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SUPPLEMENTARY MATERIALS

Proof of Theorem 1

In this Appendix we rename the sequence of points (xmdk , xtk, xk) (see listing of the
Algorithm 1) to (x̃k, yk, xk). We use the following definition to simplify calculations.

Definition 3. Let (φδ,Lφ(x),∇φδ,Lφ(x)) be a (δ, Lφ) - oracle of function φ at a point x,
then Ω1,δ,Lφ (φ, z, x) is the following linear function of z:

Ω1,δ,Lφ (φ, x, z) = φδ,Lφ(x) + ⟨∇φδ,Lφ(x), z − x⟩ (115)

To prove the Theorem 1, we need the following Theorem 9, which is based on Theorem 2.1
from [Bubeck et al., 2019].

Theorem 9. Let (yk)k≥1 — be a sequence in Rd, and (λk)k≥1 — a sequence in R+.
Define (ak)k≥1 such that λkAk = a2k and Ak =

∑k
i=1 ai. Define also for any k ≥ 0, xk =

= x0−
∑k

i=1 ai(∇φδ,Lφ(yi)+∇ψδ,Lψ(yi)) and x̃k :=
ak+1

Ak+1
xk+

Ak
Ak+1

yk. Finally assume if for some
σ ∈ [0, 1]

∥yk+1 − (x̃k − λk+1(∇φδ,Lφ(yk+1) +∇ψδ,Lψ(yk+1)))∥ ≤ σ · ∥yk+1 − x̃k∥ , (116)

then one has for any x ∈ Rd,

F (yk)− F (x) ≤ ∥x− x0∥2

2Ak
+ 2

(
k∑
i=1

Ai

)
δ2/Ak + δ1 +

(
k−1∑
i=1

Ai

)
δ1/Ak , (117)

To prove this Theorem we introduce auxiliaries Lemmas based on lemmas 2.2-2.5 and 3.1
from [Bubeck et al., 2019].

Consider a linear combination of gradients:

xk = x0 −
k∑
i=1

ai(∇φδ,Lφ(yi) +∇ψδ,Lψ(yi))

where coefficients (ai)i≥1 ≥ 0 and points (yi)i≥1 is not defined yet. A key observation for such a
linear combination of gradients is that it minimizes the approximate lower bound of F .

Lemma 5. Let ξ0(x) = 1
2∥x − x0∥2 and define by induction ξk(x) = ξk−1(x) +

+ ak
(
Ω1,δ,Lφ(φ, yk, x) + Ω1,δ,Lψ(ψ, yk, x)

)
= ξk−1(x) + akΩ1,2δ,Lφ+Lψ(F, yk, x). Then xk = x0 −

−
∑k

i=1 ai(∇φδ,Lφ(yi) +∇ψδ,Lψ(yi)) is the minimizer of ξk, and ξk(x) ≤ AkF (x) +
1
2∥x− x0∥2 +

+Akδ1, where Ak =
∑k

i=1 ai.

Доказательство. Since ξk(x) is strongly convex and smooth then expression

∇ξk(x) = 0 (118)

is the criterion of minimum.
The sequence xk is satisfied

∇ξk(xk) = ∇

([
k∑
i=1

aiΩ1,2δ,Lφ+Lψ(F, yk, x)

]
+

1

2
∥xk − x0∥2

)
= (119)

=

[
k∑
i=1

ai
(
∇φδ,Lφ(yi) +∇ψδ,Lψ(yi)

)]
+ xk − x0 = 0. (120)
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Therefore, xk is a minimizer of the function ξk. Let us prove now that

Ω1,2δ,Lφ+Lψ(F, yk, x) ≤ F (x) + δ1. (121)

From the definition of Ω1,2δ,Lφ+Lψ(F, yk, x) we obtain

Ω1,2δ,Lφ+Lψ(F, yk, x) = F2δ,Lφ+Lψ(yi) + ⟨∇F2δ,Lφ+Lψ(yi), x− yi⟩ ≤ F (x) + δ1. (122)

Using ξk(x) =
[∑k

i=1 aiΩ1,2δ,Lφ+Lψ(F, yk, x)
]
+ 1

2∥x − x0∥2 we obtain the statement of the
theorem. □

The next idea is to produce a control sequence (zk)k≥1 demonstrating that ξk is not too
far below AkF . From this we can directly yield a convergence rate for zk.

Lemma 6. Let (zk) be a sequence such that

ξk(xk)−AkF (zk) ≥ −2

(
k∑
i=1

Ai

)
δ2 −

(
k−1∑
i=1

Ai

)
δ1 . (123)

Then one has for any x,

F (zk) ≤ F (x) +
∥x− x0∥2

2Ak
+ 2

(
k∑
i=1

Ai

)
δ2/Ak + δ1 +

(
k−1∑
i=1

Ai

)
δ1/Ak . (124)

Доказательство. Using Lemma 5 we obtain

AkF (zk) ≤ ξk(xk) + 2

(
k∑
i=1

Ai

)
δ2 +

(
k−1∑
i=1

Ai

)
δ1 ≤ ξk(x) + 2

(
k∑
i=1

Ai

)
δ2 +

(
k−1∑
i=1

Ai

)
δ1

(125)

≤ AkF (x) +
1

2
∥x− x0∥2 + 2

(
k∑
i=1

Ai

)
δ2 +

(
k−1∑
i=1

Ai

)
δ1 +Akδ1 .

(126)

□

Our aim now to get sequences (ak, yk, zk), satisfying (123).

Lemma 7. One has for any x, zk ∈ Rd and k ∈ N

ξk+1(x)−Ak+1F (yk+1)− (ξk(xk)−AkF (zk))

≥ Ak+1⟨∇φδ,Lφ(yk+1) +∇ψδ,Lψ(yk+1),
ak+1

Ak+1
x+

Ak
Ak+1

zk − yk+1⟩+
1

2
∥x− xk∥2 − 2Ak+1δ2 −Akδ1 .

Доказательство. Firstly from H(ξk) = I using that xk is a minimizer of ξk(x) we get

ξk(x) = ξk(xk) +
1

2
∥x− xk∥2,

and
ξk+1(x) = ξk(xk) +

1

2
∥x− xk∥2 + ak+1Ω1,2δ,Lφ+Lψ(F, yk+1, x) ,
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we can rewrite this as follows

ξk+1(x)− ξk(xk) = ak+1Ω1,2δ,Lφ+Lψ(F, yk+1, x) +
1

2
∥x− xk∥2 . (127)

Now using (14):

Ω1,2δ,Lφ+Lψ(F, yk+1, zk) = F2δ,Lφ+Lψ(yk+1)+ ⟨∇F2δ,Lφ+Lψ(yk+1), zk−yk+1⟩ ≤ F (zk)+δ1 (128)

we obtain:

ak+1Ω1,2δ,Lφ+Lψ(F, yk+1, x) = Ak+1Ω1,2δ,Lφ+Lψ(F, yk+1, x)

− AkΩ1,2δ,Lφ+Lψ(F, yk+1, x) = Ak+1Ω1,2δ,Lφ+Lψ(F, yk+1, x)

− Ak⟨∇F2δ,Lφ+Lψ(yk+1), x− zk⟩ −AkΩ1,2δ,Lφ+Lψ(F, yk+1, zk)

= Ak+1Ω1,2δ,Lφ+Lψ

(
F, yk+1, x− Ak

Ak+1
(x− zk)

)
−AkΩ1,2δ,Lφ+Lψ(F, yk+1, zk)

= Ak+1F2δ,Lφ+Lψ(yk+1) +Ak+1⟨∇F2δ,Lφ+Lψ(yk+1),

(
x− Ak

Ak+1
(x− zk)

)
− yk+1⟩

− AkΩ1,2δ,Lφ+Lψ(F, yk+1, zk)
(128)
≥ Ak+1F2δ,Lφ+Lψ(yk+1)−AkF (zk)−Akδ1

+ Ak+1⟨∇φδ,Lφ(yk+1) +∇ψδ,Lψ(yk+1),
ak+1

Ak+1
x+

Ak
Ak+1

zk − yk+1⟩

(14)
≥ Ak+1F (yk+1)− 2Ak+1δ2 −AkF (zk)−Akδ1

+ Ak+1⟨∇φδ,Lφ(yk+1) +∇ψδ,Lψ(yk+1),
ak+1

Ak+1
x+

Ak
Ak+1

zk − yk+1⟩ ,

which concludes the proof. □

Lemma 8. Denoting

λk+1 :=
a2k+1

Ak+1
(129)

and x̃k :=
ak+1

Ak+1
xk +

Ak
Ak+1

yk, one has:

ξk+1(xk+1)−Ak+1F (yk+1)− (ξk(xk)−AkF (yk)) ≥
Ak+1

2λk+1

(
∥yk+1 − x̃k∥2 − ∥yk+1 − (x̃k − λk+1(∇φδ,Lφ(yk+1)) +∇ψδ,Lψ(yk+1))∥2

)
− 2Ak+1δ2 −Akδ1 .

In particular, we have in light of (116)

ξk(xk)−AkF (yk) ≥
1− σ2

2

k∑
i=1

Ai
λi

∥yi − x̃i−1∥2 − 2

(
k∑
i=1

Ai

)
δ2 −

(
k−1∑
i=1

Ai

)
δ1.

Доказательство. We apply Lemma 7 with zk = yk and x = xk+1 , and note that (with
ζ̃ :=

ak+1

Ak+1
x+ Ak

Ak+1
yk):

⟨∇φδ,Lφ(yk+1) +∇ψδ,Lψ(yk+1),
ak+1

Ak+1
x+

Ak
Ak+1

yk − yk+1⟩+
1

2Ak+1
∥x− xk∥2

= ⟨∇φδ,Lφ(yk+1) +∇ψδ,Lψ(yk+1), ζ̃ − yk+1⟩+
1

2Ak+1

∥∥∥∥Ak+1

ak+1

(
ζ̃ − Ak

Ak+1
yk

)
− xk

∥∥∥∥2
= ⟨∇φδ,Lφ(yk+1) +∇ψδ,Lψ(yk+1), ζ̃ − yk+1⟩+

Ak+1

2a2k+1

∥∥∥∥ζ̃ − ( ak+1

Ak+1
xk +

Ak
Ak+1

yk

)∥∥∥∥2 .
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This yields, using (129):

ξk+1(xk+1)−Ak+1F (yk+1)− (ξk(xk)−AkF (yk))

≥ Ak+1 · ⟨∇φδ,Lφ(yk+1) +∇ψδ,Lψ(yk+1)), ζ̃ − yk+1)⟩+
Ak+1

2λk+1
∥ζ̃ − x̃k∥2 − 2Ak+1δ2 −Akδ1

≥ Ak+1 · min
x∈Rd

{
⟨∇φδ,Lφ(yk+1) +∇ψδ,Lψ(yk+1), x− yk+1⟩+

1

2λk+1
∥x− x̃k∥2

}
− 2Ak+1δ2 −Akδ1 .

The value of the minimum is easy to compute. Due to the strong convexity of the minimized
function and its continuous differentiability, achieving a minimum is equivalent to the condition

0 = ∇
[
⟨∇φδ,Lφ(yk+1) +∇ψδ,Lψ(yk+1), x− yk+1⟩+

1

2λk+1
∥x− x̃k∥2

]
=

= (∇φδ,Lφ(yk+1) +∇ψδ,Lψ(yk+1)) +
1

λk+1
(x− x̃k)

Then

x∗ = x̃k − λk+1(∇φδ,Lφ(yk+1) +∇ψδ,Lψ(yk+1))

Substituting into the last inequality we obtain the statement of the theorem. □

Proof of the Theorem 9

Using Lemma 8 we get

ξk(xk)−AkF (yk) ≥
1− σ2

2

k∑
i=1

Ai
λi

∥yi − x̃i−1∥2 − 2

(
k∑
i=1

Ai

)
δ2 −

(
k−1∑
i=1

Ai

)
δ1

≥ −2

(
k∑
i=1

Ai

)
δ2 −

(
k−1∑
i=1

Ai

)
δ1.

Applying Lemma 6 for zk = yk one has for any x ∈ Rd:

F (yk)− F (x) ≤ ∥x− x0∥2

2Ak
+ 2

(
k∑
i=1

Ai

)
δ2/Ak + δ1 +

(
k−1∑
i=1

Ai

)
δ1/Ak , (130)

□

that conclude the proof.
Now one will formulate the sufficient condition (16) for the accuracy of solving auxiliary

problems (15). Let us assume, that auxiliary problems (15) can not be solved exactly. Let the
algorithm only have an inaccurate solution yk+1 satisfying

(16) :∥∇
(
Ω1,δ,Lφ (φ, x̃k, yk+1) +

H

2
∥yk+1 − x̃k∥2

)
+∇ψδ,Lψ (yk+1) ∥

≤ H

4
∥yk+1 − x̃k∥ − 2

√
2δ2Lφ

in this case:
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Lemma 9. Assume that φ(x) has (δ, Lφ) -oracle, ψ(x) has (δ, Lψ) -oracle and the auxiliary
subproblem (15) is solved inexactly in such a way that the inequality (16) holds. If

H ≥ 2Lφ

then equation (116) holds true with σ = 7/8 for (15). In the case p = 1 one can consider
λk+1 = λ = 1

2H .

Доказательство.
Using that φ is equipped with a (δ, Lφ) -oracle and Corollary 4.2. from [Devolder, 2013]

one obtains:
∥∇φδ,Lφ(y)−∇yΩ1,δ,Lφ(φ, x, y)∥ ≤ Lφ∥y − x∥+ 2

√
2Lφδ2 . (131)

By (16) and (131) we can get next inequalities:

∥yk+1 − (x̃k − λk+1(∇φδ,Lφ(yk+1) +∇ψδ,Lψ(yk+1)))∥
= ∥yk+1 ± λk+1∇yΩ1,δ,Lφ(φ, x̃k, yk+1)±Hλk+1(yk+1 − x̃k)

− (x̃k − λk+1(∇φδ,Lφ(yk+1) +∇ψδ,Lψ(yk+1)))∥ ≤ (1−Hλk+1)∥(yk+1 − x̃k)∥
+ λk+1∥∇yΩ1,δ,Lφ(φ, x̃k, yk+1) +H(yk+1 − x̃k) +∇ψδ,Lψ(yk+1)∥

+ λk+1∥∇φδ,Lφ(yk+1)−∇yΩ1,δ,Lφ(φ, x̃k, yk+1)∥
(16),(131)

≤ (1−Hλk+1)∥yk+1 − x̃k∥

+ λk+1
H

4
∥yk+1 − x̃k∥ − 2λk+1

√
2Lφδ2 + λk+1

(
Lφ∥yk+1 − x̃k∥+ 2

√
2Lφδ2

)
≤
(
5

8
+
Lφ
2H

)
∥yk+1 − x̃k∥ ≤ 7

8
∥yk+1 − x̃k∥

that ends the proof. □

Recall from Lemma 6 that the rate of convergence of AM-1 is ∥x0 − x∗∥/Ak +

+ 2
(∑k

i=1Ai

)
δ2/Ak + δ1 +

(∑k−1
i=1 Ai

)
δ1/Ak. We now finally give an estimate of Ak:

Lemma 10. Suppose H ≥ 2Lφ. Then one has, with c1 = 4,

Ak ≥
k2

c1H
(132)

Доказательство. In case, when p = 1 λk+1 are defined as

λk+1 =
1

2H
.

