate constant a should be taken from experimental
data or based on theoretical considerations, which are beyond the scope of this work. This value
is L times, i. e., many orders increased. It takes place due to the fact that in the present particular case
the transition to an lth microstate is possible from every remaining microstates with the same specific
rate.

The entropy of the system in this case depends on time as

S = −
L∑

l=1

(
1
L
+ Ptr(l, 0)e−Lat

)

ln

(
1
L
+ Ptr(l, 0)e−Lat

)

.
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If the system initially stays in a microstate number lini with the probability P
(
lini, 0

)
= 1 and,

correspondingly, all the remaining P(l, 0) = 0
(
l � lini

)
, then:

C
lini
= 1 − 1

L
, C

l�lini
= − 1

L
, P

(
lini, t

)
=

1
L
+

(

1 − 1
L

)

e−Lat, P
(
l � lini, t

)
=

1
L

(
1 − e−Lat

)
.

Since all P(l, t) come into a stationary state with the rate of the term e−Lat decay, the entropy of the
system takes its maximal value S = ln L very quickly even in the extreme case of a single initial
state

(
P
(
lini, 0

)
= 1

)
.

Let us find the rate of entropy production for this scheme of transitions between the microstates.

Substituting into Eq. (15) all α’s by a and taking
L∑

l=1
ln P(l, t) = ln

L∏

l=1
P(l, t) into account, we obtain

diS

dt
= a

⎛
⎜⎜⎜⎜⎜⎜⎝LS + ln

L∏

l=1

P(l, t)

⎞
⎟⎟⎟⎟⎟⎟⎠. (15a)

Since all P(l, t) � 1, it follows that ln
L∏

l=1
P(l, t) � 0.

For the stationary state, when
diS
dt =

dS
dt = 0, the equation LS + ln

L∏

l=1
P(l, t) = 0 yields the above-

mentioned value S = ln L. However, to get it, we need to place the above found values P(l) = 1
L into

this equation. Even in this simplest case of the set of transitions between the microstates, the expression
for the rate of entropy production rate cannot serve as a kinetic equation of entropy evolution since, in
addition to the quantity S , this expression contains the probabilities of the system staying in various
microstates and, therefore, it is insufficient for description of entropy evolution.

2◦. Consider another variant of microkinetics: there is one particular microscopic state such that
the transitions are possible from all the remaining microstates to that particular one, assigned with the
number L. It is an extremal case opposite to that considered in the previous item. Two variants of this
situation are possible. One of them assumes that the transitions from microstates with numbers l � L
to the Lth one are possible but back transitions are impossible. Then the system inevitably comes to
the Lth microstate and remains in it forever. If there were some initial probability distribution P(l, 0),
the initial entropy value would have been nonzero but would have come to zero. Such a case does not
take place in physical objects and its analysis is not of interest.

Another variant is really interesting: transitions from all microstates with l � L to the Lth one are
possible; back transitions from the Lth to all the remaining ones are also possible, but direct transitions
between the microstates with l � L are forbidden. This means that one selected microstate is a single
“bridge” between all others.

Consider first a general case where nonzero elements of matrix α
l,l
, which correspond to the

transition scheme above may have different values. Then Eqs. (3) take the form

dP(l, t)
dt

= −αlLP(l, t) + αLlP(L, t), l = 1 ÷ (L − 1),

dP(L, t)
dt

=

⎛
⎜⎜⎜⎜⎜⎜⎝

L−1∑

l=1

αlLP(l, t)

⎞
⎟⎟⎟⎟⎟⎟⎠ −

⎛
⎜⎜⎜⎜⎜⎜⎝

L−1∑

l=1

αLl

⎞
⎟⎟⎟⎟⎟⎟⎠P(L, t).

(20)
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The matrix of the system of equations (20) is as follows:

r
l,l
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−α1L 0 0 · · · 0 αL1

0 −α2L 0 · · · 0 αL2

0 0 −α3L · · · 0 αL3
...

...
...

. . .
...

...

0 0 0 · · · −α(L−1)L αL(L−1)

α1L α2L α3L · · · α(L−1)L − L−1∑

l=1
αLl

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (21)

The diagonal elements of this matrix satisfy the conditions rl,l = −
∑

l�l

α
l,l
.

From Eqs. (20) we obtain interrelations for stationary solutions:

Pst(l) =
αLl

αlL

Pst(L), l = 1 ÷ (L − 1).

They are similar to the condition of “chemical” equilibrium between the stationary microstates of the
given system. These interrelations and the normalizing condition for Pst(l) yield the following:

Pst(l) =

αlL
αLl

L−1∑

l=1

αlL
αLl
+ 1

at l = 1 ÷ (L − 1), Pst(L) =
1

L−1∑

l=1

αlL
αLl
+ 1

. (22)

From Eqs. (22), a stationary entropy value can be easily found. Consider the case where all nonzero
α’s equal the same value a. Then all the Pst(l) including Pst(L) equal 1

L as in the case where transitions
inside all microstate pairs are possible and equiprobable. Accordingly, the entropy value in this case is
equal to ln L despite a quite different structure of microstate transitions.

For description of transients we apply Eq. (8). The matrix r
l,l
− rl,L in the given case is as follows

(see Eq. (21)):

r
l,l
− rl,L =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−α1L − αL1 −αL1 −αL1 · · · −αL1 −αL1 0

−αL2 −α2L − αL2 −αL2 · · · −αL2 −αL2 0

−αL3 −αL3 −α3L − αL3 · · · −αL3 −αL3 0
...

...
...

. . .
...

...
...

−αL(L−2) −αL(L−2) −αL(L−2) · · · −α(L−2)L − αL(L−2) −αL(L−2) 0

−αL(L−1) −αL(L−1) −αL(L−1) · · · −αL(L−1) −α(L−1)L − αL(L−1) 0

α1L +
L−1∑

l=1
αLl α2L +

L−1∑

l=1
αLl α3L +

L−1∑

l=1
αLl · · · α(L−2)L +

L−1∑

l=1
αLl α(L−1)L +

L−1∑

l=1
αLl 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(23)
In Eqs. (7) and (8) we use this matrix without the last row and the last column. The solution is searched
for in a standard form: Ptr(l, t) = Cle

−λt. The general equation for eigenvalues λ of the matrix r
l,l
, when

the latter has the form Eq. (21), is derived in Appendix 2. This equation is as follows:

(α(L−1)L + αL(L−1) + λ)
L−2∏

m=1

(αLm + λ) + (αL(L−1) + λ)
L−2∑

j=1

α jL

∏

m � j,
m � L − 1

(αLm + λ) = 0. (24)
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Let us consider the case where nonzero elements of the matrix (21) have the form: rlL = αLl = a,
rLl = αlL = Ka for all l = 1 ÷ (L − 1). (Then, as it can be seen from Eq. (21), the diagonal elements
are rll = −Ka at l = 1÷ (L − 1), rLL = −(L − 1)a.) This means that the specific rates of transitions from
all lth microstates to the Lth one are identical, the specific rates of back transitions are also identical but
both sets of the rates can differ from each other and the rates are equal to one another only at K = 1.
Then Eq. (22) turns into:

Pst(l) =
1

L + K − 1
at l = 1 ÷ (L − 1), Pst(L) =

K
L + K − 1

.

