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B 9T0i1 cTrarbe MBI mpemmaraeM HOBBIM METOX TIEPBOTO TOPSAIKA U KOMITO3UTHBIX HEBBIMYKJIBIX 3a1ad
MUHUMHA3AIIHA C TPOCTBIMU OTPAHWYCHUSAMH M HETOYHBIM OpakynoM. llemeBas (yHKIms 3amaeTcs Kak cymMma
«CIIOXKHO», BO3MOXKHO, HEBBITYKIIOW YaCTH C HETOYHBIM OPAKYJIOM M IIPOCTOW» BBIMYKION YacTH. Mbl 0000-
[aeM MMOHATHUEC HETOYHOTO OpaKyia JUIs BRIMYKJIBIX (DYHKIMH Ha Ccly4ail HeBBIMYKIbIX QyHKIwA. Hedopmanbsro
TOBOps, HETOYHOCTh OPaKyJa O3HAYaeT, YTO JJIsl «CIOKHOW» YacTH B JIFOOOH TOYKE MOXKHO TPHUOIMKEHHO BBI-
YUCIUTDH 3HaYCHWE (PYHKIIMU W MOCTPOUTH KBAJAPATHIHYIO (DYHKIHIO, KOTOpask MPUOIMKCHHO OTPAaHUYHUBACT ITY
(dhyHKIHIO CBepXy. PaccMaTrpuBaeTcs 1Ba BOSMOYKHBIX THITA OITHOKH: KOHTPOIHPYEMast, KOTOpasi MOKET OBITh clie-
JIaHa CKOJIb YTOAHO MaJICHBKOW, HAIIPUMED, 3a CUET PEIICHHs BCIIOMOTATENFHOW 3a1a4d, M HEKOHTPOIUpyeMasl.
[IpuMepaMu TakoW HETOYHOCTH SIBIISIOTCS: IVIAJIKUC HCBBIMYKIbIC (YHKIMH C HCTOUYHBIM M HEMPECPHIBHBIM IO
['énpnepy rpaaueHTOM, (PYHKIMHY, 3aIlaHHBIC BCIIOMOTATEIBHOW PaBHOMEPHO BOTHYTOH 3a/laucii MaKCUMU3AIHH,
KOTOpast MOKET OBITh PelIeHa JHITh MPUOMKeHHO. J[J1s1 BBEIGHHOTO Kilacca 3a/1ad MBI IIpejiaraeM METOo]] THITA
MIPOEKITNH TPaIUeHTa / 3epKaJbHOTO CITyCKa, KOTOPHIH MO3BONISET MCIIONB30BATh PA3IMYHBIC TTPOKC-(OYHKITUH IS
3alaHus HeeBKIIMIOBON MPOCKIIMK Ha JOMYCTHMOE MHOKECTBO M 00jee THOKOW aJanTaliui K TEOMETPHH JIOILY-
CTHMOTO MHOYKCCTBA; aJJaliTHBHO BBHIOMPAET KOHTPOIUPYEMYO OIIMOKY OpaKyija ¥ OUIHOKY HEeBKIHIOBOTO MPO-
CKTHPOBAHUSI; TOMYCKAET HETOYHOE MPOKCHMAIBHOE OTOOPAKCHUE C JBYMs THIIAMH OINUOKH: KOHTPOIUPYEMOM
Y HEKOHTPOJIUpPyeMOi. MBI 0Ka3bIBaeM CKOPOCTh CXOJJMMOCTH HAILIETO0 METOAA B TEPMUHAX HOPMBI 0000IICHHO-
TO TPaJINEHTHOTO OTOOPAYKEHHUS U TIOKA3bIBaEM, YTO B CIIydae HETOYHOTO HEMpephIBHOTO 1o [ €npaepy rpaaueHTa
HAIll METO] SIBJIIETCS] YHUBEPCAIBHBIM IO OTHOIICHHUIO K MapaMeTpy M KoHcTaHTe [ €mpaepa. ITo O3HadaeT, 94To
METO/ly HE HY)KHO 3HAHHE JTHX MapaMeTpoB Ui paboThl. [Ipu 3TOM MmoydYeHHAs! OICHKA CIIOKHOCTH SIBIISICTCS
paBHOMEpPHO Hauyuyliel npu Bcex mapamerpax ['€npaepa. Hakonel, B 4acTHOM ciiyyae MOKa3aHO, YTO Malioe
3HaYEHUE HOPMBI 000OIIEHHOTO TPAJUEHTHOTO OTOOPaKEHHsI B TOUYKE O3HAYAET, YTO B ATOW TOUKE NMPUOIHIKEHHO
BBITIONTHACTCS HEOOXOANMOE YCIIOBHE JIOKAJTbHOTO MHHUMYMa.
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In this paper, we develop a new first-order method for composite nonconvex minimization problems
with simple constraints and inexact oracle. The objective function is given as a sum of «hard», possibly
nonconvex part, and «simple» convex part. Informally speaking, oracle inexactness means that, for the «hard»
part, at any point we can approximately calculate the value of the function and construct a quadratic function,
which approximately bounds this function from above. We give several examples of such inexactness: smooth
nonconvex functions with inexact Holder-continuous gradient, functions given by the auxiliary uniformly concave
maximization problem, which can be solved only approximately. For the introduced class of problems, we
propose a gradient-type method, which allows one to use a different proximal setup to adapt to the geometry
of the feasible set, adaptively chooses controlled oracle error, allows for inexact proximal mapping. We provide
a convergence rate for our method in terms of the norm of generalized gradient mapping and show that, in the
case of an inexact Holder-continuous gradient, our method is universal with respect to Holder parameters of the
problem. Finally, in a particular case, we show that the small value of the norm of generalized gradient mapping
at a point means that a necessary condition of local minimum approximately holds at that point.

