COMPUTER RESEARCH AND MODELING

2022 VOL. 14 NO. 6 P. 1239-1253 KneM

DOI: 10.20537/2076-7633-2022-14-6-1239-1253

MODELS IN PHYSICS AND TECHNOLOGY

UDC: 004.896

Lidar and camera data fusion in self-driving cars

M. Ahmed'?, M. Hegazy'?, A. Klimchik**, R. A. Boby>¢

'Institute of Robotics and Computer Vision,
420500 Innopolis, Russia
2School of Computer Science,
University of Lincoln, United Kingdom
3Mechanical Engineering, Indian Institute of Technology Jodhpur,
Karwar, Jodhpur, Rajasthan, India, 342037

E-mail: * 0.ahmed@innopolis.university, ® m.hegazy@innopolis.university, ¢ alexandr.klimchik@gmail.com,
4 ribyab@gmail.com

Received 15.09.2022, after completion — 06.10.2022.
Accepted for publication 10.10.2022.

Sensor fusion is one of the important solutions for the perception problem in self-driving cars,
where the main aim is to enhance the perception of the system without losing real-time performance.
Therefore, it is a trade-off problem and its often observed that most models that have a high
environment perception cannot perform in a real-time manner. Our article is concerned with camera
and Lidar data fusion for better environment perception in self-driving cars, considering 3 main classes
which are cars, cyclists and pedestrians. We fuse output from the 3D detector model that takes its
input from Lidar as well as the output from the 2D detector that take its input from the camera, to
give better perception output than any of them separately, ensuring that it is able to work in real-time.
We addressed our problem using a 3D detector model (Complex-Yolov3) and a 2D detector model
(Yolo-v3), wherein we applied the image-based fusion method that could make a fusion between Lidar
and camera information with a fast and efficient late fusion technique that is discussed in detail in this
article. We used the mean average precision (mAP) metric in order to evaluate our object detection
model and to compare the proposed approach with them as well. At the end, we showed the results on
the KITTI dataset as well as our real hardware setup, which consists of Lidar velodyne 16 and Leopard
USB cameras. We used Python to develop our algorithm and then validated it on the KITTI dataset.
We used ros2 along with C++ to verify the algorithm on our dataset obtained from our hardware
configurations which proved that our proposed approach could give good results and work efficiently
in practical situations in a real-time manner.
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Introduction

Object detection is a fundamental problem in many fields and has a huge impact on self-driving
cars. Relevant reliability and safety can be achieved with the help of different sensors such as ultrasonic,
cameras, radars and Lidars mounted on vehicles with redundancy resolution techniques and sensor
fusion algorithms.

Classification approaches used in recent years have focused on image recognition research. To
produce proposals for bounding boxes, these approaches generate object proposals such as sliding
windows [Asvadi et al., 2018], edge boxes [Zitnick, Dollar, 2014], choose search [Uijlings et al.,
2013], Multiscale Combinatorial Grouping (MCG) [Pont-Tuset et al., 2016], and then utilize a CNN
pipeline [Girshick et al., 2015; Chen et al., 2017a] to perform recognition for the suggested object
region. The high computational cost is a typical drawback. Furthermore, cameras lack information on
the 3D location, orientation, and shape of objects, as well as fluctuating lighting levels, which results
in inaccurate object region proposals.

Using the complementary information offered by LIDAR and cameras to obtain very precise
object positions and classifications for self-driving cars is one solution. In other words, good fusion
techniques can play a great role in minimizing the disadvantages of both sensors and allows autonomous
vehicles to work in real time with accurate precision for object detection.