In the case where L is large and K is close to unity or differs from it only by several orders to a larger
or smaller side, all Pst(l) are close to 1

L and entropy S is close to ln L. It is in accord with the result
obtained above.

Equation (24) for the eigenvalues in this case has the form (see Appendix 2):

(Ka + λ)L−2[(L + K − 1)a + λ] = 0.

From this we obtain two λ values: λ1 = −(K + L − 1)a, λ2 = −Ka. Also, λ2 has the multiplicity L − 2.
It is shown in Appendix 2 that the general solution for the transient component in this case is

Ptr(l, t) = C( f )
l e−(L+K−1)at +C(0)

l e−Kat for l = 1 ÷ (L − 1). (25)

Here the multiplicity of the root λ2 does not result in the appearance of power terms in the expression
for Ptr(l, t). The constants present in Eq. (25) satisfy the following interrelations (see Appendix 2):
1) C( f )

l = − 1
L−1C( f )

L for l = 1 ÷ (L − 1), i. e., in this set of constants there is only one constant based

on the initial conditions, and 2)
L−1∑

l=1
C(0)

l = 0. Further, according to Eq. (9), Ptr(L, t) = 1 − L−1∑

l=1
Ptr(l, t).

Substituting here Eqs. (25) and applying the above interrelations between the C-coefficients, we obtain
for l = L: Ptr(L, t) = C( f )

L e−(L+K−1)at. Finally, the complete solution of the problem of microstate
probability distribution kinetics in the considered case is as follows:

P(l, t) =
1

L + K − 1
+

1
L − 1

C( f )
L e−(L+K−1)at +C(0)

l e−Kat for l = 1 ÷ (L − 1), (26)

P(L, t) =
K

L + K − 1
+ e−(L+K−1)atC( f )

L . (27)

A peculiar property of transient processes at the considered structure of transitions between the
microstates in a general case is the existence of fast and slow components of the process. The fast
component has the form e−(L+K−1)at. The transient of an Lth microstate, which is central in the total
pattern of transitions, according to Eq. (27), contains only the fast component after completion of
which a stationary state P(L) is established. The probabilities of the remaining microstates, according
to Eq. (26), contain both fast and relatively slow components.

The general expression for the rate of entropy production in this case is described by Eq. (A.2.12)
(see Appendix 2). When rlL = αLl = a, rLl = αlL = Ka,

diS

dt
= a

L−1∑

l=1

(KP(l, t) − P(L, t)) ln
P(l, t)
P(L, t)

. (15b)

3◦. Finally, let us consider one more example of the structure of microstate transitions. Suppose
that all microstates pass around a cycle: at l = 1 ÷ (L − 1) from every lth to (l + 1)th one and from Lth
to that with l = 1. This scheme is taken because in this case the appearance of oscillating transients
may be expected.
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Equations for P(l, t) in this case are:

dP(1, t)
dt

= αL1P(L, t) − α12P(1, t),

dP(l, t)
dt

= α(l−1)lP(l − 1, t) − αl(l+1)P(l, t), l = 2 ÷ (L − 1),

dP(L, t)
dt

= α(L−1)LP(L − 1, t) − αL1P(L, t).

(28)

The equations for a stationary P(l, t) component are

Pst(1) =
αL1

α12

Pst(L),

Pst(l) =
α(l−1)l

αl(l+1)

Pst(l − 1), l = 2 ÷ (L − 1),

Pst(L) =
α(L−1)L

αL1

Pst(L − 1).

Successively expressing Pst(l) in terms of Pst(l − 1), we obtain

Pst(l) =
αL1

αl(l+1)

Pst(L), l = 1 ÷ (L − 1).

Applying the normalizing condition, we find

Pst(L) = 1 −
L−1∑

l=1

Pst(l) = 1 − αL1

⎛
⎜⎜⎜⎜⎜⎜⎝

L−1∑

l=1

1
αl(l+1)

⎞
⎟⎟⎟⎟⎟⎟⎠Pst(L).

Hence, for l = L:

Pst(L) =

1
αL1

1
αL1
+

L−1∑

l=1

1
αl(l+1)

;

for l = 1 ÷ (L − 1):

Pst(l) =

1
αl(l+1)

1
αL1
+

L−1∑

l=1

1
αl(l+1)

.

When all α are equal to a, all Pst(l) = 1
L (l = 1 ÷ L), and the entropy of the stationary (equilibrium)

state (as well as in the other cases where all nonzero α are equal to a) equals ln L.

The matrix r
l,l
for the system of equations (28) is as follows:

r
l,l
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−α12 0 0 · · · 0 αL1
α12 −α23 0 · · · 0 0
0 α23 −α34 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · −α(L−1)L 0
0 0 0 · · · α(L−1)L −αL1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (29)
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The size of r
l,l
is L × L. To search for the solution in the form Ptr(l, t) = Cle

−λt, as it was done above,
we use the matrix r

l,l
− rl,L without its last row and the last column, i. e.,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−(α12 + αL1) −αL1 −αL1 · · · −αL1 −αL1 −αL1
α12 −α23 0 · · · 0 0 0
0 α23 −α34 · · · 0 0 0
0 0 α34 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · −α(L−3)(L−2) 0 0
0 0 0 · · · α(L−3)(L−2) −α(L−2)(L−1) 0
0 0 0 · · · 0 α(L−2)(L−1) −α(L−1)L

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (30)

The size of the matrix Eq. (30) is (L − 1) × (L − 1).

The general equation for eigenvalues λ of the matrix r
l,l
determined by Eq. (29) is derived in

Appendix 3 (see Eq. (A.3.6)).

Similar to the previous examples, a case is of interest when all α’s are identical and equal
to a. The eigenvalues of the characteristic equation for the given case are found in Appendix 3 (see
Eq. (A.3.10)):

λ = a
(

−1 + ei 2π
L k
)

= a

[(

−1 + cos
2π
L

k

)

+ i sin
2π
L

k

]

,

where k = 1, 2, 3, . . . , (L − 2), (L − 1). Since k � 0 and k � L, we have cos 2π
L k � 1, due to which

the values of all Re λ are negative and, therefore, all partial solutions for transients in a system with
the considered structure of microstate transitions have damping trends. Recall that these solutions are
components of Ptr(L, t), which are deviations from stationary solutions Pst(l). When L is even, at k =
= L

2 the transient process completely lacks an oscillatory component. In all the remaining cases such
components are present. The frequencies of the particular solution oscillations are ωk = Im λ = a sin 2π

L k

and the corresponding attenuation coefficients are δk = −Re λ = a
(
1 − cos 2π

L k
)
. Dependencies of Im λ

and Re λ on k
L are shown in Fig. 4.

