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Haxoxnenue mmo6anbHOTO MHHHMYyMa HEBBIMYKIBIX (DYHKIMH — OfHA M3 KITIOUEBBIX M CAMBIX CIOKHBIX TpoOieM
COBPEMEHHOH onTUMH3anuu. B aToil paboTe MBI paccMaTpHBaeM OTJEIbHBIC KJIACCHI HEBBITYKIBIX 3ajad, KOTOPbIE MMEIOT
YETKHUI U BBIPAXKCHHBIH TNI00ATBHBI MUHIMYM.

B mepBoif 4acTu cTaThM MBI paccMaTpHUBAaeM JBa KIacca «XOPOIIUX» HEBBIMYKIBIX (YHKIHUHA, KOTOpPbIE MOTYT OBITh
OrpaHUYCHBI CHH3Y M CBepXy Hapabonmueckoi (yHkumed. Takol kiacc 3ajad HE MCCIENOBAaH IIMPOKO B JIMTEPAType, XO-
TS ABJISETCS IOBOJIBHO MHTEPECHBIM C TPUKIAAHOIN TOUKHM 3peHus. bomee Toro, amst Takux 3amad METOABI MEPBOTO M Ooiee
BBICOKHX ITOPSIKOB MOTYT OBITH aOCONIOTHO HEA(P(EKTHBHBI IPH MOUCKE [I00ATEHOrO MUHHMYMa. JTO CBA3aHO C TEM, YTO
(YHKIMST MOXKET CHIIBHO OCLMJIIPOBATh WM MOXET OBITh CHIIBHO 3anrymieHa. [103ToMy HaIll HOBBIE METO/BI HCIIONB3YIOT
UH(OPMAIMIO TOJIBKO HYJIEBOTO MOPAAKA M OCHOBAHBI HA MOUCKE MO ceTKe. Pa3Mep m MEemKocTh 3TOMH CETKH, a 3HAYUT, U Ta-
PAHTHH CKOPOCTH CXOAMMOCTH M OPAaKyTbHOH CIOKHOCTH 33aBUCAT OT «XOPOLIECTH» 33a4d. B 4acTHOCTH, MBI ITOKa3bIBAEM,
ecny (yHKIHS 3a)kaTa JIOBOJBHO OMM3KMMHM NapaboIMuecKUMH (YHKIHSIMH, TO CIIOKHOCTb HE 3aBUCHT OT Pa3MEPHOCTH 3a-
nagd. MBI MOKa3bIBaeM, YTO HAIIM HOBBIC METOIBI CXOIATCS C JIMHEWHON CKOpPOCTBIO cxomumocTH log(l/e) k miobampHOMY
MHHAMYMY Ha KyOe.

Bo BTOpoif wacTu craTthbM MBI paccMaTpHBacM 3ajiady HEBBITYKIOW ONTUMH3AIUK C JPYroro pakypca. Mel npenmona-
raeM, 4To ILieJieBas MHHUMHU3HpyeMast (QyHKIHS €CTh CyMMa BBIMYKJION KBaJpaTHYHOH 3aJaud M HEBBIMYKIIOH «IIyMOBOIDY
(yHKIIHH, TTPOTIOPIIMOHATBHOMN O MOIY/TIO PACCTOSIHUIO JI0 TII00anbHOTO pemenus. PaccMoTpenne GyHKIMH ¢ TAKUMU TIPEa-
MOJIOKCHUSIMU O IIyMe JJIsI METOJOB HYJICBOIO IOPSIKA SIBISICTCS HOBBIM B JyiuTeparype. [ Takoi 3aja4n MBI HCIIONb-
3yeM KJIaCCHYeCKH Oe3rpaJMeHTHBIN MOAXO0 C allpOKCHMAIel TpaJieHTa yepe3 KOHEUHYI0 Pa3sHOCTh. MBI MOKa3bIBaeM,
KaK MOXXHO CBECTH aHAJIW3 CXOAMMOCTH JUIs HaIIeH 3afadd K CTaHJapTHOMY aHAIM3y IS 337ad BBITYKIOH ONTHMH3ALUH.
B wactHOCTH, M I TaKuX 3a/a4 MBI JOOMBAEMCs JINHEHHOI CKOPOCTH CXOAUMOCTH.

OKCTIepIMEHTAIbHBIE PE3yNbTaThl MOATBEPKIAIOT PAOOTOCTIOCOOHOCTh M MPAKTHYECKYIO MPUMEHUMOCTh BCEX IOIY-
YCHHBIX METOJIOB.

