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In this paper, a gravitational system is understood as a set of point bodies that interact according to New-

ton's law of attraction and have a negative value of the total energy. The question of the stability (nonstability) of 
a gravitational system of general position is discussed by direct computational experiment. A gravitational sys-
tem of general position is a system in which the masses, initial positions, and velocities of bodies are chosen 
randomly from given ranges. A new method for the numerical solution of ordinary differential equations at large 
time intervals has been developed for the computational experiment. The proposed method allowed, on the one 
hand, to ensure the fulfillment of all conservation laws by a suitable correction of solutions, on the other hand, to 
use standard methods for the numerical solution of systems of differential equations of low approximation order. 
Within the framework of this method, the trajectory of a gravitational system in phase space is assembled from 
parts, the duration of each of which can be macroscopic. The constructed trajectory, generally speaking, is dis-
continuous, and the points of joining of individual pieces of the trajectory act as branch points. In connection 
with the latter circumstance, the proposed method, in part, can be attributed to the class of Monte Carlo methods. 
The general conclusion of a series of computational experiments has shown that gravitational systems of general 
position with a number of bodies of 3 or more, generally speaking, are unstable. In the framework of the pro-
posed method, special cases of zero-equal angular momentum of a gravitational system with a number of bodies 
of 3 or more, as well as the problem of motion of two bodies, are specially considered. The case of numerical 
modeling of the dynamics of the solar system in time is considered separately. From the standpoint of computa-
tional experiments based on analytical methods, as well as direct numerical methods of high-order approxima-
tion (10 and higher), the stability of the solar system was previously demonstrated at an interval of five billion 
years or more. Due to the limitations on the available computational resources, the stability of the dynamics of 
the planets of the solar system within the framework of the proposed method was confirmed for a period of ten 
million years. With the help of a computational experiment, one of the possible scenarios for the disintegration 
of the solar systems is also considered. 
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В работе под гравитационной системой понимается множество точечных тел, взаимодействующих 

согласно закону притяжения Ньютона и имеющих отрицательное значение полной энергии. Обсуждается 
вопрос об устойчивости (о неустойчивости) гравитационной системы общего положения путем прямого 
вычислительного эксперимента. Под гравитационной системой общего положения понимается система, 
у которой массы, начальные позиции и скорости тел выбираются случайными из заданных диапазонов. 
Для проведения вычислительного эксперимента разработан новый метод численного решения обыкно-
венных дифференциальных уравнений на больших интервалах времени. Предложенный метод позволил, 
с одной стороны, обеспечить выполнение всех законов сохранения путем подходящей коррекции ре-
шений, с другой — использовать стандартные методы численного решения систем дифференциальных 
уравнений невысокого порядка аппроксимации. В рамках указанного метода траектория движения гра-
витационной системы в фазовом пространстве собирается из частей, длительность каждой из которых 
может быть макроскопической. Построенная траектория, вообще говоря, является разрывной, а точки 
стыковки отдельных кусков траектории выступают как точки ветвления. В связи с последним обстоя-
тельством предложенный метод отчасти можно отнести к классу методов Монте-Карло. Общий вывод 
проведенной серии вычислительных экспериментов показал, что гравитационные системы общего поло-
жения с числом тел 3 и более, вообще говоря, неустойчивы. В рамках предложенного метода специально 
рассмотрены частные случаи равенства нулю момента импульса гравитационной системы с числом тел 3 
и более, а также задача движения двух тел. Отдельно рассмотрен случай численного моделирования ди-
намики во времени Солнечной системы. С позиций вычислительного эксперимента на базе аналитиче-
ских методов, а также прямых численных методов высокого порядка аппроксимации (10 и выше) устой-
чивость Солнечной системы ранее продемонстрирована на интервале в пять и более миллиардов лет. 
В силу ограничений на имеющиеся вычислительные ресурсы устойчивость динамики планет Солнечной 
системы в рамках использования предлагаемого метода удалось подтвердить на срок десять миллионов 
лет. С помощью вычислительного эксперимента рассмотрен также один из возможных сценариев распа-
да Солнечной системы. 
 

Ключевые слова: численные методы, обыкновенные дифференциальные уравнения, метод Монте-
Карло 
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1. Introduction 

The present article studies the stability of a gravitational system made up of multiple bodies. 
Here, the term “gravitational system” refers to a set of bodies whose total energy is negative. In order 
to study the stability of such systems, a new numerical method was developed for solving ordinary 
differential equations that describe the dynamics of multiple bodies interacting according to Newton’s 
gravitational law. 

The issue involving the (in)stability of gravitational systems has been studied by Newton, La-
place, Euler, Lagrange, and several other researchers for a long time using the Solar System dynamics 
as an example. While classical analytical solutions indicated stability and almost periodic motion, nu-
merical and numerical-analytical solutions suggested the chaotic motion of planets [Kholshevnikov, 
Kuznetsov, 2007]. The concept of dynamic chaos in relation to the Solar System [Sussman, Wisdom, 
1992] enabled a systematic study of the chaotic motion of planets in the long-term and secular per-
spective [Laskar 1996]. An inextricable link between chaos and the dynamics of solar planets, as well 
as other infinitesimal bodies, was discovered [Rezonansy …, 2006]. The focus in studying the dynam-
ics of planets and other Solar System bodies was determined. On the one hand, it was essential for 
practice to develop a digital, highly deterministic short-term behavior pattern of the Solar System 
[Pit’eva et al., 2019]; on the other, to study dynamics in the long term calculated in the time of the So-
lar System’s existence, i. e., five or more billion years [Zink et al., 2020]. 

The main reason for developing the new numerical method is that traditional numerical methods 
for solving a system of ordinary differential equations [Trenti, Hut, 2008] cannot be used in long-term 
calculations. This factor is attributable to the fact that sooner or later, the numerical solution “falls 
apart” due to the failure to conserve the energy of a gravitational system. Thus, researchers developed 
two ways in order to overcome this difficulty. The first way consists in the developing methods for the 
numerical solution of the systems of differential equations exhibiting high-order approximations (ten 
or above) [Aarseth, 2003; Rein, Spiege, 2015], allowing the dynamics to be studied for a period of five 
or more billion years while ensuring acceptable compliance with the energy conservation law of the 
gravitational system for the entire integration period. The second way is associated with introducing 
multiple corrections of numerical solutions to comply with all conservation laws during the numerical 
calculation period [Nacozy, 1971; Fukushima, 2003]. It will become clear later on that the present 
work can be referred to the second way. 

Henceforth, bodies comprising a gravitational system will be assumed to be non-extended, i. e., 
point bodies. Here, let us use the dimensionless system of units. As characteristic values of mass, 

length and time, we adopted the mass of the Sun 301.9855 10M    kg, the distance from the Sun to 

Neptune, 124.503 10L    m, and time 
3/2

1/2 1/2

88.3008 10L
M

T   


 s = 26.3217 years, where the gravita-

tional constant is 116.674184 10   m3s–2 mg–1. In this case, the characteristic value of speed 

amounts to V = 5.4248 km/s. 
Let us write down the dimensionless form of Newton’s equations describing the dynamics of the 

gravitational system comprising N point bodies of mass 1,..., Nm m  

 
3
,

,1,

,

,j

i j

i i

N m

i i jj j i r 


   
r v

v r




 (1) 
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where ( , , )i i i ix y zr , , , ,( , , )i x i y i z iv v vv  — positions and velocities of the i-th body, ,i j i j r r r , 

, ,| |i j i jr  r , i, j = 1, …, N, the point above the quantities denotes a time derivative. 

