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The development of a viral infection in the organism is a complex process which depends on the competition
race between virus replication in the host cells and the immune response. To study different regimes of infection
progression, we analyze the general mathematical model of immune response to viral infection. The model
consists of two ODEs for virus and immune cells non-dimensionalized concentrations. The proliferation rate of
immune cells in the model is represented by a bell-shaped function of the virus concentration. This function
increases for small virus concentrations describing the antigen-stimulated clonal expansion of immune cells, and
decreases for sufficiently high virus concentrations describing down-regulation of immune cells proliferation by
the infection. Depending on the virus virulence, strength of the immune response, and the initial viral load, the
model predicts several scenarios: (a) infection can be completely eliminated, (b) it can remain at a low level
while the concentration of immune cells is high; (¢) immune cells can be essentially exhausted, or (d) completely
exhausted, which is accompanied (c, d) by high virus concentration. The analysis of the model shows that virus
concentration can oscillate as it gradually converges to its equilibrium value. We show that the considered model
can be obtained by the reduction of a more general model with an additional equation for the total viral load
provided that this equation is fast. In the case of slow kinetics of the total viral load, this more general model
should be used.
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PazButne BupycHOI MH(QEKIMU B OpraHU3Me IPEJICTABISET COOO0M CIIOKHBIN MPOLIECC, 3aBUCSIIUNA OT KOH-
KYPEHIIUH MEXIy Pa3MHOKCHHEM BHPYCa B KIETKaX OPraHHU3Ma-X03sMHA U UIMMYHHBIM OTBETOM. B maHHO# pa-
00Te JUIsl MCCIICIOBAHUS PA3IMYHBIX PEKUMOB PA3BUTHSI MHPEKIUH Mbl aHATH3UPYEeM OOIIYI0 MATEMATHICCKYFO
MOJIeJIb IMMYHHOT'O OTBETa OpraHu3Ma Ha BUPYCHYIO nHpeKio. Moesb npecTaBiseT co00i CUucTeMy U3 ABYX
OOBIKHOBEHHBIX AU PEPEHIHATbHBIX YPABHEHUH, ONMCHIBAIONINX U3MEHEHHE 00e3pa3MepeHHbIX KOHIIEHTPaLUi
BUpYCa U MMMYHHBIX KJIeTOK. CKOpOCTh Mponudepanuy MIMMYHHBIX KJICTOK HpEJCTaBlIeHa KOJOK0JI000pa3HOU
(dyHKIMEH KOHIIEHTpAMK BUpyca. DTa (YHKIMA BO3PACTACT MPU MaJIbIX KOHIIEHTPAIUSIX BUPYCA, OMKMCHIBAsI aH-
TUTCH-CTUMYJIUPOBAHHYIO KIIOHAJIBHYIO YKCIIAHCHUIO MMMYHHBIX KJIETOK, M CHH)KACTCS IIPU JIOCTATOYHO BBHICOKUX
KOHIICHTPALUSIX BUPYCa, ONMCHIBAS TIOJIABICHUE MPOUdepalii UMMYHHBIX KJIeTOK nHdekiueil. B 3aBucumoctu
OT BUPYJICHTHOCTH BHPYCa, CHJIbI HIMMYHHOTO OTBETa M HA4YallbHOW BUPYCHOU HArPY3KH, MOJIENb NPE/ICKa3bIBACT
HECKOJIBKO CIieHapHeB: (a) MHPEKIMS MOXET ObITh OJIHOCTBIO yCTpaHeHa, (0) OHa MOXKET OCTaBaThCsl HA HU3KOM
YPOBHE IIPU BBICOKOHW KOHLEHTPAIMM MMMYHHBIX KIETOK; (B) MMMYHHAash CUCTEMa MOXKET OBITh CYIIECTBEHHO
MCTOIIEeHa WK (T) MOJHOCTHIO UCTOIICHA, YTO COTPOBOXKIAETCS (B, T') BBICOKOW KOHIICHTpamuel BUpyca. AHAIN3
MOJIENHU TTI0Ka3bIBAET, YTO KOHIIEHTPALIUSI BUPYCa MOJKET KOJIEOAThCsI [0 Mepe MOCTENEHHOTO MPUOIMKEHHS K CBO-
€My paBHOBECHOMY 3Ha4eHHIO. PaccMmarpuBaemasi MOJIENIb MOXKET ObITh MOJIydeHA MPU PEAyKIUHU Oosee oOriei
MOJIEJIN — C JONOJIHUTENILHBIM YPaBHEHUEM JUIsl 00LIel BUPYCHOM Harpy3KH, B IPEIIION0KEHNH, YTO 0011ast BU-
pycHasi Harpy3Ka sIBISIeTCsl OBICTPOI NepeMeHHOH. B ciiyyae MeaneHHOH KMHETHKH OOIel BUPYCHOM Harpysku
CJIe/lyeT MCIONIb30BaTh YKa3aHHYI0 OoJiee OOIIyI0 MOJIEIb.
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1. Introduction

