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B nanHo# cTathe ocymiecTBIsieTcs cpaBHEHHE 3()(HEKTHBHOCTH HEKOTOPHIX COBPEMEHHBIX METONOB M MPAKTHK CTOXa-
CTHYECKOW ONTHMM3AIMU IIPUMEHUTEIILHO K 3a/1a4e [udpoBoro npenpickakenus curxaia (DPD), kotopoe siBisieTcst BayKHOM
cocTaBIsIONIEH Tporiecca 00pabOTKH CHTHANIa Ha 0a30BBIX CTAHIUIX, 00ECHEYHBAIOIIUX OCCIIPOBOIHYIO CBS3b. B wacTHO-
CTH, pacCMaTpUBACTCs 1Ba KPyra BOIPOCOB O BO3MOXKHOCTSX NPUMEHEHHS CTOXaCTUYECKHX METOOB UL 00y4eHHMsT Mojerei
ki1acca Bunepa —'aMmepmiTeiiHa B paMKax MOAXO0Aa MUHUMH3AIMY SMITMPHYECKOTO PUCKA: KACATENBHO YITyUIICHUs TTyOHHBI
U CKOPOCTH CXOIMMOCTHU JJAHHOTO METO/la ONTUMHM3AINY ¥ OTHOCUTENIBHO OJIM30CTH CaMOi MOCTAHOBKH 3a/1a4X (BHIOpAaHHOMN
MOJIENH CHMYIISIINK) K HaOMIOJaeMoOMy B JEHCTBUTEILHOCTH MOBEJCHHUIO YCTPOHCTBA. Tak, B MEPBOH 4acTH 3TOTO MCCIIENO-
BaHU BHUMaHHE OyIeT COCPEIOTOYEHO Ha BOIPOCE O HAXOXKICHHH Hanboiee 3(p(EeKTUBHOrO MeToa ONTHMHU3ALMH U J0-
HOJIHATEBHBIX K HeMy Monudukaruid. Bo Bropoii yacTu npearaetcst HoBasi KBa3U-OHJIAHH-IIOCTaHOBKA 3a/[a4d W, COOTBET-
CTBEHHO, Cpefa s TeCTUPOBaHUS 3(Q(HEKTHBHOCTH METONOB, Oarogaps KOTOPHIM PE3yNbTaThl YHCICHHOTO MOAEITUPOBAHUS
yAaeTcs IPUBECTH B COOTBETCTBHUE C IOBEJCHUEM pealbHOro npororuna ycrpoiicrea DPD. B pamkax 3Toil HOBO# mocra-
HOBKH JIaJiee OCYIIECTBIAETCS TOBTOPHOE TECTHPOBAHKIE HEKOTOPHIX M30PAHHBIX MPAKTUK, Ooee MogpoOHO pacCMOTPEHHBIX
B IIEPBOH YacTH UCCIICIOBAHMS, U TaKXKe 0OHAPYKUBAIOTCS U MOAYEPKUBAIOTCS IIPEUMYIIECTBA HOBOTO JIMIHPYIOLIEro MeToa
OINITHMHM3AIMH, OKA3BIBAIOIIETOCS TeTeph Takke Hanbosnee 3(h(EKTHBHBIM U B MPAKTHYECKUX TecTax. [ KOHKpeTHOH pac-
CMOTPEHHON MOJIENIM MaKCUMAJILHO JOCTUTHYTOE YITy4IIeHNe NTyOHHBI CXOIMMOCTH COCTaBUIIO 7 % B CTaHAAPTHOM PEKUME
u 5% B OHJIAWH-TIOCTaHOBKE (IIPH TOM YTO METPHKA cama Mo cebe MMeeT JiorapuMuuecKyro mkaiy). Taoke Omarogapst m1o-
HOJIHATEbHBIM TEXHUKaM OKa3bIBAETCsl BOBMOXKHBIM COKPATUTh BpeMs oOydeHust Mmopenu DPD BaBoe, COXpaHUB yiIydIIeHHE
mTyOnHBI cxXoguMocTH Ha 3 % U 6 % A7 CTaHZApPTHOTO U OHJIAHH-PEXXKMMOB COOTBETCTBEHHO. Bee cpaBHEHHMS POM3BOISTCS
¢ MeToztoM ontuMu3anuu Adam, KOTOPBIH ObUT OTMEYEH Kak JydIIni cToXxacTHIecKui Meton s 3anadan DPD u3 paccmarpu-
BaeMBIX B mpemmecTByromeit padote [Pasechnyuk et al., 2021], u ¢ Mmerogom ontuMuzanmuu Adamax, KOTOPBI OKa3bIBAaeTCs
Han6osee 2p(HeKTUBHBIM B IIpeIaracéMoOM OHJIAITH-peXUMe.