KirroueBwie ciioBa: Oe3rpaJreHTHAs ONTHMM3AIIHS, HEBBIMYKIIAsA 3a1a4a, JUHEHHAs CKOPOCTh CXO-
JTUMOCTH
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Finding the global minimum of a nonconvex function is one of the key and most difficult problems of the modern
optimization. In this paper we consider special classes of nonconvex problems which have a clear and distinct global
minimum.

In the first part of the paper we consider two classes of «good» nonconvex functions, which can be bounded below
and above by a parabolic function. This class of problems has not been widely studied in the literature, although it is
rather interesting from an applied point of view. Moreover, for such problems first-order and higher-order methods may be
completely ineffective in finding a global minimum. This is due to the fact that the function may oscillate heavily or may be
very noisy. Therefore, our new methods use only zero-order information and are based on grid search. The size and fineness
of this grid, and hence the guarantee of convergence speed and oracle complexity, depend on the «goodness» of the problem.
In particular, we show that if the function is bounded by fairly close parabolic functions, then the complexity is independent
of the dimension of the problem. We show that our new methods converge with a linear convergence rate log(1/¢) to a global
minimum on the cube.

In the second part of the paper, we consider the nonconvex optimization problem from a different angle. We assume
that the target minimizing function is the sum of the convex quadratic problem and a nonconvex «noise» function proportional
to the distance to the global solution. Considering functions with such noise assumptions for zero-order methods is new in
the literature. For such a problem, we use the classical gradient-free approach with gradient approximation through finite
differences. We show how the convergence analysis for our problems can be reduced to the standard analysis for convex
optimization problems. In particular, we achieve a linear convergence rate for such problems as well.

Experimental results confirm the efficiency and practical applicability of all the obtained methods.
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Introduction

Methods for minimizing convex functions are well studied in the literature [Boyd, Vandenberghe,
2018; Nocedal, Wright, 2006] and have good guarantees of convergence to a solution. When the
objective function is nonconvex, the problem becomes much more complicated. Meanwhile, the ability
to find the global minimum of nonconvex functions is an equally important issue, but in general, this
is NP-hard. The main idea of constructing an analysis around nonconvex functions is the introduction
of some restrictions on the problem: these can be desire to search not for a global minimum, but only
for a local minimum (in the hope that local is good enough) or restrictions on a function on a set of
optimization.

In the first part of the paper, we follow the same way and try to find a global minimum of
the function bounded by two parabolic functions More formally, our statement of the problem can be
described as follows:

min f(x), (1)

where the set C is a cube in RY, i.e. for all x € C: [, < x; < u; with i from 1 to d. We do not know
whether f(x) is convex, smooth, whether its gradient is bounded or not. In general, the function can be
any function, including nonconvex and nondifferentiable ones. But we assume that the function f(x)
satisfies the following condition for all x € C:

Sl = X1 < f) = F) < Sl =X ©)
Hereinafter, x* is the solution to problem (1) and we use the ordinary Euclidean norm || - ||.
Inequalities (2) define the “good” class. Such a condition describes a rather large set of functions

that has a global minimum on the cube (see Fig. 1).
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Figure 1. Examples of functions that satisfy condition (2) with different constants L and . From left to right,
the ratio L/u increases

One can note that using a first-order oracle (gradient) for such functions is not a good idea. Since,
due to possible large and sharp oscillations, the gradient does not carry any useful global information.
Thus, the methods outlined in this paper rely exclusively on the zeroth-order oracles.

It seems natural that if the constant L is too large or/and the constant u is too small, then the
search for the solution becomes more difficult. Therefore, we propose another class of “very good”
functions for which the constants L and u differ but not much:

M

. (M . -
fO) - fx") = (7 + 6(x>) Ibr ="l with 6001 < A = e,

3)
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for all x € C. Such functions are quite quadratic, but they can fluctuate with a level of deviation equal

to 6(x). It is easy to see that condition (2) is satisfied with L = 4 + —Y_ and ;4 = % - ﬁ_l)

2 T T6(d-1)

In the second part of the paper we look at the “good” functions described above in different
way. Suppose we are given a parabolic function, but the oracle returns not the exact value of this
function, but with noise:

F) = Llx = x"|* + £(x) + 6(x).