The most low-frequency solution takes place at k = 1,
(

L
2 ± 1

)
, (L − 1): ωk = ±2π a

L . The

attenuation coefficient δk = −Re λ is small at k = 1 and k = L − 1: δk = a1
2

(
2π
L

)2
and relatively large

at k = L
2 ± 1: δk = 2a. The most high-frequency solutions take place at k = L

4 and k = 3L
4 . Then δk = a.

Figure 4. Dependencies of the real and imaginary components of the eigenvalues λk on
k
L in the case of the

cyclic structure of intermicrostate transitions
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The general expression for the rate of entropy production in the present case is given by
Eq. (A.3.11) (see Appendix 3). If all the nonzero r

l,l
are equal to a by their modules (with signs

indicated in Eq. (29)), then

diS

dt
= a

⎡
⎢⎢⎢⎢⎢⎢⎣(P(1, t) − P(L, t)) ln P(1, t) +

L∑

l=2

(P(l, t) − P(l − 1, t)) ln P(l, t)

⎤
⎥⎥⎥⎥⎥⎥⎦. (15c)

Results and discussion

The subject of the present study is the entropy of an isolated macroscopic system, which is

expressed by the formula S (t) = − L∑

l=1
P(l, t) ln P(l, t), where P(l, t) is the probability of a system

staying in an lth microscopic state at time t, L is the total number of microstates. (Recall that this
expression has different coefficients at the sum when it is applied in different fields of science.)
Transitions of the system between the microstates are spontaneous and random. When the given system
is in a stationary (for an isolated system it means equilibrium) state, these probabilities relate to the
average time of the system staying in corresponding microstates. In a nonequilibrium case the best
approach to understanding P(l, t) is given by the notion of Gibbs statistical assembly when a large
set of macroscopically identical systems, distributed over microstates, is considered. The notion of
statistical assembly by itself does not require equiprobable system distribution over the microstates,
when the system is in internal equilibrium. Two problems are stated in the present work: to study 1) the
effect of possible nonequiprobability of the microscopic states on the value of the system entropy, and
2) the kinetics of the entropy change in nonequilibrium states of the system. These problems inevitably
require the investigation of the quantities P(l, t) themselves.

The effect of a possible nonequiprobability of an isolated system’s microstates on the value of
entropy S is considered here for two cases. A general condition in these cases is the constancy of the
total number of microstates.

a) An example is analyzed when all microstates form two subgroups with probabilities
identical within every subgroup but differing between them. Besides, both the difference between
the probabilities and the ratio between the subgroup sizes may be arbitrary. It was found that the
nonequiprobability of the microstates can affect the entropy value only in extremal cases where only one
microstate or a small group of them have high probabilities but the remaining majority of microstates
is hardly probable. In the opposite situation the distinction of the entropy value from that in the case
of microstate equiprobability is vanishingly small.

b) The behavior of the entropy value in the neighborhood of the case of equiprobable microstates
was studied. Here, the deviations of all probabilities from the same value were accepted to be
arbitrary (but, certainly, satisfying the normalizing condition). It was found that in this case the entropy
differences from its equiprobable value were extremely small as well.

Thus, it is found that for real isolated systems the possible nonequiprobability of microscopic
states exerts a vanishingly small effect on the entropy value under one important condition: the total
microstate number is fixed. It is valid not only for an equilibrium state of the object but for its
nonequilibrium state as well except for the case where initially the object is in one or several microstates
the probability sum of which is very close to unity. With the exception of this case, the main factor
determining the entropy value is the total number of microstates.

In the literature on the statistical physics the entropy is usually expressed as S = kB ln L,
where L is the number of microstates and kB is Boltzmann’s constant. If all the microstates are strictly

equiprobable, all P(l) = 1
L and the expression −

L∑

l=1
P(l) ln P(l) exactly equals ln L. In the present work it
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is shown that the expressions S = kB ln L and S = −kB
L∑

l=1
P(l) ln P(l) with the extremely high accuracy

coincide by their values both in an equiprobable and nonequiprobable case.

Time dependences of the probabilities of the system staying in various microstates are considered
for the case where random transitions between the microstates occur by the law of the first-order
kinetics. It is valid for physicochemical objects conforming to quantum mechanical regularities, e. g.,
for spontaneous transitions between different variants of a degenerate state. Therefore, for many objects
such a model of transitions between microstates is not a simplification.

It should be emphasized that the analysis described above is essentially based on the discreteness
of the microstate set. Not any spatially discrete model of a considered object inevitably provides the
discreteness of the microstate set. As an example, consider a system of many mass points interconnected
by elastic linear bonds (a chain of mass points, an idealized crystal, etc.). Since such a model meets
the laws of classical mechanics, the spatial discreteness in it is combined with a continuity of the set of
dynamic states (“microstates”). The latter is continual since the amplitude of each mode is a continual
quantity. The dynamics of such an object meets the same problem as the dynamics of any classical
mechanical system, viz., the constancy of the phase volume based on the Liouville theorem, and, as
a consequence, the constancy of entropy. Within the framework of the discrete model considered in
this work, the latter is similar to the case where any mechanism providing transitions between the
microstates is absent. Such a system when it initially gets to one of the microstates stays in it forever
with probability equal to one and entropy equal to zero. This case is not of interest. Real thermodynamic
systems always contain stochastic (i. e., not classical mechanical) possibilities of transitions between
the microstates.

We have considered several essentially different schemes of random transitions of an isolated
system between its microscopic states.

One of the schemes assumes that the system is capable of passing from any microstate to
any other one without restrictions. Then the transition rate matrix does not contain zero elements.
The analytical finding and examination of the solution in the general case of this scheme is mostly
complicated. Therefore, we considered the case where all the rate constant values are similar. Then
the analytical solution has the simplest form. A stationary (equilibrium) system distribution over all
the microstates is stable, the damping rate of deviations from that distribution is the highest, and the
damping has an aperiodic form.

Another scheme assumes that there exists some nodal microstate, such that the transitions
between the remaining microstates are possible only via the nodal one as an obligatory intermediate
stage. For this case a general equation for the eigenvalues of the kinetic equation matrix is derived.
Based on it, a simple variant of the kinetics is considered when all the rate constants of transitions to
the nodal microstate are similar, all the rate constants of leaving the nodal microstate are also equal
to one another, but the rate constants of the former and the latter transitions are different. In this case
an exact analytical solution for time dependences of all the microstate probabilities is found. This
solution reveals a peculiar property of these dependences, viz., the existence of fast and relatively slow
components in the processes of a stationary state establishment. The kinetics of the nodal microstate
occupancy has only a fast component, while all the remaining probabilities in the general case of the
initial conditions have both fast and slow summands. As in the previous scheme of transitions, the
equilibrium microstate distribution is stable and the damping of deviations from the equilibrium is also
aperiodic.