KiroueBsie crmoBa: nudpoBoe mpeapicKaxkeHune, 00padoTka CUTHANA, CTOXACTUYECKash ONMTHMHU3a-
1Us1, OHJIaH-00y4YeHHe
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In this paper, we test the performance of some modern stochastic optimization methods and practices with respect
to the digital pre-distortion problem, which is a valuable part of processing signal on base stations providing wireless
communication. In the first part of our study, we focus on the search for the best performing method and its proper
modifications. In the second part, we propose the new, quasi-online, testing framework that allows us to fit our modeling
results with the behavior of real-life DPD prototype, retest some selected of practices considered in the previous section and
approve the advantages of the method appearing to be the best under real-life conditions. For the used model, the maximum
achieved improvement in depth is 7% in the standard regime and 5 % in the online regime (metric itself is of logarithmic
scale). We also achieve a halving of the working time preserving 3 % and 6 % improvement in depth for the standard and
online regime, respectively. All comparisons are made to the Adam method, which was highlighted as the best stochastic
method for DPD problem in [Pasechnyuk et al., 2021], and to the Adamax method, which is the best in the proposed online
regime.
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Introduction

Consider a base station providing some form of wireless communication. Let it be required to
transmit with its help some given signal. The signal is represented as a sampled array x € C”. One
of the transformations that must be applied to the signal before transmission is amplification. To carry
out this transformation, the PA device is most often used, whose action on the signal, ideally, has the
form PA(x) = a - x, where a > 1. However, hardware imperfections lead to a deviation from this law;
in particular, the PA(x) signal has out-of-band spurious harmonics, resulting in interference. This is
illustrated in Fig. 1.

------ Input signal
—— Output signal

Figure 1. Power spectral density plot of the original signal (Input signal, blue dotted line) and the power
amplified signal (Output signal, red line). Picture from Wisell D. H. Exploring the sampling rate requirements for
behavioural amplifier modelling // XVIII IMEKO World Congress. — 2006. — p. 1-4

To prevent noise in the transmitted signal, there is a digital pre-distortion technology. Specifically,
there is a DPD device acting on the signal just before the PA action, so that the result is the
signal PA(DPD(x)). If we omit the factor a, which is easy to accomplish by scaling the signal, then
we can see that for an ideal action it must hold that DPD = PA~! (Fig. 2). Thus, the task is reduced
to the inversion of PA function. However, the PA function actually depends on the characteristics
of the environment, the signal x itself, and on time, so it can only be inverted numerically. To do
this, we choose a certain parametric family of functions {DP D}, o to describe DPD and choose such
a parametrization 6 in which PA o DPD, is closest to the identical transformation.

In this study, to model the behavior of DPD we use the Wiener — Hammerstein cascade models
family [Ghannouchi, Hammi, Helaoui, 2015]. The structure of these models is very similar to the
structure of a multilayer neural network, but instead of the neurons it consists of cells specific for
signal processing. Figure 3 shows a schematic diagram of such a cell with polynomial nonlinearity
within.

Now that we have defined the parametrization for DPD, we need to provide a more optimization-
friendly formulation to the problem of inverting the PA function. The point is that to do this we need
to have the perfect pre-distortion y for some signal x, to train the model to repeat this predistortion, i. e.
to exactly invert the PA function. Using the standard empirical risk minimization framework, we then
obtain some optimization problem with the sum-like function. The following formulation, proposed
and described in detail in [Pasechnyuk et al., 2021], is the central one for this paper (we denote the kth
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DPD PA Lineariation result

.
T

Figure 2. The intuitive principle of digital pre-distortion: DPD acts as an inverse of power amplifiers function,
so that the resulting transformation is near linear (identical) Picture from [Pasechnyuk et al., 2021]
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Figure 3. The structure of the Wiener—Hammerstein model cell with polynomial nonlinearity. Picture
from [Pasechnyuk et al., 2021]
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So, both problems of this study correspond to this problem formulation and concern the question
of how to solve it properly, taking into account its original motivation.

RQ1 Which stochastic optimization method is the most suitable to solve the stated problem with such
a specific data and model behind?

In broad strokes, this question was considered in the course of study [Pasechnyuk et al., 2021] for
different groups of numerical methods. Here we focus on the stochastic methods (indeed, (1) can be
easily randomized by terms), and consider several recently proposed approaches in this field.

RQ2 How should one organize the training procedure and the evaluation of the model to agree with
the practical behavior of DPD device?

The operation of the full DPD technology stack is more complicated than it is represented in (1), and
the main difference is its online nature. It is even more online than it is implied, for example, in the
expectation minimization problems, because the source of the signal (and hence a joint distribution
of (x, ¥), continuing the analogy) also changes in time. We propose a way to simulate this specificity,
and eliminate contradictions between our experimental results and some results of laboratory tests with
DPD device.
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Standard learning framework

In this section we consider the standard setup for the problem stated above, i.e., we train the
model on some known data (it is important for the signal processing task that this subset of the whole
data is not randomly chosen but is the prefix of the ordered signal array) and then test the model
on the whole signal (NB: not the remaining part, as usual). In our experiments, the length of the
training signal prefix is 75 % of the whole signal’s length (albeit it is deliberately more than needed,
see [Pasechnyuk et al., 2021] for details, to avoid any approximation issues that are out of the scope
this time). We use the segment with m = 2 - 10° ticks from the real-life 80 MHz signal as a dataset. As
we shall see, this way to train/test the model is slightly naive to represent the behavior of the real-live
DPD device (being standard and widely used nonetheless), but thanks to it we can easily test many
possible techniques under the simplest (and computationally inexpensive) conditions to select the few
best to work with further.