All organisms have an immune system that protects them against pathogens [Nicholson, 2016].
In this study, we particularly focus on immune protection against viruses. The general outcome of any
viral infection is determined by the complex balance between the kinetics of virus reproduction inside
the infected cells and spreading of the virus throughout the body, on the one hand, and the strength of
the antiviral immune responses, on the other hand.

The immune system and the immune response are examples of very complex systems and
processes that are being investigated by thousands of scientists worldwide. Let us briefly give
a general idea of the complexity of this system. Two basic types, or phases, of immune response
can be distinguished: innate and adaptive [Nicholson, 2016]. Innate immune response is fast and
includes complement system activation, phagocytosis of pathogens (by macrophages, dendritic cells,
and neutrophils), inflammation (monocyte activation and cytokine release by leukocytes), killing the
pathogens and infected cells by natural killer cells, and activation of adaptive immune response by
antigen-presenting cells. Adaptive immune response includes activation and clonal proliferation of T-
and B-lymphocytes (CD4+ T-cells proliferate to helper T-lymphocytes, while CD8+ T-cells proliferate
to cytotoxic T-lymphocytes), and production of antibodies by B-lymphocytes. Proliferated lymphocytes
and produced antibodies are highly specific to the invaded antigen and act together to eliminate it.

Due to high complexity of the immune system, understanding its response to pathogens demands
attraction of mathematical modeling methods [Bocharov et al., 2018b; Marchuk, 1991; Romanyukha,
2012]. In most cases, these models are based on ordinary differential equations (similarly to chemical
kinetics models) describing concentrations of components — immune cells, cytokines, antibodies, etc.
Frequently, a model contains time delay(s) because cell responses, as well as viral release from an
infected cell, take some time after triggering.

As with any complex system, both “bottom-up” and “top-down” approaches are used in
the contemporary mathematical modelling of the immune response. There exist quite complex
mathematical models consisting of dozens of differential equations (“bottom-up” approach), as well
as rather “simple” (“qualitative”, “phenomenological”, “conceptual”) mathematical models comprising
only 2-3 differential equations (“top-down” approach) [Bocharov et al., 2018b; Marchuk, 1991;
Romanyukha, 2012]. Top-down, conceptual models are useful for understanding the system properties
in general. For example, using such “simple” models, existence of new behavior types of viral infections
and immune response has recently been predicted and classified [Bocharov et al., 2017; Bocharov et
al., 2018a]. However, the “simplicity” (only 2-3 equations) is confusing, because the high nonlinearity
of equations, the presence of time delays, spatial non-uniformity and (usual for biology) problems of
comparison with experimental data make these “simple” models very difficult to deal with. Thus, this
“simple” models still contain lots of enigmas, and their behavior and properties should be studied in
more detail.

In this work, we investigate the homogenous case of the recently proposed conceptual
mathematical model of immune response to a viral infection capable of describing several outcomes of
infection disease, from complete recovery to death [Bocharov et al., 2017; Bocharov et al., 2018a]. We
systematically analyze the location of null-clines and consequent types of all the steady states in this
system giving the above outcomes. We show that damped oscillations are possible during the transition
to the steady state of incomplete recovery. We also show that this model can be obtained as a particular
case of a more general model with an additional equation for the total viral load under the assumption
that the total viral load is a fast variable, and in the case of slow kinetics of the total viral load, this
more general model should be used.
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2. Mathematical model

2.1

et al

L.

2.

Model assumptions

We consider the homogeneous variant of the model proposed in [Bocharov et al., 2017; Bocharov

., 2018a], based on the following assumptions (see Figure 1):

Homogeneity. Virus and immune cells are homogeneously distributed throughout the body.

Time delays are neglected.

. Replication of the virus. Virus self-replicates by means of infected cells using their copying

machinery. The model describes the total viral concentration (inside plus outside infected cells).