The third scheme assumes random transitions between the microstates along a cycle in one
direction. For this scheme a general equation for matrix eigenvalues is also found, and the exact
analytical solution in the case where all the rate constants have identical values is obtained. In this case
the eigenvalues are complex numbers with negative real parts. Accordingly, the equilibrium distribution
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is stable and the establishment process has the form of damping oscillations, both the frequencies and
damping coefficients of which lie within very wide ranges.

In all three schemes, when the rate constants of allowed transitions between the microstates are
identical, the equilibrium probabilities of the microstates are equal to one another and independent of
the specific scheme of transitions between the microstates. The equilibrium probabilities in this case
are P(l) = 1

L , equilibrium dimensionless entropy S = ln L. The condition of generality and stability of
the equilibrium distribution is that for every pair of microstates a sequence of transitions from one to
another should exist and no microstate should be a trap from which a system could not get out after
falling into it.

A general property of the considered transients is that all of them result in damping of deviations
from the equilibrium state. Evidently, this property takes place for any system with random transitions
between the microstates described by the first-order kinetics. It should be emphasized that we consider
an isolated system with a fixed number of microscopic states. The question about what could be in the
case when the transition kinetics between the microstates had a nonlinear mode is of separate interest.

On the other hand, a species of the transition scheme considerably affects the evolution of the

system including the time dependence of its entropy and the rate of entropy production
diS
dt . In the

linear regime the latter quantity is usually represented in the following form:
diS
dt =

∑

k
Fk Jk where Jk

are flows and Fk are forces which give rise to these flows; the flows depend on the forces linearly: Jk =

=
∑

j
Lk jF j [Kondepudi, Prigogine, 1998]. The expressions for

diS
dt obtained in this work depend on the

microstate probability distribution (Eqs. (15a), (15b), (15c)). They have the form essentially different
from that mentioned here. It indicates that the notion of the driving force of entropy production meets
some challenges. The entropy itself is an integral index of a process of the equilibrium establishment
in an isolated system rather than its driving force.

Appendix 1. Entropy in a neighborhood of its maximum at an arbitrary
distribution of microstate probabilities

Consider an expression for entropy, when the microstate probabilities have the general
form P(l) = 1

L + ΔP(l) where deviations ΔP(l) are arbitrary:

S = −
L∑

l=1

(
1
L
+ ΔP(l)

)

ln

(
1
L
+ ΔP(l)

)

. (A.1.1)

According to the normalizing condition of Eq. (3),
L∑

l=1
ΔP(l) = 0. Earlier it was found: S |

ΔPl=0 = ln L.

Let us decompose S by ΔP(l) in the neighborhood of entropy maximum S max = ln L to square terms
by ΔP(l):

S = S |ΔPl=0 +
∑

l

∂S
∂(ΔPl)

∣∣∣∣∣∣
ΔPl=0

ΔPl+

+
1
2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∑

l

∂2S

∂(ΔPl)
2

∣∣∣∣∣∣
ΔPl=0

(ΔPl)
2 + 2

∑

l1�l2

∑

l2

∂2S

∂
(

ΔPl1

)

∂
(

ΔPl2

)

︸����������������︷︷����������������︸
=0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
ΔPl1
=0, ΔPl2

=0

(

ΔPl1

) (

ΔPl2

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ . . .
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From Eq. (A.1.1) it follows that: ∂S
∂(ΔPl)

= − ln
(

1
L + ΔPl

)
− 1, ∂2S

∂(ΔPl)
2 = − 1

1
L+ΔPl

, ∂2S

∂
(

ΔPl1

)

∂
(

ΔPl2

) = 0.

Substituting these expressions into the equation for S decomposition, we obtain:

S = ln L+(ln L−1)
L∑

l=1

ΔPl

︸��︷︷��︸
=0

−1
2

L
L∑

l=1

(ΔPl)
2 = ln L− 1

2
L
∑

l

(
1
L

)2
⎛
⎜⎜⎜⎜⎜⎜⎝

ΔPl
(

1
L

)

⎞
⎟⎟⎟⎟⎟⎟⎠

2

+. . . = ln L− 1
2

1
L

L∑

l=1

(
ΔPl

Pl

)2

+. . .

Appendix 2. Eigenvalues of the matrix of a differential equation system for
the case where the transitions between the microstates occur via a single
(nodal) microstate

1◦. Consider Eq. (11) for the eigenvalues, when the matrix of the kinetic equation system
for Ptr(l, t) has the form of Eq. (23), the Lth row and Lth column of the matrix being eliminated:

det

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−α1L −αL1 − λ −αL1 −αL1 · · · −αL1 −αL1−αL2 −α2L −αL2 − λ −αL2 · · · −αL2 −αL2−αL3 −αL3 −α3L −αL3 − λ · · · −αL3 −αL3
...

...
...

. . .
...

...

−αL(L−2) −αL(L−2) −αL(L−2) · · · −α(L−2)L −αL(L−2) − λ −αL(L−2)
−αL(L−1) −αL(L−1) −αL(L−1) · · · −αL(L−1) −α(L−1)L −αL(L−1) − λ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 0.

The matrix of this determinant has the size (L− 1)× (L− 1). The known property of any determinant is
that its value does not change if one of its columns, being multiplied by any number, is added to some
or all other columns. According to this rule, let us subtract the last column from all the remaining ones:

det

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−α1L − λ 0 0 · · · 0 −αL1
0 −α2L − λ 0 · · · 0 −αL2
0 0 −α3L − λ · · · 0 −αL3
...

...
...

. . .
...

...

0 0 0 · · · −α(L−2)L − λ −αL(L−2)
α(L−1)L + λ α(L−1)L + λ α(L−1)L + λ · · · α(L−1)L + λ −α(L−1)L − αL(L−1) − λ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 0. (A.2.1)

2◦. To calculate this determinant, let us consider a matrix of an arbitrary size N × N, which has
zero and nonzero elements on the same places as the matrix in Eq. (A.2.1):

B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b11 0 0 · · · 0 b1N
0 b22 0 · · · 0 b2N
0 0 b33 · · · 0 b3N
...

...
...
. . .

...
...

0 0 0 · · · b(N−1)(N−1) b(N−1)N
bN1 bN2 bN3 · · · bN(N−1) bNN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Here N = L − 1. Let us decompose the determinant of this matrix by the elements of its first row:

det B = b11 det B(1) + (−1)N+1b1N det B̃,
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where

B(1) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b22 0 0 · · · 0 b2N
0 b33 0 · · · 0 b3N
0 0 b44 · · · 0 b4N
...