Keywords: nonconvex optimization, composite optimization, inexact oracle, Holder-continuous
gradient, universal gradient methods

Citation: Computer Research and Modeling, 2022, vol. 14, no. 2, pp. 321-334.

This research was funded by the Russian Science Foundation (project 21-71-30005).

(© 2022 Pavel E. Dvurechensky

This work is licensed under the Creative Commons Attribution-NoDerivs 3.0 Unported License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-nd/3.0/

or send a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.



I'paguieHTHBIH METO/I C HETOYHBIM OPAKYJIOM JJIS 3a1ad . . . 323

Introduction

In this paper, we introduce a new first-order method for nonconvex composite optimization
problems with inexact oracle. Namely, our problem of interest is as follows:

Jmin {y(x) := f(x) + ()}, M

where X is a closed convex set, h(x) is a simple convex function, e.g. [[x]l,. We assume that f(x) is
a general function endowed with an inexact first-order oracle, which is defined below (see Definition 1).
Informally speaking, at any point we can approximately calculate the value of the function and construct
a quadratic function, which approximately bounds our f(x) from above. An example of a problem with
this kind of inexactness is given in [Bogolubsky et al., 2016], where the authors study a learning
problem for the parametric PageRank model.

First-order methods have been widely developed since the earliest years of optimization theory,
see, €. g., [Polyak, 1963]. The recent renaissance in their development started more than ten years ago
and was mostly motivated by fast growing problem sizes in applications such as Machine Learning,
Data Analysis, Telecommunications. For many years, researchers have mostly considered convex
optimization problems since they have good structure and allow one to estimate the rate of convergence
for proposed algorithms. Recently, nonconvex problems started to attract fast growing attention, as
they appear often in Machine Learning, especially in Deep Learning. Thus, high standards of research
on algorithms for convex optimization started to influence nonconvex optimization. Namely, it has
become very important for newly developed methods to obtain a rate of convergence with respect to
some criterion. Usually, this criterion is the norm of gradient mapping, which is a generalization of
gradient for constrained problems, see, e. g. [Nesterov, 2004].

Already in [Polyak, 1987], the author analyzed how different types of inexactness in gradient
values influence the gradient method for unconstrained smooth convex problems. At the moment,
the theory for convex optimization algorithms with inexact oracle is well-developed in a series
of papers [d’Aspremont, 2008; Devolder, Glineur, Nesterov, 2014; Dvurechensky, Gasnikov, 2016].
In [d’Aspremont, 2008], it was proposed to calculate inexactly the gradient of the objective function
and to extend the Fast Gradient Method of [Nesterov, 2005] to be able to use inexact oracle information.
In [Devolder, Glineur, Nesterov, 2014], a general concept of inexact oracle is introduced for convex
problems, and Primal, Dual and Fast gradient methods are analyzed. In [Dvurechensky, Gasnikov,
2016], the authors develop the Stochastic Intermediate Gradient Method for problems with stochastic
inexact oracle, which provides good flexibility for solving convex and strongly convex problems with
both deterministic and stochastic inexactness.