In order to solve the system of equations (1), one of the standard solvers of the MATLAB envi-

ronment was applied in an extended time interval [0, 108] ( 92.63 10   years in dimensional units) 
primarily to study the implementation of the energy conservation law. Specifically, the ode23 solver 
was used, implementing the second- and third-order Runge–Kutta method [Bogacki, Shampino, 1989], 
with relative and absolute accuracy values of 10 –3 and 10 –6, respectively. For the sake of clarity, it 
was assumed that N = 15, L = 1, and V = 1. The masses, initial positions in space, and velocities were 
chosen uniformly as random from [0, 1], [–L, L]3, and [–V, V]3, respectively. The total energy was 
found not to be conserved over time; a noticeable “bounce” was observed with energy going down 
sharply, then turning positive and reaching a certain plateau. Note that all the other solvers in the 
MATLAB environment also do not conserve energy in such extensive time intervals. 

Let us move to the coordinate system of the center of mass having the following position and ve-

locity: 1
1

N

i iM i
m

 
 R r , 1

1

N

i iM i
m

 
 V v  where 

1

N

ii
M m 

 , 0t R V R , t is time, 0R  is some 

fixed vector. In order to describe the bodies of the gravitational system, new coordinates , 1,...,i i Nq  

and velocities , 1,...,i i Nu  are introduced according to variable substitution: i i r R q , i i v V u , 

i = 1, …, N. Following variable substitution, the system of equations (1) takes the following form 

 
3
,

,1,

,

,j

i j

i i

N m

i i jj j i q 


   
q u

u q




 (2) 

where ,i j i j q q q , , ,| |i j i jq  q , i, j = 1, …, N. Taking into account the substitution of variables when 

transitioning to the center of mass system, as well as the law of momentum conservation, the follow-
ing vector equalities hold 

 
1

N

i ii
m


 q 0 , 

1

N

i ii
m


 u 0 . (3) 

In addition to equations (3), the laws of angular momentum and energy conservation must be im-
plemented: 

 0 1

N

i i ii
m


 k q u , (4) 

 
,

21 1
0 2 21 , 1,

i j

i j

N N m m

i i qi i j i j
e m

  
  u . (5) 

A numerical solution of the system of equations (2) intended to overcome energy non-
conservation when using standard solvers combines a special procedure for correcting solutions to 
comply with conservation laws with a Monte Carlo method. 

The concept of “complete conservatism” as applied to the difference schemes of partial differen-
tial equations was actively discussed by A. A. Samarskii [Samarskii, 1977]. Note that it is quite simple 
to construct a finite-difference scheme for the system of Equations (2), implementing the law of mo-
mentum and angular momentum conservation. Conversely, it is somewhat problematic to fulfill the 
energy conservation law at the finite-difference level. Here we should note the so-called symplectic 
schemes [Wisdom, Holman, 1991; Feng and Qin, 2010], which, under certain restrictions, provide 
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complete conservatism, as well as the Kustaanheim–Stiefel transformation known in celestial mechan-
ics [Stiefel, Scheifele, 1975; Kozlov, 2007], offering a new way of presenting and describing the Kep-
lerian orbits of two interacting bodies. 

Next, we will show through the computational experiment that a general-position gravitational 
system comprising three or more bodies is unstable. Here, general position refers to a situation where 
the masses of bodies, their initial positions, and velocities are chosen randomly from specific ranges. 
The well-known Lagrange solutions to the three-body problem and several other solutions indicate 
that stable gravitational systems exist given a particular choice of masses, initial positions, and veloci-
ties. 

Taking the work [Arnol’d et al., 1985] into account, let us adopt the following formal definition 
of the stability of a gravitational system. A gravitational system is stable when ,0 ( )i jq t C   for all 

points in time starting from some moment, i.e., at 0t t  where i ≠ j; i, j = 1, …, N; C — some non-

negative constant, 0t  — the initial moment of time. According to Jacobi’s theorem, if the gravitational 

system is stable in the sense indicated above, the total energy is negative. However, the converse is 
generally not true. Moreover, even if the total energy is negative, a general-position gravitational sys-
tem is generally unstable at N > 2. In order to illustrate the last statement, let us consider a procedure 
for generating phase space points via the Monte Carlo method that satisfy all conservation laws. 

2. Algorithm for generating phase space points 

Let us prepare an algorithm for generating the points of 6N-dimensional phase space in the form 
of a Monte Carlo procedure. The proposed algorithm must ensure the implementation of all conserva-
tion laws in the form of equations (3)–(5) without any restrictions that could prevent the generation of 
any possible points of the hypersurface of conservation laws (dimension 6N – 10). 

Let a set of 2N three-dimensional vectors 1 1{ ,..., , ,..., }N Na a b b  taken uniformly at random 

from [ – 1, 1]3 be prepared through random sampling. In order to implement the transition to the center 
of mass system, this set of vectors undergoes the following operation 

 1
1

N

i i j jM j
m

 
  A a a , 1

1

N

i i j jM j
m

 
  B b b . (6) 

Next, let us assume that 

 , , ,( , , )i x x i y y i z z iA A A  q , , , ,( , , )i x x i y y i z z iB B B  u , (7) 

where i = 1, …, N; , , , , ,x y z x y z       — as yet undetermined coefficients. Note that the presentation 

of the required set of vectors in the form of (6)–(7) fulfills the condition (3), including the momentum 
conservation law. 

By substituting (7) into the law of angular momentum conservation (4), we obtain 

 0 11 12 21 22 31 32( , , )y z z y z x x z x y y xc c c c c c              k , (8) 

where 

 11 , ,1

N

i y i z ii
c m A B


 , 12 , ,1

N

i z i y ii
c m A B


 ; 

 21 , ,1

N

i z i x ii
c m A B


 , 22 , ,1

N

i x i z ii
c m A B


 ; (9) 

 31 , ,1

N

i x i y ii
c m A B


 , 32 , ,1

N

i y i x ii
c m A B


 . 
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Let us assume that the angular momentum vector 0k  is given. Then, the system of three equa-

tions takes the following form according to (8) 

 

11 12 0,

21 22 0,

31 32 0,

,

,

.

y z z y x

z x x z y

x y y x z

c c k

c c k

c c k

   

   

   

  


 
  

 (10) 

Let us solve the system of linear equations (10) for ,x y  , and z . When the determinant of the 

system (10) 11 21 31 12 22 32( )x y z c c c c c c      is nonzero, it has a unique solution. Given (9), direct veri-

fication will show that 11 21 31 12 22 32 0c c c c c c c   at N = 2. In other words, the two-body problem 

stands alone, requiring special consideration within this approach. In addition, the case where the an-
gular momentum of the gravitational system equals zero, i. e. 0 k 0 , needs special consideration. 