...
...
. . .

...
...

0 0 0 · · · b(N−1)(N−1) b(N−1)N
bN2 bN3 b4N · · · bN(N−1) bNN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

B̃ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 b22 0 · · · 0 0
0 0 b33 · · · 0 0
...

...
...
. . .

...
...

0 0 0 · · · b(N−2)(N−2) · · ·
0 0 0 · · · 0 b(N−1)(N−1)

bN1 bN2 bN3 · · · bN(N−2) bN(N−1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The value of det B̃ can be easily calculated using its decomposition by its first column, which has
a single nonzero element bN1. The matrix corresponding to this element is diagonal and the factor (−1)
is in the power (N − 1) + 1 = N:

det B̃ = (−1)NbN1

N−1∏

l=2

bll.

Taking into account that (−1)2N = 1, we obtain

det B = b11 det B(1) − b1NbN1

N−1∏

l=2

bll. (A.2.2)

The matrix B(1) has the same form as B, but its size is smaller by 1. Hence, this procedure can
be repeated.

Next, we introduce the following notation:
k is the number of the fulfilled procedures decreasing the size of the matrix B (the algorithm

steps);
bi j are elements of the initial matrix B;

B(k) is a matrix obtained from B after k steps (correspondingly, B(0) = B);
b(k)

gh are elements of the matrix B(k) (correspondingly, b(0)
gh = bgh);

D = det B is the determinant of the initial matrix B;
D(k) = det B(k) is the determinant of the matrix B(k) (correspondingly, D(0) = D);
N(k) is the size of the matrix B(k).

The numerations of elements of matrices B(k) and B are related by: b(k)
gh = b(g+k)(h+k) . Sizes of

matrices B(k) and B: N(k) = N − k.
From (A.2.2) we obtain the recurrence relation:

D(k) = b(k)
11 D(k+1) − b(k)

1,N(k)b
(k)
N(k),1

N(k)−1∏

g=2

b(k)
gg . (A.2.3)

At k = 0 the expression (A.2.3) coincides with Eq. (A.2.1). Let us write Eq. (A.2.3) as

D(k) = b(k)
11 D(k+1) + w(k). (A.2.3a)
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Here w(k) = −b(k)
1,N(k)b

(k)
N(k),1

N(k)−1∏

g=2
b(k)

gg . To express D(0) (i. e., D) in terms of D(k), it is suitable to find first

such expressions for several first numbers k.

1) Eq. (A.2.3a) gives an expression D
(
D(1)

)
;

2) substituting D(1)
(
D(2)

)
into D

(
D(1)

)
, we find D

(
D(2)

)
;

3) substituting then D(2)
(
D(3)

)
into D

(
D(2)

)
, we find D

(
D(3)

)
; etc.

Generalizing the resulting expressions, we find the following interrelation:

D =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

k−1∏

q=0

b(q)
11

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

D(k) +

⎡
⎢⎢⎢⎢⎢⎢⎢⎣
w(0) +

k−1∑

q=1

⎛
⎜⎜⎜⎜⎜⎜⎜⎝
w(q)

q−1∏

p=0

b(p)
11

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
. (A.2.4)

To calculate D we need to use Eq. (A.2.4) at k = N − 1. Then the matrix B(N−1) = bNN
where bNN is the last diagonal element of the initial matrix B, and det B(N−1) = D(N−1) = bNN . Taking

the interrelation b(k)
gh = b(g+k)(h+k) into account, we have: b(q)

11 = b(q+1)(q+1) . Then the first summand in
Eq. (A.2.4):

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

k−1∏

q=0

b(q)
11

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

D(k)

∣∣∣∣∣∣∣∣
k=N−1

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

N−2∏

q=0

b(q+1)(q+1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

D(N−1) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

N−1∏

q=1

bqq

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

bNN =

N∏

q=1

bqq.

Similarly, using the above interrelations between the quantities b and N related both to every kth step
and to the initial matrix B, we obtain

w(k) = −b(k+1)NbN(k+1)

N−k−1∏

g=2

b(g+k)(g+k) ,

k−1∑

q=1

⎛
⎜⎜⎜⎜⎜⎜⎜⎝
w(q)

q−1∏

p=0

b(p)
11

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
= −

N−1∑

q=2

bqNbNq

∏

g � q
g � N

bgg,

from which

D =
N∏

q=1

bqq −
N−1∑

q=1

bqNbNq

∏

g � q
g � N

bgg. (A.2.5)

3◦. We apply (A.2.5) to (A.2.1) taking into account that 1) N = L−1 and 2) every product of the
elements bi j in Eq. (A.2.5) after substitution of bi j by elements of the determinant Eq. (A.2.1) contains

a factor (−1)L−1 (in the second term of Eq. (A.2.5); the factor (−1)L−1 includes a minus at
N−1∑

j=1
. . . as

well). This factor will be cancelled. Then we obtain the following equation for the eigenvalues of the
matrix of a kinetic equation system for Ptr(l, t):

(α(L−1)L + αL(L−1) + λ)
L−2∏

l=1

(αlL + λ) +
L−2∑

q=1

αLq

∏

l�q

(αlL + λ) = 0. (A.2.6)

When αlL = Ka and αLl = a (l = 1 ÷ (L − 1)) we have

L−2∏

l=1

(Ka + λ) =
∏

l�q

(Ka + λ) = (Ka + λ)L−2,
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and (A.2.6) takes the form
(Ka + λ)L−2[(L + K − 1)a + λ] = 0.

From this we obtain two λ values: λ1 = −(L + K − 1)a, λ2 = −Ka. Here λ1 is a simple root (its
multiplicity equals 1), but λ2 has the multiplicity (L − 2). From these λ values it can be seen that fast
and relatively low transient processes are possible in the given system.

Let us consider full solutions for the transient processes under the given structure of transitions
between the microstates. For λ = λ1 a transient has the form Ptr(l, t) = C( f )

l e−(L+K−1)at (the
superscript ( f ) means that these Ptr(l, t) are fast transients). The matrix (23) without the last row
and last column is as follows:
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−a − Ka −a −a · · · −a −a
−a −a − Ka −a · · · −a −a
−a −a −a − Ka · · · −a −a
...

...
...

. . .
...

...

−a −a −a · · · −a − Ka −a
−a −a −a · · · −a −a − Ka

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= −a

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

K + 1 1 1 · · · 1 1
1 K + 1 1 · · · 1 1
1 1 K + 1 · · · 1 1
...

...
...
. . .

...
...

1 1 1 · · · K + 1 1
1 1 1 · · · 1 K + 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The quantities dPtr(l, t)
dt form a column:

−(K + L − 1)a

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

C( f )
1

C( f )
2

C( f )
3
...

C( f )
L−2

C( f )
L−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

e−(L+K−1)at.