The theory for nonconvex smooth, nonsmooth and stochastic problems is well developed
in [Ghadimi, Lan, 2016; Ghadimi, Lan, Zhang, 2016]. In [Ghadimi, Lan, 2016], problems of the
form (1), where X = R"” and f(x) is a smooth nonconvex function, are considered in the case where the
gradient of f(x) is exactly available, as well as when it is available through stochastic approximation.
Later, in [Ghadimi, Lan, Zhang, 2016] the authors generalized these methods for constrained problems
of the form (1) in both deterministic and stochastic settings.

Nevertheless, it seems to us that gradient methods for nonconvex optimization problems with
deterministic inexact oracle lack sufficient development. The goal of this paper is to fill this gap.

It turns out that smooth minimization with inexact oracle is closely connected with minimization
of functions with a Holder-continuous gradient. We say that a function f(x) has a Holder-continuous
gradient on X iff there exist v € [0, 1] and L, > 0 s.t.

IV/(x) = ViWllg,. < Lllx=yllg, x yeX
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In [Devolder, Glineur, Nesterov, 2014] it was shown that a convex problem with a Hoélder-continuous
subgradient can be considered as a smooth problem with deterministic inexact oracle. Later, universal
gradient methods for convex problems with a Holder-continuous subgradient were proposed in
[Nesterov, 2015]. These algorithms do not require knowledge of Holder parameter v and Holder
constant L,. Thus, they are universal with respect to these parameters. [Ghadimi, Lan, Zhang, 2015]
proposed methods for nonconvex problems of the form (1), where f(x) has a Hdolder-continuous
gradient. These methods rely on Euclidean norm and are good when the Euclidean projection onto
the set X is simple.

Our contribution in this paper is as follows.

1. We generalize for the nonconvex case the definition of inexact oracle in [Devolder, Glineur,
Nesterov, 2014] and provide several examples, where such inexactness can arise. We consider
two types of errors — controlled errors, which can be made as small as desired, and uncontrolled
errors, which can only be estimated.

2. We introduce a new gradient method for problem (1) and prove a theorem (see Theorem 1) on
its rate of convergence in terms of the norm of generalized gradient mapping. Our method is
adaptive to the controlled oracle error, is capable to work with inexact proximal mapping, and
has flexibility of choice of proximal setup, based on the geometry of set X.

3. We show that, in the case of problems with an inexact Holder-continuous gradient, our method
is universal, that is, it does not require to know in advance a Holder parameter v and Holder
constant L, for the function f(x), but provides the best-known convergence rate uniformly in
Holder parameter v.

Thus, we provide a universal algorithm for nonconvex Holder-smooth composite optimization problems
with deterministic inexact oracle.

The rest of the paper is organized as follows. In Section 1, we define the deterministic inexact
oracle for nonconvex problems and provide several examples. In Section 2, we describe our algorithm,
and prove the convergence theorem. Also, we provide two corollaries for particular cases of smooth
functions and Holder-smooth functions. Note that the latter case includes the former one. Finally, we
provide some explanations about how convergence of the norm of generalized gradient mapping to
zero leads to a good approximation for a point, where a necessary optimality condition for Problem (1)
holds. Note that we use different reasoning from what can be found in the literature.

Notation. Let & be a finite-dimensional real vector space and & be its dual. We denote the value
of the linear function g € & at x € & by (g, x). Let || - Il be some norm on &, || - ||&* be its dual.

1. Inexact Oracle

In this section, we define the inexact oracle and describe several examples where it naturally
arises.

Definition 1. We say that a function f(x) is equipped with an inexact first-order oracle
on a set X if there exists 6, > 0 and at any point x € X for any number 6, > O there exists
a constant L(d,) € (0, +o0) and one can calculate f(x, §., §,) € R and g(x, ¢, ¢,) € E satistying

1f() = fx, 6, 6, < 8.+ 6, ©)

— Lo
f(y) - (f(x’ 559 61,4) - @(x’ 659 61,4)’ y- X>) < ( C)

5 lx =yl + 6. +3, YyeX. 3)
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In this definition, J, represents the error of the oracle, which we can control and make as small
as we would like to. On the opposite, §, represents the error, which we cannot control. The idea behind
the definition is that at any point we can approximately calculate the value of the function and construct
an upper quadratic bound.