To assess the results of evaluating the model on the test split of the dataset, we use the following
logarithmic scaling analogue of Mean Squared Error metric with normalization, which is specific to
the signal processing tasks:

Ms=

) |yk - yklz
dB.

2 x 2
sk

NMSE(y, 7) := 10 - log,, &

The source code of the model used to obtain the following experimental results is available
at https://github.com/dmivilensky/Sirius-2021-DPD-optimization (Python 3 + PyTorch). All the
computations were performed on the standard personal computer without GPU acceleration.

Comparison of algorithms

-15,0
-- Adam
s --- RMSprop
3 T N Lookahead(Adam)
—-- Diff Grad
200 --- RAdam
Yogi
s MADGRAD
% Adamax
B —25,0
)
=
Z =275
-30,0
-32.5
-35,0

00 25 50 7,5 100 12,5 150 175
Epochs

Figure 4. The convergence curves of different optimization methods in standard regime at initial epochs

Let us start by testing different optimization methods with respect to this standardly formulated
learning problem. The convergence of some most known ones was examined in [Pasechnyuk et al.,
2021] recently, so there is no need for us to present the same results for our model: compared to
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the table shown in Fig. 5, they are just transposed a couple of decibels higher (in our research, we
use the Wiener - Hammerstein model with significantly less parameters than for the model considered
in [Pasechnyuk et al., 2021], so our score will be a little worse — it is just a specific feature of the
particular used model).

dB

Method Setup =0s | 7=300s
ASGD (128, 10,0) -28,976
Adadelta (2048, 10,0) -32,697
Adagrad (2048, 0,01)

Adam (2048, 0,001) || -15,616
Adamax (2048, 0,01)
RMSprop (2048, 0,001) -36,499
SGD (128, 10,0) 34,061
FastAdaptive -36,273

Figure 5. Summary of the result of training the DPD model with different optimization methods in the standard
setting. Table from [Pasechnyuk et al., 2021]

Besides, in this section we focus on the starter methods, i.e., these whose convergence is the
most efficient among all tested methods at the beginning of the training process. That’s why we show
the convergence of all the methods on the first 20 or 40 epochs. The first reason for this is that the
long-term convergence in the standard training regime has already been considered in [Pasechnyuk
et al., 2021], so we should clarify the short-term convergence, which has not been considered (it is
important for the multi-method optimization schemes). The second is that the convergence on the late
epochs and the depth of finally obtained minimum is the question of a late convergence rate of the
method rather than the question of convergence depth, and we will see in the online learning framework
that the methods presented as the best here are not well adopted to converge with a good rate at a late
epoch, which is important in practice, because the optimal point we seek for is changing together with
the data segment. So, let us avoid all these complicated questions in this section, and focus on the
starting convergence, i. e., the behavior of methods far from the local minimum.

So, in Fig. 4, Fig. 6 and Fig. 7 we present the convergence curves of different tested optimization
methods. Further, we describe our observations on it.

1. The starting convergence of Adamax is not very good, despite the fact that it is one of the most
efficient methods in the long run. Some of the methods, like RMSprop, are just unstable for the
model and the signal of used size.

2. The best among the methods from Fig. 4 are Adam, as expected, and Lookahead(Adam) (we
also denote it by LaAdam), i. e., the Adam enveloped with Lookahead algorithm from [Zhang et
al., 2019]. The latter demonstrates the faster convergence.

3. The only method that outperforms Adam is Shampoo [Gupta, Koren, Singer, 2018], it is the best
starter method for DPD training for now.

4. Lookahead gives very notable results. It significantly improves and stabilizes the convergence of
Adam, which is shown in Fig. 6. Unfortunately, there is no effect of Lookahead on Shampoo.
Nevertheless, convergence of Shampoo is phenomenally stable without Lookahead too.

Another novel optimization method we tested is the Accelerated mini-batch SGD version
from [Woodworth, Srebro, 2021] (we name it AccMbSGD). This method is specialized for the
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—— Adam (Ir = le - 2) (Batches = 100)
-26 —— Shampoo (Ir = le - 1) (Batches = 100)
Lookahead (adam) (Ir = le —2) (Batches = 100)
—— Shampoo+Lookahead (Ir = e — 1) (Batches = 100),
_28 —— Adam (Ir = le - 2) (Batches = 200)
---- Lookahead (adam) (Ir = le —2) (Batches = 200)
—~ =30
as)]
Z
=32
M
2
§ —34
—40

0 5 10 15 20 25 30 35 40
N, epochs number

Figure 6. Comparison of Adam and Shampoo [Gupta, Koren, Singer, 2018] optimization methods, and the effect
of Lookahead envelope on the training of the DPD model

overparametrized optimization problems. The point is that in our case the number of parameters in
the model is significantly larger than the number of terms in sum in empirical risk, so it is reasonable
to assume that value of NMSE in minimum is near zero (and it is). This is the characteristic property
of overparametrization, and the above-mentioned method is theoretically optimal for this case.