Inequality (132) holds when k = 1.
Let us proof that if (132) holds for k then it holds for k + 1. Using the definition of Ak

ak+1 =
λk+1 +

√
λ2k+1 + 4λk+1Ak

2
, Ak+1 = Ak + ak+1,

we obtain

Ak+1 ≥
k2

2c1Lφ
+

1

8Lφ

1 +

√
1 +

16k2

c1

 ≥ (k + 1)2

2c1Lφ
.

□
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Proof of Theorem 1

To prove the Theorem 1 it suffices to combine Lemmas 9,10 with Theorem 9. □

Proof of Theorem 2

In this Appendix we rename the sequence of points (xmdk , xtk, xk) (see listing of the
Algorithm 1) to (x̃k, yk, xk).

Доказательство. Firstly, let us choose δ according to (19):

∀k : δ1 + δ2 + 2

(
k∑
i=1

Ai

)
δ2/Ak + 2

(
k−1∑
i=1

Ai

)
δ1/Ak ≤

ε

2
,

where ε is solution accuracy in terms of F (x)− F (x∗) ≤ ε.
Then, as ε/2 ≤ c1HR

2/k2 with c1 = 4, next inequality holds true

∀k : δ1 + δ2 + 2

(
k∑
i=1

Ai

)
δ2/Ak + 2

(
k−1∑
i=1

Ai

)
δ1/Ak ≤

c1HR
2

k2
.

From (δ, L, µ) - oracle definition (7) we get

µ

2
∥z − x∗∥2 − δ1 ≤ F (z)− (Fδ,L,µ(x∗) + ⟨∇Fδ,L,µ(x∗), z − x∗⟩) = (133)

= (F (z)− Fδ,L,µ(x∗)) + ⟨∂F (x∗)−∇Fδ,L,µ(x∗), z − x∗⟩ − ⟨∂F (x∗), z − x∗⟩ ≤

≤ (F (z)− F (x∗) + δ2) +
√

2δ2L∥z − x∗∥.

Therefore
µ

2
∥z − x∗∥2 −

√
2δ2L∥z − x∗∥ ≤ (F (z)− F (x∗) + δ1 + δ2).

If δ2 is small enough such that
4
√
2δ2L

µ
≤ ε/2,

then taking into account that ∀k : ε/2 ≤ ∥zk+1 − x∗∥ we obtain

∀k :
µ

4
∥zk+1 − x∗∥2 ≥

√
2δ2L∥zk+1 − x∗∥, (134)

which implies the following inequality
µ

4
∥zk − x∗∥2 ≤ (F (zk)− F (x∗) + δ1 + δ2). (135)

Finally, we can conclude that Rk decreases as a geometric progression:

Rk+1 = ∥zk+1 − x∗∥
(135)
≤
(
4 (F (zk+1)− F (x∗) + δ1 + δ2)

µ

) 1
2

(17)
≤

4
(
c1HR2

k

N2
k

+ 2
(∑k

i=1Ai

)
δ1/Ak + 2

(∑k−1
i=1 Ai

)
δ2/Ak + δ1 + δ2

)
µ


1
2

(19)
≤

4
(
2c1HR2

k

N2
k

)
µ


1
2

=

(
8c1HR

2
k

µN2
k

) 1
2 (18)

≤
(
R2
k

22

) 1
2

=
Rk
2
.
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Which in turn guarantees that

F (zK)− F (x∗) ≤
µR2

0

4 · 4K
. (136)

It is sufficient to choose K = 2 log2
µR2

0
4ε in order that F (zk)− F (x∗) ≤ ε.

Now we compute the total number of AM steps.

K∑
k=0

Nk ≤
K∑
k=0

(
32c1H

µ

) 1
2

+K ≤
K∑
k=0

(
32c1H

µ

) 1
2

+K

=

(
32c1H

µ

) 1
2

K +K =

(√
128H

µ
+ 1

)
· 2 log2

µR2
0

4ε
≤

(
16
√
2

√
H

µ
+ 2

)
log2

µR2
0

ε

□

Proof of Theorem 3 and Theorem 4

The Theorem 3 show that the fulfillment of condition (16) keep the linear rate of
convergence when solving the auxiliary problems (15). Also in this Appendix we rename the
sequence of points (xmdk , xtk, xk) (see listing of the Algorithm 1) to (x̃k, yk, xk).
Firstly, based on (16) we try to relate the accuracy ε̃ we need to solve (15) in terms of the
following criteria:

∥∇
(
Ω1,δ,Lφ (φ, x̃k, yk+1) +

H

2
∥yk+1 − x̃k∥2

)
+∇ψδ,Lψ (yk+1) ∥ ≤ ε̃. (137)

For this we prove the auxiliary lemma for (δ, Lφ) -oracle of φ and (δ, Lψ) -oracle of ψ, that is
based on the Lemma 2.1 from [Grapiglia, Nesterov, 2020] .

Lemma 11. Let x̃k ∈ Rd, H,Θ > 0.
Assume that φ(x) admits (δ, Lφ) -oracle, ψ(x) admits (δ, Lψ) -oracle. If inquality

∥∇
(
Ω1,δ,Lφ (φ, x̃k, yk+1) +

H

2
∥yk+1 − x̃k∥2

)
+∇ψδ,Lψ (yk+1) ∥ (138)

≤ min

{
1

2
,

Θ

2 [Lφ +H]

}(
∥∇φδ,Lφ(yk+1) +∇ψδ,Lψ (yk+1) ∥

)
(139)

holds true, then yk+1 satisfies

∥∇
(
Ω1,δ,Lφ (φ, x̃k, yk+1) +

H

2
∥yk+1 − x̃k∥2

)
+∇ψδ,Lψ (yk+1) ∥ (140)

≤ Θ∥yk+1 − x̃k∥+
2Θ

[Lφ +H]

√
2Lφδ2 (141)

Доказательство. Using that φ is equipped with a (δ, Lφ) -oracle and Corollary 4.2. from
[Devolder, 2013] one obtains:

∥∇φδ,Lφ(y)−∇yΩ1,δ,Lφ(φ, x, y)∥ ≤ Lφ∥y − x∥+ 2
√
2Lφδ2 . (142)
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Combining (138) and (142) we obtain

∥∇φδ,Lφ(yk+1) +∇ψδ,Lψ (yk+1) ∥
≤ ∥∇φδ,Lφ(yk+1) +∇ψδ,Lψ (yk+1)−∇ψδ,Lψ (yk+1)−∇Ω1,δ,Lφ (φ, x̃k, yk+1) ∥

+ ∥∇Ω1,δ,Lφ (φ, x̃k, yk+1)±∇ψδ,Lψ (yk+1)−∇
(
Ω1,δ,Lφ (φ, x̃k, yk+1) +

H

2
∥yk+1 − x̃k∥2

)
∥

+ ∥∇
(
Ω1,δ,Lφ (φ, x̃k, yk+1) +

H

2
∥yk+1 − x̃k∥2

)
+∇ψδ,Lψ (yk+1) ∥

(142),(138)
≤

(
Lφ∥yk+1 − x̃k∥+ 2

√
2Lφδ2

)
+H∥yk+1 − x̃k∥+

1

2
∥∇φδ,Lφ(yk+1) +∇ψδ,Lψ (yk+1) ∥.

Thus,
∥∇φδ,Lφ(yk+1) +∇ψδ,Lψ (yk+1) ∥

2
≤ [Lφ +H] ∥yk+1 − x̃k∥+ 2

√
2Lφδ2 (143)

which gives

Θ

2 [Lφ +H]
∥∇φδ,Lφ(yk+1) +∇ψδ,Lψ (yk+1) ∥ ≤ Θ∥yk+1 − x̃k∥+

2Θ

[Lφ +H]

√
2Lφδ2 (144)

Finally, (140) follows directly from the (138) and (144). □

Lemma 12. Assume that H ≥ 2Lφ, φ(x) admits (δ, Lφ)-oracle, ψ(x) admits (δ, Lψ)-oracle,
F (x) admits (2δ, Lφ + Lψ, µ)-oracle; yk+1, x̃k ∈ Rd and ε ∈ (0, 1). If inequalities

ε ≤ F2δ,Lφ+Lψ ,µ(y)− min
x∈Qf

F (x) (145)

δ2 ≤
εµ

642 · Lφ
, (146)

are satisfied then inequality (16) holds true if one solve the auxiliary problem (15) with the
accuracy

ε̃ =

√
εµ

72
(147)

in terms of criteria (137).

Доказательство. According to the conditions of the lemma, the problem (15) is solved
with the accuracy

(137) : ∥∇
(
Ω1,δ,Lφ (φ, x̃k, yk+1) +

H

2
∥yk+1 − x̃k∥2

)
+∇ψδ,Lψ (yk+1) ∥ ≤ ε̃

To prove the lemma, it suffices to show the following chain of inequalities

ε̃ ≤ min{1
2
,

H

8 [Lφ +H]
}
(
∥∇φδ,Lφ(yk+1) +∇ψδ,Lψ (yk+1) ∥

)
−
(
2 +

H

2 [Lφ +H]

)√
2δ2Lφ

≤ H

4
∥yk+1 − x̃k∥ − 2

√
2δ2Lφ (148)

Lemma 11 for Θ = H
4 guarantee that if the next inequality holds true

∥∇
(
Ω1,δ,Lφ (φ, x̃k, yk+1) +

H

2
∥yk+1 − x̃k∥2

)
+∇ψδ,Lψ (yk+1) ∥ (149)

≤ min{1
2
,

H

8 [Lφ +H]
}
(
∥∇φδ,Lφ(yk+1) +∇ψδ,Lψ (yk+1) ∥

)
−
(
2 +

H

2 [Lφ +H]

)√
2δ2Lφ
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then the equation (16) is satisfied.
If (149) is sufficient condition for (16), it means that right-hand sides of (149) less the right-hand
sides of (16). From this consequence the next inequality

1

12

(
∥∇F2δ,Lφ+Lψ(yk+1)∥

)
− 5

2

√
2δ2Lφ =

1

12

(
∥∇φδ,Lφ(yk+1) +∇ψδ,Lψ (yk+1) ∥

)
− 5

2

√
2δ2Lφ

(150)

≤ min{1
2
,

H

8 [Lφ +H]
}
(
∥∇φδ,Lφ(yk+1) +∇ψδ,Lψ (yk+1) ∥

)
−
(
2 +

H

2 [Lφ +H]

)√
2δ2Lφ (151)

≤ H

4
∥yk+1 − x̃k∥ − 2

√
2δ2Lφ (152)

The second inequality of the equation (148) is satisfied, let us prove the first one.
The fact that F has (2δ, Lφ + Lψ, µ) -oracle guarantee

µ

2
∥x− y∥2 +

(
F2δ,Lφ+Lψ ,µ(y) +

〈
∇F2δ,Lφ+Lψ ,µ(y), x− y

〉)
≤ F (x) for all x ∈ Qf (153)

Let us minimize the right-hand and left-hand sides of (153) with respect to x independently

F ∗ = min
x∈Qf

F (x)
(153)
≥ F2δ,Lφ+Lψ ,µ(y) + min

x∈Qf

{µ
2
∥x− y∥2 +

〈
∇F2δ,Lφ+Lψ ,µ(y), x− y

〉}
= F2δ,Lφ+Lψ ,µ(y)−

1

2µ
∥∇F2δ,Lφ+Lψ ,µ(y)∥

2

Then obtain

ε
(145)
≤ F2δ,Lφ+Lψ ,µ(y)− F ∗ ≤ 1

2µ
∥∇F2δ,Lφ+Lψ ,µ(y)∥

2 (154)

Inequality (154) guarantee that

1

2

√
εµ

18
− 5

2

√
2δ2Lφ ≤ 1

12
∥∇F2δ,Lφ+Lψ ,µ(y)∥ −

5

2

√
2δ2Lφ (155)

In case of (146) inequality (155) give us guarantees that the first inequality of the equation (148)
holds true

ε̃ =

√
εµ

72

(146)
≤ 1

2

√
εµ

18
− 5

2

√
2δ2Lφ

(155)
≤ 1

12
∥∇F2δ,Lφ+Lψ ,µ(y)∥ −

5

2

√
2δ2Lφ (156)

Finally, combine the equations (152) and (156) obtain the required chain of inequalities (148).
□

Let us prove the Theorem 3 using Lemma 12:

Доказательство. Firstly, let us collect all restrictions on δ1, δ2 and auxiliary problem
precision for obtaining convergence of outer Algorithm-2 and fulfillment of the Lemma 12
together:

(137) :∥∇
(
Ω1,δ,Lφ (φ, x̃k, yk+1) +

H

2
∥yk+1 − x̃k∥2

)
+∇ψδ,Lψ (yk+1) ∥ ≤ ε̃,

(146) :δ2 ≤
εµ

642 · Lφ
,

(19) :∀k : δ1 + δ2 + 2

(
k∑
i=1

Ai

)
δ2/Ak +

(
k−1∑
i=1

Ai

)
δ1/Ak ≤

ε

2
,

(20) :
4
√
2δ2L

µ
≤ ε/2.
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Let us have a look at (137). We need obtain the sufficient condition for it in terms of the
criterion (22).