Here, ¢ is responsible for stochastic (random) noise, and ¢, for deterministic noise. Moreover, for the
functions (2) and (3) &€ = 0, and 6(x) ~ ||lx—x*||>. In this part of the work we consider a slightly different
concept, namely,

1 * * *
fx, &) = Sr—x T ACx = ) + (€ + 5(0)llx — X'l “4)
where A > 0. Having only this information about the function, we want to solve the problem:
: 1 sN\T *
min —(x — x")" A(x — x7). ®)
xeRd 2

For this one can reconstruct the real gradient using finite differences:

d
Fpfx+Te, £ = flx—7e, £)e, (6)

where e is some random vector uniformly distributed on the Euclidean sphere. Then such a gradient
approximation can be used in Gradient Descent, which it does.

Our contribution and related works

Let us start with a discussion of the ideas of the first part.

There are already results in the literature where minimization of some specific class of nonconvex
functions is considered. In [Shor, 2012; Polyak, 1987], the objective function is nonconvex, but at the
same time, it is bounded from below and above by some “good” functions. Essentially, there is a similar
approach in [Singer, Vondrak, 2015], they consider gradient-free minimization of convex functions, but
additionally, assume that the zeroth-order oracle takes values of the function with noise. This concept
is suitable for nonconvex problems in which the objective function “oscillates” around some convex
function.

The idea of our method is remotely similar to the simplest zeroth-order methods for minimizing
one-dimensional unimodal functions: we calculate the value of the function at some points, and then,
using this information, we decrease the optimization set by a certain number of times.

Also, our methods are partly close to the Monte Carlo type algorithms [Zhigljavsky, Zilinskas,
2007]. These methods are also suitable for nonconvex optimization problems and exploit the idea
of Markov search for a solution. However, they also require the problem to be “good” enough. Our
methods also do some kind of search, which is not stochastic, but simply uses information about the
“goodness” of the function. It is interesting to note that one of our methods has exponential growth
depending on the dimension d, as well as ones from [Zhigljavsky, Zilinskas, 2007].

We propose an algorithm for finding the global minimum on a cube for the function (2). It
requires log(1/¢) iterations and at each iteration the zeroth-order oracle is called O(Ld/,u)d) times.
The main idea of this algorithm is that we split a large cube into many small cubes and calculate the
function value in each of them. Then we find the minimum value among all the cubes. It can be shown
that the real minimum of the problem lies not far from the found point. Therefore, the edge of the
original cube can be cut in half, and we can consider a new cube with the center at the found point.
Such an algorithm is specifically capable in practice in low-dimensional problems, where the ratio L/u
can be quite large. See Section 1 for details.
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For the class of functions (3), we propose a less demanding algorithm, it also has a linear
convergence rate log(l/¢), but the complexity of its iteration is only O(d). In this case, at each
subiteration of the algorithm, we take one of the variables x,, and equate the rest (xj with j # i) with
the average value and fix it. And for the variable x;, we request the value of the function at n points,
uniformly distributed from /; to u;. Next, we find the minimum among these n points. Then the ith edge
of the cube can be halved, and we can consider a new edge centered at the found minimum point. This
algorithm shows itself well in practice and for large-scale problems. For more details see Section 2.

The second part follows current trends and works with the concept of gradient reconstruction
through finite differences, which is well studied in the literature [Shamir, 2017; Nesterov, Spokoiny,
2017].

As mentioned above, the idea of an inexact oracle is also used here. It is important to note that
there are two different random variables £* and £~ in (6). Approximations of this type are referred to
as one-point feedback [Akhavan, Pontil, Tsybakov, 2020; Gasnikov et al., 2017; Zhang et al., 2020;
Novitskii, Gasnikov, 2021] (compare to two-point feedback from [Beznosikov, Sadiev, Gasnikov, 2020;
Beznosikov, Gorbunov, Gasnikov, 2019], where £* = £7). The concept of a one-point feedback is less
friendly from the point of view of theoretical analysis, but more realizable from the point of view of
practice, since in a real problem it is difficult to achieve the value of a function in two different points
with the same realization of a random variable.

In the analysis that is present in the literature (for one or two-point feedbacks) [Risteski, Li, 2016;
Akhavan, Pontil, Tsybakov, 2020; Beznosikov, Gorbunov, Gasnikov, 2019; Gasnikov et al., 2017], it is
assumed that the noise (or its second moment) is uniformly bounded. In our setting, the noise depends
on the distance to the solution — this is the main novelty of our problem statement.