. Adaptive immunity. Adaptive immune response consists of replication and cross-activation of

many cell types (CD4+, CD8+, B-lymphocytes, etc.). In this model, only one type of immune
cells is considered: cytotoxic T-lymphocytes (CTLs).

. Elimination of virus by the adaptive immunity. CTLs kill the infected cells, thus eliminating
viruses contained and replicating in them. Following Assumption 3, immune cells in this model
are supposed to eliminate the virus directly.

Proliferation of immune cells. Clonal expansion of CTLs is induced by increasing virus
concentration. The model supposes an increasing proliferation rate at low to intermediate virus
concentrations.

Inhibition of the immune response by virus concentration and by the total virus load. The total
viral load (virus presence in the organism for a prolonged period of time) is supposed to inhibit
the proliferation of CTLs by shifting them to the anergy state and further to apoptosis [Bocharov,
1998]. The model presented in [Bocharov et al., 2017; Bocharov et al., 2018a] assumes this
inhibition acting directly by high virus concentration. In this article, we study both approaches.

Death of immune cells. Immune cells die naturally, and viruses increase their death rate.

Lymphocytes

Logistic growth

%

Activation-induced apoptosis

population *

' Elimination of infection

Figure 1. General scheme of the processes of viral infection and the antiviral immune response (from [Bocharov
et al., 2017], with changes). According to this general scheme, viral infection, immune response, and interaction
between them proceed through multiple positive and negative feedbacks (see the text above arrows). Thus, very
complex properties should be expected even in the 2-variable model
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2.2. Model equations

Following [Bocharov et al., 2017; Bocharov et al., 2018a], we consider the following system of

equations:
dv

C‘Z =kv(l =v) —vc, 0
7 e()e(l =) —y((v)c.

Here, v is the virus concentration, ¢ is the concentration of CTLs, & is the virus replication rate constant,
W(v) is the effective rate constant of CTL natural death and virus-dependent apoptosis, and ¢(v) is the
effective rate constant of CTLs proliferation. The first term on the right-hand side of the first equation
of the system (1) describes virus replication, and the last one describes virus elimination by immune
cells. The first term on the right-hand side of the second equation describes the proliferation of immune
cells, and the last term describes the death of immune cells.

CTLs replicate with the rate determined by the level of infection: low virus concentration
stimulates the production of CTLs, and large one suppresses it. Therefore, it was suggested [Bocharov
et al., 2017; Bocharov et al., 2018a] that the intensity of the immune response ¢(v) has a bell-shaped
dependence on the concentration of the virus, that is, it increases at low and decreases at high infection
levels.

A schematic phase portrait of this system is reproduced from [Bocharov et al., 2017; Bocharov
et al., 2018a] in Fig. 2. The v-nullclines are given by the equations

v=0 and c=k-(1-v) )

and the c-nullclines are given by the equations

c=0 and c=f() 3)

where ")
foy=1-22 )

®(v)

Below in this article we analyze this model in more detail.

A

C c

fv) fv)

® ®
0 1 v 0 1 v

Figure 2. Schematic presentation of the phase plane of the initial model from [Bocharov et al., 2017]. There are
6 steady states in the left figure and 4 steady states in the right figure
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2.3. Functions ¢(v) and y(v)

To reproduce the phase portraits shown in Fig. 2, a and b, we use two sets of kinetic
functions ¢(v), ¥(v). The first set is (see Fig. 3, a):

Dyt PV
1= (e 259 _ 056y’ 5)
Yv) = Pyt PV

e(v) =

which gives f(v) as (see Fig. 3, b)
f) =7 —0.567. (6)

The second set is (see Fig. 4, a):

o(v) =(p, + p3V)€(_4V),
(7)
Y(v) = Pyt PV
which gives f(v) as (see Fig. 4, b)
Py + PV
fO)=1- ——2—— ®)
(py + pyv)e
1.0 1.0
(@) —  ¢(v) (b) v=0
0.8 () 0.8 1
0.6 0.6
Q Q
0.4 0.4
0.2 0.2
0.0 0.0 1 o1 P6
00 02 04 06 08 1.0 1.2 00 02 04 06 08 1.0 1.2
v v

Figure 3. (a) functions ¢(v) and y(v) from Egs. (5). (b) null-clines and steady states of the system (1), (5);
f(v) corresponds to Eq. (6)