∥∇
(
Ω1,δ,Lφ (φ, x̃k, yk+1) +

H

2
∥yk+1 − x̃k∥2

)
+∇ψδ,Lψ (yk+1) ∥

≤∥∇Ω1,δ,Lφ (φ, x̃k, yk+1)± ∂φ(x̃∗)∥+H∥yk+1 − x̃k∥+ ∥∇ψδ,Lψ (yk+1)± ∂ψ(x̃∗)∥
≤Lφ∥x̃k − x∗∥+ 2

√
Lφδ2 +H∥yk+1 − x̃k∥+ Lψ∥yk+1 − x∗∥+ 2

√
Lψδ2

≤(Lφ + Lψ +H)max {∥x̃k − x∗∥, ∥yk+1 − x∗∥}+ 2
√
Lφδ2 + 2

√
Lψδ2

(135)
≤ (Lφ + Lψ +H)

√
4(ε̃f + δ1 + δ2)

µ
+ 2
√
Lφδ2 + 2

√
Lψδ2.

Then, according to (137), the sufficient condition for (16) holds true is

(Lφ + Lψ +H)

√
4(ε̃f + δ1 + δ2)

µ
+ 2
√
Lφδ2 + 2

√
Lψδ2 ≤

√
εµ

72
.

Next, under the assumption δ1 ≤ δ2, (19) is converting into more simple sufficient condition

δ2 ≤
ε

2 (1 + 4N)
≤ ε

2
(
1 + 4

(∑k
i=1Ai

)
/Ak

) (157)

where N is the number of outer steps. There was used the fact that Ai ≤ Ai+1. Finally, if δ2
satisfies the inequality

δ2 ≤
ε3/2

5
√
2c1HR2

then (157) holds true.
If we choose δ1, δ2, ε̃f such that:

δ1, δ2 = min

{
εµ

8642Lφ
,

εµ

8642Lψ
,

εµ2

8642(Lφ + Lψ +H)2
,

ε3/2

5
√
2c1HR2

}
,

ε̃f ≤ εµ2

8642(Lφ + Lψ +H)2
,

then all required inequalities are satisfied:

(Lφ + Lψ +H)

√
4(ε̃f + δ1 + δ2)

µ
+ 2
√
Lφδ2 + 2

√
Lψδ2 ≤

√
εµ

72
,

δ2 ≤
εµ

642 · Lφ
,

δ2 ≤
ε3/2

5
√
2c1HR2

,

4
√
2δ2L

µ
≤ ε/2.

Also dependences δ1(ε), δ2(ε), ε̃f (ε) are polynomial. □

Let’s prove the Theorem 4 using Theorem 3:
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Доказательство. Suppose that at each iteration of the Algorithm 2 one have:

1. inexact (δ, σ0, µφ, Lφ), (δ, σ0, µψ, Lψ)-oracles of φ,ψ;

2. the (ε, σ0)-solution of auxiliary problem.

Let us estimate the probability P with which inexact (δ, µφ, Lφ), (δ, µψ, Lψ)-oracles of φ,ψ and
the ε-solution of auxiliary problem will be available at all iterations (36) of the Algorithm 2

P = (1− σ0)
N(ε)(1− σ̃)N(ε) ≥ 1−N(ε) (σ0 + σ̃)

(32),(35),(36)
≥ 1− σ (158)

Hence with probability (158) the conditions of the Theorem 3 are satisfied which ends the proof.
□

L-SVRG

In this Appendix we reformulate the convergence results of Algorithm L-SVRG from
[Morin, Giselsson, 2020] in terms of large deviations.

Lemma 13. (Corollary 5.6 from [Morin, Giselsson, 2020]) We consider the problem

min
x∈Rd

F (x) = φ(x) + ψ(x) (159)

where φ is of finite sum form

φ(x) =
1

n

n∑
i=1

φi(x)

and ψ is Lψ-smooth, convex and prox-friendly. The function φi is convex and Li-smooth for all
i = 1, . . . , n. The function φ is convex, L-smooth with L ≤ 1

n

∑n
i=1 Li an µ-strongly convex.

Then L-SVRG [Morin, Giselsson, 2020] achieves an (ε, σ)-solution of (159), i.e.

P{F (xk)− F (x∗) ≥ ε} ≤ σ (160)

within

O

√
n+

√
2DL

L̄

µ

2

log
1

ϵσ


iterations where L̄ = 1

n

∑n
i=1 Li, DL = 4 − 3µ

L̄
and x∗ is solution of (159). We note that 1 ≤

DL ≤ 4.

Доказательство. According to Corollary 5.6 from [Morin, Giselsson, 2020] we obtain

that after O
((√

n+
√
2DL

L̄
µ

)2
log 1

ϵ′

)
steps L-SVRG [Morin, Giselsson, 2020] gives ε′ accurate

solution, i.e.

E
∥∥∥xk − x∗

∥∥∥2 ≤ ϵ′, (161)

holds true. For arbitrary ε, σ > 0 let us take xk, ε′ = 2εσ/LF accurate solution in terms of (161).
Then from LF = L+ Lψ-smoothness of F we have

E[F (xk)− F (x∗)] ≤ E
[
LF
2

∥xk − x∗∥2
]
≤ εσ. (162)
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Using Markov inequality and (162) we obtain that

P{F (xk)− F (x∗) ≥ ε} ≤ E[F (xk)− F (x∗)]

ε
≤ σ. (163)

In other words, after

O

√
n+

√
2DL

L̄

µ

2

log
1

ϵ′

 = O

√
n+

√
2DL

L̄

µ

2

log
1

ϵσ


Algorithm L-SVRG from [Morin, Giselsson, 2020] gives random point xk such as (163) holds
true. In other words, xk is (ε, σ)-solution of (159). □

A Variant of Accelerated Framework for Saddle-Point Problems.

In this appendix we consider saddle-point problem under the same assumptions as in
Section 1. We describe in detail the structure of a general framework for solving such problems
which consists of three inner-outer loops. The only difference compared with the general
framework in Section 1 is that the order of the Loop 2 and Loop 3 has been reversed. We
also summarize the steps of the algorithm in Table 5. In each loop we apply Algorithm 2 with
different value of parameter H which defines its complexity. In the subsection after description of
the loops we carefully choose the value of this parameter in each level of the loops. Later, in the
next Appendix we use this general framework in the proof of Theorems 7 and 8 with complexity
estimates for problem (95) under Assumption 5, as well as Corollary 3 with complexity estimates
for problem (71) with mh = 1.

Main loops of the framework

In each of the three loops of the general framework we have a target accuracy ε and a
confidence level σ which define the required quality of the solution to an optimization problem in
this loop. These quantities define the inexactness of the oracle in this loop via inequalities (31)
and (32) and the target accuracy and confidence level for the optimization problem in the next
loop via (34), (35). Due to inexact strong convexity provided by (δ, σ, L, µ)-oracle, Algorithm 2
has logarithmic dependence of the complexity on the target accuracy and confidence level (see
Theorem 4). Since the dependencies on the target accuracy and confidence level in (31), (32),
(34) and (35) are polynomial, we obtain that the dependency of the complexity in each loop on
the target accuracy and confidence level in the first loop, i.e. target accuracy and confidence level
for the solution to problem (37), is logarithmic. We hide such logarithmic factors in Õ notation.

For convenience, we summarize the main details of the loops in Table 5.

Loop 1

The goal of Loop 1 is to find an (ε, σ)-solution of problem (39), which is considered as a
minimization problem in y with the objective given in the form of auxiliary maximization problem
in x. Finding an (ε, σ)-solution of this minimization problem gives an approximate solution to
the saddle-point problem (37).

To solve problem (39), we would like to apply Algorithm 2 with

φ = 0, ψ = h(y) + max
x∈Rdx

{−G(x, y)− f(x)} . (164)
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The function φ is, clearly, convex and is known exactly. What makes solving problem (39) not
straightforward is that the exact value of ψ is not available. At the same time we can construct
an inexact oracle for this function. First, the function h is µy-strongly convex, Lh-smooth and
its exact gradient is available. Second, thanks to Assumption 3, it is possible to construct a(
δ(1) (ε) , σ

(1)
0 (ε, σ) , 2LG + 4

L2
G
µx

)
-oracle for the function r(y) = maxx∈Rdx {−f(x)−G(x, y)} for

any δ(1) (ε) = poly (ε) and σ
(1)
0 (ε, σ) = poly (ε, σ). Combining these two parts and using

Lemma 1, we obtain that we can construct a
(
δ(1) (ε) , σ

(1)
0 (ε, σ) , Lh + 2LG + 4

L2
G
µx
, µy

)
-oracle

for ψ. Thus, we can apply Algorithm 2 with parameter H = H1, which will be chosen later, to
solve problem (39). Moreover, since Assumption 3 requires δ(1) (ε) = poly (ε) and σ

(1)
0 (ε, σ) =

= poly (ε, σ), which holds for the dependencies in (31) and (32), we can choose δ(1) (ε) and
σ
(1)
0 (ε, σ) such that (31) and (32) hold. So, the first main assumption of Theorem 4 holds. At

the same time, according to Assumptions 1 and 3, constructing inexact oracle for ψ requires τh
calls of the basic oracle for h, τG calls of the basic oracle of G(x, ·), N x

G (τG)Kx
G (ε, σ) calls of the

basic oracle for G(·, y), Nf (τf )Kf (ε, σ) calls of the basic oracle for f .
Let us discuss the second main assumption of Theorem 4. To ensure that this assumption

holds, we need in each iteration of Algorithm 1, used as a building block in Algorithm 2, to find
an
(
ε̃
(1)
f (ε) , σ̃(1) (ε, σ)

)
-solution to the auxiliary problem (15), where σ̃(1) (ε, σ) , ε̃(1)f (ε) satisfy

inequalities (34), (35). For the particular definitions of φ, ψ (164) in this Loop, this problem has
the following form:

ytk+1 = arg min
y∈Rdy

{
h(y) + max

x∈Rdx
{−G(x, y)− f(x)}+ H1

2
∥y − ymdk ∥2

}
. (165)

Below, in the next paragraph "Loop 2 we explain how to solve this auxiliary problem to obtain
its
(
ε̃
(1)
f (ε) , σ̃(1) (ε, σ)

)
-solution. To summarize Loop 1, both main assumptions of Theorem 4

hold and we can use it to guarantee that we obtain an (ε, σ)-solution of problem (39). This

requires Õ
(
1 +

(
H1

µφ+µψ

) 1
2

)
= Õ

(
1 +

(
H1
µy

) 1
2

)
calls to the inexact oracles for φ and for ψ, and

the same number of times solving the auxiliary problem (165). Combining this oracle complexity
with the cost of calculating inexact oracles for φ and for ψ, we obtain that solving problem

(39) requires Õ
(
1 +

(
H1
µy

) 1
2

)
τh calls of the basic oracle for h, Õ

(
1 +

(
H1
µy

) 1
2

)
τG calls of the

basic oracle of G(x, ·), Õ
(
1 +

(
H1
µy

) 1
2

)
N x
G (τG)Kx

G (ε, σ) calls of the basic oracle for G(·, y),

Õ

(
1 +

(
H1
µy

) 1
2

)
Nf (τf )Kf (ε, σ) calls of the basic oracle for f . The only remaining thing is to

provide an inexact solution to problem (165) and, next, we move to the Loop 2 to explain how

to guarantee this. Note that we need to solve problem (165) Õ
(
1 +

(
H1
µy

) 1
2

)
times.

Loop 2

As mentioned in the previous Loop 1, in each iteration of Algorithm 2 in Loop 1 we need many
times to find an (ε′2, σ

′
2)-solution of the auxiliary problem (165), where we denoted for simplicity

σ′2 = σ̃(1) (ε, σ) and ε′2 = ε̃
(1)
f (ε). To do this, we reformulate problem (165) by changing the order
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of minimization and maximization as follows:

min
y∈Rdy

{
h(y) +

H1

2
∥y − ymdk ∥2 + max

x∈Rdx
{−G(x, y)− f(x)}

}
(166)

= min
y∈Rdy

max
x∈Rdx

{
h(y)−G(x, y)− f(x) +

H1

2
∥y − ymdk ∥2

}
(167)

= max
x∈Rdx

min
y∈Rdy

{
h(y)−G(x, y)− f(x) +

H1

2
∥y − ymdk ∥2

}
(168)

= − min
x∈Rdx

{
f(x) + max

y∈Rdy

{
G(x, y)− h(y)− H1

2
∥y − ymdk ∥2

}}
(169)

and obtain an (ε′2, σ
′
2)-solution of the problem (165) by solving minimization problem (169).

Assume that we can find an (ε2, σ2)-solution x̂ of the minimization problem (169). Then,
according to Assumption 2, we can also obtain a point ŷ which is (δ̄(ε2)/2, σ̄0(σ2))-solution
to the problem

max
y∈Rdy

{
G(x, y)− h(y)− H1

2
∥y − ymdk ∥2

}
, (170)

where δ̄(ε2), σ̄0(σ2) satisfy the following polynomial dependencies

δ̄(ε2) ≤
H1 + µy

4µx

(
H1+µy
4LG

)2 ε2, σ̄0(σ2) ≤ σ2. (171)

If we choose ε2, σ2, δ̄(ε2), σ̄0(σ2) satisfying

ε2 ≤
(
H1 + µy
4LG

)2 µx

Lh +H1 + LG +
2L2

G
µx

ε′2, (172)

σ2 ≤
σ′2
2
, (173)

σ̄0(σ2)
(171)
≤ σ2 ≤

σ′2
2
, δ̄(ε2) ≤

H1 + µy

4µx

(
H1+µy
4LG

)2 ε2 (171)
≤ H1 + µy

4Lh + 4H1 + 4LG +
8L2

G
µx

ε′2, (174)

then

2
Lh +H1 + LG +

2L2
G

µx

H1 + µy
δ̄(ε2) + 8

(
LG

H1 + µy

)2 Lh +H1 + LG +
2L2

G
µx

µx
ε2 ≤ ε′2, (175)

σ2 + σ̄0(σ2) ≤ σ′2. (176)

Thus, applying Corollary 1 to minimization problem (169) with F (x, y) = G(x, y), w(y) = h(y)+
+ H1

2 ∥y − ymdk ∥2, εx = ε2, σx = σ2, εy = δ̄(ε2), σy = σ̄0(σ2) we obtain (see (46), (48)) that ŷ
satisfies inequality

h(ŷ) +
H1

2
∥ŷ − ymdk ∥2 + max

x∈Rdx
{−G(x, ŷ)− f(x)}

− min
y∈Rdy

max
x∈Rdx

{h(y) + H1

2
∥y − ymdk ∥2 −G(x, y)− f(x)} ≤ ε′2
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with probability σ′2. Thus, it is an (ε′2, σ
′
2)-solution of the problem (165). By Assumption 2,

calculation of ŷ requires N y
G (τG, H)Ky

G (ε2, σ2) calls of the basic oracle OyG of G(x, ·), τG calls of
the basic oracle OxG of G(·, y) and Nh (τh, H)Kh (ε2, σ2) calls of the basic oracle Oh of h.