Let us now consider several examples.
1.1. Smooth function with inexact oracle values

Let us assume that:

1. Function f(x) is L-smooth on X, i. e. it is differentiable and, for all x, y € X, [[Vf(x)-Vf)llg, <
< Liix = yllg-

2. Set X to be bounded with max ||x — Mg < D.
x, yeX

3. There exist 5,14, Ei > 0 and at any point x € Q, for any gi, 53 > 0, we can calculate
approximations £(x) and (x) s.t. [F(x) = F(X)] < 8, + By, II8X) = V(D)5 <, + 3o

Then, using L-smoothness of f(x), we obtain, for any y € X,

L
£0) < £+ (0, y =20 + Sle = ¥} < @)
_ _ _ L
<F) + 3+ 8, + (V. y = ) + (V) ~ 30, y = x) + S~ < 5)
< F) +(V5), y—x) + ’gux MR+ B+ 5+ (5 + D, ©)

Thus, (f(x), g(x)) is an inexact first-order oracle with 6, = Ei + SiD, 0, = 53, + giD, and L(6,) = L.
1.2. Smooth function with a Holder-continuous gradient

Assume that f(x) is differentiable and its gradient is Holder-continuous, i. e. for some v € [0, 1]
and L, > 0,

IVF() = VDl < Lllx=yllg Vx,yeX. (7

Then

LV 1+v
- Yx, yeX. 8
el Vo (8)

JO) < f) +(Vf(x), y = x) +

It can be shown, see [Nesterov, 2015], Lemma 2, that, for all x € X and any ¢ > 0,

L6
f(y)—(f(x)—<Vf<x>,y—x>><%ux—yuém Wy e X, )
where
1—v 2\ 2
L(6)=(1+V-5) L. (10)

Thus, (f(x), Vf(x)) is an inexact first-order oracle with 6, = 0, 6, = ¢, and L(6) given by (10).

Note that, if (f(x), Vf(x)) can only be calculated inexactly as in Subsection 1.1, their
approximations will again be an inexact first-order oracle.

2022, T. 14, \e 2, C. 321-334
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1.3. The function given by maximization subproblem

Assume that the function f(x): & — R is defined by an auxiliary optimization problem

fx) = nll]a)fH{‘P(x, u) := —G(u) + (Au, x)}, (11)

ueUc

where A: H — & is a linear operator, and G: H — R is a continuously differentiable uniformly
convex function of degree p > 2 with parameter o, > 0. The latter means that

(VG(uy) = VG(uy), uy = up) > oplluy —ully, Vuy, uy € U, (12)

where || - ||ﬂ is some norm on H. Note that f(x) is differentiable and Vf(x) = Au*(x), where u*(x) is
the optimal solution in (11) for fixed x.
Extending the proof in [Nesterov, 2015], we can prove the following.

Lemma 1. [f G is uniformly convex on X, then the gradient of f is Holder-continuous with

P
1 AN, ..
L, = —21=¢ (13)

p—-1 7 o
o
where ||Ally,_, ¢ = max{[|Aullg , : |lull,, = 1}.
Proof. From the optimality conditions in (11), we obtain
(ATx; = VGu(x)), u(x,) — u(x))) <0, (14)

(AT x, = VG(u(x,)), u(x,) — u(x,)) < 0. (15)

Adding these inequalities, we obtain, by definition of uniformly convex function,

12)
(AT (x) = xp), u(x)) = u(xy)) 2 (VG (u(x)) = VG(u(xy), u(x)) — u(xy))y > oy llulx)) — u(x)lf. (16)

On the other hand,

IAGu(x,) = uCe))E, < AN g llute)) = u(x)li, < (17)
2 L7 2lp
< llAll7 e ((T—<A (x) = xy), u(x)) —u(x,))| < (18)
P
A, g 2p 2p
< THA(M(XI) - u(xz))”&*”xl - xz“g . (19)
Op
Thus,
2-2/p ”A”g{—>8* 2/p
1AGuCx)) = uCe)llg ™ < ——7= k= xllg"s (20)
Op
which proves the lemma. o

Let us now consider a situation where the maximization problem in (11) can be solved only
inexactly by some auxiliary numerical method. It is natural to assume that, for any x € X and any ¢ > 0,
we can calculate a point u, € U s.t.