Let us write down the solution to the system of linear equations (10) for ,x y  , and z  when the 

determinant ∆ is nonzero 

 

0, 21 32 0, 12 32 0, 11 21

0, 21 31 0, 12 31 0, 12 22

0, 22 32 0, 11 31 0, 11 22

( ),

( ),

( ).

x

y

z

x x x y y z z

y x x y y z z

z x x y y z z

k c c k c c k c c

k c c k c c k c c

k c c k c c k c c







   

   

   







  

  

  

 (11) 

Let x xV  , y yV  , z zV   where ,x y  , and z  are uniformly random numbers 

from [ – 1,1], then 

 

1
0, 21 32 0, 12 32 0, 11 21

1
0, 21 31 0, 12 31 0, 12 22

1
0, 22 32 0, 11 31 0, 11 22

( ) ,

( ) ,

( ) .

x

y z

y

x z

z

x y

p
x x x y y z zV c V

p

y x x y y z zV c V

p
z x x y y z zV c V

k c c k c c k c c

k c c k c c k c c

k c c k c c k c c

 

 

 

   

   

   

   

   

   

 (12) 

Taking (12) into account, let us express the phase space point found using the Monte Carlo meth-
od through a single unknown parameter V 

 1
, , ,( , , )i x x i y y i z z iV p A p A p Aq , , , ,( , , )i x x i y y i z z iV B B B   u , i = 1, …, N. (13) 

By substituting the coordinates of the point (13) into Equation (5), determining the total ener-
gy 0e  of the gravitational system, we obtain 

 
2 2 2 2 2 2

, , , , , ,

2 2 2 2 2 2 21
, , , 02 21 , 1,

( ) 0i j

x x i j y y i j z z i j

N N m mV
i x x i y y i z z ii i j i j p A p A p A

V m B B B e  
    

      . (14) 

Since (14) is a quadratic equation for the unknown characteristic velocity V, two real solu-

tions 1,2V  can be obtained at 2
04 0pot kinD e e e    

 1 2
pot

kin

e D

eV
  , 2 2

pot

kin

e D

eV
  , (15) 

where 2 2 2 2 2 21
, , ,21

( )
N

kin i x x i y y i z z ii
e m B B B  


   , 

2 2 2 2 2 2
, , , , , ,

1
2 , 1,

i j

x x i j y y i j z z i j

N m m

pot i j i j p A p A p A
e

   
    — kinetic and po-

tential energies. 
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Thus, a Monte Carlo algorithm for generating a set of phase space points lying on the hypersur-
face of all required conservation laws is developed, taking equation (15) into account. By varying the 
random variables ,x y  , and z , we obtain an unlimited number of required points (13). Henceforth, 

the letter M will denote the number of Monte Carlo experiments. 
Note that the phase points lying on the hypersurface of the conservation laws are simultaneously 

the points of some trajectories-solutions of the system of equations (2). It remains to connect suitable 
pairs of phase points into a single trajectory, obtaining a finite-difference and exact solution at the 
same time [Dorodnitsyn, Kaptsov, 2013; Dorodnitsyn, 2001]. With some simplification and reserva-
tions, this very scenario is implemented in the next section. 

Figure 1a shows a typical positioning pattern for the bodies comprising a gravitational system 
at N = 100, M = 300, |k0| = 2.5, and e0 = –103. The masses in the gravitational system are chosen uni-
formly at random from [0, 1], while the characteristic velocity V is selected equally randomly from the 
two values of (15), i. e., V = {V1, V2}. 

Figure 1b shows a positioning fragment of Solar System bodies comprising the Sun and eight 
planets in the center of mass system. The positions of the planets are found using the Monte Carlo 
generation procedure (6)–(15) at the given angular momentum and energy of the gravitational system. 
Among other things, the following constants are used in the calculation: N = 9, M = 100, 
k0 = 6.4549∙10 – 4, e0 = – 0.0034, and V = {V1, V2}. In Figure 1b, the Sun is denoted by a circle posi-
tioned in the center of the figure. On the periphery, the largest marker in the form of a dot represents 
Jupiter. Smaller dots represent the other planets. The accumulation of points (bodies) in space clearly 
indicates the presence of a plane similar to the ecliptic plane of the Solar System. 

 

 

Figure 1. Typical positioning patterns in space: a) for one hundred bodies having a random mass; b) for the Sun 
and eight Solar System planets 

 
Note that the accumulation of points in Figure 1a does not look compact; six cone-shaped exten-

sions are clearly visible, potentially going to infinity. This factor indicates that a gravitational system 
comprising over two bodies is generally unstable. A similar situation is observed for Figure 1b, with 
a correction for the quasi-two-dimensionality of the positioning of Solar System bodies. 

Two more pieces of indirect evidence showing the instability of the general-position gravitational 
system can be provided by plotting the dependences of the lower and upper limits of the stability crite-
rion on the energy of the gravitational system e0 and the number of Monte Carlo experiments M. 

Let us rewrite the stability criterion of the gravitational system in the following form: 

min , max0 i jq q q    where i ≠ j; i, j = 1, …, N. The dependences of ( )
min ,

1,..., ;
min i j

M i j
q q 

 
  and maxq   
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( )
,

1,..., ;
max i j

M i j
q 

 
  on the energy of the gravitational system e0 are plotted taking into account the proce-

dure (6)–(15) for generating phase points ( ) ( ) ( ) ( )
1 1( , ,..., , )N N
   q u q u , 1,..., .M   

 

Figure 2. Dependences of the lower qmin and upper qmax limits of the stability criterion on: a) energy of the gravi-
tational system e0; b) number of Monte Carlo experiments M 

 

Figure 2a shows a typical example of dependences min 0( )q e  and max 0( )q e . The following values 

of parameters are adopted in the calculation: N = 102, M = 103, and k0 = 2.5. Thus, without factoring in 

small random fluctuations, the lower limit of the stability criterion min 0( )q e  is virtually independent of 

the energy e0 and its sign. With the energy e0 transitioning from negative to positive values, the upper 

limit of the stability criterion max 0( )q e , as well as its variability taking the logarithmic scale into ac-

count, significantly increases. Given Jacobi’s theorem on the stability of the gravitational system, this 
factor is easily explained. 

Figure 2b presents typical curves showing the dependence of the lower and upper limits of the 
stability criterion on the number of Monte Carlo experiments M. Other adopted values of the calcula-
tion parameters are as follows: N = 10, e0 = –10, and k0 = 0.5. As can be seen, the lower limit of the 
stability criterion quasi-monotonically decreases, while the upper limit quasi-monotonically increases 
with a rise in the number of Monte Carlo experiments. 