2.4. Particular kinetics of the total viral load

To obtain the extended version of the model [Bocharov et al., 2017; Bocharov et al., 2018a]
which includes the total viral load, we replace v by w in the decreasing factor of the equation for ¢(v)
in the second set of functions, and add the kinetic equation for w(z) [Bocharov, 1998]. We get the
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1.0 1.0
(@) — (v (b) v=20
— (v —c=k(l—v
0.8 1 ®) 0.8 A ( )
c=0
f(w)
0.6 A 0.6 A
oP2
Q Q
0.4 - 0.4 -
0.2 1 0.2 1
P3
0.0 0.0 { 0P1 P4
00 02 04 06 08 1.0 1.2 00 02 04 06 08 1.0 1.2
v v

Figure 4. (a) functions ¢(v) and y¥(v) from Egs. (7). (b) null-clines and steady states of the system (1), (7);

f(v) corresponds to Eq. (8)

following model instead of Egs. (1), (7):

d

d_‘t} =kv(l —v) —vc,

dc

i e, wie(l —¢) = y(v)e,

d_w _bv—aw 9)
dr e

OV, W) = (py + pyv) - 459,
Y(v) = py+pv.

According to Tikhonov’s theorem, these equations reduce to Egs. (1) and (7) as € — 0.

2.5. Linear stability analysis

Steady states can be studied for their type and stability according to the first Lyapunov method.

The Jacobi matrix for system (1) is

ac

v
J:(év
v

ov
ac
(,C], (10)

dc

where V = kv(l —v) —vc and C = ¢(v)c(l — ¢) — ¥(v)c are the right-hand sides of the differential
equations defining the behavior of variables v and c. As a result, we get:

k(1 -2v)—c

B (90'(V)C(1 —o)—y'e em -20) - w<v))'

The characteristic equation

|J—AE| =0

-V

(11

(12)

solved for each of the steady states gives the pair of eigenvalues A, , which determine the type of this

steady state.
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2.6. Numerical methods

ODEs were numerically integrated in Python with the Solve ivp function using the explicit
Runge — Kutta method of order 5(4) (the error is controlled with the fourth-order accuracy, while the
steps are taken with the fifth-order accuracy, local extrapolation is done) [Dormand, Prince, 1980].
For plotting, Python 3 Matplotlib library was used [Hunter et al., 2020]. For preliminary calculations,
XPP/Auto was used [Ermentrout, 2002].

3. Results

3.1. Possible outcomes of viral infection depend on the null-clines’ shape

To qualitatively reproduce the phase portraits presented in Fig. 2 from [Bocharov et al., 2017],
we have chosen the formulas for functions ¢(v) and y¥(v), determining f(v) (Eq. (4)). To reproduce
Fig. 2 (left), we have chosen Equations (5) (that is, the first set), and to reproduce Fig. 2 (right), we
have chosen Equations (7) (that is, the second set). These functions are presented in Figs. 3, a and 4, a,
and the corresponding null-clines of the system (1) are presented in Figs. 3, b and 4, b, respectively.
There are 4 possible outcomes of illness:

1. Chronic latent infection, incomplete recovery (Fig. 3, b, steady state P3).

2. Severe infection with incomplete exhaustion of the immune system (Fig. 3, b, steady state P5).

3. Complete recovery (Fig. 4, b, steady state P2).

4. Lethal infection with complete exhaustion of the immune system (Fig. 4, b, steady state P4).
Pairwise, these outcomes can result in 4 cases of the phase portrait structure:

e Case 1 (outcomes 1 + 2),

e Case 2 (outcomes 3 + 4),

e Case 3 (outcomes 1 +4),

e Case 4 (outcomes 3 + 2).

Below we investigate these four outcomes numerically and analytically.
3.2. Actual outcome of viral infection depends on the initial viral load

We numerically studied the domains (basins) of attraction of all the stable steady states in
four cases outlined above: Case 1 (outcomes 1 + 2) — in Figure 5, b, Case 2 (outcomes 3 +4) — in
Figures 6, a and 6, d, Case 3 (outcomes 1+4) — in Figures 6, b and 6, ¢, and Case 4 (outcomes 3 + 2) —
in Figure 5, a. In all figures, the trajectories are colored black, stable points are colored red, and the
saddles are colored purple. We assumed that the initial condition of the system is some point (v, ¢;)
located close to the origin (the abscissa indicates the initial viral load, and the ordinate indicates the
innate immune response), because the real initial viral load is some sporadic value, and the innate
immune response helping to switch on the adaptive one is not considered explicitly in the model.
In most calculations, we took values for v, and ¢, equally distributed in the section [0.01; 0.15]
with a constant step, so the initial conditions were equally distributed in the square from (0.01, 0.01)
to (0.15, 0.15). Sometimes we added one or two trajectories to make the figures clearer.