0< f(x) —Y(x, u,) =¥(x, u'(x) —¥(x, u,) <6. 21)
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Since In(?) is a concave function, for any p > 2 and ¢, 7 > 0, we have

1 -1 o 1 -1 o
ln(—tp 4 rn’l) > —In(#) +2—n (Tp’fl) = In(t7). (22)
p p p p
Using this inequality with
| IAlL,,_g
t= o)~y = =y = Al (23)
Op
we obtain, for any y € X,
(AW (x) —uy), y = x) < Allyy_ gl (0) = uylly lly — xllg < (24)
v
O-P * 0 ’;;l—>8* %1
< — () = uglly + ———lly —xllg" = (25)
p LT
p-17p
_ 0-.0 % 0 Lv 1+
= ?HM () —ully, + o, Vlly = xllg™, (26)

where v and L, are defined in (13). At the same time, since ¥(x, u) (11) is uniformly concave in the
second argument, we have

O-p * 4 * (21)
?llu () = uplly, < Wx, u(0) —¥(x, uy) < 6. 27)
Combining this inequality with the previous one, we obtain
. L
AW —ug y=x) < 7=l - g™ +6. (28)

Since f has a Holder-continuous gradient with parameters (13), using (8), we obtain

Lv 1+v @h
JO) < f) +(Vf(x), y—x) + 1+V|IX—)’||5 < (29)
@n . 2L, e
< Yo, u) +0+{Au,y—x) + (A (x) —u,), y—x) + " Vllx g™ < (30)
@) 2L, ey (8109),010)
< Y, uy,) +{(Au,, y—x) + T llx = yllg™ + 26 < (31
v
(8),(9),(10) 2L(6
< Y(x, u,) +(Au,, y — x) + ( )llx - y||(29 + 46. (32)

2
Thus, we have found that (‘W(x, u,), Au,) is an inexact first-order oracle with 8, = 0, 8. = 49, and L(¢,)

given by (10) with § = %.
2. Adaptive gradient method for problems with inexact oracle

To construct our algorithm for problem (1), we introduce, as it usually done, proximal setup [Ben-
Tal, Nemirovski, 2015]. We choose a prox-function d(x) which is continuous, convex on X and

1) admits a continuous in x € X° selection of subgradients d’(x), where x € X C X is the set of
all x, where d’(x) exists;

2) d(x) is 1-strongly convex on X with respect to || - i.e., for any x € X% ye Xdy)-dx) -

—(d'(x), y—x) > §lly — xlI2.

llgs
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328 I1. E. [IBypeuenckuit

We define also the corresponding Bregman divergence V([z](x) = d(x) — d(z) — {d'(2), x — z), x € X,
z € XY, Standard proximal setups, i. e. Euclidean, entropy, %, simplex, nuclear norm, spectahedron can
be found in [Ben-Tal, Nemirovski, 2015]. We will use Bregzrnan divergence in the so-called composite
prox-mapping

min {(g, X) + lV[E](x) + h(x)}, 33)
xeX Y

where y > 0, ¥ € X, g € & are given. We allow this problem to be solved inexactly in the following
sense.

Definition 2. Assume that we are given 6, > 0,y >0, X € X°, g € &. We call a point x =
=x(x, g, v, Opes Opu) € X° an inexact composite prox-mapping iff for any 0pc > 0 we can calculate X
and there exists p € dh(X) s.t. it holds that

<g + % [d @) —d @]+ p,u- x> >—6,.—6,, YuecX (34)
We write
X = argmin %r<*opu {(g, Xy + lV[E](JC) + h(x)} (35)
xeX Y
and define |
8x (% & > Opes Opu) 1= (X = ). (36)

This is a generalization of inexact composite prox-mapping in [Ben-Tal, Nemirovski, 2015].
Note that, if ¥ is an exact solution of (33), inequality (34) holds with 6,. = ¢, = 0 due to the first-
order optimality condition. Similarly to Definition 1, 6, represents an error, which can be controlled
and made as small as it is desired, ¢, represents an error which cannot be controlled.