We show that under certain conditions on the noise level and the correct choice of the
parameters 7 in (6) and the step of the Gradient Descent, it is also possible to achieve a linear
convergence rate.

1. “Good” functions

In this section we concentrate on functions from (2). For a better understanding of the method,
we present a sketch of the analysis of the algorithm for the one-dimensional case.

Method intuition on a segment

Algorithm 1. BBS
Input: Accuracy &, parameters L, u from (2) and bounds /, u.
Letb:=[,B:=uand n:= 2{\/5
while B - b > 2¢ do

i = argminf(b+i- (B_b)),

i€{0, ..., n} n

- n
b= max(b, b+ (z 4)

B := min(B; b+(i*+ %)

end while
. (B-b)
Olltpllt. 3 -

2022, T. 14, N\e 2, C. 239-255
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Suppose we have a function f: [[; u] — R and it satisfies condition (2). Then let us consider the
following procedure, which we call Bad Binary Search (or BBS for short). The essence of this
procedure is very simple. At each iteration of the algorithm, we divide the current segment into n parts
and calculate the value of the function at the ends of these segments (n + 1 calculations in total). Next,
we find the minimum among these n + 1 values. It seems that the found point should lie somewhere
close to the solution, but this is not entirely true — it depends on n. We claim that it is possible to
choose such n that the real minimum will lie in the vicinity of the found minimum. For this we turn
to Figure 2: the blue line corresponds to the values of the function, the orange and green lines are the
bounding parabolas, the algorithm calculates the value of the function at black points, the minimum
level is reached at the point x™in x* is the real minimum of the function, and the point x/ is the closest
point to it. We want l"m:f_lxl < A% (where [, u are current bounds of the segment), which means that we
can essentially cut our segment in half and consider a new segment centered at the found minimum.

”
I — S SR S ) A T
min leveél 1 'l -
-
\ I} ”’/
‘ I ”
\ ! ’a’
\\ I -
\ II low parabolic —’_,,—
R \ et
—— ___.}1‘___ —————
x* xcl xmin

Figure 2. An illustration of the reasoning about the correctness of Algorithm 1. Read the description of notations
in the text
min

Since the value at the point xX™" is the minimum among all the others,

. ) . L
g(xmln _-x*)z < f(xrnln) < f(xcl) < E(xcl _x*)z.

Next, we use the fact that the length of the small segment is “7_[, and the distance between x* and x

is no more than —”2;!1:
. L L
g(xmm —x)? < > (x = x¥*)? < o7 (u— D>

Hence, we instantly get
min *l 1

1

1

u—1 " 2n

| xmin

L
- <
i

—x*|
u-I

The last inequality follows from the requirement < zlt' Then we get a lower bound on n:

n>?2 L .
7
Remark. Note that in Algorithm 1 it is necessary to divide n by 4, but n may not be divisible
by 4. This does not violate the convergence of the method, but if we take n to be a multiple of 4, then
it turns out that at the next iteration of the algorithm we already know the value of the function at half
the points, since they coincided with the points from the previous iteration.
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Theoretical convergence in R¢

In this part of the work, we present and analyze the algorithm in the case when we work
in a space of dimension d. The multidimensional analog of Algorithm 1 in the following way (see
Algorithm 2).

Algorithm 2. Multi BBS

Input: Accuracy &, parameters L, u from (2) and bounds = (ys -oes Ly, i= Uy oons ).
Letn := a{,/‘i—ﬂ, b:=land B := u.
while ||B - b|| > ¢ do

(B, - Db,
r:= max ———,
ie{l, ... d) n

szz{O, L., |— }, S:=8, X...xS§,

-
i* :=argmin f(b +i-r),
ieS

- n .
bi={by = max (b b+ (i 2] r) jetl, . dl)

B = {Bj = mln(Bj; Bj+(zj+ Z)-r), jell, ..., d}}.

end while
. B=b
Output: =-.

Algorithm 2 is more complicated than Algorithm 1, which is due to the fact that we are working
with a cube, moreover, this cube may have edges of unequal length. Also, here we generalize the
approach for picking n and introduce the parameter a > 1.

The idea of Multi BBS repeats the idea of the one-dimensional BBS algorithm. We also split
our cube into small pieces, calculate values at the points on these pieces, and move on to a new smaller
cube centered at the minimum of the selected values. It is important to note the size of the pieces into
which the original cube is split: all the edges of each small cube have the same length, and this length
is determined by the length of the longest edge of the original cube (see the first line of the main loop).
This approach allows us to optimize variables that have a large spread (long edge) first. Thereby, if one
of the edges of the original cube were much larger than the other ones, then, in fact, only the variable
responsible for this edge would be the one to be optimized. The described strategy equalizes the sizes
of all cube edges fast, and this is better than splitting large cube edges into small pieces at once.