Literature Review

Many recent researches have focused on the merging of data from multiple sensors. A typical
method is to merge the LIDAR point cloud data with the camera images at the pixel level, with
a matching RGB color pixel for each LIDAR point within the image [Schoenberg, Nathan, Campbell,
2010]. Another approach is to take the data features of each sensor and combine them to identify and
track moving objects [Cho et al., 2014; Dollar et al., 2014; Foster, Schott, Messinger, 2008; Geiger
et al., 2013; Girshick et al., 2014; Girshick et al., 2015; Girshick, Fast, 2015; He et al., 2015; Ku et
al., 2018; Li et al., 2015; Li, Zhang, Xia, 2016; Liang et al., 2018; Liu et al., 2016; Minemura et al.,
2018; Oh, Kang, 2017]. They introduced a Multi-View 3D network (MV3D) for 3D object recognition
in [Chen et al., 2017], which integrates several views of LIDAR point cloud data with images to
propose and classify 3D objects. For small object classes, an enhanced deep learning model called
AVOD (Aggregate View Object Detection) [Ku et al., 2018] has been presented that multimodally
fuses data provided by point cloud and images to build high-resolution feature maps for the production
of trustworthy 3D object suggestions. They use continuous convolutions to fuse LIDAR and image
feature maps at various resolution levels for 3D object recognition in [Liang et al., 2018]. Rather than
recognizing things independently from LIDAR point clouds or images, this method combines the final
findings acquired by the two sensors.

Sensor fusion is one of the important solutions for the perception problem in self-driving cars
and autonomous systems in general for many aspects like localization, perception, etc. We need to
improve the perception of our system without losing real-time performance. At the same time, it is
a trade-off problem where most of the models that have high environmental perception cannot perform
in a real-time manner and vice versa for models which can work in real time will neglect important
information which is necessary for enhancing the perception. Therefore, it is essential to continue
tracking the performance of the developed sensor fusion technique not to lose either perception or
real-time performance at the cost of the other.
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Methodology

Fusion types

For fusion there are 3 types as shown in Table 1 and Figure 1. In this article we use late fusion
because it depends on pure extracted features from the models associated with each sensor separately
as shown in Figure 1. This gives us the advantage to precept more objects in our environment.

Table 1. Fusion Evaluation

Fusion type Details Pros Cons

Late Fusion uses models that
process each sensor independently
until the end and fusion is done at
the final stage as shown in Figure 1

Late Fusion high recall low precision

Early fusion strengthens the power
of deep learning to learn from
multiple sensors modalities at the
same time. With early fusion, the
Early Fusion neural networks take raw sensor high precision low recall
observations as input and learn the
complementary strengths and
weaknesses of the modalities, as
shown in Figure 1

Intermediate fusion uses different

models at different stages of the

pipeline. Some of the models in

Intermediate Fusion a specific state use the extracted high precision and recall | low inference speed

features from models of previous

states as its input, as can seen in
Figure 1

Complex-Yolo Model (Lidar)

For the 3D object detector, we use the Complex-YOLOv3 model which is shown in Figures 2
and 3. Complex-Yolov3 works by prepossessing the Lidar point-cloud data and transforms this point-
cloud to a bird-eye-view (bev) RGB-map [Simon et al., 2019]. This transformation is done based on
density, intensity and height. For example, the blue channel represents density and the denser points are
in some regions of darker blue shades than they will have on the created RGB map. The red channel
is for intensity, so the higher the intensity the reflected point will have, the darker shades of red it
will have on the created RGB map. Lastly, the green channel it represents the height of the point,
so the higher a point, it will be represented by darker shades of green. The Complex-YOLO network
takes the bev RGB map as input. It uses a simplified YOLOv3 CNN architecture extended by complex
angle regression and E-RPN (Euler Region Proposal Network) to detect accurate multiclass-oriented
3D objects while still operating in real time.

Yolo-v3 Model (Images)

For the 2D objects detector, we will use the Yolo-v3 model (as we can see in Figure 4), as it
gives less inference time when working with images in the KITTI dataset (15 ms) compared to the
Yolo-V4 model with inference time (45 ms), we will also not resize the input because resizing the
inputs gives poor results when we try to do so.
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Late Fusion Early Fusion Intermediate Fusion

Camera Lidar Camera Lidar

Figure 1. Types of Fusion

Image Based Fusion

The summary of the working algorithm is explained next. We use bounding boxes predicted by
a 3D object detector (Complex-yolo) that are less likely to be objects and overwrite labels of those
objects with that Region of Interests (ROIs) by a 2D object detector (Yolo-v3) as illustrated in Figure 5.
The detected objects from the 3D object detector are then projected onto image planes, and then, if the
ROIs of clusters and ROIs are overlapped by a detector, the labels of clusters are overwritten with those
of ROIs by the 2D object detector. The Intersection Over Union (IoU) is used to determine whether
there are overlaps between them. The advantage in image-based fusion is that we avoided the other
problems of the above methods of taking fusion to higher dimension space using point cloud-based
fusion. Also, we avoided problems of associations of ROI through different frames as the Kalman
filter, tackling our problem in a 2D dimension wherein the use of only the current frame makes it less
computationally expensive to do the fusion and getting higher perception with the possibility to work
in real time.