Our main scheme is Algorithm 1 below.

We will need the following simple extension of Lemma 1 in [Ghadimi, Lan, Zhang, 2016] to
perform a theoretical analysis of our algorithm.

Lemma 2. Let x = X(X, 8 ¥, 6pes 0,,) be an inexact composite prox-mapping
and gy(X, g, ¥, 0, 0,,) be defined in (36). Then, for any X € X% ¢ € & and v, Opes Opy > 0, it
holds that

Y<g9 gX(x9 g9 7’ 6pc’ 6pu)> > ')’ng(x’ g9 7’ 6pc’ 6pu)||(28+(h(7(%9 g& 79 6pc’ 6pu))_h(x))_6pc_6pu' (39)

Proof. Taking u = X in (34) and rearranging terms, we obtain, by convexity of /(x) and strong
convexity of d(x),

1 - 1 _
(8 3= > 2@ =d @, F=D+(p F=D) =50 =0, > ;le—xllé+(h(})—h(x))—(5pc—6pu. (40)

Applying the definition (36), we finish the proof. O

Theorem 1. Assume that f(x) is equipped with an inexact first-order oracle in the sense of
Definition 1 and for any constants c,, ¢, > 0 there exists an integer i > 0 s.1. 2"cl > L(%) Assume

also that there exists a number y* > —co such that y(x) > y* for all x € X. Then, after N iterations of
Algorithm 1, it holds that

N -1
1M = x| < [Z S| W) =¥+ NG, +6,,) + ; (41)
k=0 k
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Algorithm 1. Adaptive gradient method for problems with inexact oracle

Input: accuracy & > 0, uncontrolled oracle error §, > 0, uncontrolled error of composite prox-
mapping J,, > 0, starting point x, € X0, initial guess L, > 0, prox-setup: d(x) — 1-strongly
convex w.r.t. || - ||, VIzl(x) := d(x) — d(z) = (d'(2), x — 2).

1: Setk=0.
2: repeat
L
3: Set Mk = 3 -
4 repeat
5 Set M, =2M,, Ot = 0per = 20‘9—Mk.
6: Calculate f(x, 6, 0,) and g(x,, 0, J,).
7: Calculate
w, = argmin OpeutOpu {@(xk, 0.1 0,), X) + M, V[x,1(x) + h(x)}. 37)
xeX ’
8: Calculate ]7(wk, O, 1> 0y)-
9:  until
= = M, 2 €
f(wk’ 66,/{’ 61,{) < f(xk9 66,/(’ 614) + (g(xk’ 66,/{’ 614)9 Wk - xk> + THW]( - xk“s + 10—M + 261,{ (38)
k
10: Setx, =w, L =-tk=k+1
- 1 T Wi B = 2580 :
11: until ieI},l{r.{k”M’-(xi - xi+l)||8 <e¢
Output: The point x_, s.t. K = argmin ||Ml.(xi - xm)”g.
i€l, ...k
Moreover, the total number of checks of Inequality (38) is no more than
My,
2N -1 +log, 7 (42)

0

Proof. First of all, let us show that the procedure of searching for point w, satisfying (37), (38)
is finite. Let i, > 0 be the current number of performed checks of inequality (38) on step k. Then M, =

= 2ikLk. At the same time, by Definition 1, L(0, ) = L(I()LM) = L(16 ;,kL ) Hence, by the assumptions
: f EYTA

of the theorem, there exists i, > 0s.t. M, = 2ikLk > L(6,,). At the same time, we have

—~ £ @ 3)
JW00450,) = 5= — 0, < f(wy) < (43)

20M,

3) —
< fOs O ps 6,) +(8(xp Ops 0,)s Wi — X ) +

L, ,) €
+

20M,

>

2

lw, — x,lI3 + +6,, (44)

which leads to (38) when M, > L(5,_,).
Let us now obtain the rate of convergence. We denote, for simplicity, f,; = ]T(Xk, 0,10 Ou)s & =

= o o — = 1
= g(xk, 6C’k’ 614)9 gX,k - gX (xk’ gk, Vk, 6[)0,/(’ (51,“). Note that