5. Unfortunately, the convergence of AccMbSGD is not so good as expected. Moreover, this method
is complicated in hyperparameter tuning. It seems that it is not adopted for DPD training. The
corresponding curves are presented in Fig. 7.

b =200

--BAMSGD
-5 --- Adam

—40 00 25 50 75 100 12,5 150 175

N, epochs number

Figure 7. Comparison of Adam and AccMbSGD [Woodworth, Srebro, 2021] optimization methods as applied
training of the DPD model

Dynamic batch size

It is well-known practice to use mini-batching in stochastic optimization methods to improve
the convergence (due to the smaller variance of oracle) and speed up the calculations (it is typical
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for training neural networks). Usually, the size of the batch is just a hyperparameter of the method
and is the same at every iteration. Nevertheless, it is reasonable to strive to increase it if the latter
is computationally efficient. On the other hand, this heuristic is quite legitimate: indeed, in the late
steps of the method the current point is already close enough to the minimum and the step direction
efficiency becomes more sensitive to the inaccuracies of the stochastic gradient approximation (which
just can be reduced by increasing the size of the batch).

Some theoretical justifications on this technique are provided in [Zhao, Xie, Li, 2020]. The
practical efficiency of batch size adaptation is also shown in [Devarakonda, Naumov, Garland, 2017]
for some deep learning problems. So, further we check if the changing of the batch size affects
the convergence of the Adam optimization method in our case. We considered both increasing and
decreasing changing, as well as the different changing rates.

1. In our experiments, Adam with reducing the batch size demonstrated less stable and less deep
convergence than the Adam with a fixed batch size (as expected).

2. The growth of the batch size following the exponential law leads to an improvement of
convergence, but its effect is smaller than for the linear law.

3. The best formula for changing the batch size in our case is b = 200 + 120 - epoch. Using it,
we obtained a 3 % improvement in NMSE (Fig. 8, a) and reduced the training time to one half
(Fig. 8, b). The results are summarized in Table 1.

4. The positive effect in training time increases with an increase in the coefficient in the latter linear
formula (it is 120 there). But here we faced the trade-off, because the increase in the coefficient
can also worsen the limit depth of convergence (value of NMSE). In the signal processing task
the learning time is minor metric, so it is reasonable to stick around 120.

0 700 - -
Adam (dynfunic batch size, step = 120) ﬁgf’im (dtylz?ﬂlﬁctb?tc'lrl size, step = 120)
_5 — Adam (static batch size) 6001— am (static batch size)
——10
an)
T 15
c;é -20
z =25
- \\\M
-35
0 5 10 15 20 25 30 0 0 5 10 15 20 25 30

Epochs Epochs

(a) The dependence of NMSE value (dB) on the number (b) The dependence of working time (s) on the number
of training epochs of training epoch

Figure 8. The effect of the batch size changing on the training of the DPD model. It leads to a deeper convergence
of Adam (left plot) and a slower growth in the working time (right plot)

In the experiments above we used the Adam optimization method to demonstrate the efficiency
of the dynamic batch size approach. The Adam was chosen as the leader among the methods for the
standard learning framework [Pasechnyuk et al., 2021]. Nevertheless, these results are similar for all
the tested optimization methods (they are listed in Table 4).
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Table 1. Summary of the result of the training of the DPD model with a fixed and a changing batch size

| NMSE (dB) | time (s)
fixed ‘ -34,90 ‘ 660

changing -35,92 320

Dynamic learning rate

Another important hyperparameter of the optimization methods is its learning rate, i.e., some
starting value of the step size. Further, we describe the results of our experiments on scheduling
(changing) the value of the learning rate during the training. It is known that for some specific models
it may be essential to use a proper learning rate scheduler to obtain a satisfactory accuracy [Xiong et al.,
2020]. So, we tested some of the widely used schedulers in our case to check if it affects convergence
significantly.

The first group of schedulers consists of the simple monotonically-decaying ones, and here we
found the most suitable option for the growth rate and configuration of the scheduler. We tested both
the increasing and decreasing changing of the learning rate, and obtained the following results:

1. The most proper formula to change the learning rate is a linear one (bounded below): Ir =
= max{1072-10~* - epoch, 6 - 1073}. The effect of scheduling is nearly the same, independent
of the law it follows if the lower and upper bounds for the learning rate are 6 - 1073 and 1072,
respectively.