Substituting these expressions into the following system of equations

L−1∑

l=1

(

r
l,l
− rl,L

)

Ptr(l, t) =
dPtr(l, t)

dt
(A.2.7)

(see Eq. (8)) and cancelling −ae−(L+K−1)at results in a system of L − 1 equations:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−(L − 2)C( f )
1 +C( f )

2 +C( f )
3 + · · · +C( f )

L−2 +C( f )
L−1 = 0,

C( f )
1 − (L − 2)C( f )

2 +C( f )
3 + · · · +C( f )

L−2 +C( f )
L−1 = 0,

C( f )
1 +C( f )

2 − (L − 2)C( f )
3 + · · · +C( f )

L−2 +C( f )
L−1 = 0,
...

C( f )
1 +C( f )

2 +C( f )
3 + · · · − (L − 2)C( f )

L−2 +C( f )
L−1 = 0,

C( f )
1 +C( f )

2 +C( f )
3 + · · · +C( f )

L−2 − (L − 2)C( f )
L−1 = 0.

Equation (9) gives the interrelation between the coefficients C( f )
l :

L−1∑

l=1

C( f )
l = −C( f )

L . (A.2.8)
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We attach (A.2.8) to the preceding equations. Then we obtain the following system of equations

(L − 1)C( f )
l +C( f )

L = 0 for l = 1 ÷ (L − 1),

from which all the C( f )
l are identical and equal to C( f )

l = − 1
L−1C( f )

L . The quantity C( f )
L remains a single

constant for the solution vector Ptr(l, t) = C( f )
l e−(L+K−1)at to be determined from the initial conditions.

The eigenvalue λ = λ2 has the multiplicity (L − 2). According to the known algorithm for
the search for basic solutions of a system of linear differential equations [Tikhonov, Vasil’eva,
Sveshnikov, 1980], in this case the solution should be searched for in the following form: Ptr(l, t) =

=

[
L−3∑

p=0
C(p)

l tp

]

e−Kat. Differentiating this expression by time gives

dPtr(l, t)
dt

= −Ka

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

L−3∑

p=0

C(p)
l tp

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

e−Kat +

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

L−3∑

p=1

pC(p)
l aptp−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

e−Kat =

=

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩
−KaC(L−3)

l tL−3 +

L−4∑

p=0

[
−KaC(p)

l + (p + 1)C(p+1)
l ap+1

]
tp

⎫
⎪⎪⎪⎬
⎪⎪⎪⎭

e−Kat.

Substituting both this expression and the above given matrix
(

r
l,l
− rl,L

)

into (A.2.5) and

cancelling −ae−Kat yields

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

K + 1 1 1 · · · 1 1
1 K + 1 1 · · · 1 1
1 1 K + 1 · · · 1 1
...

...
...
. . .

...
...

1 1 1 · · · K + 1 1
1 1 1 · · · 1 K + 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

L−3∑

p=0
C(p)

1 tp

L−3∑

p=0
C(p)

2 tp

L−3∑

p=0
C(p)

3 tp

...

L−3∑

p=0
C(p)

L−2tp

L−3∑

p=0
C(p)

L−1tp

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

KC(L−3)
1 tL−3 +

L−4∑

p=0

[
KC(p)

1 − (p + 1)C(p+1)
1 ap

]
tp

KC(L−3)
2 tL−3 +

L−4∑

p=0

[
KC(p)

2 − (p + 1)C(p+1)
2 ap

]
tp

KC(L−3)
3 tL−3 +

L−4∑

p=0

[
KC(p)

3 − (p + 1)C(p+1)
3 ap

]
tp

...

KC(L−3)
L−2 tL−3 +

L−4∑

p=0

[
KC(p)

L−2 − (p + 1)C(p+1)
L−2 ap

]
tp

KC(L−3)
L−1 tL−3 +

L−4∑

p=0

[
KC(p)

L−1 − (p + 1)C(p+1)
L−1 ap

]
tp

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Then the terms on the left- and right-hand sides of this system at the identical powers of t should be
equated. For p = (L − 3):

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

K + 1 1 1 · · · 1 1
1 K + 1 1 · · · 1 1
1 1 K + 1 · · · 1 1
...

...
...

. . .
...

...

1 1 1 · · · K + 1 1
1 1 1 · · · 1 K + 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

C(L−3)
1

C(L−3)
2

C(L−3)
3
...

C(L−3)
L−2

C(L−3)
L−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= K

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

C(L−3)
1

C(L−3)
2

C(L−3)
3
...

C(L−3)
L−2

C(L−3)
L−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,
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from which
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 · · · 1 1
1 1 1 · · · 1 1
1 1 1 · · · 1 1
...
...
...
. . .

...
...

1 1 1 · · · 1 1
1 1 1 · · · 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

C(L−3)
1

C(L−3)
2

C(L−3)
3
...

C(L−3)
L−2

C(L−3)
L−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 0,

i. e.,
L−1∑

l=1

C(L−3)
l = 0. (A.2.9)

For p = 0 ÷ (L − 4) we obtain similarly:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 · · · 1 1
1 1 1 · · · 1 1
1 1 1 · · · 1 1
...
...
...
. . .

...
...

1 1 1 · · · 1 1
1 1 1 · · · 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

C(p)
1

C(p)
2

C(p)
3
...

C(p)
L−2

C(p)
L−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= −(p + 1)ap

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

C(p+1)
1

C(p+1)
2

C(p+1)
3
...

C(p+1)
L−2

C(p+1)
L−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

from which
L−1∑

l=1

C(p)

l
= −(p + 1)apC(p+1)

l . (A.2.10)

Summation of Eqs. (A.2.10) by l results in:

(L − 1)
L−1∑

l=1

C(p)

l
= −(p + 1)ap

L−1∑

l=1

C(p+1)
l . (A.2.11)

Equation (A.2.11) is a recurrence relation. At p = L−4 the Eq. (A.2.11) gives: (L−1)
L−1∑

l=1

C(L−4)

l
=

= −(L − 3)aL−4
L−1∑

l=1
C(L−3)

l . From this, using (A.2.7), we obtain:
L−1∑

l=1
C(L−4)

l = 0. Similarly:
L−1∑

l=1
C(p)

l = 0

for all p = 0÷ (L− 3). Further, from (A.2.10) it follows that for all p = 0÷ (L− 4) we have: C(p+1)
l = 0,

i. e., C(p)
l = 0 for all p = 1 ÷ (L − 3). It is valid for l = 0 ÷ (L − 1), and, hence, according to (A.2.8),

for l = L as well.
It should be emphasized that the equality C(p)

l = 0 relates to p = 1 ÷ (L − 3), but not to p = 0.

Hence, the quantities C(0)
l are not equal to zero individually. A single requirement for C(0)

l is
L−1∑

l=1
C(0)

l = 0.