. (35),(36),(37)
8xk = M (x = Xpp)- (45)

2022, T. 14, \e 2, C. 321-334




330 I1. E. [IBypeuenckuit

Using the definition of x,  ,, we obtain, for any k =0, ..., N -1,
£ ) £ 5, = ()] 46)
et T 20, 2OM
2 — (38)
< fw 6 ek 0) < 47)
(38) ~ M, 5 & (45)
< St o Xy — X + 7||xk+1 = xllg + 10M, +26, = (48)
@~ 1, _ I — 2 e .39
= fi— ﬁ <gk’ gX,k> + Z_Mk ”gX,k“g + TM,{ +26, < (49)
(2),(39) 1 — 2 &
VAR i, 7 Bxally + 70 = ) = 200, S|+
+—||§ k|| +L+26. (50)
2M, XKIE T 10Mm, T
This leads to
W(xg,,) <yY(x) - 2M ”ng”a 4M +46,+06,, k=0,...,N-1
Summing up these inequalities, we get
2 Nz_i 1 If 1 2 e 1
1Z2xklls D 5 < D, 5o Bxalls < ¥xp) —vy) + 5 ) — + N(45, +6,,).
d2M, = 2M, 4M,
Finally, since, for all x € X y(x) > ¢* > —co and ?X’K © M (xg — X, ), We obtain
» (A1 o £
[M g = x|l < [; 2_Mk) Wxg) = y" + N5, +6,)) + 3, (51)

which is (41). The estimate for the number of checks of inequality (38) is proved in the same way as
in [Nesterov, Polyak, 2006], but we provide the proof for the reader’s convenience. Let i, > 1 be the

total number of checks of inequality (38) on the step k > 0. Then iy = 1 + log, T % and, for k >

M, =251 = 20 1% Thys, i, =2+ log, I\fll/[ k > 1. Then, the total number of checks of
Inequality (38) is

=
i
=

-1

M,
+ 2 +log,
1 Mk—l

i, =1+log,
0

BB

M
) = 2N -1 +log, —L. (52)
LO

>~
Il
>~
Il

O

Let us consider two corollaries of the theorem above. The first is a simple case where in
Definition 1 L(6,.) = L. The second is the case where L(d,) is given by (10).

Corollar 1. Assume that there exists a constant L > 0 s.t. for the dependence L(5,) in
Definition 1 it holds that L(6,.) < L for all 5. > 0. Assume also that there exists a number y* > —oo
such that W(x) > ™" for all x € X. Then, after N iterations of Algorithm 1, it holds that

4L (xy) = ¥7)
N

Mg = x|z, < + 4L, +0,,) + 2. (53)
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Moreover, the total number of checks of inequality (38) is not more than

L
2N +log, T
0

Proof. By our assumptions, for all iterations k > 0, there exists i, > 0 s.t. M, = 2ikLk >
> L(6,,) = L. Hence, we can apply Theorem 1. Let i, > 1 be the total number of checks of

inequality (38) on a step k > 0. Then, for all k > 0, the inequality M, = 2ikLk < 2L should hold.
Otherwise the termination of the inner cycle would happen earlier. Using these inequalities, we obtain

N-1 L= !
1 1 4L
[Z_ZM) <[ZE] "N
k=0 k k=0

Thus, (53) follows from Theorem 1. The same argument proves the second statement of the corollary.
O

Corollar 2. Assume that the dependence L(5,.) in Definition 1 is given by (10) for some
ve(,1] ie.

1-v
1-v 2\ 2
V‘_) LJ#—V’ 6

> 0. (54)

c

1+v o,

Assume also that there exists a number y* > —oo such that y(x) > ¢* for all x € X. Then, after
N iterations of Algorithm 1, it holds that

L@,) = (

ﬂ(l_v@)w L%(w%)—;b | 55

MOk = x| <278 = y (40, + 6, ) +

NSRNO)

Moreover, the total number of checks of inequality (38) is no more than

1 1-
+V+—Vlog2(40‘

2N -1+
v 2y

1
1—v) 1-v 1 L)

—_— —1 - +1
1+v * A% 0g28+0g2L0

Proof. First, let us check that, for any constants ¢, ¢, > 0, there exists an integer i > 0 s.t.