2. The learning rate increasing strategy leads to a destabilization of convergence (as expected).

3. The reference score achieved by the Adam without learning rate scheduling is NMSE =
= —34,29 dB. For the properly scheduled learning rate this score becomes NMSE = -36,56 dB.
Thus, the improvement is 7 %. The convergence curves of some tested options are presented in

Fig. 9.
O —— Adam (dynamic learning rate, increases) O — Adam (dynamic learning rate, increases)
Adam (dynamic learning rate, reduces) Adam (dynamic learning rate, reduces)
_5 — Adam (static learning rate) _5 — Adam (static learning rate)
——10
m
T -15
cz) -20
z =25
-30
=35
0 10 20 30 40 50 60 0 100 200 300 400 500 600 700 800
Epochs Time (s)
(a) The dependence of NMSE value (dB) on the number (b) The dependence of NMSE value (dB) on the training
of training epochs time (s)

Figure 9. The effect of the learning rate changing on the training of the DPD model. When decreasing, it leads
to the much deeper convergence of Adam

The results summarized above are related to only the monotone schedulers. On the other hand,
it becomes more popular to use some cyclic strategies in some cases to improve the properties of the
obtained solution. For instance, [Izmailov et al., 2018] proposed the scheduler called SWA (Stochastic
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Weight Averaging), changing the learning rate in a cyclic manner and averaging the points after
the smaller steps. In many practical deep learning problems it allows one to achieve around 1%
improvement in accuracy even without a precise tuning of the scheduler. The behavior of the cyclic
learning rate scheduling without averaging is also considered in [Smith, 2017]. We tested both SWA
and simple cycling strategies to compare their efficiency on our problem.

4. The SWA scheduler (with one epoch of the fixed learning rate, period of learning rate decreasing
equal to one epoch, and the same lower and upper bounds on the learning rate as in previous
experiment) worsens convergence as compared to the reference score obtained by Adam without
any scheduling.

5. The same cyclic scheduling without averaging the points, on the contrary, allows a significant
improvement to be obtained.

6. For the Adam optimization method, the improvement in depth given by the cyclic learning rate
is 5 %. For the Adamax, it is 7%. The results of the experiment are summarized in Table 2.

Table 2. Summary of the result of the training of the DPD model with a fixed and a cyclically changing learning
rate

NMSE (dB) | Adam | Adamax
fixed -33,30 —29,66
—35,00 -31,86

cyclic

7. We suppose that cyclic scheduling for our problem indeed behaves as it is described in [Garipov
et al., 2018] (one of the main prerequisite papers for SWA). But averaging itself fails and it is
not asymptotically equivalent to the FGE algorithm from [Garipov et al., 2018] in fact. It may
be because the structure of local minima in the problem considered is not so good as in common
deep learning tasks, i.e., instead of the situation shown in Fig. 10a we have something like
Fig. 10b, so we see the loss in score after averaging.

Wl
X

x5
xZ
x.=

W3
X
W W.
X léb NG W,
X

(a) The behavior of SWA near the local minimum (b) The probable behavior of SWA in the case of
in many deep learning problems. The picture is a more complicated structured local minimum
similar to that from [Izmailov et al., 2018]

Figure 10. The two probable cases of SWA [Izmailov et al., 2018] operation. We denote the result of averaging
intermediate points w, w,, w; by w. The left figure demonstrates a simple task for SWA, the right one may
provide an explanation for the loss of SWA we observed

Finally, it is reasonable to assess the learning rate scheduling techniques we considered in
conjunction with the previously described batch size changing, and check if we can combine them
to obtain the better scores. We considered the testing of only a paired technique of increasing the batch
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size and of monotonically decreasing the learning rate, since these two are efficient and simple enough
to be combined without additional synchronizations.

8. Increasing the batch size with a decreasing learning rate is efficient, but the effect of the learning
rate here is weaker than without batch size changing: it is only a 0,5 %, see Fig. 11. This is near
the scale of score oscillations from epoch to epoch, so this improvement may be unstable.

9. For this compound regime the resulting score is NMSE = -35,46 dB. The reference value for
this experiment is when the batch size increases, but the learning rate is fixed, it is NMSE =
= -35,27 dB.

10. Increasing the learning rate still leads to a divergence, but this effect becomes more pronounced
when the batch size increases.

O — Adam (dynamic learning rate, increases) 0 —— Adam (dynamic learning rate, increases)
Adam (dynamic learning rate, reduces) Adam (dynamic learning rate, reduces)
_5 — Adam (static learning rate) _5 —— Adam (static learning rate)

0 10 20 30 40 50 60 0 100 200 300 400 500 600 700
Epochs Time (s)
(a) The dependence of NMSE value (dB) on the number (b) The dependence of NMSE value (dB) on the training
of training epochs time (s)

Figure 11. The effect of both learning rate changing and the increase in the batch size on the training of the DPD
model. When the learning rate decreases, it leads to a little deeper convergence of Adam, while if it increases, it
leads to a significant destabilization

These results are somewhat unexpected. One can think that if the batch size becomes bigger, the
stability of the method becomes better, and at least with decreasing learning rate (which is very careful
heuristic) it should have manifested itself in the improvement of scores, but it did not. Anyway, we can
say that combining of batch size changing with the learning rate scheduling is not very efficient, so in
any particular case it will be necessary to make a choice between big improvement in time and good
improvement in depth. As mentioned above, the working time is minor metric for signal processing
tasks. Nevertheless, it would be interesting to know that in online regime changing the batch size is
just more efficient with respect to the depth of convergence than both of the learning rate scheduling
policies.