Theorem 1. Multi BBS algorithm with « > 1 converges to the global minimum of the
function (2). Moreover, the value equal to the maximum length of the cube edge decreases by at
least « times at each iteration.

Proof.

Let us introduce the same notation as in the previous subsection: x_. is the point with the
minimum value among the selected, x* is the real minimum of the function, and the point x , is the
closest point to it. Then

d

d
H i 2 i 1 L I 12
3 i§:1(x;nm —x))7 < M) < f(x) < 5 ;Zl(xic - X))
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Since the edge of a small cube is at most r, then for all i

o

cl 2 r
(xl‘ - x,‘) < Z,
and

d 2 2
H in_ w2 dLrm _dL
2 200" = < = g | e, (B i)

It is easy to see that, for n = @ { \ /dﬂ—ﬂ, we get

d ‘ 1 2
D - ) < —2( max [B; - bi]) :
pa da= \iell, ....d)
whence it follows that for all i )
-

1 1

—_— < —.
max [B,—b] 2«
e{l,...,d}

i€{l

This inequality ensures that the maximum edge length of the new cube is (at least) @ times less than
the maximum edge length of the old one. O

The theorem implies the following corollary on the complexity of the algorithm:
Corollary 1. Algorithm 2 requires O (log,(1/€)) iterations to find a solution (in terms of
d
Algorithm 2). Moreover, the oracle complexity of each iteration is O((a/ A /‘L—L) )

Proof.
To prove the first statement, we write the simple chain for B and b after T iteration:

B ‘e{r?axd}[ui -] 2
L LR
IBT = b7 < d( max BiT - blT) <d —F—| s &,
i€ll, ... d} a

where u and [ are starting cube boundaries. This implies the required statement.
The second statement follows from the fact that in the worst case (when all the edges of the cube
are equal) we need to calculate the value of the function at O(n?) points. m|

The complexity of one iteration increases dramatically with the growth of the dimension;
therefore, this method is proposed to be used for solving low-dimensional problems.

Small dimension numerical experiments

We give examples of how the algorithm works on low-dimensional problems: one-dimensional
and two-dimensional. First, consider the following function:

f(x) = 10(x = 2)* —4cos[17(x = 2)] +4, x€ [0, 6,5]. @)

The global minimum on this segment is the point x* = 2. We take L = 600, u = 10. The starting
point is the center of the segment x" = 3,25. Multi BBS algorithm starts with o = 1,5, 2, 3, 4. The
convergence of the algorithm is shown in Figure 3, a.

Next, we work with a 2-dimensional problem — the Levy function:

fx, y) = sin’[Br(x — 2,7)] + (x = 3,7)*(1 + sin?[37(y — 0,3)]) + (y — 1,3)*(1 + sin’[22(y — 0,3)]), (8)

where x, y € [-10, 10]. The optimal point: f(3,7, 1,3) = 0 and L = 150, u = 1. For the trajectory of
convergence, see Figure 3, b.
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2,0
\/ —_a=15
—_—g =2
LS| __ -3
—_—g =4
1,0
= -
<
0,5
0,0
3,5 —05—% i 2 3 4
X
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Figure 3. Convergence of the Multi BBS algorithm for problems of dimensions 1 and 2: a) problem (7);
b) problem (8)

2. Very “good” functions

In this section we analyze functions f(x) which meet the requirements (3). For such a problem
statement, we present a less demanding version of the BBS algorithm.

Algorithm 3. Direction BBS

Input: Accuracy &, parameters M, A from (3) and bounds /= (/,, ..., L, w=(up, ..., uy).
Letn:=15,b:=1, B:=u, and m := ”7“
while ||B — u|| > 2¢ do

fori=1,...,ddo

R:= max B,-b,

ie(l, ....d)
. (B.— b))
Ji= ar%mlnf(ml, e m_y, b+ j o —— my ., my),
j=0,...,n
(B,— b))
n

R
b. := max (bi; m; — g),

R
B. := min (Bl.; m; + E)
end for

end while
. B=b
Output: ==.