Figure 5, a and b shows that the behavior of phase trajectories depends on the value of the
parameter k£ and on the initial conditions. In Fig. 5, a (k = 0.6), 4 out of 11 trajectories tend to the

KOMIIBIOTEPHBIE UCCIIEJOBAHUS U MOJAEJIUPOBAHUE




Bistability and damped oscillations in the homogeneous model . . . 119

1.0 1.0
(a) —v=0
—c=k(1-v)
0.8 - c=0 0.8 1
f(v)
—— phase tr. —v=0
0.6 — separatrix 0.6 —c=k(1-0v)
c=0
N N f(v)
0.41 041 —— phase tr.
—— separatrix
0.2 1 0.2 1
A\
0.0 - . | | | \ 0.0 1 . . . | <
00 02 04 06 08 10 1.2 00 02 04 06 08 1.0 1.2
v v

Figure 5. Phase planes (Egs. (1), (5)) for different values of the parameter k£ = 0.6 (a) and k = 0.7 (b) and initial
conditions located close to the origin. With increasing k, the saddle (purple) and its separatrix (red) move top-left,
and more phase trajectories (black) tend to the bottom-right singular point (red). Other parameters are p, = 0.2
and p, = 0.1

top-left stationary point. This point corresponds to almost complete recovery, more precisely, to the
chronic infection (a certain amount of the virus will remain in the organism). Initial conditions of
these trajectories are located above the separatrix. The remaining 7 trajectories tend to the bottom-right
stable point, and in this case there is substantial depletion of the immune system. In Fig. 5, b, the virus
replication coefficient is increased to k = 0.7, and starting from the same initial data only 2 phase
trajectories tend to the top-left stable steady state, while all other trajectories tend to the bottom-
right one.

Figure 6, a—d shows that the behavior of the phase trajectories depends on the values of
parameters k and p,, as well as on the initial conditions. In Fig. 6, a (k = 0.4 and p; = 5), 8 out
of 10 trajectories tend to the top-left steady state. This means that under such initial conditions (values
of v, and ¢), the course of the disease will end in a complete recovery. Only two curves tend to the
bottom-right steady state corresponding to the complete exhaustion of the immune system. In Fig. 6, b,
the virus replication coefficient is increased to k = 0.8, and p; is the same as in Fig. 6, a. There,
only 4 trajectories tend to the top-left steady state (which now corresponds to the chronic disease,
since v > 0), and the remaining 6 trajectories tend to the bottom-right steady state (complete exhaustion
of the immune system and death). In Fig. 6, ¢, d, the immune response is increased by setting p, = 10,
and k = 0.8 and 0.4, respectively. In both cases, the saddle is shifted lower compared with Figs. 6, a, b,
thus the majority of trajectories tend to the top-left steady states.

Figures 5 and 6 shows, that the particular outcome of the disease depends on the location of
the initial conditions relative to the separatrix (red curve). The initial conditions located above the
separatrix lead to top-left steady states (outcomes 1 and 3), while the initial conditions located below
the separatrix lead to bottom-right steady states (outcomes 2 and 4).

3.3. Linear stability analysis predicts damped oscillations

Tables 1 and 2 contain eigenvalues for all the steady states of the system (1) found using the
1** Lyapunov method (Egs. (10)—(12)). Table 1 contains eigenvalues for the first set of functions ¢(v),
Y(v) (Egs. (5)), steady states P,~P, in Fig. 3, b: the point P, has coordinates (0; 0), the point P,
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Figure 6. Phase planes (Egs. (1), (7)) for different values of the parameters: (a) k = 0.4, p, = 5; (b) k = 0.8, p; =
=5;(c) k=038, p; =10; and (d) k = 0.4, p, = 10. With increasing p,, the immune response becomes stronger,
and more phase trajectories (black lines) tend to the upper-left steady state (red point). Other parameters are:
Py=02,p,=01,and p, =02

has coordinates (0; f(0)), Py — (v35¢3), P, — (vy5¢4), Py — (v55¢5), and Pg — (1; 0); here,
0<v, <1;0<c¢<1(@=3..,5i<5). Table 2 contains eigenvalues for the second set of
functions ¢(v), ¥(v) (Egs. (7)), steady states P,~P, in Fig. 4, b: the point P, has coordinates (0; 0),
P, — coordinates (0; f(0)), Py — (v5; ¢3), P, — (15 0). All eigenvalues are real except for those for
point P, (corresponding to the 1% outcome of the illness). Depending on parameters, eigenvalues
for P, can be real negative or complex with negative real part indicating that this point can be either
a stable node or a stable focus. In the latter case, this leads to damped oscillations of virus and immune
cells concentrations as the system gradually converges to its equilibrium state.