Regularization

The last of the non-optimizational modifications considered in the course of our study is
a regularization. It is very common to add the regularization term in the problem to control the
properties of the solution, but the regularization may also be a good heuristic to improve the
convergence, due to its impact on the (local) conditionality of the problem. This practical property
of regularization seems to be underexamined and is bypassed in many new research papers on the
application of optimization methods to learning problems.
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In out experiment, we considered only some widely known regularization terms, namely, ¢,
(lasso), ¢, (ridge) and ¢, + ¢, (elastic net). To check their impact on convergence, we tested the effect
of different optimization methods listed in Table 4, on the corresponding regularized problems. Below
are the results it gave:

1. Unlike most of the results presented in the previous sections, the impact of regularization greatly
depends on the chosen optimization method. So, Adam and Adamax are sensitive to it, while
RAdam [Liu et al., 2019] is totally not (see Table 3).

2. On the other hand, one can conclude from the left part of Table 3 that the standard regularization
(one like A|6]2, we name it zero-centered; we set 1 = 107*) does not affect the convergence.
We present the minimum-aggregated values of NMSE, so we hide some probable destabilization
effects here — they can appear in RAdam, but not in Adam or Adamax (see Fig. 12).

Table 3. Summary of the results of the training of the DPD model with different regularization terms

min NMSE, zero-centered min NMSE, prox-centered
method | reference 7 7 757 7 7 17
| 2 1 T4 ] 2 )
Adam -33,30 —33,30 —33,30 —33,30 —33,99 —33,31 —33,81
RAdam | -31,88 -31,88 -31,88 —31,88 —31,88 —31,88 -31,88
b =1000 b =1000
\
-26 -26
-28 \ -28
N \ N
= 30 =~ = -30
&l S &
32 \ =3
m S
n —— a
= —34 = _34
Z —— Adam no reg Z — RAdam no reg
—36 Adam elastic net reg, reg_coeff = le -4, prev_params —36 RAdam elastic net reg, reg_coeff = le — 4, prev_ params
—— Adam elastic net reg, reg_coeff = le - 5, prev_ params —— RAdam elastic net reg, reg_coeff = le — 5, prev_ params
—— Adam elastic net reg, reg_coeff = le — 6, prev_ params —— RAdam elastic net reg, reg_coeff = le — 6, prev_ params
—38 —— Adam elastic net reg, reg_coeff = le -7, prev_ params —38 —— RAdam elastic net reg, reg_coeff = le — 7, prev_ params
—— Adam elastic net reg, reg_coeff = le - 8, prev_ params —— RAdam elastic net reg, reg_coeff = le — 8, prev_ params
40 Adam elastic net reg, reg_coeff = le - 9, prev_ params 40 RAdam elastic net reg, reg_ coeff = le =9, prev_ params
700 25 50 7.5 10,0 12,5 150 17,5 700 25 50 7.5 100 12,5 150 17,5
N, epochs number N, epochs number
(a) The dependence of NMSE value (dB) on the number of (b) The dependence of NMSE value (dB) on the number of
training epochs for Adam training epochs for RAdam

Figure 12. The effect of prox-centered regularization on the training of the DPD model

The point is that it is more efficient here is to use more complicated regularization with
moving center (one like A||6 — 0||§, we name it prox-centered). We tested the version with a period

of updates equal to one epoch and 8 set to the point obtained after the last iteration of the method. This
configuration resembles the scheme of an inexact proximal gradient method a little.

3. So, this approach is efficient and gives 2 % improvement to the Adam optimization method. The
results are summarized in Table 3.

4. It is unusual that the best result is obtained with £ -regularization (and also with elastic net, but
the effect is smaller, so we can conclude that the £, part of it only suppresses the effect of the £,

part).
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Quasi-online learning framework

As mentioned above, the standard learning framework is not suitable for learning the DPD
models due to some disagreements with the behaviour of practical devices. The point is that if we
use some optimization methods, for example, Adam and Adamax, to fit the parameters of the real
technical prototype, and then test it on some real life signal, we will find that Adamax (significantly)
outperforms Adam, while our experiments in the previous section predict the opposite. The reason is
that the operation of the technical prototype is different from the simulating scheme used before, due
to the specifics of the signal processing task. In fact, the DPD model retrains periodically to be able to
work with the new incoming signal. Unlike machine learning, the data in this case is updated with a big
frequency (80 MHz or more) and, moreover, changes its properties, for example, due to the change of
the interlocutor on the telephone line. A very simplified circuit diagram of DPD operation is presented
in Fig. 13, and represents the looped process. So, if our results disagree with the experiment, we first
should take into account this cyclicality as the most notable difference with the standard machine
learning framework.

System z | System
input ioi output
p Digital ’ PA p

predistorter

N

Figure 13. Schematic diagram of the operation and learning of the DPD device during signal processing

Further, we propose another framework to train/test DPD models, which includes the retraining
procedures and more correct evaluation, and test some of the techniques proposed above under new
conditions closer to real-life conditions.