This algorithm no longer draws a “grid” over the entire cube. In this case, at each external
iteration (while), we go through all the variables in turn. At the inner iteration (for), we consider only
one variable, while the rest are fixed equal to m;. Then we do the procedure in a similar way to BBS —
we divide the current edge and do a one-dimensional search for the minimum among the calculated
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points. Due to the fact that the problem is very “good”, this approach allows the method to converge.
This is what the next section is about.

Theoretical analysis

Theorem 2. Direction BBS algorithm converges to the global minimum of the function (3).
Moreover, the value equal to the maximum length of the cube edge decreases by at least % times at
each main iteration (an outer loop with while).

xp roj

min cl

Xeomm—mm————
=

Figure 4. Illustration for the proof of Theorem 2

Proof.
min —

Consider the ith iteration of inner loop (with  for). Let x =
(Bi_b,')
T o M-

= (ml, cees MLy, bl. + s my), x* be the real minimum, xP"%/ =

= (ml, cees My, x7, M (s eees md), and x° be the closest point to xP"J where we calculate
the value of the function (see Figure 4). Then the following inequality holds:

FEMM < f(x D).

Using (3), we can note that

M | | Mo
(3 + (5(xmm)) I — |2 < (3 + 6(x‘l)) x|,

By a definition of Euclidean norm,

M i\ omin oo (M oz, 1 groi_
(? +6(xm1n))((xm1n _xl[_lr)])2 + |0l — “2) < (? +6(xcl))((xicl _xl() 0])2 + |70 — x ”2)

As we know, [6(x)| is not greater than A. Therefore,

(5 = A)(Carin = 7o eed = e iP) < (5 + A) (G = 72+ 1 - ). )

Since x¢ is the closest to x/ 79l it follows that

: B.—r.\? R\2
(<l = xroi (2 o (—) . (10)
! ! 2n 2n
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In the last inequality we use the definition of R from Algorithm 3. By (10) and some simple
transformation of (9), we get

M , ; M R \? ,
(7 - A) (amin — x0T < (3 + A)(Z) + 2AIPOT — x| (1)
Also, it is quite obvious that
. B.-b. V' (d-DR
MEERRNY ( L -’) <K (12)
Je(l, ..., di\{i}
Combining inequalities (11) and (12),
M . , M R\> (d-1R?
7 A) min _ (Projy> (— A)(—) AL
( p AT s A g, FAT

Then we get the following expression:

(M +2A) (5)2 NG DR?

x{nin _ x{’”’j 2 < )
(% ! ) (M -2A) \2n M - 2A

Substituting boundaries for A from (3) and n = 15, we have
1+ 5-m (R )2 R?

— + —.
1 2
- 8(d—1) 30 16 - d-1

(x?in _ xl(’mj)Z <

Note that d — 1 > 1, then

(13)

1 1 51R?
R? <
l 700 © 14)

mjn_ ‘r()j2< - <.
O™ =) ( 700

Summing up (10) and (13), we get

| . ‘ (1 51 R
min _ el & min — xP7) p x - P < = + 4= |R < =
N A A B Tl e

min
i

This means that
min — x|

!
-

max B.—-b.
jell, ...dy / J

This inequality ensures that the maximum edge length of the new cube is (at least) % times less than

the maximum edge length of the old one. |

Corollary 2. Algorithm 3 requires O(log3 /2(1/8)) outer iterations to find a solution. Moreover,
the oracle complexity of each iteration is O(d).

Proof.
To prove the first statement, we write the simple chain for B and b after T iteration:

) ‘ ?axd}[ui -] 2
L, ...,
B,.T_b,.f) S| [ LESC/N—

T
(3)
where u and [ are starting cube boundaries. This implies the required statement.
The second statement follows immediately from the description of the algorithm. |

IBT = b7 < d( max
i€f{l,...,d}
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3,75 One can note that if the current ith variable
has a small edge compared to the rest, then we
essentially do the internal iteration over it in vain,
because we shrink the current cube edge using
the length of the maximum one. Therefore, the
3.65 Direction BBS algorithm can be modified as
follows: to remove the inner loop (with for) and to
iterate the main loop (with while) in the direction
3,60 that has the longest edge at the moment, this
approach eliminates the case where we wastefully
consider a small edge in the presence of a large

3,70

>

3.55 one.
35 Practical application
’ 9,30 1,35 1,40 1,45 1,50
X The function f(x) from (3) is created in the
Figure 5. Convergence trajectory of Direction BBS following way: we select some point x*, and also
ford =2 generate the values of the function §(x) uniformly

on the segment [-A, A] and independent of values
at other points, then it is easy to construct f(x) with M = 20. In the experiment, we do not restore
the 6(x) function completely, we generate values only at the required points.