Our next step is to provide an (ε2, σ2)-solution to minimization problem (169), for which
we again apply Algorithm 2, but this time with

φ = f(x), ψ = max
y∈Rdy

{
G(x, y)− h(y)− H1

2
∥y − ymdk ∥2

}
. (177)

The function φ is µx-strongly convex, Lf -smooth and its exact gradient is available. What makes
solving problem (169) not straightforward is that the exact value of ψ is not available. At the
same time we can construct an inexact oracle for this function. Thanks to Assumption 2, it is
possible to construct a

(
δ(2) (ε2) , σ

(2)
0 (ε2, σ2) , 2LG + 4

L2
G

H1+µy

)
-oracle for the function ψ for any

δ(2) (ε2) = poly (ε2) and σ
(2)
0 (ε2, σ2) = poly (ε2, σ2). Using Lemma 1, we obtain that we can

construct
a
(
δ(2) (ε2) , σ

(2)
0 (ε2, σ2) , Lf + 2LG + 4

L2
G

H1+µy
, µx

)
-oracle for the function φ + ψ. Thus, we can

apply Algorithm 2 with parameter H = H2 ≥ 2Lf , which will be chosen later, to solve the
problem (169). Moreover, since Assumption 2 requires δ(2) (ε2) = poly (ε2) and σ

(2)
0 (ε2, σ2) =

= poly (ε2, σ2), which holds for the dependencies in (31) and (32), we can choose δ(2) (ε2) and
σ
(2)
0 (ε2, σ2) such that (31) and (32) hold. So, the first main assumption of Theorem 4 holds.

At the same time, according to Assumptions 1 and 2, constructing inexact oracle for ψ requires
N y
G (τG, H1)Ky

G (ε2, σ2) calls of the basic oracle for G(x, ·), τG calls of the basic oracle for G(·, y),
Nh (τh, H1)Kh (ε2, σ2) calls of the basic oracle for h, and constructing exact oracle for φ = f
requires τf calls of the basic oracle for f .

Let us discuss the second main assumption of Theorem 4. To ensure that this assumption
holds, we need in each iteration of Algorithm 1, used as a building block in Algorithm 2, to
find

(
ε̃
(2)
f (ε2) , σ̃

(2) (ε2, σ2)
)
-solution to the auxiliary problem (15), where σ̃(2) (ε2, σ2) , ε̃

(2)
f (ε2)

satisfy inequalities (34), (35). For the particular definitions of φ, ψ (177) in this Loop, this
problem has the following form:

xtl+1 = arg min
x∈Rdx

{
⟨∇f(xmdl ), x− xmdl ⟩

+ max
y∈Rdy

{
G(x, y) + h(y)− H1

2
∥y − ymdk ∥2

}
+
H2

2
∥x− xmdl ∥2

}
, (178)

Below, in the next paragraph "Loop 3 we explain how to solve this auxiliary problem to obtain
its(
ε̃
(2)
f (ε2) , σ̃

(2) (ε2, σ2)
)
-solution.

To summarize Loop 2, both main assumptions of Theorem 4 hold and we can use
it to guarantee that we obtain an (ε′2, σ

′
2)-solution of the auxiliary problem (165). This

requires one time to solve the problem (170), which, by Assumption 2 has the same cost as

evaluating inexact oracle for the function ψ. Further, we need O
((

1 +
(

H2
µφ+µψ

) 1
2

)
log ε−1

2

)
=

= O

((
1 +

(
H2
µx

) 1
2

)
log ε−1

2

)
calls to the inexact oracles for φ and for ψ, and the

same number of times solving the auxiliary problem (178). Combining this oracle
complexity with the cost of calculating inexact oracles for φ and for ψ, we obtain that

solving problem (169) requires O

((
1 +

(
H2
µx

) 1
2

)
log ε−1

2

)
τf calls of the basic oracle for
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f , O

((
1 +

(
H2
µx

) 1
2

)
log ε−1

2

)
N y
G (τG, H1)Ky

G (ε2, σ2) calls of the basic oracle for G(x, ·),

O

((
1 +

(
H2
µx

) 1
2

)
log ε−1

2

)
τG calls of the basic oracle for G(·, y),

O

((
1 +

(
H2
µx

) 1
2

)
log ε−1

2

)
Nh (τh, H1)Kh (ε2, σ2) calls of the basic oracle for h. The only

remaining thing is to provide an inexact solution to problem (178) and, next, we move
to Loop 3 to explain how to guarantee this. Note that we need to solve problem (178)

O

((
1 +

(
H2
µx

) 1
2

)
log ε−1

2

)
times.

Loop 3

As mentioned in the previous Loop 2, in each iteration of Algorithm 2 in Loop 2 we need to find
many times an (ε3, σ3)-solution of the auxiliary problem (178), where we denoted for simplicity
σ3 = σ̃(2) (ε2, σ2) and ε3 = ε̃

(2)
f (ε2). To solve problem (178), we would like to apply Algorithm 2

with

φ = max
y∈Rdy

{
G(x, y)− h(y)− H1

2
∥y − ymdk ∥2

}
, ψ = ⟨∇f(xmdl ), x− xmdl ⟩+ H2

2
∥x− xmdl ∥2.

(179)

The function ψ is, clearly, H2-strongly convex, H2-smooth and its exact gradient is available.
What makes solving problem (178) not straightforward is that the exact value of φ is not available.
At the same time, we can construct an inexact oracle for this function. Thanks to Assumption
2, it is possible to construct a

(
δ(3) (ε3) , σ

(3)
0 (ε3, σ3) , 2LG + 4

L2
G

H1+µy

)
-oracle for the function φ

for any δ(3) (ε3) = poly (ε3) and σ(3)0 (ε3, σ3) = poly (ε3, σ3). Using Lemma 1, we obtain that we
can construct
a
(
δ(3) (ε3) , σ

(3)
0 (ε3, σ3) , H2 + 2LG + 4

L2
G

H1+µx
, H2

)
-oracle for the function φ + ψ. Thus, we can

apply Algorithm 2 with parameter H = H3 ≥ 2LG+4
L2
G

H1+µy
, which will be chosen later, to solve

problem (178). Moreover, since Assumption 2 requires δ(3) (ε3) = poly (ε3) and σ
(3)
0 (ε3, σ3) =

= poly (ε3, σ3), which holds for the dependencies in (31) and (32), we can choose δ(3) (ε3) and
σ
(3)
0 (ε3, σ3) such that (31) and (32) hold. So, the first main assumption of Theorem 4 holds.

At the same time, according to Assumptions 1 and 2, constructing inexact oracle for φ requires
N y
G (τG, H1)Ky

G (ε3, σ3) calls of the basic oracle for G(x, ·), τG calls of the basic oracle for G(·, y),
Nh (τh, H1)Kh (ε3, σ3) calls of the basic oracle for h. At the same time, no calls to the oracle for
f are needed.

Let us discuss the second main assumption of Theorem 4. To ensure that this assumption
holds, we need in each iteration of Algorithm 1, used as a building block in Algorithm 2, to
find

(
ε̃
(3)
f (ε3) , σ̃

(3) (ε3, σ3)
)
-solution to the auxiliary problem (15), where σ̃(3) (ε3, σ3) , ε̃

(3)
f (ε3)

satisfy inequalities (34), (35). For the particular definitions of φ, ψ in (179) in this Loop, this
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Goal φ,ψ µ in Th.4

Iteration number

of Algorithm 1

(Th. 4)

Each iteration

requires

Loop 1
(ε, σ)-solution

of problem (39)
(164) µy Õ

(
1 +

√
H1/µy

) Find (ε1, σ1)-solution of (165)

and calculate(
δ(1), Lψ

)
-oracle of ψ(y)

Loop 2
(ε1, σ1)-solution

of problem (169)
(177) µx Õ(1 +

√
H2/µx)

Find (ε2, σ2)-solution of (178)

and calculate(
δ(2), Lψ

)
-oracle of ψ(x)

Loop 3
(ε2, σ2)-solution

of problem (178)
(179) H2 Õ(1 +

√
H3/H2)

Find (ε3, σ3)-solution of (180)

and calculate(
δ(3), Lφ

)
-oracle of φ(x)

Table 5. Summary of the three loops of the framework described in this Appendix.

problem has the following form:

utm+1 = arg min
u∈Rdx

{⟨∇φδ(3),2Lφ(u
md
m ), u− umdm ⟩+ ψ(u) +

H3

2
∥u− umdm ∥22}

= arg min
u∈Rdx

{⟨∇φδ(3),2Lφ(u
md
m ), u−umdm ⟩+⟨∇f(xmdl ), u−xmdl ⟩+H2

2
∥u−xmdl ∥22+

H3

2
∥u−umdm ∥22},

(180)

where Lφ = LG +
L2
G

H1+µx
. This quadratic auxiliary problem (180) can be solved explicitly and

exactly since at the point it needs to be solved, ∇φδ(3),2Lφ(u
md
m ) is already calculated. Thus, the

second main assumption of Theorem 4 is satisfied with σ̃(3) (ε3, σ3) = 0 and ε̃(3)f (ε3) = 0, which
clearly satisfy (31) and (32).

To summarize Loop 3, both main assumptions of Theorem 4 hold and we can use it
to guarantee that we obtain an (ε3, σ3)-solution of the auxiliary problem (178). This requires

O

((
1 +

(
H3

µφ+µψ

) 1
2

)
log ε−1

3

)
= O

((
1 +

(
H3
H2

) 1
2

)
log ε−1

3

)
calls to the inexact oracles for φ

and for ψ, and the same number of times solving the auxiliary problem (180). Combining this
oracle complexity with the cost of calculating inexact oracles for φ and for ψ, we obtain that

solving problem (178) requires O
((

1 +
(
H3
H2

) 1
2

)
log ε−1

3

)
N y
G (τG, H1)Ky

G (ε3, σ3) calls of the

basic oracle for G(x, ·), O
((

1 +
(
H3
H2

) 1
2

)
log ε−1

3

)
τG calls of the basic oracle for G(·, y) and

O

((
1 +

(
H3
H2

) 1
2

)
log ε−1

3

)
Nh (τh, H1)Kh (ε3, σ3) calls of the basic oracle for h.

Complexity of the framework

Below we formally finalize in Theorem 10 the analysis of the framework by carefully
combining the bounds obtained in Loop 1 - Loop 3 to obtain the final bounds for the total number
of oracle calls for each part f , G, h of the objective in problem (37). In the next Appendix, we
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apply Theorem 10 to obtain complexity bounds for our framework applied to problem (71) in
the case mh = 1.

Theorem 10. Let Assumptions 1, 2, 3 hold. Then, execution of the optimization framework
described in Loop 1 - Loop 3 with

H1 = 2LG, H2 = 2Lf , H3 = 2

(
LG +

2L2
G

µy +H1

)
generates an (ε, σ)-solution to the problem (37) i.e., satisfy 10. Moreover, for the number of basic
oracle calls it holds that

Number of calls of basic oracle Of for f is :

Õ

((
1 +

√
LG
µy

)(
Nf (τf ) +

(
1 +

√
Lf
µx

)
· τf

))
, (181)

Number of calls of basic oracle Oh for h is :

Õ

((
1 +

√
LG
µy

)(
τh +

(
1 +

√
Lf
µx

)(
1 +

√
LG
Lf

)
Nh (τh, 2LG)

))
, (182)

Number of calls of basic oracle OxG for G(·, y) is :

Õ

((
1 +

√
LG
µy

)(
N x
G (τG) +

(
1 +

√
Lf
µx

)(
1 +

√
LG
Lf

)
τG

))
, (183)

Number of calls of basic oracle OyG for G(x, ·) is :

Õ

((
1 +

√
LG
µy

)(
τG +

(
1 +

√
Lf
µx

)(
1 +

√
LG
Lf

)
N y
G (τG, 2LG)

))
. (184)

Доказательство. By construction, as an output of Loop 1 we obtain an (ε, σ)-solution to
the problem (37).

We prove the estimates of for the numbers of oracle calls in two steps. The first step is
to formally prove that in each loop the dependence of the number of oracle calls on the target
accuracy ε and a confidence level σ is logarithmic. The second step is to multiply the estimates
for the number of oracle calls between loops and choose the parameters H1, H2, H3.

Step 1. Polynomial dependence. Proof of this part is equivalent to the proof of the
Theorem 5.

Step 2. Final estimates.
We have already counted the number of oracles calls for each oracle in each loop Loop 1 -

Loop 3, see the last paragraph of the description of each loop. We start with the number of basic
oracle calls of f , which is called in each step of Loop 1 and Loop 2. Thus, the total number is

# of calls in Loop1 + (# of steps in Loop 1)·(# of calls in Loop 2)

= Õ

(
1 +

(
H1

µy

) 1
2

)
Nf (τf )Kf (ε, σ) + Õ

(
1 +

(
H1

µy

) 1
2

)
·

(
Õ

(
1 +

(
H2

µx

) 1
2

)
τf

)

= Õ

((
1 +

√
H1

µy

)(
Nf (τf ) +

(
1 +

√
H2

µx

)
· τf

))
,
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where we used that Kf (ε, σ) = Õ(1).

The basic oracle of h is called in each step of all the three loops. Thus, the total number is

# of calls in Loop1 + (# of steps in Loop 1)·(# of calls in Loop 2)
+ (# of steps in Loop 1)·(# of steps in Loop 2)·(# of calls in Loop 3)

= Õ

(
1 +

(
H1

µy

) 1
2

)
τh + Õ

(
1 +

(
H1

µy

) 1
2

)
·

(
Õ

(
1 +

(
H2

µx

) 1
2

)
Nh (τh, H1)Kh (ε2, σ2)

)

+Õ

(
1 +

(
H1

µy

) 1
2

)
·

(
Õ

(
1 +

(
H2

µx

) 1
2

))
·

(
Õ

(
1 +

(
H3

H2

) 1
2

)
Nh (τh, H1)Kh (ε3, σ3)

)

= Õ

((
1 +

√
H1

µy

)(
τh +

(
1 +

√
H2

µx

)(
Nh (τh, H1) +

(
1 +

√
H3

H2

)
· Nh (τh, H1)

)))

= Õ

((
1 +

√
H1

µy

)(
τh +

(
1 +

√
H2

µx

)(
1 +

√
H3

H2

)
Nh (τh, H1)

))
,

where we used that Kh (ε, σ) = Õ(1).