New framework and comparison of algorithms

As was noted in the preamble of the section, the provided comparison of methods and testing
of any practices under the previously postulated conditions have little in common with the behavior
of these objects observed in reality. At least, it is difficult to find real analogies for training and test
datasets, and yet the NMSE value we use is a function not only of the applied numerical method, but of
these two parameters too. Of course, we are not able to avoid this functional dependence. We propose
to replace these two variables with the most natural one — the whole given signal segment.

Let us turn to the operation of DPD device. Following the scheme from Fig. 13: DPD collects
information about some small segment of signal, then it trains on it and is predicting distortion for
some new small segment, while collecting information about it, then it repeats this procedure over and
over again. The only thing we cannot wave away here is «over and over againy», because we are limited
by the given dataset, but we can exactly simulate all the other steps. Namely, let us split our dataset
into some number of segments with the same length and train and test the model on the two consequent
segments at every training era. This is shown in Fig. 14.
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1 2 3 4 5
! train test number of
N segment
3 _______________
number of 4 |---------------oo--o--
training eras

Figure 14. Description of an online learning framework: a diagram of data segments used at different moments
in signal processing by the model

There are two options to assess the model in this framework. The most obvious one is the value
of NMSE from the last era, i.e., evaluated on the last segment of the dataset. But this metric has two
flaws: 1) it is evaluated only on the last segment of data, which may lead to approximation issues (for
example, to an overestimation of error) if this segment is small; 2) it does not represent the performance
of the method for the whole signal, and even if all segments except the last one are predicted absolutely
incorrect, the score can be good enough. To deal with these problems, we also use the mean-aggregated
version of NMSE:

T
mean NMSE(T, y, y) := % D NMSE(y, ) dB.
i=1
It is in fact a very proper choice for assessment of the performance of online optimization methods,
because it is usually used in their theoretical analysis [Hazan, Kale, 2014] (and is connected with the
so-called regret metric).

So, let us first reassess the optimization methods in a new setting without any additional
modifications. In Table 4 we present the results for some of the methods with corresponding values of
NMSE and mean NMSE. And here we see the key difference of the new approach with the previous
one: the Adamax algorithm now is the best performing method and, by a large margin, it is 3 % better
than Adam in NMSE, and also has a better rate of convergence at the late eras (see Fig. 15, a). The
latter is the most important property of the optimization method in our task, because it determines the
possible depth of solution given by this method. We see that despite the starting lag of Adamax it
managed to overtake methods like Shampoo and Adam, which seems to be stuck in local minima or
just to have declined in the convergence rate.

Table 4. Summary of the results of the training of the DPD model with different optimization methods in a new
quasi-online setting

Method NMSE (dB) | mean NMSE (dB)
Adamax —33,04 -30,21
Adam -31,94 -30,17
Shampoo -31,06 -29,99
DiffGrad -30,41 -28,76
RMSprop -30,18 -27.96
LaAdam -29,12 -27.90
RAdam -29,35 -27.24
AccMbSGD -27,18 —24,65
Yogi -26,41 -24,29

For the other methods we see mostly the same results as those for the standard learning
framework. Shampoo is still one of the best starter methods, and AccMbSGD does not demonstrate
a good convergence rate. Figure 15, b shows the mean-aggregated version of the same plots, and we

KOMIIBIOTEPHBIE UCCIIEJOBAHUSA U MOJAEJIUPOBAHUE




CroxacTuueckasi ONTUMHU3AIUS B 3a/1aue U(PPOBOrO MPEIbICKAKECHUS CUTHANA 413

can make similar conclusions from it, except that the leadership of Adamax here is not so pronounced,
but it is just an effect of averaging.

0 — LookAhead(Adam) 0 — LookAhead(Adam)
— RMSprop — RMSprop
-5 — g?élélrad -5 — S?{?&i-ad
— R,AQam —_— l\}A(!am
—_ gl:::%rlnpoo a _10 —_ S](i)fllnpoo
Adamax = Adamax
— AccMbSGD = _15 — AccMbSGD
&7
= -20
Z
=25
\
=30 s
35 =35
0 50 100 150 200 250 300 350 0 50 100 150 200 250 300 350
Time (s) Time (s)
(a) The dependence of NMSE value (dB) on the working (b) The dependence of mean time NMSE value (dB) on
time (s) the working time (s)

Figure 15. The convergence curves of different optimization methods in the quasi-online regime with evaluation
after every era

Dynamic batch size

Now we should revisit the practices we proposed for the standard learning framework in view of
the new one. Let us start by changing the batch size. Further, we consider only the most efficient policy
we identified above (linear increase in the batch size), but at the same time, we test two modifications
of this scheme, that are given by the more complicated structure of testing framework itself.

Namely, the first option is to change the batch size linearly depending on the current era (the
number of the learning segment), and the second option is to link the batch size with the number of the
epoch within every segment in every era. The choice of a policy here is in fact the trade-off between
the depth of convergence in the «expected» score and the depth of convergence for every segment,
respectively.