3. Trajectory construction 

Suppose that for a given number of bodies N in a gravitational system, a configuration 
(0) (0)
1( ,..., )Nq u  is considered as initial taking (3) into account. Then the indicated initial configuration 

determines the angular momentum k0 and the total energy e0 of the gravitational system. 
Through one of the standard numerical algorithms, the system of equations (2) is solved in the 

time interval [0, T1] starting from the initial data (0) (0)
1( ,..., )Nq u . Let a configuration (1) (1)

1( ,..., )Nq u  be 

found at time t = T1 that does not satisfy the conservation laws (3)–(5). It is assumed that the configu-

ration (1) (1)
1( ,..., )Nq u is not too far from the hypersurface of the conservation laws. The meaning of “not 

too far” will become clear later on in the text. 
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Let us consider a procedure for projecting an arbitrary configuration 1( ,..., )Nq u  onto the hyper-

surface of conservation laws (3)–(5). In order to satisfy (3), it is necessary to perform the following 
transformation 

 1
1

N

i i j jM j
m

 
  q q q , 1

1

N

i i j jM j
m

 
  u u u , i = 1, …, N. (16) 

Transformation (16) brings us back to the center of mass coordinate system of the gravitational 

system where the equalities 
1

N

i ii
m


 q 0  and 

1

N

i ii
m


 u 0  are valid. 

In order to satisfy the laws of conservation of angular momentum (4) and energy (5), let us con-
sider the following transformation 

 , , ,( , , )i x x i y y i z z iH q H q H qq , , , ,( , , )i x x i y y i z z iG u G u G uu , i = 1, …, N, (17) 

where the parameters , , , ,x y z x yH H H G G , and zG  have not been determined yet. By applying (17) 

in (4) and (5), we obtain 

 
2 2 2 2 2 2

, , , , , ,

11 12 0, 21 22 0, 31 32 0,

2 2 21 1 1
41 42 43 02 2 2

, , ,

.i j

x x i j y y i j z z i j

y z z y x z x x z y x y y x z

m m

x y z i j H q H q H q

c H G c H G k c H G c H G k c H G c H G k

c G c G c G e
  

     

     (18) 

where 

11 , ,i y i z ii
c m q u , 12 , ,i z i y ii

c m q u ; 21 , ,i z i x ii
c m q u , 22 , ,i x i z ii

c m q u ; 

31 , ,i x i y ii
c m q u , 32 , ,i y i x ii

c m q u ; 2
41 ,i x ii

c m u , 2
42 ,i y ii

c m u , 2
43 ,i z ii

c m u . 

According to (18), the implementation of the laws of angular momentum and energy conserva-
tion requires finding a solution to the system of four nonlinear algebraic equations (18) for six un-
knowns: , , , ,x y z x yH H H G G , and zG . 

Here, we should note that the transformation procedure (16)–(17) intended to ensure the imple-
mentation of conservation laws is somewhat similar to the method originally proposed in [Nacozy, 
1971]. In this work, numerical errors were compensated by correcting the positions and velocities of 
all bodies comprising the gravitational system so that the required conservation laws were satisfied. In 
our case, the choice of the procedure for correcting solutions to comply with the conservation laws 
follows from the procedure for randomly generating points in the phase space of the hypersurface of 
the conservation laws. It is also associated with the renormalization of positions and velocities of bod-
ies comprising the gravitational system. At the first stage, the positions and velocities of each of the 
bodies are corrected to the center of mass according to (16). At the second stage, a unified correction 
of positions and velocities of all bodies comprising the gravitational system is performed according 
to (17), (18) to comply with angular momentum and energy conservation laws. The approach present-
ed in [Nacozy, 1971] was further developed in [Fukushima, 2003], introducing a unified coefficient 
for the positions and velocities of bodies. This coefficient was selected by solving the corresponding 
cubic equation to ensure the implementation of the total energy conservation law. In our model, the 
above procedure in terms of equations (17), (18) involves introducing six coefficients to fulfill the an-
gular momentum and energy conservation laws. In this case, instead of a cubic equation, it is neces-
sary to solve a quadratic equation when selecting an appropriate coefficient to satisfy the energy con-
servation law in the gravitational system. 
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Let us solve the system of equations (18), assuming that the phase space point 1( ,..., )Nq u is 

slightly spaced from the surface, exhibiting the given momentum and energy values of the gravitation-
al system. This factor suggests that the parameters , , , ,x y z x yH H H G G , and zG  do not differ much 

from unity, i. e., 1x xH h  , …, 1z zG g   where | | 1xh  , …, | | 1zg  . Leaving first-order infini-

tesimals , , , ,x y z x yh h h g g , and zg , we obtain 

 

3 3 3
. . .

11 12 21 22

31 32 41 42 43 44 45 46

2 2 2
44 , , 45 , , 46 , ,

( ) ( ) , ( ) ( ) ,

( ) ( ) , ,

, , .i j i j i j

i j i j i j

y z z y x z x x z y

x y y x z x y z x y z

m m m m m m

x i j y i j z i ji j i j i jq q q

c h g c h g k c h g c h g k

c h g c h g k c g c g c g c h c h c h e

c q c q c q
  

         

           

    
 (19) 

In (19), the values of , ,x y zk k k    and e  are considered small, characterizing the deviation of 

the phase point 1( ,..., )Nq u  from the hypersurface at the given values of the angular momentum k0 and 

energy e0, with 0, 11 12x xk k c c    , 0, 21 22y xk k c c    , and 0, 31 32z zk k c c    ; 

,

1 1 1
0 41 42 432 2 2

i j

i j

m m

qi j
e e c c c


      . 

Let us solve the system of the first three equations in (19) for a set of unknowns ,x yh h , and zh . 

This can be done if 11 21 31 12 22 32 0c c c c c c c   . Note that the determinant 0c  at N = 2, i. e., in the 

case of the two-body problem. Similar to the case of generating phase points on a given hypersurface 
of the conservation laws, the special cases include the two-body problem, as well as the case of k0 = 0. 

According to (19), the set of unknowns ( , , )x y zh h h  is expressed in terms of the set ( , , )x y zg g g . 

The three latter quantities are related by a single equation of the form 1 2 3x y zg g g       where 

1 2 3, ,   , and   are expressed through the known quantities; the corresponding formulas are rather 

cumbersome to provide here. In order to solve the latter equation, let us sample three quantities 1 2,  , 

and 3  taken uniformly at random from [–1, 1] and produce the following expressions 

 1

1 1 2 2 3 3xg  
       , 2

1 1 2 2 3 3yg  
       , 3

1 1 2 2 3 3zg  
       . (20) 

Since it is evident that (20) provides the solution, we can find the set of ,x yh h , and zh  and obtain 

a phase point ,1 ,{(1 ) ,..., (1 ) }x x z z Nh q g u   lying on the surface determined by the given angular mo-

mentum and energy. 
Note that random numbers in (20) make the procedure for correcting the phase point to the con-

servation laws partly random. In this case, the correction procedure can be regarded as a kind of Mon-
te Carlo methods. Moreover, stochasticity is introduced into the dynamics directly rather than arising 
from the equations due to the so-called dynamic chaos [Sussman, Wisdom, 1992], which is clearly 
present in the initial equations. 