We start with a problem of dimension 2. The optimal point x* = (1,43, 3,69), bounds /., = —10,
u; = 10 (for i = 1, 2). The convergence of the method is shown in Figure 5.

Next, we used our algorithm for 10- and 100-dimensional problems with x* = (1, ..., 1), [, =
= —10, u; = 10 (for all 7). The result of the convergence of the display is shown in Figure 6.

The results confirm the linear convergence stated in the theory.

d=10 d =100
100 101 ]
10714
107!
T 10—3 ]
é 1072
10—5 ]
1073
]0—7 J
0 5 10 15 20 0 10 20 30 40
Iteration number Iteration number

(a) (b)

Figure 6. Convergence of the Direction BBS method in the case where the dimension of the problem is:
a) 10; b) 100

Now let us move on to the second part of the paper.
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3. Another view of “good” functions

Recall that in this section we minimize the function %(x — x)T A(x — x*) with a positive definite
matrix A. One can note that our problem is u-strongly-convex and has L Lipshitz gradient. We have
access to noise oracle:

1
S &)= Z(x - )TAG = x") + (€ + 6(0)llx = X,

where the random variable & does not depend on the point x and is generated randomly so that E£ =0
and E§2 < 02, |6(x)| < A for all x. Then, with the help of such an oracle, one can restore the gradient
using (6) in the following form:
g(x, £, 1, ) = m(A(x - x7), e)e + zl (€7 +6(x + Te)llx + 7e — X" =
T

—(E +6(x—Te)llx —Tte—x")e, (14)

where e is a random vector uniformly distributed over the Euclidean sphere. Then with this oracle we
can run the classic Gradient Descent.

Algorithm 4. zoGD

Input: Number of iterations K, parameters y,, 7,.
fork=1,..., Kdo
Generate independently &7, e,
X1 = X%~ V8% &5 Ty ).
end for
Output: x, .

Theoretical analysis
Here we prove the convergence theorem and corollaries.

Theorem 3. The following estimate for the iteration of Algorithm 4 is valid

5d%y* (A + o)

E [l — xIP] < |1 =y + —E5——|E [l - xIP| +
Tk

2dy, A

T

+

E [llx, = x| + 2dy, A + 5d* (A + o).
k

Proof.
We start with the step of our method:

ey = %1% = 1x = ¥,8(x 65 Ty ) — X1 =
= |l = X1 = 29,48 Cx & T €, X — X + ¥ilIg(xs E6 T eI
Taking the full expectation and taking into account that z, — z* does not depend on ¢, &, we get
E [,y — XIP| = B [l = x1P] - 27, B [(eCx &5, 7 €0, 3 — 2] + 7B |lIgCx &6 7o €IP] =

=E|llx, - x'IP] - 20, B [(Be .o, |20 &F2 700 €0 3= 20| + B [llg(xis &6 710 €IP]- (15)
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We use that E[d(s, e)e] = 5. Next, we need to estimate E [(g(xk, T e), X, — x*)] and
E [Ilg(xk, EL T ek)||2], We start with E [(g(xk, EE T, ), X, — x*>]:
Efk,ek [g('xk’ 'fki’ Tps ek)] = Eek [d<A(-xk - X*), ek>ek] +
5B o (€ + 80y + el + Tye, = X'l = (G +00q — Telly - T~ x'll) | =
k

* d * *
= ACy =) + 5B, [(6Cx, + e, + e, = x°ll = 8(x, = Tl — Ty, — M) e |- (16)
k

Let’s work with E [Ilg(xk, & T ek)||2]1

E g &5 T4 eI | = B [E,, [ld(ACy = x), epe |+

d o *
+ ? ((‘f]:— + 6('xk + Tkek))“'xk + Tkek — X ” — ('fk + 6(.Xk — Tkek))”_xk — Tkek —x ”) ek”2 <
k
<SP’E (B, [Id(ACx, = x), eel?]| + ﬁEk Il + 7o, — < PlleglR] +
< on e, X, —X), e, 12 &) Nlx, +1e, — x e,
k
5d* . 542 B .
+ 4_2E [‘ﬁ(xk + Tepllx + Te — x ||2||6’k||2] +-—E [(fk llx — 7€, — x ||2||ek||2] +
Tk 47
5d° .
+ EE [52(’% — el — e — x ||2||€k||2]-

k

Next, we use Lemma B.10 from [Bogolubsky et al., 2016]: E[|(s, e)[*] = %Ilsll2 for some vector s and
independent e — random vector uniformly distributed on the Euclidean sphere.