We tested both policies, and the result is that era changing (first option) and epoch changing
(second option) are competitive depending on what metric we use. In the standard NMSE, era changing
performs better, but after averaging the epoch changing becomes a better option. This means that it is
more efficient to achieve a little improvement in convergence at every era (for every small piece of
signal) instead of improving the outer loop convergence. It is quite an unexpected result.

The results of this experiment are summarized in Table 5. The use of the epoch changing batch
size allows one to obtain 6 % improvement in mean NMSE metric for the considered setting. Figure 16

shows the convergence of Adamax with the different batch size changing policies in more detail for
two metrics.

Table 5. Summary of the results of the training of the DPD model with a fixed and a changing batch size in the
quasi-online regime

| NMSE (dB) | mean NMSE (dB)

fixed -33,15 -28,96
era changing -33,63 —29,85
epoch changing —33,49 -30,66
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— Adamax — Adamax
Adamax (dynamic batch, per segment) Adamax (dynamic batch, per segment)
_5 —— Adamax (dynamic batch, per step within segment) _5 —— Adamax (dynamic batch, per step within segment)

NMSE (dB)

0 50 100 150 200 250 300 0 50 100 150 200 250 300
Time (s) Time (s)
(a) The dependence of NMSE value (dB) on the working (b) The dependence of mean time NMSE value (dB) on
time (s) the working time (s)
Figure 16. The effect of batch size changing on the training of the DPD model
Regularization

In the case of regularization, we do not need to take into account the difference between
eras and epochs, so to test the performance of this modifications we just carried out one more
experiment of learning the DPD model with the Adamax optimization method (it is the best one
in the online setting) with ¢,-regularization (which was the best and the most stable option in the
standard learning framework experiments). The result approves the positive impact of ¢,-regulariza-
tion: compared to the reference value of mean NMSE = —30,72 dB, given by the model trained without
any regularization, ¢, -regularization allows one to achieve mean NMSE = —30,81 dB, which is 0,3 %
better. Unfortunately, this is near the scale of oscillations in convergence on the late iterations of the
method, so we conclude that regularization gives no improvement in the online regime (but also does
not impair the convergence depth).

We adhere to the explanation of the fact that the oscillations in the online regime are themselves
really perceptible, and the effect of our modification is just suppressed by multiple switching between
different data segments. Another reason is that after the last change of the segment, we again start
to seek a new optimal point (corresponding to this segment) from some arbitrary point, and due to
the small value of the regularization coefficient, we have a situation similar to that of the standard
framework experiment, but within a small subset of data. In other words, regularization impacts
convergence only on the last segment, and the impact is small because of smallness of this segment.

Cyclic learning rate

At last, we have reproduced the experiments with cyclic learning rate scheduling in the new
online framework. Now we have applied this modification to the new best method, Adamax. We tested
both options for the period of cycling: once in epoch or once in era, and chose the epoch — there is no
qualitative difference between the results in these two configurations, but increasing the period leads to
a decrease of this positive effect itself. So, we used learning rate cycling scheduling with a period equal
to one epoch together with Adamax, for which the improvement was 1% in mean NMSE, and with
Adam, with a similar result — 1 % improvement in mean NMSE. The decrease in effect as compared to
that for the standard learning framework is explained by the same reasons as presented in the previous
section.
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Conclusion

In the introduction, we posed two central questions of this research: which optimization method is
the most suitable for training the DPD model, and what framework we need to use to simulate the DPD
operation under conditions closer to real-life conditions and to match our simulation with the results
observed in practice. In the course of our study, we carried out a large number of clarifying and detailing
experiments to come to the two desired answers. In the first section, devoted to the standard learning
framework, we summarize those that relate to the first question, presenting a comparison of many
modern optimization methods and revealing the gist of the proposed modifications designed to improve
their convergence. In the second section, we propose the new quasi-online learning framework and
demonstrate that the ranking of the methods in our new experiments is mostly in line with that observed
under close-to-real conditions, and also reassess some of the proposed modifications to approve their
stability.

To express the achieved improvements in numbers: in the standard learning framework, the depth
of convergence (the value of NMSE metric, which is logarithmic scaled itself) was improved in 7 %
(thanks to steadily decreasing learning rate changing for Adam or cyclic scheduling for Adamax),
while the maximum achieved improvement in the online regime is 6 % in mean NMSE (and given by
the increase in the batch size at every epoch). In terms of working time, we have achieved a twofold
improvement (with changing batch size), which preserves 3 % and 6 % improvement in NMSE and
mean NMSE for the standard and online regime, respectively.

The interim results arising in the course of the study confirm that the considered DPD model
is really specific and requires a separate study of the effectiveness of optimization methods as applied
to its training: many approaches, common, for example, in the field of training neural networks, work
here unexpectedly or do not work at all. The authors hopes that the proposed results will be useful for
other researchers concerned with DPD models, and that the questions posed will stimulate a deeper
study of related problems.
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