2"c1 > L(%) Substituting 6, = % to (54) gives

L (C—z) = ZH’Q,
2
where ¢; > 0 is some constant. Since 1 — ﬁ = %
Thus, we can apply Theorem 1.
Let i, > 1 be the total number of checks of inequality (38) on a step k > 0. Then, for all k£ > 0,
the inequality M, = 2ikLk < 2L(6,,) should hold. Otherwise the termination of the inner cycle would
happen earlier. From this inequality and (54) it follows that

> 0, we conclude that the required i > 0 exists.

1-v
1—-v 40M v 2
Mk<2(1+v- 8") L. (56)

Solving this inequality for M,, we obtain

w (1—v 40\2 1
Mk<ZZV(1+V-?) L. (57)
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Hence,

N-1 | -1 L 1
o] <(Sa) (27
k=0 k k=0
Now (55) follows from Theorem 1.
Using (42) and the bound (57), we obtain the estimate for the total number of checks of
inequality (38). |
Let us make some remarks about the results obtained. First, if we set in Corollary 2 v = 1, we
recover the result of Corollary 1. Second, in the situation of Corollary 2, to make the controlled part of
the right-hand side smaller than &, we need to choose

L Wy) )

£

N > const

One can see that the less v is, the worse is the bound. This is expected as for nonsmooth nonconvex
problems the norm of gradient mapping g,(-) at the stationary point could not be equal to zero. Third,
we can see that the uncontrolled error 46, +6,, can dramatically influence the error estimate, especially,
when v tends to zero.

Finally, let us explain why small ||M k(X — Xg +1))|| ¢ means that x,, is a good approximation
for the stationary point of the initial problem (1).

Lemma 3 (see [Nesterov, 2018, Theorem 3.1.23]). Let in Problem (1) f(x) be continuously
differentiable, h(x) be convex, X be a closed convex set. Assume that x* is a local minimum in this
problem. Then, for all x € X,

(Vf(x™), x = x") + h(x) — h(x") > 0. (59)

Assume, for simplicity, that we are in the situation of Subsection 1.1. This means that f(x) is
L(f)-smooth, we can uniformly approximate its gradient

I8CX) = VAWl <3, + 0 (60)

and the set X is bounded with diameter D. Also, assume that the chosen prox-function d(-) is
L(d)-smooth.
From (34), (35), (37), we find that there exists Vh(x,, ) € Oh(x, ) s.t., for all x € X,

(38rgs 8o 0,0+ My [d' (o) = d' Ceg)| + VR, ), X=X, 1) > =6, = O

Hence, by convexity of A(x),

<Vf(xK+1)9 X = xK+1> + h(x) - h(x[{+1) = <Vf(XK+1) - Vf(x[()’ X = XK+1> + (61)
+ <Vf(x]{) _g(xka 60,](9 6u)’ X = x[{+1> + (62)
+ (M, d' (x) = d' e, X = X)) = Sk =0 XEX. (63)
By L(f)-smoothness of f and boundedness of X, we obtain
L(f)
<Vf(x1{+1) - Vf(x[{)9 X = XK+1> > _M_”MK(XK - xK+1)”5D-
K

From (60), by boundedness of X, we get

_ -2 =
(Vf(xg) = 8xgs O > 6,)s X = X)) 2 =6k +6,)D.
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Using L(d) smoothness of d(x) and boundedness of X, we obtain

(M, [d (o) = d' e, )]s x = xg,y) > =L@IIM Ceg = xg, gD

Substituting the last three inequalities into (63), we find that, if ||M(x, — x s <&, then

=2
(Vf(xgy)s X = Xg ) + h(x) = h(xg, ) 2 =O(€) = 6,D =6y,
Thus, at the point x,_, the necessary condition in Lemma 3 approximately holds.
Conclusion

In this article, we propose a new adaptive gradient method for nonconvex composite optimization
problems with inexact oracle and inexact proximal mapping. We show that, for problems with an
inexact Holder-continuous gradient, our method is universal in terms of the Holder parameter and
constant. For the proposed method, we prove the convergence theorem in terms of generalized gradient
mapping and show that a point returned by our algorithm is a point where the necessary optimality
condition approximately holds.

Acknowledgments. The author is very grateful to A.Nemirovski, Yu. Nesterov, and B. Polyak
for fruitful discussions.
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