Now, let us proceed to construct the motion trajectory. By applying the correction proce-

dure (16)–(20) to the phase point (1) (1)
1( ,..., )Nq u  found at 1t T , we obtain a new phase 

point (1) (1)
1( ,..., )Nq u   lying on the surface determined by the conservation laws. With the 

point (1) (1)
1( ,..., )Nq u   further considered as initial, the initial system of differential equations (2) is solved 

numerically in 1 1 2[ , ]T T T . Then, the resulting solution (2) (2)
1( ,..., )Nq u  at 1 2t T T   is adjusted 
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to (2) (2)
1( ,..., )Nq u  , etc. Finally, the last calculation for the system of equations (2) 

in 1 1 1[ ... , ... ]n nT T T T     completes the process of motion trajectory unfolding; the obtained solu-

tion ( ) ( )
1( ,..., )n n

Nq u  is corrected to ( ) ( )
1( ,..., )n n

Nq u  . As a result, we obtain a numerical solution of the sys-

tem of equations (2) in the following form: 

 1 1 1 2

1 1 1

(0) (1) (1) (2) (2)
1 1 1 1 1

[0, ] [ , ]

( ) ( )
1 1

[ ... , ... ]

( ,...) ( ,...) ( ,...) ( ,...) ( ,...) ...

            ( ,...) ( ,...).
n n

T T T T

n n

T T T T



   

    

 

q q q q q

q q

 


 (21) 

The integration segments 1{ ,..., }nT T  of the system of equations (2) are found according to the fol-

lowing algorithm. First, the initial value 1 maxT T  of the integration interval is selected, growing slowly 

from step kT  to step 1kT  at maxkT T . Then, if the modulo coefficients , , , ,x y z x yh h h g g , and zg  exceed 

a certain threshold value δ at the k-th stage of adjusting the solution to the conservation laws, the inter-
val kT  is reduced, for example, by half, while the calculation is repeated in a reduced time interval. 

Note that the numerical result of solving the system of equations (2) is not a separate determinis-
tic curve in the phase space since the time points 1 1 2 1, ,..., ... nt T T T T T     at which the solution is 

adjusted to the conservation laws act as solution branch points. Thus, the described procedure for as-
sembling the motion trajectory generally generates an ensemble of trajectories. In addition, the ob-
tained trajectories are not continuous; the size of the jumps serves as a control parameter δ. 

 

Figure 3. Example of dynamics: a) a three-body gravitational system (trajectories are marked with solid, dotted, 
and dashed lines, respectively); b) contribution to the potential energy of each body comprising the gravitational 
system, N = 102 

 
Figure 3a presents an application of the algorithm (16)–(21) to calculating the dynamics of 

a three-body gravitational system (N = 3). The choice of this example is intentional. The aim is to re-
veal the presence of non-trivial dynamics over a noticeable period of time when all three bodies are 
actively interacting, with none of the bodies going to infinity. Among other things, the following pa-
rameters are selected: n = 100, T1 = 1, and δ = 0.025. In addition, the body masses, initial positions, 

and velocities are chosen uniformly at random from [0, 1], as well as from 3[ , ]L L  and 3[ , ]V V  

at L = 1 and V = 1. As a result, the calculation yields a noticeable value of 1 ... 228.26.nT T T      In 
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Figure 3a, one of the bodies (solid line) is rotating around another pair of bodies (dotted and dashed 
lines, respectively). However, we should note that the statistics of many computational experiments 
indicates that, for most solutions, one of the three bodies goes to infinity. 

In calculations involving a noticeable number of bodies in a gravitational system, the dynamics 
typically develop in such a way that bodies go to infinity over time, with one or more pairs of bodies 
accumulating ≈ 95 % of the total potential energy. Thus, Figure 3b shows the typical temporal dynam-

ics of the contribution of each body , , 1,...,pot iR i N  to the potential energy of the gravitational sys-

tem. These values are calculated using the formula 
,, 2
ji

pot i j

mm
pot i e qj

R     where 
,

1
2 ,

i j

i j

m m

pot qi j
e    . 

Among other things, it is assumed that: N = 102, n = 1300, T1 = 1, and δ = 0.025. The mass of bodies, 
their initial position, and velocity are chosen the same as in the previous calculation. Figure. 3b shows 
two pairs of bodies (Nos. 11 and 33; Nos. 35 and 64), dividing the ≈ 96 % of potential energy approx-
imately equally between them. 

4. Angular momentum of the gravitational system amounting to zero 

In Section 2 discussing the Monte Carlo algorithm for the generation of phase space points lying 
on the surface of the conservation laws, several special cases are noted that require special considera-
tion. For example, one special case consists in the absence of angular momentum in a gravitational 
system comprising three or more bodies, i.e., the case where N  2 and k0 = 0. 

At k0 = 0, the system of equations (10) can be solved for ,x y  , and z  in six ways, i. e., there 

are generally six solutions. Taking into account the energy conservation law (5) and choosing the val-
ues of , ,x y z   , and   uniformly at random from [–1, 1], we obtain 

1) 12 1 11 1| | | |0, , ; 0, ;x y y z z x y y z zV V c c 
                  ; 

2 2 2 2 2 2
12 , , 11 , ,

2 2 2 2 21
1 , , 02 ( )i j

y y i j z z i j

m m

i y y i z z ii j ic A c A
V m B B e

 
  

 
      ; 

2) 21 2 22 2| | | |, 0, ; , 0;x x y z z x x y z zV V c c 
                  ; 

2 2 2 2 2 2
21 , , 22 , ,

2 2 2 2 21
2 , , 02 ( )i j

x x i j z z i j

m m

i x x i z z ii j ic A c A
V m B B e

 
  

 
      ; 

3) 32 3 31 3| | | |, , 0; , , 0x x y y z x x y y zV V c c 
                  ; 

2 2 2 2 2 2
32 , , 31 , ,

2 2 2 2 21
3 , , 02 ( )i j

x x i j y y i j

m m

i x x i y y ii j ic A c A
V m B B e

 
  

 
       

where 11 12 21 22 31 32, , , , ,c c c c c c  are obtained according to formulas (9), 

4) 4| |0, 0, ; 0, 0,x y z z x y zV 
             ; 

 
, ,

2 2 21
4 , 0| | 2

i j

z i j

m m

i z z iAi j i
V m B e 


   ; 

5) 5| |0, , 0; 0, , 0x y y z x y zV 
             ; 

 
, ,

2 2 21
5 , 0| | 2

i j

y i j

m m

i y y iAi j i
V m B e 


   ; 

6) 6| |, 0, 0; , 0, 0x x y z x y zV 
             ; 

 
, ,

2 2 21
6 , 0| | 2

i j

x i j

m m

i x x iAi j i
V m B e 


   . 
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The solutions presented above contain one free parameter V, which, on the one hand, determines 
the characteristic velocity of the bodies of the gravitational system and, on the other, can be considered 
as arbitrary. Factoring in the above solutions, we can determine the required phase space point: 

 , , ,( , , ),i x x i y y i z z iA A A  q  , , ,( , , ),i x x i y y i z z iB B B  u  (22) 

where , , , , , ,, , , , ,x i y i z i x i y i z iA A A B B B , 1,...,i N  are obtained according to (6). 