. . 5d° »
E [llgCx. & 7 eI < SAB[IIA G, — xO)IP] + QE [Efk |07, + 70— x ||2] +

5d>A? ool Sd? 5 L] SdPA? o
E[lek + 718, — X' || ] + QE[E& [(gk) ] llx, — 7.6, — X71| ] + 47_]% E [||xk - 18, — x| ] <

+
472

. 5d%0? . 5d*A? .
< 5nE (1A, = xIP| + =B [llx, — X1 + lIr,e,I?] + —7 E [l = X1 + Nl 7] +
k

2‘rk
5d%0? 5d*A? .
7 " [l = X1 + llre P <

2
2Tk

2 2
E [[lx, — x*IP + Ire ] +

5d*(A? + o?)

< S4B |lIA(x, - x| + 5 E [, - x°IP] + 5d%(A% + o). (17)
T
k

Then we combine (15), (16), and (17):
E [l - xIP] < B[l - x1P] - 21, E [(Ax, - x), x, - x%)] -

dy . . .
- T—"E [Be, [(6Cx + Tpeplig + 740, = 371l = 6, = el — 70y = x°1) e |, 3, = x| +
k

5822 (A% + 02)
+5dyiE[IA(x, - X)IF| + —E—5——

= E [Ilx, - x"IP| + 5d*p(A% + o).
k
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With Vf(x,) = A(x, — x*), we have

52y (A% + o) .
Bl ) <1+ D - ]
k

n

- 2y,E [(Vf(xk), X, — x*>] +5dyE [llVf(xk)Ilz] + TykE ”
k

Eek [(6(xk + el + T — X7 -
=60t — el — e, — 'l e ]| - v, - x*ll] +58%2(A2 + o). (18)

We work with 7, = |

Eek [(6(xk + e )llx, +1e — X - 6(x, —Te)llx, — 1.6 — x*ll) ek]H:
T, < Eek [Ié(xk + 1)l lxg + e, — XN+ 10(x, — Te )l - llx, — 7€ — x*ll] <
<AB, [l + 700, = X1l + Il = 70, = x°N]| < 2AE, [l = '+ 7] (19)

Connecting with (18), we get

52y (A% + o) .
B[, - 2'IF] < (1 + e Bl ~ 1P| -
k
« 2 a1, 2dvA ok 22,02, 2
— 2 B(VA(x), x = x| + SaviE|IVFGxIP] + ——E [l = x°ll] + 2dy, A + SR + 2.

k
Using u-strong convexity and L-smoothness of f, we have

E [llxk+l - x*||2] < (1 — Vil + M]E [lek - x*||2] -
k
= 2y(1 = 5dy, LE[ f(x,) - f(x)] + 2deAE (I, = x7I1] + 2dy, A + Say}(A* + o).
k
With y, < g7
E [||Xk+1 _ x*HZ] < (1 _ ,yk'u + w]E [llxk _ x*||2] +
k
2d:/kAE [l = x7I1] + 2dy, A + 5ay}(A* + o).
k

Corollary 3. IfA=0, 5, =y < ﬁ and T, > 1/2:5‘22 then

K 10dyo?
E [llxg,; - x°IP] < (1 - %) Iy — 2|2 + —2—

Additionally, if
2In (max {2. u2||z°—z*||2K})

, 1 20d25°2
v =min{ —; R
5dL uK
then S
22l < A pK o, 20d°0
E [l — xIP] <O(exp(—m)llx0—x TS

It gives the results similar to SGD convergence.
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Practical application

We consider oracle (4) with n = 50, L = 100, u = 1 and o = 1, 2, 5, 10, 20, 100, A = 0.

In Algorithm 4 we use constant y = d—lL and 7 = —2d‘L’2. See the convergence of Algorithm 4 with
u
different o in Figure 7.

Quadratic with noise

—*— o =10
—8— o0 =20

—— =100

2

_.
<

2
/X0 = x*||?

1073

10~

”xK+1 —x*

1073

10-°

0 2000 4000 6000 8000 10000
Iterations, K

Figure 7. Convergence of Algorithm 4 with oracle (4) at different noise levels
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