The basic oracle of G(·, y) is called in each step of all the three loops. Thus, the total
number is

# of calls in Loop1 + (# of steps in Loop 1)·(# of calls in Loop 2)
+ (# of steps in Loop 1)·(# of steps in Loop 2)·(# of calls in Loop 3)

= Õ

(
1 +

(
H1

µy

) 1
2

)
N x
G (τG)Kx

G (ε, σ) + Õ

(
1 +

(
H1

µy

) 1
2

)
·

(
Õ

(
1 +

(
H2

µx

) 1
2

)
τG

)

+Õ

(
1 +

(
H1

µy

) 1
2

)
·

(
Õ

(
1 +

(
H2

µx

) 1
2

))
·

(
Õ

(
1 +

(
H3

H2

) 1
2

)
τG

)

= Õ

((
1 +

√
H1

µy

)(
N x
G (τG) +

(
1 +

√
H2

µx

)(
τG +

(
1 +

√
H3

H2

)
τG

)))

= Õ

((
1 +

√
H1

µy

)(
N x
G (τG) +

(
1 +

√
H2

µx

)(
1 +

√
H3

H2

)
τG

))
,

where we used that Kx
G (ε, σ) = Õ(1).
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Finally, the basic oracle of G(x, ·) is called in each step of all the three loops. Thus, the
total number is

# of calls in Loop1 + (# of steps in Loop 1)·(# of calls in Loop 2)
+ (# of steps in Loop 1)·(# of steps in Loop 2)·(# of calls in Loop 3)

= Õ

(
1 +

(
H1

µy

) 1
2

)
τG + Õ

(
1 +

(
H1

µy

) 1
2

)
·

(
Õ

(
1 +

(
H2

µx

) 1
2

)
N y
G (τG, H1)Ky

G (ε2, σ2)

)

+Õ

(
1 +

(
H1

µy

) 1
2

)
·

(
Õ

(
1 +

(
H2

µx

) 1
2

))
·

(
Õ

(
1 +

(
H3

H2

) 1
2

)
N y
G (τG, H1)Ky

G (ε2, σ2)

)

= Õ

((
1 +

√
H1

µy

)(
τG +

(
1 +

√
H2

µx

)(
N y
G (τG, H1) +

(
1 +

√
H3

H2

)
N y
G (τG, H1)

)))

= Õ

((
1 +

√
H1

µy

)(
τG +

(
1 +

√
H2

µx

)(
1 +

√
H3

H2

)
N y
G (τG, H1)

))
,

where we used that Ky
G (ε2, σ2) = Õ(1).

The final estimates are obtained by substituting the constants H1, H2, H3 given by

H1 = 2LG, H2 = 2Lf , H3 = 2

(
LG +

2L2
G

µy +H1

)
≤ 2

(
LG +

2L2
G

H1

)
= 4LG.

Proof of Theorem 5

Let us prove the Theorem 5.

Доказательство. The proof of the Theorem 5 consists of three parts: firstly, we explicitly
formulate that after "Loop 1 "Loop 4"the algorithm get a solution to the saddle problem. Then
we prove a technical statement about the polynomial dependence

σ(k) (ε, σ) = poly (ε, σ) , σ̃(k) (ε, σ) = poly (ε, σ) , σ
(k)
0 (ε, σ)

= poly (ε, σ) , ε̃
(k)
f (ε) = poly (ε) , δ(k) (ε) = poly (ε) .

Finally, using the last statement, we show how to get the final estimates on the number of oracle
calls.
Solution obtained Let us show that the random point ŷ obtained after Õ

((
H1
µy

)1/2)
iterations

of the "Loop 1"satisfies 10 of (ε, σ)-solution of the saddle problem. As mentioned in the "Loop
1 after N1 iteration we receive an (ε, σ)-solution for function h(y) + maxx∈Rdx −G(x, y)− f(x),
i.e. inequality

h(ŷ) + max
x∈Rdx

{−G(x, ŷ)− f(x)} − min
y∈Rdy

max
x∈Rdx

{h(y)−G(x, y)− f(x)} ≤ ε

holds True with probability 1− σ. Then, it is an (ε, σ)-solution for saddle problems.
Polynomial dependence Before obtaining the final estimates, it is important to prove that for all
i = 1, 2, 3 dependences

σ(i) (ε, σ) = poly (ε, σ) , σ̃(i) (ε, σ) = poly (ε, σ) , σ
(i)
0 (ε, σ)

= poly (ε, σ) , ε̃
(i)
f (ε) = poly (ε) , δ(i) (ε) = poly (ε) (185)
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are polynomial. This can be proved by induction: base holds true for i = 1. Then let us suppose
that for k ∈ {1, 2} we have

σ(k) (ε, σ) = poly (ε, σ) , σ̃(k) (ε, σ) = poly (ε, σ) , σ
(k)
0 (ε, σ)

= poly (ε, σ) , ε̃
(k)
f (ε) = poly (ε) , δ(k) (ε) = poly (ε) .

According to paragraphs "Loop 1 "Loop 4"σ(k+1), σ̃(k+1), σ
(k+1)
0 , ε̃

(k+1)
f , δ(k+1) are chosen such

that (34), (35) and σ(k+1) = σ̃(k) hold true. These equations guarantee a polynomial dependence

σ(k+1) (ε, σ) = poly (ε, σ) , σ̃(k+1) (ε, σ) = poly (ε, σ) , σ
(k+1)
0 (ε, σ) = poly (ε, σ) , ε̃

(k+1)
f (ε) = poly (ε) , δ(k+1) (ε) = poly (ε) .

Which finishes the proof of polynomial dependence. According last statement (185), we can use
notation Õ(·) at all levels "Loop 1 "Loop 4 implying that the logarithmic part depends on the
initial ε, σ.
Final estimates The only thing left to finish proof of the Theorem 5 is an accurately count the
number of oracle calls at each loop "Loop 1 "Loop 4"of the general scheme. At each step we
must take into account only three places in which the oracle can be called:

• calculation of inexact oracles of functions φ,ψ,

• searching the solution to the auxiliary problem (15),

• step along the gradient (5) of the functions φ,ψ in the Algorithms 1,2;

The technique for counting the number of oracle calls is the same for ∇f,∇h,∇xG,∇yG.
Below we give only an example of calculation the number of oracle calls of ∇h.

According to the Table 4 and paragraphs "Loop 1 "Loop 4"we have

• ∇h is called at each of Õ(
√
H1/µy) iteration of "Loop 1"when:

– Algorithm 2 do the step along the gradient (5), it costs Õ(τh) calls,

– auxiliary problem (52) is solved; ∇h is called at each of Õ(
√
H2/µx) iteration of "Loop

2"when:

∗ an inexact model of ψ (62) is determined, it costs Õ(Nh (τh, H1)) calls,
∗ auxiliary problem (63) is solved: ∇h is called at each of Õ(

√
H3/H2) iteration of

"Loop 3"when an inexact model of φ (65) is determined, it costs Õ(Nh (τh, H1))
calls;

Thus, we obtain that the estimate for the number of oracle calls ∇h has an nested structure
of the form

∇h - oracle calls : Õ

(√
H1

µy

(
τh +

√
H2

µx

(
Nh (τh, H1) +

√
H3

H2
· Nh (τh, H1)

)))
.
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The remaining estimates are obtained similarly. Finally, for obtaining an (ε, σ)-solution of
problem (39) it is sufficient to do the next number of oracle calls

∇f - oracle calls : Õ

(√
H1

µy

(
Nf (τf ) +

√
H2

µx
· τf

))
,

∇h - oracle calls : Õ

(√
H1

µy

(
τh +

√
H2

µx

(
Nh (τh, H1) +

√
H3

H2
· Nh (τh, H1)

)))
,

∇xG - oracle calls : Õ

(√
H1

µy

(
N x
G (τG) +

√
H2

µx

(
τG +

√
H3

H2
· τG

)))
,

∇yG - oracle calls : Õ

(√
H1

µy

(
τG +

√
H2

µx

(
N y
G (τG, H1) +

√
H3

H2
· N y

G (τG, H1)

)))
.

Final estimates can be obtained by choosing the constants H1, H2, H3 in the following way

H1 = 2LG, H2 = 2Lf , H3 = 2

(
LG +

L2
G

µy +H1

)
.

□

Proof of Theorem 7 and Theorem 8

In this appendix we prove Theorems 7, 8 and Corollary 3 and construct algorithms for
problem (95) using the results of Section 1, in particular, Theorem 5, for the case Lf ≥ LG, and
the results of the previous Appendix, in particular, Theorem 10. To use these theorems we need
to satisfy Assumptions 2, 3, which is done in the first subsection. Then, in the next subsections,
we combine the building blocks to obitan the final results.

Algorithms to guarantee Assumptions 2, 3

We start with two auxiliary results, that show how to satisfy Assumptions 2, 3
algorithmically. The first lemma provides complexity for inexact solution of the maximization
problem (49) and the complexity of finding an inexact oracle for function g defined in the same
equation, thereby proving that Assumption 2 holds. We underline that the algorithm which
guarantees Assumption 2 depends on whether Lh ≥ LG or Lh ≤ LG. After that we provide a
simple corollary to show that Assumption 3 also holds.

Lemma 14. Let the function g be defined via maximization problem in (49), i.e.

g(x) = max
y∈Rdy

{
G(x, y)− h(y)− H

2
∥y − y0∥2

}
, (186)

where G(x, y), h(y) are according to (95) and satisfy Assumption 5.1,2,3(a), y0 ∈ Rdy . Then,
for each of two cases Lh ≥ LG and Lh ≤ LG we organize computations in two loops and apply
Algorithm 2, so that Assumption 2 holds with τG basic oracle calls for G(·, y) and the following
estimates for the number of basic oracle calls for G(x, ·) and h respectively

N y
G (τG, H) = O

(
τG + τG

√
LG/(H + µy)

)
, (187)

Nh (τh, H) = O

(
τh + τh

√
Lh/(H + µy)

)
. (188)
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We name these algorithms "Sliding Lh ≥ LG"and "Sliding Lh ≤ LG".

Доказательство. To satisfy Assumption 2 we need to provide an (δ (ε) /2, σ0 (ε, σ))-
solution to the problem (186) and (δ (ε) , σ0 (ε, σ) , 2Lg)-oracle of g in (186), where Lg = LG +
+ 2L2

G/(µy +H).
By Lemma 2 with F (x, y) = G(x, y), w(y) = h(y) + H

2 ∥y − y0∥2, δ = δ (ε) and σ0 = σ0 (ε, σ)
applied to the problem (186), if we find a (δ/2, σ0)-solution ỹδ/2(x) of the problem (186), then
∇xG

(
x, ỹδ/2(x)

)
is (δ, σ0, 2Lg)-oracle of g and its calculation requires τG calls of the oracle

∇xG(·, y). To finish the proof, we now focus on obtaining a (δ/2, σ0)-solution ỹδ/2(x) of the
problem (186). For this we consider two cases Lh ≥ LG and Lh ≤ LG and for each one we
construct a two-loop procedure described below. We begin with the case Lh ≥ LG.

Sliding for Lh ≥ LG, Loop 1

The goal of Loop 1 is to find an (δ (ε) /2, σ0 (ε, σ))-solution of problem (186) as a maximization
problem in y. To obtain such an approximate solution, we change the sign of this optimization
problem and apply Algorithm 2 with

φ = −G(x, y), ψ = h(y) +
H

2
∥y − y0∥2. (189)

Function φ is convex and has LG-Lipschitz continuous gradient, function ψ is H + µy-strongly
convex and has Lh+H-Lipschitz continuous gradient. Thus, we can apply Algorithm 2 with exact
oracles and parameter H1 ≥ 2LG, which will be chosen later, to solve problem (186). To satisfy
the conditions of Theorem 4, which gives the complexity of Algorithm 2, we, first, observe that
the oracles of φ and ψ are exact and, second, observe that we need in each iteration of Algorithm
1, used as a building block in Algorithm 2, to find an

(
ε̃
(1)
f (δ/2) , σ̃(1) (δ/2, σ0)

)
-solution to the

auxiliary problem (15), which in this case has the following form:

ztk+1 = arg min
z∈Rdy

{⟨∇φ(zmdk ), z − zmdk ⟩+ ψ(z) +
H1

2
∥z − zmdk ∥22}

= arg min
z∈Rdy

{−⟨∇zG(x, z
md
k ), z − zmdk ⟩+ h(z) +

H

2
∥z − y0∥2 +

H1

2
∥z − zmdk ∥22}, (190)

where σ̃(1) (δ/2, σ0) , ε̃
(1)
f (δ/2) need to satisfy inequalities (34), (35). Below, in the Loop 2, we

explain how to solve this auxiliary problem in such a way that these inequalities hold.
To summarize Loop 1, both main assumptions of Theorem 4 hold and we can use it to

guarantee that we obtain an (δ/2, σ0)-solution of problem (186). Due to polynomial dependencies

δ (ε) = poly (ε), σ0 (ε, σ) = poly (ε, σ) this requires Õ
(
1 +

(
H1

µφ+µψ

) 1
2

)
= Õ

(
1 +

(
H1

µy+H

) 1
2

)
calls to the (exact) oracles for φ and for ψ, and the same number of times solving the auxiliary
problem (190). Combining this oracle complexity with the cost of calculating (exact) oracles

for φ and for ψ, we obtain that solving problem (74) requires Õ
(
1 +

(
H1

µy+H

) 1
2

)
τG calls of

the basic oracle for G(x, ·) and Õ

(
τh

(
1 +

(
H1

µy+H

) 1
2

))
of the basic oracles for h. The only

remaining thing is to provide an inexact solution to problem (190) and, next, we move to Loop 2

to explain how to guarantee this. Note that we need to solve problem (190) Õ
(
1 +

(
H1

µy+H

) 1
2

)
times.
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Sliding for Lh ≥ LG, Loop 2

As mentioned in the previous Loop 1, in each iteration of Algorithm 2 in Loop 1 we need to find
many times an (ε2, σ2)-solution of the auxiliary problem (190), where we denoted for simplicity
σ2 = σ̃(1) (δ/2, σ0) and ε2 = ε̃

(1)
f (δ/2). To solve problem (190), we would like to apply Algorithm

2 with

φ = h(z), ψ = −⟨∇zG(x, z
md
k ), z − zmdk ⟩+ H

2
∥z − y0∥2 +

H1

2
∥z − zmdk ∥22. (191)