When obtaining a set of phase space points (22) lying on a hypersurface with a given total ener-
gy 0e  and zero angular momentum k0 = 0, the set of quantities { , , , , , }x y z x y z       should be chosen 

with equal probability from the six solutions presented above. 
The phase space points (22) obtained on the basis of six solutions, in terms of spatial positioning, 

lie either on one of the three coordinate planes, or on one of the three axes of the Cartesian coordinate 
system. Thus, the existence of the ecliptic plane in the Solar System can be attributed to small angular 
momentum. Figure 4a shows a typical format for the positioning of bodies comprising a gravitational 
system in a set of statistical experiments at k0 = 0. Other adopted calculation parameters are as fol-

lows: 325, 10 , 1N M V   , and 0 50e   . Figure 4a shows the positioning of bodies in a cu-

be 3[ 1.5,1.5] . With an increase in the side of the indicated cube, the positioning pattern of points be-

comes similar to that shown in Figure 1a (case where k0  0). Thus, the cluster of points is clearly 
non-compact in both cases (at k0  0 and k0 = 0), i. e., the gravitational system is generally unstable. 
 

Figure 4. Typical format for positioning bodies comprising a gravitational system in a set of statistical experi-
ments at k0 = 0 (a); an example showing the motion trajectories of three bodies in the x-y plane (trajectories are 
marked with a solid, dotted, and dash-dotted lines, respectively) (b) 

 

Let us assemble the trajectory of the bodies comprising the gravitational system for one of the 
first three special cases. Here, we will consider solution number 3, in which the dynamics of the gravi-
tational system occur in the x-y plane. In this case, it is assumed that z = 0. As a result, it is necessary 
to solve the following system of differential equations: 

 
, , , ,

2 2 3/2 2 2 3/2
, , , , , , , ,

, , , ,

( ) ( )

, ,( ) ( )

,  ;

, ;j x i x j j y i y j

x i j y i j x i j y i j

x i x i y i y i

m q q m q q

x i y ij jq q q q

q u q u

u u
 

 

 

    
 

 
 (23) 

where 1,...,i N . 



K. E. Plokhotnikov 

 ____________________ КОМПЬЮТЕРНЫЕ ИССЛЕДОВАНИЯ И МОДЕЛИРОВАНИЕ ____________________  

e500 

Prior to constructing the trajectory of the gravitational system described by the system of equa-

tions (23), the initial configuration (0) (0) (0) (0)
, , , ,, , , , 1,...,x i y i x i y iq q u u i N  is obtained. Taking the condi-

tion k0 = 0 into account in the system of equations (10), we obtain 

 (0) (0)
, , , ,,x i x x i y i y y iq A q A   ; (0) (0)

, , , ,,x i x x i y i y y iu V B u V B   ; (24) 

where 

32 3| |x xc 
   , 31 3| |y yc 

   , , , [ 1,1]x y     . 

The trajectory is assembled according to the procedure (16)–(20). Taking (19) into account, we 
obtain from equations (18) 

 
31 32 32 31 32 31

44 45 41 42

,

,

x y x y

x y x y

c h c h c g c g c c

c h c h c g c g e

    
     

 (25) 

where 

2 2 3/2 2 2 3/2
, , , , , , , ,

2 2
, , , ,

2 2
44 , , 45 , ,( ) ( )

1 1
0 41 422 2

, ;

.

i j i j

x i j y i j x i j y i j

i j

x i j y i j

m m m m

x i j y i ji j i jq q q q

m m

i j q q

c q c q

e e c c

  

 

 

    

 


 

Let us assume that 0xh   and 0yh   in the procedure for correcting the obtained solution to the 

given conservation laws ( 0 0,ek 0 ). By substituting the latter equalities in (25) and solving the result-

ing system for the unknowns xg  and yg we obtain 

 31 32 42 31 32 31 41 32

31 41 32 42 31 41 32 42

( ) ( ),c c c c e c c c c e
x yc c c c c c c cg g     

   . (26) 

Figure 4b provides an example showing the motion trajectories in the plane of three bodies 
(N = 3) interacting according to equations (23)–(26). The pentagrams on the trajectories indicate the 
moments when the procedure for adjusting the motion to the given conservation laws is carried out. 
The other adopted calculation parameters are as follows: 0 0, 0.5e  k 0 , n = 25, T1 = 1,  = 0.025, 

and V = 1. The motion trajectories are marked by different lines: solid, dotted, and dash-dotted. The 
total time interval for integrating the system of equations (23), including correction procedures to the 
conservation laws, is [0, 28.46]. 

Let us construct the motion trajectories of bodies comprising the gravitational system for one of 
the special cases: No. 4, No. 5, or No. 6. We will consider solution number 6, in which the dynamics 
of the gravitational system occur on the coordinate line x. In this case, it is assumed that y, z = 0. As 
a result, it is necessary to solve the following system of differential equations: 

 
,

3
,| |

,

,j i j

i j

i i

m x

i j x

x u

u



 


  (27) 

where , ,  , 1,...i j i jx x x i j N   . 

The first step is to determine the initial configuration (0) (0), , 1,...,i ix u i N ; then, taking into ac-

count the particular solution No. 6, we obtain 

 (0) (0)
6 , ,| | ,  ;  , [ 1,1]i x i i x x i xx A u V B

        . (28) 
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Figure 5. Examples showing the dynamics of positions on the x-axis: a) three bodies, N = 3, e0 = –1.5; b) seven 
bodies, N = 7, e0 = –1 

 

When assembling trajectories by analogy with (17), we will follow the transfor-
mations i x ix H x and i x iu G u  to comply with the energy conservation law. In this case, we obtain 

 2 1
0xx kin potHG e e e  , (29) 

where 21
2kin i ii

e m u , 
,| |

i j

i j

m m

pot xi j
e


  . 

By solving Equation (29) for Hx, we get 

 2
0

pot

x kin

e

x e G e
H


 . (30) 

Assuming 1xG  , we can find 
0

pot

kin

e

x e eH   according to (30). The integration interval kT  is re-

duced when the following inequality holds: 0

0
| 1| | |pot kin

kin

e e e

x e eH  
   . 

Figure 5 illustrates the calculations of the position dynamics of bodies comprising a gravitational 
system performed according to the algorithm for assembling trajectories (27) – (30) for two cases: 
N = 3 and N = 7. The other adopted parameters are as follows:  = 0.025 and V = 1. Pentagram mark-
ers on the graphs indicate the moments when the procedure for correcting the trajectory to the set val-
ue of the total energy 0e  is carried out. 

The dynamics format in Figure 5a is specially selected to demonstrate that a pair of bodies are 
approaching each other while the third body is going to infinity. A typical format for a large number of 
bodies is shown in Figure 5b. The latter case is characterized by the bodies of the gravitational system 
accelerating and approaching each other, taking the energy conservation law into account. Note that 
such dynamics can be referred to a class characterized by escalation, with the bodies of the gravita-
tional system falling into a common center at some finite point in time and their velocity reaching in-
finity. We will consider this case in more detail below, using the two-body problem as an example. 