3.4. Explicit consideration of the total viral load kinetics

Above, we have analyzed the system of two differential equations (Egs. (1)). In this model,
inhibition of the proliferation of immune cells by the increasing viral load is modeled by the declining
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Table 1. Steady states of the system (1) with the first set of functions ¢(v), ¥(v) (Egs. (5)). Both cases, k < f(0)
and k > f(0), are considered

Steady Coordinates Eigenvalues Type
state Formula | Value
Case k < f(0)
P, (0; 0) A, =k 0 < A, < +oco | Unstable node
A, = ¢(0) = ¥(0) 4, =0.1
P, (0; £(0)) A, = k- f(0) 4, <0 Stable node
k < f(0) A, = @0)(1 = 2£(0)) — ¥(0) 4, =-0.02
P, (vs55 ¢3) 4, = —k A5 < 0 Saddle
Az = (1) —y(1) A, = 0.03
Case k > f(0)
P, (0; £(0) A, =k - f(0) >0 Saddle
k> £(0) A= o)1 =2£(0) —y(©) | 2, =-0.02
P, (v35 ¢3) A = Gythyt V(s 7by 74py W ;<0 Stable node
f(0) <k <0.53 A = BB VG 1,<0
P, (v35 ¢3) a; = k(1 — 2vj) —cp Ay =a+pi Stable focus
0.53 <k<0.814 bjzgp(vj)(l—2cj)—l//(vj), Ag = a+pi
pj =ngo’(vj)cj(l —Cj)—l//(vj)cj, (G,’< 0)
3<j<5,jeN
P, (vs35 ¢3) A5 < 0 Stable node
k> 0.815 <0
P, v ¢,) A= —“‘*”’“m 4,>0 Saddle
2y = Vb 4 <0
P, (vs: ¢5) Ay = A5tbst Vs Thy P by W <0 Stable node
Ay = — ({;SibS)L% Ay <0
Py (1; 0) A, =k 4, <0 Saddle
A, = @(1) = y(1) 4,, = 0.03

part of the bell-shaped dependence ¢(v). Actually, this inhibition is determined by the total (i.e.,
accumulated) viral load [Bocharov, 1998]. In Egs. (1), the total viral load w is indicated by the current
virus concentration of v, i.e., w is considered implicitly — as a fast variable tracking v. In order to test
this approach numerically, we have explicitly included the total viral load w into the model (Egs. (9)).

For 0 < & < 1 (Fig. 7, b—d), the phase portraits are similar to the case € = 0 (Fig. 7, a). However,
for &£ > 1 all trajectories tend to the upper-left steady state, and the domain of attraction of the bottom-
right stable steady state is greatly reduced despite the fact that the bistability remains (Fig. 7, e, f).
This indicates that transition from Egs. (9) to Eqgs. (1), (7) by means of Tikhonov’s theorem is valid
only if the kinetics of the total viral load is fast (¢ < 1). In the case of slow kinetics of the total viral
load (& = 1), the more detailed model (Egs. (9)) should be used.

4. Discussion

Mechanisms of immune response to viral infection are insufficiently understood to date due to the
high complexity of the immune system. This is true both for detailed mechanisms (on the molecular
level), and for general ones (on the system’s level). This situation strongly stimulates mathematical
modelling in this field [Bocharov et al., 2018b; Marchuk, 1991; Romanyukha, 2012]. In this work, we
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Table 2. Steady states of the system (1) with the second set of functions ¢(v), ¥(v) (Egs. (7)). Both cases, k < f(0)
and k > f(0), are considered