From the above it follows that although the eigenvalue λ = λ2 = −Ka has a high multiplicity,

the corresponding basic solution has a simple form: Ptr(l, t) = C(0)
l e−Kat.

The general expression for the rate of entropy production in this case is obtained by substituting

Eqs. (20) into Eq.
diS
dt = −

L∑

l=1
ln P(l, t)dP(l, t)

dt (see Eq. (15)):

diS

dt
=

L−1∑

l=1

(αlLP(l, t) − αLlP(L, t)) ln
P(l, t)
P(L, t)

. (A.2.12)
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Appendix 3. Eigenvalues of the matrix of a differential system of equations
in the case where transitions between the microstates occur along a cycle in
one-way direction

1◦. In this case the quantities λ, present in the time dependence Ptr(l, t) = Cle
−λt, are the

eigenvalues of the matrix (30) and are the solutions of the following equation:

det

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−(α12 + αL1) − λ −αL1 −αL1 · · · −αL1 −αL1 −αL1
α12 −α23 − λ 0 · · · 0 0 0
0 α23 −α34 − λ · · · 0 0 0
0 0 α34 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · −α(L−3)(L−2) − λ 0 0
0 0 0 · · · α(L−3)(L−2) −α(L−2)(L−1) − λ 0
0 0 0 · · · 0 α(L−2)(L−1) −α(L−1)L − λ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 0.

Attention should be paid to the fact that the subscripts of the α’s are not row and column numbers,
they are numbers of microstates between which the transitions occur.

We begin solving this equation from an identical transform similar to that made in Appendix 2,
viz., subtracting the last column of this determinant from all the remaining ones:

det

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−α12 − λ 0 0 · · · 0 0 −αL1
α12 −α23 − λ 0 · · · 0 0 0
0 α23 −α34 − λ · · · 0 0 0
0 0 α34 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · −α(L−3)(L−2) − λ 0 0
0 0 0 · · · α(L−3)(L−2) −α(L−2)(L−1) − λ 0

α(L−1)L + λ α(L−1)L + λ α(L−1)L + λ · · · α(L−1)L + λ α(L−2)(L−1) +α(L−1)L + λ −α(L−1)L − λ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 0.

(A.3.1)

2◦. To calculate the latter determinant, we consider again an auxiliary N × N matrix B, which
has zero and nonzero elements in the same places as the matrix in Eq. (A.3.1):

B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b11 0 0 · · · 0 0 b1N
b21 b22 0 · · · 0 0 0
0 b32 b33 · · · 0 0 0
0 0 b43 · · · 0 0 0
...

...
...
. . .

...
...

...

0 0 0 · · · b(N−2)(N−2) 0 0
0 0 0 · · · b(N−1)(N−2) b(N−1)(N−1) 0

bN1 bN2 bN3 · · · bN(N−2) bN(N−1) bNN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

As earlier, N = L − 1. Decompose the determinant of this matrix by elements of the first row:

det B = b11 det B(∗) + (−1)N+1b1N det H,
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where

B(∗) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b22 0 · · · 0 0 0
b32 b33 · · · 0 0 0
0 b43 · · · 0 0 0
...

...
. . .

...
...

...

0 0 · · · b(N−2)(N−2) 0 0
0 0 · · · b(N−1)(N−2) b(N−1)(N−1) 0

bN2 bN3 · · · bN(N−2) bN(N−1) bNN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

H =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b21 b22 0 · · · 0 0
0 b32 b33 · · · 0 0
0 0 b43 · · · 0 0
...

...
...
. . .

...
...

0 0 0 · · · b(N−2)(N−2) 0
0 0 0 · · · b(N−1)(N−2) b(N−1)(N−1)

bN1 bN2 bN3 · · · bN(N−2) bN(N−1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A.3.2)

Matrices B(∗) and H differ from matrices B(1) and B̃ obtained in Appendix 2. Here

b11 det B(∗) = b11

N∏

n=2

bnn =

N∏

n=1

bnn,

from which

det B =
N∏

n=1

bnn + (−1)N+1b1N det H. (A.3.3)

In this case, matrix H is not similar to matrix B as a consequence of which Eq. (A.3.3) is not
a recurrence relation. To obtain such a relation, a further transformation of H is required. To avoid
difficulties, which can be met during such a transformation, let us introduce a temporal designation hi j
for the elements of H and a separate numbering for hi j. Then, det H takes the following form:

det H = det

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

h11 h12 0 0 · · · 0 0 0
0 h22 h23 0 · · · 0 0 0
0 0 h33 h34 · · · 0 0 0
0 0 0 h44 · · · 0 0 0
...

...
...

...
. . .

...
...

...

0 0 0 0 · · · h(M−3)(M−2) 0 0
0 0 0 0 · · · h(M−2)(M−2) h(M−2)(M−1) 0
0 0 0 0 · · · 0 h(M−1)(M−1) h(M−1)M

hM1 hM2 hM3 hM4 · · · hM(M−2) hM(M−1) hMM

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A.3.4)

where M = N − 1. Decomposing det H by elements of the first row, we obtain

det H = h11 det H(1) − h12 det H̃(1),
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where

H(1) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

h22 h23 0 · · · 0 0 0
0 h33 h34 · · · 0 0 0
0 0 h44 · · · 0 0 0
...

...
...
. . .

...
...

...

0 0 0 ... h(M−3)(M−2) 0 0
0 0 0 ... h(M−2)(M−2) h(M−2)(M−1) 0
0 0 0 · · · 0 h(M−1)(M−1) h(M−1)M

hM2 hM3 hM4 · · · hM(M−2) hM(M−1) hMM

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

H̃(1) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 h23 0 · · · 0 0 0
0 h33 h34 · · · 0 0 0
0 0 h44 · · · 0 0 0
...

...
...
. . .

...
...

...

0 0 0 · · · h(M−3)(M−2) 0 0
0 0 0 · · · h(M−2)(M−2) h(M−2)(M−1) 0
0 0 0 · · · 0 h(M−1)(M−1) h(M−1)M

hM1 hM3 hM4 · · · hM(M−2) hM(M−1) hMM

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

These matrices have the size (M − 1)× (M − 1). Decomposing det H̃(1) by elements of the first column,
we obtain

det H̃(1) = (−1)(M−1)+1hM1 det

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

h23 0 · · · 0 0 0
h33 h34 · · · 0 0 0
0 h44 · · · 0 0 0
...

...
. . .

...
...

...

0 0 · · · h(M−3)(M−2) 0 0
0 0 · · · h(M−2)(M−2) h(M−2)(M−1) 0
0 0 · · · 0 h(M−1)(M−1) h(M−1)M

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

= (−1)MhM1

M−1∏

m=2

hm(m+1).