5. Two-body problem 

Let us focus on a special case where N = 2 and the angular momentum of a pair of bodies is ab-
sent, i. e., k0 = 0. By solving the system of equations (10), we obtain 

 12 32 12 31 11 31, ,x x y y z zc c c c c c        , (31) 

where  — some as yet undetermined parameter. 
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Let us sample the quantities ,x y  , and z  according to 

 , ,x x y y z zV V V        , (32) 

where , ,x y z    — uniformly random numbers from [–1, 1]; V — characteristic speed scale. 

After substituting (32) into (31), we get 

 12 32 12 31 11 31, ,x x y y z zV c c V c c V c c        . (33) 

Taking (13)–(14) into account, let us specify the form of phase-space vectors: 

 12 32 , 12 31 , 11 31 ,( , , )i i x x i y y i z z iV V c c A c c A c c A     q q , (34) 

 , , ,( , , ),  1,2i i x x i y y i z z iV V B B B i    u u . (35) 

Let us find the unknown quantity  using the energy conservation law (5), i. e. 

 1 2

1 2

22 21 1
02 | | | |1

0m m
i i V q qi

V m e  
    u . (36) 

By solving Equation (36) for ||, we obtain 

 1 2

1 2

22 21
0| | 21

m m
i iq q i

V m e    
   u . (37) 

Taking (34), (35), and (37) into account, we can write down the Monte Carlo procedure for gen-
erating an unlimited number of phase space points, with all of them having the given values of angular 
momentum (k0 = 0) and energy (e0), i. e. 

 | | , , 1,2i i i iV V i
     q q u u ; (38) 

where  — uniformly random number from [–1,1]. 
Figure 6a illustrates the positioning of a pair of bodies within a gravitational system obtained us-

ing the Monte Carlo method according to (31)–(38). The dots and asterisks indicate bodies Nos. 1 

and 2, respectively. The following values of other parameters are adopted: 310 ,M   0 0.5,e    1,V   

1 0.41,m   and 2 0.97m  . 

According to formulas (37) and (38), the positions of phase points in the configuration space 
cannot go to infinity. In other words, the cluster of points in Figure 6a has a compact shape, indicating 
the stable nature of interaction in a two-body gravitational system. 

The next step is to find an analytical solution of the two-body problem and compare it with a nu-
merical solution obtained according to the solution assembly procedure, taking the implementation of 
the conservation laws into account k0 = 0 and e0. 

From equations (2), we obtain 1

22 1
m
m q q  and 1

22 1
m
m u u  at N = 2. In this case, the angular 

momentum (3) for the pair of bodies takes the form of 0 1 1 1 2 2 2m m    k q u q u  

 2
1

21 1 1 .m
mm   q u 0  The latter equation can be satisfied assuming that 1 1u q  where ( )t   is 

some as yet undetermined scalar time function. In order to determine ( )t , we obtain equations simi-

lar to (2) for this case 

 
2

2 3
1 2 1

1 1

1 1(1 / )

,

.m

m m q


  

q u

u q



  (39) 
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Figure 6. Example showing the positioning of a pair of bodies in a set of statistical experiments at k0 = 0 (dots 
and asterisks indicate bodies Nos. 1 and 2, respectively) (a); a typical graph showing the temporal dynamics of 
the distance between the pair of bodies (b) 

 
With 1 1u q  taken into account in (39), we obtain the following differential equation after some 

transformations 

 35 3 0      . (40) 

The solution of Equation (40) that we are interested in can be easily found, i. e., ( )t    

  11 3
0 2 t

   where 0(0)  . The latter expression allows a solution to the system of equations (39) 

to be obtained 

  2/33
1 0 1,021 t q q ,   1/33

1 0 1,021 t 
 u q , (41) 

where 0 0   and 1,0 1(0)q q  is some constant vector. After substituting (41) into (39), we ob-

tain 2
2 3

1 2 1,0

2
0 (1 / )

m

m m q



  . At 0 0,   the solution (41) takes the following form 

 2/3 1/32
1 1,0 1 1,03,t t q q u q , (42) 

with 
1/3

2
1/3 2/3

1 2

(9 )
1,0 2 (1 / )

m

m m
q


 . 

Let us determine the distance vector between the pair of bodies  1

21,2 1 2 11 m
m   q q q q . Then 

taking (41) into account, we obtain 

   1

2

2/33
1,2 1,2 0 1,021 1m

mq t   q q . (43) 

On physical grounds, it is clear that a pair of bodies are attracted to each other, i. e., the dis-
tance 1,2q  between them decreases. Taking (41) into account, 1,2 0,q   0 0   while the time increas-

es, remaining below 
0

2
3ft   , i. e. ft t . The time ft  will be referred to as focusing time. Zero dis-

tance 1,2 0q   between a pair of bodies can be interpreted as their agglomeration. 



K. E. Plokhotnikov 

 ____________________ КОМПЬЮТЕРНЫЕ ИССЛЕДОВАНИЯ И МОДЕЛИРОВАНИЕ ____________________  

e504 

Here, the procedure for constructing a trajectory (16)–(18) is applied, taking into account the fact 
that we are considering the two-body problem and k0 = 0. Let there be a certain configura-
tion 1 2 1 2{ , , , }q q u u ; the idea is to modify it to comply with the angular momentum conservation law, 

k0 = 0, and the given value of the total energy e0. To this end, we can apply transformation (17); then, 
given (33), we obtain: 

 12 32 12 31 11 31| | | | | |, ,x x y y z zH c c G H c c G H c c G  
       , (44) 

where  is an arbitrary random number from [–1, 1]; 

 1 2

2 2 2 2 2 2 2 2 2 2 2 2
12 32 ,1,2 12 31 ,1,2 11 31 ,1,2

2 2 2 2 2 21 1 1
, , , 02 2 2

x x y y z z

m m
x i x i y i y i z i z ii i iG c c q G c c q G c c q

G m u G m u G m u e
 

      . 

According to (44), we can find the set of ,x yH H , and zH  knowing ,x yG G , and zG . Since there 

are no restrictions on ,x yG G , and zG , we can assume that 1x y zG G G   . In this case, the integra-

tion segment kT  is reduced when one of the three inequalities holds: 1xH   , 1yH   , 

and 1 .zH    

Figure 6b shows a typical trajectory sample describing the time dynamics of distances between 
a pair of bodies. In Figure 6b, the distance to the power of 3/2 is plotted on the ordinate axis since, ac-

cording to the analytical solution (43), 3/2
1,2q  is a linear time function. The constructed trajectory is con-

sistent with a straight line, i. e., fully corresponds to the analytical solution (43). The remaining pa-
rameters of the computational experiment are as follows: e0 = –0.5, V = 1, and  = 0.025. In Figure 6b, 
pentagrams, as above, indicate the moments when the solution is corrected to satisfy the conservation 
laws. 

Let us continue our consideration of the two-body problem at k0  0. In this case, the calculation 
procedure (6)–(15) does not work. It is necessary to introduce the relative vectors of posi-
tion 1 2 q q q  and velocity 1 2 u u u ; thus, the positions and velocities of each of the bodies, as 

well as the law of angular momentum and energy conservation, take the following form: 

 
1 2 2 11 2(1 / ) (1 / ),m m m m   q qq q ; 

1 2 2 11 2(1 / ) (1 / ),m m m m   u uu u ; (45) 

 1 2

1 2 0
m m

m m  q u k , (46) 

 1 2 1 2

1 2

21
02

m m m m
m m qu e   , (47) 

where | |u  u  and | |q  q . 