Function φ is µy-strongly convex and has Lh-Lipschitz continuous gradient, function ψ is H+H1-
strongly convex and has H +H1-Lipschitz continuous gradient. Thus, we can apply Algorithm 2
with exact oracles and parameterH2 ≥ 2Lh, which will be chosen later, to solve problem (190). To
satisfy the conditions of Theorem 4, which gives the complexity of Algorithm 2, we, first, observe
that the oracles of φ and ψ are exact and, second, observe that we need in each iteration of
Algorithm 1, used as a building block in Algorithm 2, to find an

(
ε̃
(2)
f (ε2) , σ̃

(2) (ε2, σ2)
)
-solution

to the auxiliary problem (15), which in this case has the following form:

utm+1 = arg min
u∈Rdx

{⟨∇φ(umdm ), u− umdm ⟩+ ψ(u) +
H2

2
∥u− umdm ∥22}

= arg min
u∈Rdx

{⟨∇h(umdm ), u− umdm ⟩ − ⟨∇zG(x, z
md
k ), u− zmdk ⟩

+
H

2
∥u− y0∥2 +

H1

2
∥u− zmdk ∥22 +

H2

2
∥u− umdm ∥22}. (192)

This quadratic auxiliary problem (192) can be solved explicitly and exactly. Thus, the second
main assumption of Theorem 4 is satisfied with σ̃(2) (ε2, σ2) = 0, ε̃

(2)
f (ε2) = 0, which clearly

satisfy (31) and (32).
To summarize Loop 2, both main assumptions of Theorem 4 hold and we can use it

to guarantee that we obtain an (ε2, σ2)-solution of the auxiliary problem (190). This requires

O

((
1 +

(
H2

µφ+µψ

) 1
2

)
log ε−1

2

)
= O

((
1 +

(
H2

µy+H+H1

) 1
2

)
log ε−1

2

)
calls to the (exact) oracles

for φ and for ψ, and the same number of times solving the auxiliary problem (192). Combining
this oracle complexity with the cost of calculating (exact) oracles for φ and for ψ, we obtain that

solving problem (190) requires O
(
τh

(
1 +

(
H2

µy+H+H1

) 1
2

)
log ε−1

2

)
calls of the basic oracle for

h. Also according to the polynomial dependencies (34), (35) we obtain that

σ2 = σ̃(1) (δ/2, σ0) = poly(δ/2, σ0), ε2 = ε̃
(1)
f (δ/2, σ0) = poly(δ/2, σ0).

Using conditions δ (ε) = poly (ε), σ0 (ε, σ) = poly (ε, σ) in the formulation of Assumption 2 we
obtain that the dependencies

σ2 (ε, σ) , σ̃
(1) (ε, σ) , ε2 (ε, σ) , ε̃

(1)
f (ε, σ)

are polynomial. Then, we can use notation Õ(·) without specifying what precision we mean and
implying that the logarithmic part depends on the initial ε, σ.
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Sliding Lh ≥ LG, combining the estimates of both loops

Combining the estimates of the above Loop 1 and Loop 2 we see that, finding a point ỹδ/2(x)
that is a (δ (ε) /2, σ0 (ε, σ))-solution to the problem (186) requires the following number of calls
of the basic oracles of G(x, ·) and h respectively

Õ

(
τG + τG

√
H1/(H + µy)

)
, (193)

Õ

(
τh

(
1 +

√
H1/(H + µy)

)
+

(
1 +

√
H1/(H + µy)

)
τh

(
1 +

√
H2

µy +H +H1

))
. (194)

Finding (δ (ε) , σ0 (ε, σ) , 2Lg)-oracle of g by calculating ∇xG
(
x, ỹδ/2(x)

)
requires additionally

τG = mG calls of the basic oracle for G(·, y). Since in Assumption 2 we denote the dependence
on the target accuracy ε and confidence level σ by a separate quantities denoted by K(ε, σ) and
in this case it is logarithmic, choosing H1 = 2LG and H2 = 2Lh we get the final estimates for
N y
G and Nh to guarantee that Assumption 2 holds:

N y
G = O

(
τG + τG

√
LG

µy +H

)
,

Nh = O

(
τh

(
1 +

√
2LG/(H + µy)

)(
1 +

√
2Lh

µy +H + 2LG

))

= O

(
1 +

√
2LG

µy +H
+

√
2Lh

µy +H
+

√
2LG

H + µy

√
2Lh

µy +H + 2LG

)
τh

= O

(
τh

(
1 +

√
Lh

µy +H

))
,

where we used that Lh ≥ LG
Our aim now is to obtain the same estimates on N y

G and Nh for the case when Lh ≤ LG. We
do this by changing the order of Loop 1 and Loop 2 in the construction of previous Algorithm.

Sliding for Lh ≤ LG, Loop 1

The goal of Loop 1 is to find an (δ (ε) /2, σ0 (ε, σ))-solution of problem (186) as a maximization
problem in y. To obtain such an approximate solution, we change the sign of this optimization
problem and apply Algorithm 2 with

φ = h(y), ψ = −G(x, y) + H

2
∥y − y0∥2. (195)

Function φ is µy-strongly convex and has Lh-Lipschitz continuous gradient, function ψ is H-
strongly convex and has Lh+H-Lipschitz continuous gradient. Thus, we can apply Algorithm 2
with exact oracles and parameter H1 ≥ 2Lh, which will be chosen later, to solve problem (186).
To satisfy the conditions of Theorem 4, which gives the complexity of Algorithm 2, we, first,
observe that the oracles of φ and ψ are exact and, second, observe that we need in each iteration
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of Algorithm 1, used as a building block in Algorithm 2, to find an
(
ε̃
(1)
f (δ/2) , σ̃(1) (δ/2, σ0)

)
-

solution to the auxiliary problem (15), which in this case has the following form:

ztk+1 = arg min
z∈Rdy

{⟨∇φ(zmdk ), z − zmdk ⟩+ ψ(z) +
H1

2
∥z − zmdk ∥22}

= arg min
z∈Rdy

{⟨∇zh(z
md
k ), z − zmdk ⟩ −G(x, z) +

H

2
∥z − y0∥2 +

H1

2
∥z − zmdk ∥22}, (196)

where σ̃(1) (δ/2, σ0) , ε̃
(1)
f (δ/2) need to satisfy inequalities (34), (35). Below, in the Loop 2, we

explain how to solve this auxiliary problem in such a way that these inequalities hold.
To summarize Loop 1, both main assumptions of Theorem 4 hold and we can use it to

guarantee that we obtain an (δ/2, σ0)-solution of problem (186). Due to polynomial dependencies

δ (ε) = poly (ε), σ0 (ε, σ) = poly (ε, σ) this requires Õ
(
1 +

(
H1

µφ+µψ

) 1
2

)
= Õ

(
1 +

(
H1

µy+H

) 1
2

)
calls to the (exact) oracles for φ and for ψ, and the same number of times solving the auxiliary
problem (196). Combining this oracle complexity with the cost of calculating (exact) oracles for

φ and for ψ, we obtain that solving problem (74) requires Õ
(
1 +

(
H1

µy+H

) 1
2

)
τG calls of the

basic oracle for G(x, ·) and Õ
(
1 +

(
H1

µy+H

) 1
2

)
τh of the basic oracles for h. The only remaining

thing is to provide an inexact solution to problem (196) and, next, we move to Loop 2 to explain

how to guarantee this. Note that we need to solve problem (196) Õ
(
1 +

(
H1

µy+H

) 1
2

)
times.

Sliding for Lh ≤ LG, Loop 2

As mentioned in the previous Loop 1, in each iteration of Algorithm 2 in Loop 2 we need to find
many times an (ε2, σ2)-solution of the auxiliary problem (196), where we denoted for simplicity
σ2 = σ̃(1) (δ/2, σ0) and ε2 = ε̃

(1)
f (δ/2). To solve problem (196), we would like to apply Algorithm

2 with

φ = −G(x, z), ψ = ⟨∇h(zmdk ), z − zmdk ⟩+ H

2
∥z − y0∥2 +

H1

2
∥z − zmdk ∥22. (197)

Function φ is convex and has LG-Lipschitz continuous gradient, function ψ isH+H1+µy-strongly
convex and hasH+H1-Lipschitz continuous gradient. Thus, we can apply Algorithm 2 with exact
oracles and parameter H2 ≥ 2LG, which will be chosen later, to solve problem (196). To satisfy
the conditions of Theorem 4, which gives the complexity of Algorithm 2, we, first, observe that
the oracles of φ and ψ are exact and, second, observe that we need in each iteration of Algorithm
1, used as a building block in Algorithm 2, to find an

(
ε̃
(2)
f (ε2) , σ̃

(2) (ε2, σ2)
)
-solution to the

auxiliary problem (15), which in this case has the following form:

utm+1 = arg min
u∈Rdx

{⟨∇φ(umdm ), u− umdm ⟩+ ψ(u) +
H2

2
∥u− umdm ∥22}

=arg min
u∈Rdx

{−⟨∇uG(x, u
md
m ), u− umdm ⟩+ ⟨∇h(zmdk ), u− zmdk ⟩ (198)

+
H

2
∥u− y0∥2 +

H1

2
∥u− zmdk ∥22 +

H2

2
∥u− umdm ∥22}. (199)
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This quadratic auxiliary problem (199) can be solved explicitly and exactly. Thus, the second
main assumption of Theorem 4 is satisfied with σ̃(2) (ε2, σ2) = 0, ε̃

(2)
f (ε2) = 0, which clearly

satisfy (31) and (32).
To summarize Loop 2, both main assumptions of Theorem 4 hold and we can use it

to guarantee that we obtain an (ε2, σ2)-solution of the auxiliary problem (196). This requires

O

((
1 +

(
H2

µφ+µψ

) 1
2

)
log ε−1

2

)
= O

((
1 +

(
H2

µy+H+H1

) 1
2

)
log ε−1

2

)
calls to the (exact) oracles

for φ and for ψ, and the same number of times solving the auxiliary problem (199). Combining
this oracle complexity with the cost of calculating (exact) oracles for φ and for ψ, we obtain that

solving problem (196) requires O
((

1 +
(

H2
µy+H+H1

) 1
2

)
log ε−1

2

)
τG calls of the basic oracle for

G(x, ·). Also according to the polynomial dependences (34), (35) we obtain that

σ2 = σ̃(1) (δ/2, σ0) = poly(δ/2, σ0), ε2 = ε̃
(1)
f (δ/2, σ0) = poly(δ/2, σ0).

Using conditions δ (ε) = poly (ε), σ0 (ε, σ) = poly (ε, σ) in the formulation of Asumption 2 we
obtain that the dependencies

σ2 (ε, σ) , σ̃
(1) (ε, σ) , ε2 (ε, σ) , ε̃

(1)
f (ε, σ)

are polynomial. Then, we can use notation Õ(·) without specifying what precision we mean and
implying that the logarithmic part depends on the initial ε, σ.

Sliding for Lh ≤ LG, combining the estimates of both loops

Combining the estimates of the above Loop 1 and Loop 2 we see that, finding a point ỹδ/2(x)
which is an (δ (ε) /2, σ0 (ε, σ))-solution to the problem (186) requires the following number of
calls of the basic oracles of h and G(x, ·) respectively

Õ

(
1 +

√
H1/(H + µy)

)
τh, (200)

Õ

(
τG + τG

√
H1/(H + µy) +

(
1 +

√
H1/(H + µy)

)(
τG + τG

√
H2

µy +H +H1

))
. (201)

Finding (δ (ε) , σ0 (ε, σ) , 2Lg)-oracle of g by calculating ∇xG
(
x, ỹδ/2(x)

)
requires additionally

τG calls of the basic oracle for G(·, y). Since in Assumption 2 we denote the dependence on the
target accuracy ε and confidence level σ by a separate quantities denoted by K(ε, σ) and in this
case it is logarithmic, choosing H1 = 2Lh and H2 = 2LG we get the final estimates for N y

G and
Nh to guarantee that Assumption 2 holds:

N y
G = O

((
1 +

√
2Lh/(H + µy)

)(
1 +

√
2LG

µy +H + 2Lh

))
τG

= O

(
1 +

√
2Lh

µy +H
+

√
2LG

µy +H
+

√
2Lh

µy +H

√
2LG

µy +H + 2Lh

)
τG = O

(
τG + τG

√
LG

µy +H

)
,

Nh = O

(
1 +

√
Lh

µy +H

)
τh,
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where for the first bound we used that Lh ≤ LG.

It is important to note that the estimates on N y
G and Nh obtained in both cases Lh ≥ LG

and Lh ≤ LG are exactly the same. Thus, regardless of the relation between Lh and LG, we
obtain the estimates in the statement of the Lemma. Yet, we underline that the algorithm
actually depends on whether Lh ≥ LG or Lh ≤ LG. □

We now obtain a simple counterpart of the previous Lemma for the case when Assumption
5.3(b) holds instead of Assumption 5.3(a). In this case h is prox-friendly and there is no need to
consider different cases and just one Loop is enough since the auxiliary problem (190) in Loop 1
can be solved explicitly.

Lemma 15. Let the function g be defined via maximization problem in (49), i.e.

g(x) = max
y∈Rdy

{
G(x, y)− h(y)− H

2
∥y − y0∥2

}
, (202)

where G(x, y), h(y) are according to (95) and satisfy Assumption 5.1,2,3(b), y0 ∈ Rdy . Then,
applying Algorithm 2 to this problem, we guarantee that Assumption 2 holds with τG basic
oracle calls for G(·, y) and the following estimates for the number of basic oracle calls for G(x, ·)
and h respectively

N y
G (τG, H) = O

(
τG + τG

√
LG/(H + µy)

)
, (203)

Nh (τh, H) = 0. (204)

Доказательство. The proof is similar to the proof for the case "Sliding Lh ≥ LG"in the
proof of Lemma 14 with the only change that the auxiliary problem (190) is solved explicitly
thanks to h being prox-friendly. □

By changing the variables x and y in Lemma 14 and choosingH = 0 we obtain the following
simple corollary that ensures Assumption 3.