This yields det H = h11 det H(1) − (−1)Mh12hM1

M−1∏

m=2
hm(m+1). Since h12

M−1∏

m=2
hm(m+1) =

M−1∏

m=1
hm(m+1), it

follows that

det H = h11 det H(1) − (−1)MhM1

M−1∏

m=1

hm(m+1). (A.3.5)

The matrix H(1) is similar to H, but its size is smaller by unity. This procedure can be repeated more
than once.

Next, we introduce the following notation:
k is the number of the procedures decreasing the size of the matrix H (the algorithm steps);
hi j are the elements of the initial matrix H;

H(k) is the matrix obtained from H after k steps (hence, H(0) = H);
h(k)

gh are the elements of the matrix H(k) (hence, h(0)
gh = hgh);

D = det H is the determinant of the initial matrix H;
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D(k) = det H(k) is the determinant of the matrix H(k) (correspondingly, D(0) = D);
M(k) is the size of the matrix H(k).

Numerations of elements of matrices H(k) and H are interrelated as follows: h(k)
gh = h(g+k)(h+k) . The sizes

of matrices H(k) and H: M(k) = M − k.
Generalizing Eq. (A.3.5) for any k, we find:

D(k) = h(k)
11 D(k+1) + (−1)M(k)−1h(k)

M(k),1

M(k)−1∏

m=1

h(k)
m(m+1).

Using further interrelations h(k)
gh = h(g+k)(h+k) and M(k) = M − k, we obtain a recurrence relation for

determinants D(k):

D(k) = h(k+1)(k+1)D
(k+1) + (−1)M−(k+1)hM(k+1)

M−(k+1)∏

m=1

h(m+k)(m+k+1) .

To express D in terms of D(k), we apply the technique used in Appendix 2. The interim expression is

D =
k+1∏

g=1

hggD(k+1) + (−1)M−1

⎡
⎢⎢⎢⎢⎢⎢⎢⎣
hM1

M−1∏

m=1

hm(m+1) +

k∑

p=1

(−1)−p

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

p∏

g=1

hgg

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

hM(p+1)

M−p−1∏

m=1

h(m+p)(m+p+1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.

The size of D is M, and the size of D(k+1) is M−(k+1). To obtain D(k+1) = hMM (when the matrix retains
only the last element of its main diagonal), it is necessary that M − (k + 1) = 1, from which k = M − 2.

Then
k+1∏

g=1
hggD(k+1) =

(
M−1∏

g=1
hgg

)

hMM =
M∏

g=1
hgg,

D =
M∏

g=1

hgg + (−1)M−1

⎡
⎢⎢⎢⎢⎢⎢⎢⎣
hM1

M−1∏

m=1

hm(m+1) +

M−2∑

p=1

(−1)−p

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

p∏

g=1

hgg

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

hM(p+1)

M−p−1∏

m=1

h(m+p)(m+p+1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.

Let us return to Eq. (A.3.2) for the matrix H. Interrelations for the quantities present in
Eqs. (A.3.2) and (A.3.4) are hpq = b(p+1)q, M = N − 1, N = M + 1, from which:

det H = D =
N−1∏

g=1

b(g+1)g+

+ (−1)N−2

⎡
⎢⎢⎢⎢⎢⎢⎢⎣
bN,1

N−2∏

m=1

b(m+1)(m+1) +

N−3∑

p=1

(−1)−p

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

p∏

g=1

b(g+1)g

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

bN(p+1)

N−p−2∏

m=1

b(m+p+1)(m+p+1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.

Finally, substituting the latter quantity into Eq. (A.3.3), then replacing the elements b by elements of
the determinant Eq. (A.3.1) and cancelling (−1)L−1, we obtain the equation for the eigenvalues of the
matrix r

l,l
− rl,L:

L−1∏

n=1

(
αn(n+1) + λ

)
+ αL1

(
α(L−2)(L−1) + α(L−1)L + λ

) L−3∏

n=1

αn(n+1) + αL1

(
α(L−1)L + λ

) L−2∏

n=2

(
αn(n+1) + λ

)
+

+ αL1

L−4∑

p=1

⎛
⎜⎜⎜⎜⎜⎝

p∏

n=1

αn(n+1)

⎞
⎟⎟⎟⎟⎟⎠

(
α(L−1)L + λ

) L−2∏

m=p+2

(
αm(m+1) + λ

)
= 0. (A.3.6)
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3◦. Now let us consider the case where all α’s are identical and equal to a. Then, taking the
equality aL−2(2a + λ) = aL−1 + aL−2(a + λ) into account, we obtain from Eq. (A.3.6):

(a + λ)L−1 + aL−1 + (a + λ)aL−2 + a(a + λ)L−2 + a
L−4∑

p=1

[(
ap) (a + λ)L−2−p

]
= 0.

Using a new index k = L − 2 − p in the sum
L−4∑

p=1
. . . and then dividing all the expression by aL−1, we

find
(

1 +
λ

a

)L−1

+ 1 +
(

1 +
λ

a

)

+

(

1 +
λ

a

)L−2

+

L−3∑

k=2

[(

1 +
λ

a

)k]

= 0.

Since 1 =
(
1 + λa

)0
, this equation is equivalent to

L−1∑

k=0

[(
1 + λa

)k
]

= 0, or, after the replacement of k

by k + 1:
L∑

k=1

[(

1 +
λ

a

)k−1]

= 0. (A.3.7)

Next, we apply the formula for the geometric progression sum
n∑

k=1
β1qk−1 =

β1(qn−1)
q−1 , where β1 is the

first term of the progression and q is the geometric ratio. Equation (A.3.7) gives

(
1 + λa

)L − 1
λ
a

= 0. (A.3.8)

It should be taken into account that the value λ = 0 is inadmissible since it does not satisfy Eq. (A.3.7).
Then Eq. (A.3.8) gives the equation for λ values:

(

1 +
λ

a

)L

= 1. (A.3.9)

Extracting the root of the Lth degree should be done on the set of complex numbers. Let us

represent the left-hand side of Eq. (A.3.9) in the form:
(
1 + λa

)L
= ei2πk. Then 1 + λa = ei 2π

L k,

λ = a
(

−1 + ei 2π
L k
)

= a

[(

−1 + cos
2π
L

k

)

+ i sin
2π
L

k

]

. (A.3.10)

Since λ � 0, the values k = 0 and k = L should be excluded due to which cos 2π
L k � 1.

The general expression for the rate of entropy production in this case is obtained by substitution

of Eqs. (28) into the equation
diS
dt = −

L∑

l=1
ln P(l, t)dP(l, t)

dt (see Eq. (15)):

diS

dt
= −αL1P(L, t) ln P(1, t) + α12P(1, t) ln P(1, t)−

−
L−1∑

l=2

α(l−1)lP(l − 1, t) ln P(l, t) +
L−1∑

l=2

αl(l+1)P(l, t) ln P(l, t)−

− α(L−1)LP(L − 1, t) ln P(L, t) + αL1P(L, t) ln P(L, t). (A.3.11)
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