Steady Coordinates Eigenvalues Type
state Formula | Value
Case k < f(0)
P, (0; 0) A, =k 0 < A, < +oco | Unstable node
A, = ¢(0) = ¥(0) 4, =0.1
P, (0; £(0)) A, = k- f(0) 4, <0 Stable node
k < f(0) A, = @0)(1 = 2£(0)) — ¥(0) 4, =-0.02
P, (v3; ¢) A = Lt Neh A >0 Saddle
Ay = tby= V(a3 =by) =4y W A < 0
P, (1; 0) A, =k 1, <0 Stable node
Az = (1) —y(1) Ay =~ =0.11
Case k > f(0)
P, (0; £(0) A, =k - f(0) >0 Saddle
k> f(0) A, = e(0)(1 = 2£(0)) — y(0) 4,=-02
P, (v55 ¢3) A5 = A3+byt Viay7hy 4py W A5 < 0 Stable node
£(0) < k < 0.53 A = LT Vb 2,<0
P, (vs35 ¢3) a; = k(1 — 2vj) —cp A5 = a + Bi, Stable focus
0.531 <k<0.83 bjzgp(vj)(l—2cj)—1//(vj), Ag = a + i,
p;= ngo’(vj)cj(l - cj) - l//(vj)cj, a<0
3<j<4,jeN
P, (vs35 ¢3) A5 < 0 Stable node
k > 0.831 A, <0
P, (i €) A, = Lt Vb 1,50 Saddle
A, = e rin, Ag <0
P (1; 0) Ay =~k A, <0 Stable node
Ay = @(1) = u(1) Ay~ —0.11

systematically study the qualitative properties of the previously developed general, phenomenological,
model of the immune response to a viral infection consisting only of two ODEs [Bocharov et al., 2017;
Bocharov et al., 2018a]. Despite its low dimension, this model is capable of describing four different
outcomes of the infection disease: complete recovery, incomplete recovery (chronic latent infection),
severe infection with incomplete exhaustion of the immune system, and lethal infection with complete
exhaustion of the immune system. Thus, every type of behavior in this model has its physiological
(medical) interpretation.

Firstly, we gave a systematic description of all the steady states and their basins of attraction
depending on the parameter values in the model. We found the existence of oscillatory regime when
approaching the steady state of incomplete recovery.

Secondly, we investigated the progression of the disease depending on the initial conditions (that
is, the initial viral load and the level of the innate immune response), and showed that the outcome
of the disease depends on the location of initial conditions with respect to the separatrix of the saddle
point. Thus, the ultimate fate of infection can be very sensitive to the initial conditions in the case when
they are close to a separatrix. This is important for prognosis of disease progression and for developing
the measures to control it on both individual and population levels, such as wearing masks [Banerjee,
Tokarev, Volpert, 2020].
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Figure 7. The behavior of projections of the phase trajectories for different values of : & = 0 ((a), Egs. (1))
and € > 0 ((b)—(f), Egs. (9)). The domain of attraction of the lower-right stable point is gradually reduced with
increasing the value of &

Thirdly, we numerically compared two methods for the phenomenological modeling of the
anergy (inhibition of proliferation) of cytotoxic T-lymphocytes: (a) explicit dependence of the
proliferation rate on the current concentration of the virus, and (b) similar dependence of the
proliferation rate, but on the accumulated viral load. We showed that under the slow kinetics of
the accumulated viral load, this variable should be explicitly considered in the model. This aspect
is important for the process of construction of general kinetic models (in biology, chemistry, etc.):
model construction should be preceded by the time-scale separation analysis of all variables, and only
fast variables can be reduced with Tikhonov’s theorem, while the slow variables should be considered
as constants or included into the system of equations.

The model considered has many limitations (see the section ‘“Model assumptions”), and
weakening, changing or clarifying each of them produces the “degree of freedom” that can be moved
along thus giving similar or more complex models. Changes of the model’s properties (and rising
new ones) during this movements qualitatively compared with experimental data can give information
on the general validity of new models. Our work shows that a careful analysis of each, even rather
“simple”, model demands a lot of work. However, this work should be done.

5. Conclusions

General, low-dimensional models in immunology are not simple ones. They have a variety of
behaviors and properties: bistabilities, thresholds, oscillations, etc. Thus, these models can be studied
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using approaches and methods of qualitative analysis of differential equations. Clarification of these
qualitative models will undoubtevely lead to new discoveries, as we know from the examples from
other fields, say blood coagulation, where decades of years and dozens of different models produced
a fascinating picture of knowledge of the space- and time-depending processes and mechanisms of
their regulation [Tokarev, Ratto, Volpert, 2019].
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