Corollar 4. Let the function r be defined via maximization problem in (50), i.e.

r(y) = min
x∈Rdx

{G(x, y) + f(x)} , (205)

where G(x, y), f(y) are according to (95) and satisfy Assumption 5.1,2,3(a).Then, for each of two
cases Lf ≥ LG and Lf ≤ LG we organize computations in two loops and apply Algorithm 2, so
that Assumption 3 holds with τG basic oracle calls for G(x, ·) and the following estimates for the
number of basic oracle calls for G(·, y) and f respectively

N x
G (τG) = O

(
τG + τG

√
LG/µx

)
, (206)

Nf (τf ) = O

(
τf + τf

√
Lf/µx

)
. (207)

We name these algorithms "Sliding Lf ≥ LG"and "Sliding Lf ≤ LG".
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Different regimes Lh ≥ LG Lh ≤ LG

Lf ≤ LG

Framework from Appendix (Theorem 10)

+ Sliding for Lh ≥ LG (Lemma 14)

+ Sliding for Lf ≤ LG (Corollary 4)

Framework from Appendix (Theorem 10)

+ Sliding for Lh ≤ LG (Lemma 14)

+ Sliding for Lf ≤ LG (Corollary 4)

Lf ≥ LG

General Framework (Theorem 5)

+ Sliding for Lh ≥ LG (Lemma 14)

+ Sliding for Lf ≥ LG (Corollary 4)

General Framework (Theorem 5)

+ Sliding for Lh ≤ LG (Lemma 14)

+ Sliding for Lf ≥ LG (Corollary 4)

Table 6. Summary of the proof of Theorem 3. For each regime we apply the algorithms described in the
proofs of the corresponding results listed in the table to obtain the complexity estimates (103)-(106) for
the number of basic oracle calls for each part of the objective f , h, and G.

Proof of Theorem 7

Finally, we prove Theorem 7 for problem (95) by combining the building blocks depending
on the relation between Lf and LG and relation between Lh and LG. If Lf ≥ LG we use the
general framework from the main text (see Section 1 and Theorem 5). In the opposite case we
apply the variation of this framework described in Appendix (see Theorem 10). In both cases we
use Lemma 14 and Corollary 4 to ensure Assumptions 2, 3, but with different order of the loops
described inside these Lemma and Corollary depending on the relation between Lh and LG, i.e.
we use either sliding Lh ≥ LG or sliding Lh ≤ LG in Lemma 14 and either sliding Lf ≥ LG or
sliding Lf ≤ LG in Corollary 4. For convenience, we summarize which results are used in which
case in Table 6.

Proof of Theorem 7

Assumption 5.1,2,3(a) with (97) guarantee that Assumption 1 holds. Further, the choice
H = 2LG in Lemma 14 guarantee that Assumption 2 holds with the number of oracle calls given
by (187) and (188). Corollary 4 guarantee that Assumption 3 holds with the number of oracle
calls given by (206) and (207). We consider two cases Lf ≥ LG and Lf ≤ LG and, for each
case, apply either the general framework from the main text or from the previous appendix. We
show that in both cases the estimates are the same and are equal to the ones in the statement
of the theorem. In each case we make the derivations with σ = 0 since all the algorithms are
deterministic in this case.

We begin with the case Lf ≥ LG.

Case Lf ≥ LG

Applying Theorem 5 with τf = τh = 1 and τG = mG, Lemma 14 with H = 2LG, Corollary 4 and
combining the complexity estimates in these results, we obtain the following final complexity
bounds.
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Number of basic oracle calls of f :

Õ

((
1 +

√
LG
µy

)(
1 +

√
Lf
µx

+

(
1 +

√
LG
µx

)(
1 +

√
Lf
LG

)))

= Õ

((√
LG
µy

)(√
Lf
µx

+

(√
LG
µx

)(√
Lf
LG

)))

= Õ

((√
LfLG
µxµy

))
,

where we used that, LG ≤ Lf and, by the assumptions of this Theorem, 1 ≤ LG/µy, 1 ≤ LG/µx,
1 ≤ Lf/µx.

Number of basic oracle calls of h:

Õ

((
1 +

√
LG
µy

)(
1 +

(
1 +

√
LG
µx

)(
1 +

√
Lh

2LG + µy

)))

= Õ

((√
LG
µy

)(
1 +

(√
LG
µx

)(
1 +

√
Lh
LG

)))

= Õ

(
max

{√
LGLh
µxµy

,

√
L2
G

µxµy

})
,

where we used that H = 2LG in Lemma 14 and, by the assumptions of this Theorem, 1 ≤ LG/µy,
1 ≤ LG/µx.

Number of basic oracle calls of G(·, y):

Õ

((
1 +

√
LG
µy

)(
mG +mG

√
LG
µx

+mG

(
1 +

√
LG
µx

)))
= Õ

(
mG

√
L2
G

µxµy

)
,

where we used that, by the assumptions of this Theorem, 1 ≤ LG/µy and 1 ≤ LG/µx.
Number of basic oracle calls of G(x, ·):

Õ

((
1 +

√
LG
µy

)(
mG +mG

(
1 +

√
LG
µx

)(
1 +

√
LG

2LG + µy

)))

= Õ

(
mG

(
1 +

√
LG
µy

)(
1 +

√
LG
µx

))
= Õ

(
mG

√
L2
G

µxµy

)
,

where we used that H = 2LG in Lemma 14 and, by the assumptions of this Theorem, 1 ≤ LG/µy
and 1 ≤ LG/µx.

Case Lf ≤ LG

Applying Theorem 10 with τf = τh = 1 and τG = mG, Lemma 14 with H = 2LG, Corollary 4
and combining the, complexity estimates we obtain the final complexity bounds as follows.

КОМПЬЮТЕРНЫЕ ИССЛЕДОВАНИЯ И МОДЕЛИРОВАНИЕ



Об ускоренных методах для седловых задач с . . . 69

Number of basic oracle calls of f :

Õ

((
1 +

√
LG
µy

)(
1 +

√
Lf
µx

+

(
1 +

√
Lf
µx

)))
= Õ

((√
LG
µy

)(√
Lf
µx

+

(√
Lf
µx

)))

= Õ

((√
LfLG
µxµy

))
,

where we used that, by the assumptions of this Theorem, 1 ≤ LG/µy and 1 ≤ Lf/µx.

Number of basic oracle calls of h:

Õ

((
1 +

√
LG
µy

)(
1 +

(
1 +

√
Lf
µx

)(
1 +

√
LG
Lf

)(
1 +

√
Lh

2LG + µy

)))

= Õ

((√
LG
µy

)(
1 +

(√
Lf
µx

)
·

(√
LG
Lf

)
·

(
1 +

√
Lh
LG

)))
= Õ

(
max

{√
L2
G

µxµy
,

√
LGLh
µxµy

})
,

where we used that H = 2LG in Lemma 14, LG ≥ Lf and, by the assumptions of this Theorem,
1 ≤ LG/µy, 1 ≤ Lf/µx.

Number of basic oracle calls of G(·, y):

Õ

((
1 +

√
LG
µy

)(
mG +mG

√
LG
µx

+mG

(
1 +

√
Lf
µx

)(
1 +

√
LG
Lf

)))

= Õ

(
mG

(√
LG
µy

)(√
LG
µx

+

(√
Lf
µx

)
·

(√
LG
Lf

)))
= Õ

(
mG

(√
LG
µy

)(√
LG
µx

))

= Õ

(
mG

√
L2
G

µxµy

)
,

where we used that LG ≥ Lf and, by the assumptions of this Theorem, 1 ≤ LG/µy, 1 ≤ LG/µx,
1 ≤ Lf/µx.

Number of basic oracle calls of G(x, ·):

Õ

((
1 +

√
LG
µy

)(
mG +

(
1 +

√
Lf
µx

)(
mG +mG

√
LG

2LG + µy
+

√
LG
Lf

·mG

(
1 +

√
LG

2LG + µy

))))

= Õ

(
mG

(√
LG
µy

)(
1 +

(√
Lf
µx

)
·

(√
LG
Lf

)))
= Õ

(
max

{
mG

√
LG
µy

,mG

√
L2
G

µxµy

})

= Õ

(
mG

√
L2
G

µxµy

)
,

where we used that H = 2LG in Lemma 14, LG ≥ Lf and, by the assumptions of this Theorem,
1 ≤ LG/µy, 1 ≤ LG/µx, 1 ≤ Lf/µx.

□
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Proof of Theorem 8

The only difference in the proof of Theorem 8 from the proof of Theorem 7 is the use of
Lemma 15 instead of Lemma 14 to satisfy Assumption 2. Thus, applying expressions (203), (204)
for N y

G and Nh and following the proof of Theorem 7 without any changes we obtain the same
estimates for the number of basic oracle calls of f,G(·, y), G(x, ·). Considering Nh = 0 and using
that, by the assumptions of this Theorem, 1 ≤ LG/µy, we obtain that the number of basic oracle
calls of h is

Õ

(√
LG
µy

)
.

□

Proof of Lemma 1 and Lemma 2

Let us proof Lemma 1

Доказательство. Using the Deffinition 2 for function φ and ψ, we can obtain:

µφ
2
∥x− y∥2 ≤ φ(x)−

(
φδφ,Lφ,µφ(y) +

〈
∇φδφ,Lφ,µφ(y), x− y

〉)
≤ Lφ

2
∥x− y∥2 + δφ w.p. 1− σφ

(208)
µψ
2
∥x− y∥2 ≤ ψ(x)−

(
ψδψ ,Lψ ,µψ(y) +

〈
∇ψδψ ,Lψ ,µψ(y), x− y

〉)
≤
Lψ
2
∥x− y∥2 + δψ w.p. 1− σψ

(209)
Let us sum this equations:

µφ
2
∥x− y∥2 +

µψ
2
∥x− y∥2 ≤ φ(x) + ψ(x)− φδφ,Lφ,µφ(y)− ψδψ ,Lψ ,µψ(y) (210)

−
〈
∇φδφ,Lφ,µφ(y)−∇ψδψ ,Lψ ,µψ(y), x− y

〉
≤ Lφ

2
∥x− y∥2 +

Lψ
2
∥x− y∥2 + δφ + δψ w.p. 1− σφ − σψ (211)

The equation (211) means that the pair
(
φδφ,Lφ,µφ(y) + ψδψ ,Lψ ,µψ(y) ,

∇φδφ,Lφ,µφ(y) +∇ψδψ ,Lψ ,µψ(y)
)

is (δφ + δψ, σφ + σψ, Lφ + Lψ, µφ + µψ)-oracle for φ +
+ ψ. □

Let us proof Lemma 2

Доказательство. The function Ŝ(x, ·) is µy-strongly concave, and Ŝ(·, y) is differentiable.
Therefore, by Demyanov–Danskin’s theorem, for any x ∈ Rdx , we have

∇g(x) = ∇xS̃(x, y
∗(x)) = ∇xF (x, y

∗(x)). (A1)

To prove that g(·) has an L–Lipschitz gradient for L = LF +
2L2

F
µy

, let us prove the Lipschitz
condition for y∗(·) with a constant, the function y∗ is defined as:

y∗(x) := arg max
y∈Rdy

Ŝ(x, y) ∀x ∈ Rdx , (212)

Since Ŝ(x1, ·) is µy-strongly concave, for arbitrary x1, x2 ∈ Rdx :

∥y∗(x1)− y∗(x2)∥22 ≤
2

µy

(
Ŝ(x1, y

∗(x1))− Ŝ(x1, y
∗(x2))

)
. (A2)
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On the other hand, Ŝ(x2, y∗(x1)) − Ŝ(x2, y
∗(x2)) ≤ 0, since y∗(x2) affords the maximum

to Ŝ(x2, .) on Rdy . We have

Ŝ(x1, y
∗(x1))− Ŝ(x1, y

∗(x2)) ≤ Ŝ(x1, y
∗(x1))− Ŝ(x1, y

∗(x2))− Ŝ(x2, y
∗(x1)) + Ŝ(x2, y

∗(x2)) =

from (28)
= (F (x1, y

∗(x1))− F (x1, y
∗(x2)))− (F (x2, y

∗(x1))− F (x2, y
∗(x2))) =

=

∫ 1

0
⟨∇xF (x1 + t(x2 − x1), y

∗(x1))−∇xF (x1 + t(x2 − x1), y
∗(x2)), x2 − x1⟩dt ≤

≤ ∥∇xF (x1 + t(x2 − x1), y
∗(x1))−∇xF (x1 + t(x2 − x1), y

∗(x1))∥2 · ∥x2 − x1∥2 ≤
≤ LF ∥y∗(x1)− y∗(x2)∥2 · ∥x2 − x1∥2.

(A3)

Thus, (A2) and (A3) imply the inequality

∥y∗(x2)− y∗(x1)∥2 ≤
2LF
µy

∥x2 − x1∥2, (A4)

i.e., the function y∗(·) satisfies the Lipschitz condition with a constant 2LF
µy

. Next, from (A1), we
obtain

∥∇g(x1)−∇g(x2)∥2 = ∥∇xF (x1, y
∗(x1))−∇xF (x2, y

∗(x2))∥2 =
= ∥∇xF (x1, y

∗(x1))−∇xF (x1, y
∗(x2)) +∇xF (x1, y

∗(x2))−∇xF (x2, y
∗(x2))∥2 ≤

≤ ∥∇xF (x1, y
∗(x1))−∇xF (x1, y

∗(x2))∥2 + ∥∇xF (x1, y
∗(x2))−∇xF (x2, y

∗(x2))∥2 ≤
≤ LF ∥y∗(x1)− y∗(x2)∥2 + LF ∥x2 − x1∥2 =

from (A4)
=

(
LF +

2L2
F

µy

)
∥x2 − x1∥2.

This means that g(·) has an L–Lipschitz gradient with L = LF +
2L2

F
µy

.
Let us now prove that ∇xF

(
x, ỹδ/2(x)

)
is (δ, 2Lg)-oracle of g, i.e.:

0 ≤ g(z)−
[{
F (x, ỹδ/2(x))− w(ỹδ/2(x))

}
+ ⟨∇xF (x, ỹδ/2(x)), z − x⟩

]
≤ 2L

2
∥z − x∥22 + δ, (213)

First, we prove that, for any δ ≥ 0 and x ∈ Rdx

∥∇xŜ(x, ỹδ/2(x))−∇g(x)∥2 ≤ LF

√
δ

µy
. (A5)

For any x ∈ Rdx , , it is true that ∇xŜ(x, ỹδ/2(x)) = ∇xF (x, ỹδ/2(x)). Then,

∥∇xŜ(x, ỹδ/2(x))−∇g(x)∥22 = ∥∇xF (x, ỹδ/2(x))−∇xF (x, y
∗(x))∥22 ≤

≤ L2
F ∥y∗(x)− ỹδ/2(x)∥22 ≤

from (A2)
≤

2L2
F

µy

(
Ŝ(x, y∗(x))− Ŝ(x, ỹδ/2(x))

)
≤

from (30)
≤

δL2
F

µy
,

which justifies inequality (A5).
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Now , due to the µx-strong convexity of Ŝ(·, ỹδ/2(x)) on Rdx , for arbitrary x, z ∈ Rdx it is
true that

g(z)
from (28)

≥ Ŝ(z, ỹδ/2(x)) ≥ Ŝ(x, ỹδ/2(x)) + ⟨∇xŜ(x, ỹδ/2(x)), z − x⟩.