To compute the feature based on object distance, a dedicated approach was used. We used the
point cloud projected onto the image and mapped it to the bounding boxes that are output from the
Yolo-V3 model.

The problem is that the Lidar data is sparse, so not every pixel in the image will have
a corresponding point from Lidar. We managed to tackle this problem by using the Nearest-Neighbor
technique.

The bounding box of the Yolo-V3 model is an array of 4 values [x, y, w, h]. We are interested
in the center of the object which we will denote as C = (C,, Cy), and in this case C = (x + %, y+ %)
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Figure 3. 3D object detector (Complex Yolo) Architecture [Simon et al., 2019]

We will then try to find the assigned Lidar projected point for C. But since Lidar is sparse, most
probably we will not find a point assigned to this center pixel C, so we need to search for the nearest
point to C. We will denote the projected point cloud to the image plane as a vector P, where P =
=[pys Pys -+ -5 Pyl Now we will search for the nearest element in P, which is [py> P2s - Pyl vector
to point C, so we will try find the minimum distance from C to p, where is the distance is given

by distance = \/(Cx -p.)?+(Cy - Pyi)2~

Evaluation and Discussion

For evaluation of our models, we used the Average Precision metric (AP) and frames per second
(FPS). For more information, one may refer to the appendix.
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Figure 4. 2D object detector (Yolo-V3) Architecture [Redmon, Farhadi, 2017]

Pointcloud Segmentation ROI

ROI of the image
detection result

Figure 5. Image Based Fusion

Evaluation of Complex-Yolo

After 220 epochs of training for the tiny Complex-Yolo, which took 2 days, the results are
obtained. As we can see in Figure 6, the dashed lines represent the precision recall curve for each
class (each class with its corresponding color), while the average precision of each class and of all the
classes together in addition to the frames per seconds (FPS) for the model are stated in Table 2.
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Figure 6. Comparison between different models (the dashed lines represent complex yolo {3D object detector},
the dotted lines represent yolo-v3 {2D object detector}, the solid lines represent fusion) and each color represents
a different class

Table 2. Fusion Evaluation

Model/Class Cars Cyclist | Pedestrians | Average | FPS
Complex-Yolo 96.3% | 77.6% 54.4% 76 % 50
Yolo-v3 78.5% | 42% 49% 56.5% 66
Image Based Fusion | 97.3% | 80% 59.5 % 79 % 28

Evaluation of Yolo-V3

After 2000 epochs of Yolo-V3 training, which took 4 hours, the results are obtained. In Figure 6,
the dotted lines represent the precision recall curve for each class. As mentioned earlier, the average
precision of each class and of all the classes together in addition to the frames per second (FPS) for
the model are stated in Table 2.

Evaluation of Image Based Fusion

After we had applied the proposed image-based fusion we managed to obtain the results on
different datasets which are presented in this section. The solid lines in Figure 6 are the precision recall
curves after applying the fusion. The average precision of each class and then the average of all classes
and the processing speed of the model are presented in Table 2.

In Figure 6 we can see that the solid red line mostly overlaps with the dashed red line. But for
higher precision, the recall shifts to the right. This is logical, as the average precision of Complex-Yolo
for cars class is already so high (96.25 %). But after the fusion some true positives are added over the
same ground truth bounding box number, and the precision will mostly be the same as the complex-
yolo already gives high precision. This proves that the fusion can give better results as the final average
precision of the class cars is raised by 1% to be 97.25 %.