Thus,
0 ≥ Ŝ(x, ỹδ/2(x))− g(z) + ⟨∇xŜ(x, ỹδ/2(x)), z − x⟩,

which proves the left-hand side of (213). To prove the right-hand side of (213), note that g is
convex and has an L–Lipschitz gradient on Rdx . Therefore, for arbitrary x, z ∈ Rdx , we have

g(z) ≤ g(x) + ⟨∇g(x), z − x⟩+ L

2
∥z − x∥22 ≤

from (30)
≤ Ŝ(x, ỹδ/2(x)) + δ/2 +

L

2
∥z − x∥22 + ⟨∇g(x), z − x⟩+ ⟨∇xŜ(x, ỹδ/2(x)), x− z⟩−

− ⟨∇xŜ(x, ỹδ/2(x)), x− z⟩ =
= Ŝ(x, ỹδ/2(x)) + δ/2 + ⟨∇xŜ(x, ỹδ/2(x)), z − x⟩+ ⟨∇xŜ(x, ỹδ/2(x))−∇g(x), x− z⟩+

+
L

2
∥z − x∥22 ≤

from (A5)
≤ Ŝ(x, ỹδ/2(x)) + δ/2 + ⟨∇xŜ(x, ỹδ/2(x)), z − x⟩+ LF

√
δ

µy
· ∥z − x∥2 +

L

2
∥z − x∥22.

However,

LF

√
δ

µy
· ∥z − x∥2 =

√
L2
F

µy
∥z − x∥22 · δ ≤

L2
F

2µy
∥z − x∥22 + δ/2

due to the classical inequality between the arithmetic and geometric mean. Therefore,

g(z) ≤ Ŝ(x, ỹδ/2(x)) + δ + ⟨∇xŜ(x, ỹδ/2(x)), z − x⟩+
L2
F

µy
∥z − x∥22 +

L

2
∥z − x∥22,

and since L = LF +
2L2

F
µy

, we have L2
F
µy

≤ L
2 ;therefore,

g(z) ≤ Ŝ(x, ỹδ/2(x)) + ⟨∇xŜ(x, ỹδ/2(x)), z − x⟩+ δ + L∥z − x∥22.

Thus, we have

g(z)− Ŝ(x, ỹδ/2(x))− ⟨∇xŜ(x, ỹδ/2(x)), z − x⟩ ≤ L∥z − x∥22 + δ,

which implies the left-hand side of inequality (213).

In the statement of Lemma 2 only (δ/2, σ)-solution to (28) is available. In this case the
inequality (213) will be satisfied with probability 1−σ. Then ∇xF

(
x, ỹδ/2(x)

)
is (δ, σ, 2Lg)-oracle

of g. □
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Proof of Lemma 3

We let Φ(y) = maxx∈Rdx{h(y)−G(x, y)− f(x)} and note that Φ(y) is µy-strongly convex.
Under Condition 1 the function h(y) − G(x, y) − f(x) has unique saddle point (x∗, y∗). Then,
with probability 1− σy we have

∥ŷ − y∗∥2 ≤
2

µy

(
max
x∈Rdx

{h(ŷ)−G(x, ŷ)− f(x)} − min
y∈Rdy

max
x∈Rdx

{h(y)−G(x, y)− f(x)}
)

≤ 2εy
µy

.

(214)

We denote x∗(ŷ) = argmaxx∈Rdx{h(ŷ) − G(x, ŷ) − f(x)}, then according to Lemma 2 x∗(y) is
2LG/µx Lipschitz continuous. Since {h(ŷ) − G(x, ŷ) − f(x)} is µx-strongly concave, we obtain
that the inequality

∥x̂− x∗∥2 ≤ 2∥x̂− x∗(ŷ)∥2 + 2∥x∗(ŷ)− x∗(y∗)∥2 ≤
4εx
µx

+ 8

(
LG
µx

)2

∥ŷ − y∗∥2 (215)

holds true with probability 1−σx−σy. By consecutive application of Lemma 1 and Lemma 2 we
can obtain that Ψ(x) = miny∈Rdy {h(y)−G(x, y)− f(x)} is concave and Lf +LG+

2L2
G

µy
-smooth.

Whence,

max
x∈Rdx

min
y∈Rdy

{h(y)−G(x, y)− f(x)} − min
y∈Rdy

{h(y)−G(x̂, y)− f(x̂)} = Ψ(x∗)−Ψ(x̂) (216)

≤
Lf + LG +

2L2
G

µy

2
∥x̂− x∗∥2 ≤ 2

Lf + LG +
2L2

G
µy

µx
εx + 8

(
LG
µx

)2 Lf + LG +
2L2

G
µy

µy
εy,

with probability 1 − σx − σy.In the first inequality we used that x∗ is the optimal point, and,
hence, ∇Ψ(x∗) = 0. □

Proof of Theorem 5

By construction, as an output of Loop 1 we obtain an (ε, σ)-solution to the problem (37)
satisfy (10).

We prove the estimates for the numbers of oracle calls in two steps. The first step is to
formally prove that in each loop the dependence of the number of oracle calls on the target
accuracy ε and a confidence level σ is logarithmic. The second step is to multiply the estimates
for the number of oracle calls between loops and choose the parameters H1, H2, H3.

Step 1. Polynomial dependence. The goal of this technical step is to prove that

εi(ε) = poly (ε) , σi (ε, σ) = poly (ε, σ) , σ̃(i) (ε, σ)

= poly (ε, σ) , σ(i)0 (ε, σ) = poly (ε, σ) , (217)

ε̃
(i)
f (ε) = poly (ε) , δ(i) (ε) = poly (ε) , ε′2 = poly (ε) , σ′2
= poly (ε, σ) , δ̄(ε2) = poly (ε) , σ̄0(σ2) = poly (ε, σ)

where i = 1, 2, 3. For i = 1, according the polynomial dependencies (31), (32), (34), (35) we
obtain the polynomial dependencies

ε1(ε) = poly (ε) , σ1 (ε, σ) = poly (ε, σ) , σ̃(1) (ε, σ) = poly (ε, σ) , σ(1)0 (ε, σ) = poly (ε, σ) ,

ε̃
(1)
f (ε) = poly (ε) , δ(1) (ε) = poly (ε) .
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Now using that ε′2 = ε̃
(1)
f , σ′2 = σ̃(1) and (56), (57) we have that ε2 (ε) = poly (ε) , σ2 (ε, σ) =

= poly (ε, σ). Further, by (55), δ̄(ε) = poly (ε) , σ̄0 (ε, σ) = poly (ε, σ). Using the same argument as
for i = 1, according the polynomial dependencies (31), (32), (34), (35) we obtain the polynomial
dependencies

ε2(ε) = poly (ε) , σ2 (ε, σ) = poly (ε, σ) , σ̃(2) (ε, σ) = poly (ε, σ) , ε̃(2)f (ε) = poly (ε) ,

δ(2) (ε) = poly (ε) , σ(2)0 (ε, σ) = poly (ε, σ) .

Taking into account that ε3 = ε̃
(2)
f , σ3 = σ̃(2), the polynomial dependencies (31), (32), (34),(35)

we obtain

ε3(ε) = poly (ε) , σ3 (ε, σ) = poly (ε, σ) , σ̃(3) (ε, σ) = poly (ε, σ) , σ(3)0 (ε, σ) = poly (ε, σ) ,

ε̃
(3)
f (ε) = poly (ε) , δ(3) (ε) = poly (ε) .

This finishes the proof of polynomial dependence. Thus, due to (217) in each loop when
Assumptions 2, 3 are applied, the dependencies Ky

G,Kh,Kx
G,Kf have only logarithmic dependence

on the target accuracy ε and confidence level σ, i.e.

Ky
G (ε, σ) = Õ(1), Kh (ε, σ) = Õ(1), Kx

G (ε, σ) = Õ(1), Kf (ε, σ) = Õ(1),

O(log ε−1
1 ) = Õ(1), O(log ε−1

2 ) = Õ(1), O(log ε−1
3 ) = Õ(1).

Step 2. Final estimates. We have already counted the number of oracles calls for each oracle
in each loops, see the last paragraph of the description of each loop. We start with the number of
basic oracle calls of f , which is called in each step of all the three loops. Thus, the total number
is

# of calls in Loop1 + (# of steps in Loop 1)·(# of calls in Loop 2)
+ (# of steps in Loop 1)·(# of steps in Loop 2)·(# of calls in Loop 3)

= Õ

(
1 +

(
H1

µy

) 1
2

)
Nf (τf )Kf (ε, σ) + Õ

(
1 +

(
H1

µy

) 1
2

)
·

(
Õ

(
1 +

(
H2

µx

) 1
2

)
τf

)

+Õ

(
1 +

(
H1

µy

) 1
2

)
·

(
Õ

(
1 +

(
H2

µx

) 1
2

))
·

(
Õ

(
1 +

(
H3

H2

) 1
2

)
τf

)

= Õ

((
1 +

√
H1

µy

)(
Nf (τf ) +

(
1 +

√
H2

µx

)(
1 +

√
H3

H2

)
· τf

))
,

where we used that Kf (ε, σ) = Õ(1).
The basic oracle of h is called in each step of "Loop 1"and "Loop 2". Thus, the total

number is

# of calls in Loop1 + (# of steps in Loop 1)·(# of calls in Loop 2)

= Õ

(
1 +

(
H1

µy

) 1
2

)
τh + Õ

(
1 +

(
H1

µy

) 1
2

)
·

(
Õ

(
1 +

(
H2

µx

) 1
2

)
Nh (τh, H1)Kh (ε2, σ2)

)

= Õ

((
1 +

√
H1

µy

)(
τh +

(
1 +

√
H2

µx

)
Nh (τh, H1)

))
,
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where we used that Kh (ε, σ) = Õ(1).
The basic oracle of G(·, y) is called in each step of "Loop 1"and "Loop 2". Thus, the total

number is

# of calls in Loop1 + (# of steps in Loop 1)·(# of calls in Loop 2)

= Õ

(
1 +

(
H1

µy

) 1
2

)
N x
G (τG)Kx

G (ε, σ) + Õ

(
1 +

(
H1

µy

) 1
2

)
·

(
Õ

(
1 +

(
H2

µx

) 1
2

)
τG

)

= Õ

((
1 +

√
H1

µy

)(
N x
G (τG) +

(
1 +

√
H2

µx

)
τG

))
,

where we used that Kx
G (ε, σ) = Õ(1).

Finally, the basic oracle of G(x, ·) is called in each step of "Loop 1"and "Loop 2". Thus,
the total number is

# of calls in Loop1 + (# of steps in Loop 1)·(# of calls in Loop 2)

= Õ

(
1 +

(
H1

µy

) 1
2

)
τG + Õ

(
1 +

(
H1

µy

) 1
2

)
·

(
Õ

(
1 +

(
H2

µx

) 1
2

)
N y
G (τG, H1)Ky

G (ε2, σ2)

)

= Õ

((
1 +

√
H1

µy

)(
τG +

(
1 +

√
H2

µx

)
N y
G (τG, H1)

))
,

where we used that Ky
G (ε2, σ2) = Õ(1).

The final estimates are obtained by substituting the constants H1, H2, H3 given by

H1 = 2LG, H2 = 2

(
LG +

2L2
G

µy +H1

)
≤ 2

(
LG +

2L2
G

H1

)
= 4LG, H3 = 2Lf .

□

Proof of Theorem 6

Condition 4 with (73) guarantee that Condition 1 holds. Further, assumption µy ≤ LG and
the choice H = 2LG guarantee that µy +H ≤ 4LG. This inequality, assumption that mh(4LG +
+ µy) ≤ Lh and the choice H = 2LG allow to apply Lemma 4 and conclude that Condition 2
holds with the number of oracle calls given by (75) and (76).

Assumptions 2LG + µx ≤ Lf and µx ≤ LG by Corollary 2 guarantee that Assumption 3
holds with the number of oracle calls given by (85) and (86). Applying Theorem 5 and combining
its complexity estimates, we obtain the final complexity bounds as follows.

Number of basic oracle calls of f :

Õ

((
1 +

√
LG
µy

)(√
Lf
µx

+

(
1 +

√
LG
µx

)(
1 +

√
Lf
LG

)))

= Õ

((√
LG
µy

)(√
Lf
µx

+

(√
LG
µx

)(√
Lf
LG

)))
= Õ

((√
LfLG
µxµy

))
,

where we used that, by the assumptions of this Theorem, 1 ≤ LG/µy, 1 ≤ LG/µx and 1 ≤ Lf/LG.
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Number of basic oracle calls of h:

Õ

((
1 +

√
LG
µy

)(
mh +

(
1 +

√
LG
µx

)√
mhLh

2LG + µy

))

= Õ

((√
LG
µy

)(
mh +

(√
LG
µx

)(√
mhLh

2LG + µy

)))

= Õ

max


mh

√
LG
µy︸ ︷︷ ︸

=Õ
(√

mhLh/µy
)
,

√
mhLGLh
µxµy



 = Õ

(√
mhLGLh
µxµy

)
,

where we used that, by the assumptions of this Theorem, 1 ≤ LG/µy, 1 ≤ LG/µx and

mh(4LG + µy) ≤ Lh ⇒
√
mhLG ≤

√
Lh

Number of basic oracle calls of G(·, y):

Õ

((
1 +

√
LG
µy

)(
1 +

√
LG
µx

+

(
1 +

√
LG
µx

)))
= Õ

(√
L2
G

µxµy

)
,

where we used that, by the assumptions of this Theorem, 1 ≤ LG/µy and 1 ≤ LG/µx.
Number of basic oracle calls of G(x, ·):

Õ

((
1 +

√
LG
µy

)(
1 +

(
1 +

√
LG
µx

)(
1 +

√
LG

2LG + µy

)))

= Õ

((
1 +

√
LG
µy

)(
1 +

√
LG
µx

))
= Õ

(√
L2
G

µxµy

)
,

where we used that, by the assumptions of this Theorem, 1 ≤ LG/µy and 1 ≤ LG/µx. □

КОМПЬЮТЕРНЫЕ ИССЛЕДОВАНИЯ И МОДЕЛИРОВАНИЕ