On the other hand, we can see that the solid blue curve in Figure 6 results in low precision at
some point of the Complex Yolo model for the cyclist class which is represented by the dashed blue
line in the same figure with the help of the yolo-v3 model in which its standalone performance was not
as high according to the precision recall curve (represented by the dotted blue line in Figure 6). So we
can see that fusion can give better results as the final average precision of the class cyclist increased
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1246 M. Ahmed, M. Hegazy, A. Klimchik, R. A. Boby

from 77.56 % of the complex yolo and 41.96 % of yolo-v3, to be 79.85 % after fusion. This is better
than both models and gives an increase of 2 % from the best result of the complex yolo model.

We can also see that the solid green line in Figure 6 overlaps with the dashed and dotted green
lines in the same figure starting from one, but gives a slightly better average precision. The complex-
yolo and yolo-v3 have an average precision of 54.4 % and 49 %, respectively. Fusion could give better
results by raising the average precision from 54.4 % to 59.5 %. As we can see, the image and 2D range
data fusion give results better than the 2 models (we can see it clearly in Figure 6) although it uses them
to fuse information and give better results. This shows the power of fusion of the data in enhancing the
performance of the perception task problem.

Also, the speed dropped to 28 FPS because the models are detecting sequentially, but it will be
possible to add parallel threads, which will make both models work in parallel. So the FPS will rise
to 50 again.

Results Visualization

The proposed approach has been used in the case of a KITTI dataset and some of the instances of
classification are presented here. The KITTI dataset has 7481 frames, which are the RGB images taken
from the camera and the corresponding Lidar point-cloud data. The frames have different locations and
time stamps. We split those frames into training and testing frames. Figures 7 and 8 visually show the
results of our models.

In Figure 7, a the green squares and the distance written are the predictions of yolo-v3 that
work with the image data. The yellow and blue squares, as well as the distance, are the predictions of
Yolo-Complex that work with the Lidar data. So when one of them fails at some point, the other can
support detecting the object.

Figure 8, a shows the bird-eye view RGB map of the Lidar point cloud, it is the same frame as
in Figure 7, a, the green color indicates height, the blue intensity of the reflected Lidar signal, the red
is the density of points, the yellow and green squares are predictions from the complex-yolo model.
In Figure 7, a the green squares and the distance written are the predictions of yolo-v3 that work with
the image data, the yellow and blue squares and the distance are the predictions of yolo-complex that
work with the Lidar data. So when one of them fails at some point, the other can support detecting the
object.

Figure 8, a shows the birds-eye view RGB map of the Lidar point cloud, it is the same frame as
in Figure 7, a, the green color indicates height, the blue intensity of the reflected Lidar signal, the red
is the density of points, the yellow and green squares are predictions from the complex-yolo model.

In Figure 8, b we can see how sometimes the yolo-complex model fails and the yolo-v3 model
can support and give even comparable results.

The failure is sometimes due to the farther distance of the object such that it will be hardly
detected by Lidar as the rays fired from the Lidar diverge. This makes far objects have comparatively
lesser points than near objects.

In Figure 7, ¢ we can see that the distance difference between the two approaches has an error
of 0 to 2 meters, depending on two factors:

1) the nearest-neighbor point of the 2D approach which gets the distance from the front part of the
object;

2) the 3D approach gets the distance from the center of the object, so in most cases the distance
from the 2D approach will have a smaller distance.
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Predictions from 3D Object
Detector (Complex-Yolo) model

(d) Frame 4

Figure 7. Results plotted on images taken by a camera

In Figure 7, d we can see that the 3D approach (Complex Yolo) totally fails, which may be due
to different reasons, e.g., a far distance of the object or weather conditions, which may affect Lidar
sensor reading. Only the 2D approach gives us results in this situation. It is important to use Image
based fusion, since it supports and gives better results if they both detect the same object. Even if this
does not happen, we may have a higher detection rate, so we do not miss an object. This helps in safe
environment perception of self-driving cars.
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(a) Frame 1 (b) Frame 2

(.

B

(c) Frame 3 (d) Frame 4
Figure 8. Results of Visualizations, bev (birds-eye view) RGB-map (a), (b), (c) and (d) are the corresponding

maps for frames: 1, 2, 3 and 4 in Figure 7. The yellow boxes indicate output predictions from the 3D object
detector model (Complex-yolo) the class of cars, while the blue boxes denote the class of pedestrians

The results based on an in-house real experimental setup (rather than public dataset) is discussed
below. Table 3 shows a person testing the algorithm on a real hardware Lidar and camera, the fusion
was performed and the person was detected correctly as a pedestrian.

Conclusion

The approaches that work with point cloud directly have a higher average precision; however,
they lack real-time performance most of the time. On the other hand, approaches that transform point
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Table 3. Fusion detections cases

Case

Images

Fusion output on pointcloud

True

Positive| 4

False
Positive

True
Positive
and
False
Positive

Comment

the 2D object detector and the
3D object detector models
could detect the person as
a pedestrian successfully, so
the output of fusion was
shown in Fusion output on
point-cloud

We can see that a false object
was detected, but Lidar didn’t
detect it, and due to low
confidence it was neglected by
the fusion algorithm, so
nothing was shown in Fusion
output on point-cloud

We can see that this case is
a combination of the previous
two cases: one is true positive
where the person was detected

as a pedestrian, and other
object is false positive, which
was wrongly detected and due
to low confidence it was
neglected by the fusion
algorithm.

cloud to bev RGB-map formats suffer from information loss, which results in lower average precision,
but better real-time performance, and some models as in Complex-Yolo can give a good compromise
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by giving fair results and still work in real time. Object detection from 2D images has been significantly
improved over the last decade, and there exist models that can give fair results as well and work in
real time for e.g., SSD (e.g. yolo-v3). Fusion between the previous two approaches is one of the
best solutions to the problem in self-driving cars, and there has been significant interest in this area
to enhance the autonomous cars and mobile robot systems. We passed data from Lidar to the 3D
object detector model (Complex-Yolo) and evaluated it as a standalone model. Also, we did the same
with a camera and passed the images to the 2D object detector model (YOLO-v3) and evaluated as
a standalone model as well.

3D Object Detector |3D bounding box|
(Complex Yolo)

2D Object Detextor
e e

Figure 9. Image Based Fusion

In our approach (Image-Based Fusion) (see Figure 9), we could see how it combines information
to obtain better results than the 2D object detection model and the 3D object detection model. This
shows the power of data fusion to improve the performance of the perception task problem for self-
driving cars.

However, the processing speed decreased to 28 FPS, which may be improved by parallel
processing. The proposed methods have been implemented on the KITTI dataset as well as custom
generated datasets. The results show that the proposed method enhances the results of individual
methods that use point-cloud data or image data.

Appendix

For average precision, the calculation is performed as follows. After the final predictions are
determined, the predicted bounding boxes could be measured against the ground-truth bounding boxes.

In order to calculate the mean average precision (mAP) for each class and see how the object
detector is doing, we will first need to calculate the precision and recall for each class.

To do so, the number of true positives must be identified. If a predicted bounding box overlapped
a ground truth bounding box by an IOU threshold (0.5), it is considered a successful detection and the
predicted bounding box is a true positive. If a predicted bounding box overlapped a ground truth by less
than the threshold, it is considered an unsuccessful detection, and the predicted bounding box is a false
positive. Precision and recall can be calculated from true and false positives, as shown in Figure 10.

True Positive

Precision = — —— =
True Positive + False Positive

_ count(True Positives) 2

= count(all red boxes) 3’
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True Positive
Recall = — — =
True Positive + False Negative

_ count(True Positives) 2

"~ count(all red boxes) 3’
We need to get precision and recall at every IOU threshold and then average it for each class, and then
average it again between all classes to get the map for the model.

True Positive

True Positive False Positive

Figure 10. Precision-Recall

L
L]

20 % 66.6 % 100 %

Precision Recall Precision Recall

(a) High-precision low recall case (b) Low-precision high recall case

Figure 11. Precision & Recall cases for more clarification

When a model has high recall, but low precision, the model classifies most of the positive
samples correctly, but it has many false positives (i.e., classifies many negative samples as positive).
When a model has high precision, but low recall, then the model is accurate when it classifies a sample
as positive, but it may classify only some of the positive samples as shown in Figure 11.

2022, T. 14, Ne 6, C. 1239-1253




1252 M. Ahmed, M. Hegazy, A. Klimchik, R. A. Boby

So, we need to find the threshold that gives us the best of both; the average precision is the area
under the curve of the precision-recall curve.
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