The angular momentum k0 and the energy e0 in (46)–(47) cannot be considered arbitrary inde-

pendently of each other. Thus, equation (46) yields constraint 1: 1 2

1 20
m m

m mk qu ; whereas constraint 2 

follows from equation (47): 1 2

0
m m

qe   . Constraints 1 and 2 imply constraint 3: 0 1 2 1 2

1 2 0

( )k m m m m
m m u eq

  , 

which, given (47), leads to constraint 4 on the possible values of the relative velocity modu-

lus: 
2 2 2 2
1 2 1 2

1 2 0 1 2 0

m m D m m D
m m k m m ku   . The latter inequality is valid only under constraint 5: 4 4

1 2D m m   

2
1 2 1 2 0 02 ( ) 0.m m m m k e    

Let us introduce a pair of vectors of unit length: q qα  and u uβ ; then the following scheme for 

obtaining phase space points via the Monte Carlo method is implemented. Step 1: Select the vector k0 
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and the constant e0 to fulfill the following inequality: 4 4 2
1 2 1 2 1 2 0 02 ( ) 0D m m m m m m k e    . Step 2: 

Select a relative velocity modulus u uniformly at random from 
2 2 2 2
1 2 1 2

1 2 0 1 2 0
, .m m D m m D

m m k m m k
  

   Step 3: From equa-

tion (47), find the modulus of the relative distance 1 2
21 1 2

02 1 2

m m
m m

m m

u e
q

 
 . Step 4: The ort α  is chosen randomly 

provided it is orthogonal to the angular momentum vector, i. e. 0( , ) 0kα . Step 5: Taking (46) into 

account, find the angle   between a pair of vectors ,α β  that has two possible values:    

1 2 0

1 2

( )arcsin m m k
m m qu
  and 1 2 0

1 2

( )arcsin .m m k
m m qu     Step 6: Obtain the vector β  by rotating the vector α  by 

one of the two angles relative to the angular momentum vector; the choice of one of the two angles is 
considered equally probable. Step 7: Given that qq α and ,uu β  find the positions and velocities of 

each of the two bodies using formulas (45). 
Figure 7a illustrates all possible positions of a pair of bodies in space (with asterisks and dots in-

dicating the first and second bodies, respectively); these bodies interact according to Newton’s law 
and have the given values of the angular momentum and energy (|k0| = 0.125, e0 = –0.25). Figure 7a 
shows the results of M = 103 statistical experiments on positioning a pair of bodies comprising a gravi-
tational system, obtained under the procedure described above. 

 

Figure 7. Examples: a) random positions of a pair of bodies comprising the gravitational system at the given val-
ues of the angular momentum and energy (asterisks and dots indicate the first and second bodies, respectively); 
b) space motion trajectory of bodies comprising the gravitational system 

 

Taking Step 3 into account, it is clear that a relative distance between a pair of bodies cannot be-
come infinite, i.e., the phase points in the configuration space cannot go to infinity. This factor, in turn, 
means that the cluster of points in Figure 7a is compact, with the pair of bodies exhibiting stable mo-
tion. 

Let us proceed to illustrate the presented algorithm by solving a system of equations describing 
the motion of a pair of bodies in terms of relative positions and velocities: 

 1 2
3, m m

q

  q u u q  . (48) 

The system of equations (48) permitting the conservation laws (46)–(47) can be solved using 
standard measures [Landau, Lifshitz, 1976]. They consist of the following steps: 1) a coordinate sys-
tem is introduced, in which, for example, the applicate axis is directed along the angular momentum 
vector; 2) a polar coordinate system is considered for relative positions and velocities in the plane of 
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the abscissa and ordinate axes; 3) for example, an equation describing the dynamics of the distance q 
between a pair of bodies as a time function is derived, then 

 1 2 0

1 2

( ) 1 1 1 1
1 2( )( )m m k

m mq q q q q        , (49) 

where 
2 2
1 2

2
1 2 0

1
1,2 ( )

m m D

m m k
q 


 . Two signs before the radical in the right side of (49) indicate two solutions that 

intersect at the rotation points 1,2q , with the solution q oscillating within the segment [q1, q2] for a pe-

riod of 
3 3
1 2

3
1 2 08( )( )

2 m m

m m e
T 

 
 . 

One of our aims is to test a numerical method for solving the system of equations (49) along with 
a procedure for correcting the solution, which ensures that the laws of angular momentum (46) and 
energy (47) conservation are satisfied. Given (17), we obtain the following transformation:  

 ( , , )x x y y z zH q H q H qq ,   ( , , )x x y y z zG u G u G uu . (50) 

Let us select the undetermined coefficients , , , ,x y z x yH H H G G , and zG  such that the laws of an-

gular momentum and energy conservation are fulfilled, i. e., the following equations hold: 

 

1 2

2 2 2 2 2 2
,1,2 ,1,2 ,1,2

11 12 0,

21 22 0,

31 32 0,

2 2 21 1 1
41 42 43 02 2 2

,

,

,

,
x x y y z z

y z z y x

z x x z y

x y y x z

m m
x y z H q H q H q

c H G c H G k

c H G c H G k

c H G c H G k

c G c G c G e
 

 

 

 

   

 (51) 

where 

11 12 21 22 31 32, , , , ,y z z y z x x z x y y xc q u c q u c q u c q u c q u c q u           ; 

2 2 2
41 42 43, ,x y zc u c u c u     ; 

1 2

1 2

m m
m m   — reduced mass. 

Let us solve the nonlinear algebraic system of four equations (51) for the six unknowns in the 
linear approximation. Suppose that 1 , | | 1x x xH h h   , …, 1 , | | 1x x xG g g   ; then equations (51) 

take the following form in the linear approximation: 

 

1 11 12

2 21 22

3 31 32

4 41 42 43 44 45 46

( ) ( ) 0,

( ) ( ) 0,

( ) ( ) 0,

0,

y z z y x

z x x z y

x y y x z

x y z x y z

f c h g c h g k

f c h g c h g k

f c h g c h g k

f c g c g c g c h c h c h e

      

      

      

        

 (52) 

where 

1 2 1 2 1 2
3 3 3

2 2 2
44 45 46, ,m m m m m m

x y zq q q
c q c q c q   ; 

1 2

0, 0,

21
0, 0 2

( ), ( ),

( ), .

x x y z z y y y z x x z

m m
z z x y y x q

k k q u q u k k q u q u

k k q u q u e e

 

 

       

       u
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The undetermined linear system of equations (52) for the six unknowns , , , ,x y z x yh h h g g , and zg  

is solved by minimizing a function of the following form: 

 
2 2 2 2

1 2 3 4
2 2 2 22( ) 2

( , , , , , )
x y z

f f f f
x y z x y z k k k e

h h h g g g  

   
   . (53) 

The minimization procedure performed, for example, via the gradient descent method typically 

implies that the initial values of the unknowns (0) (0) (0) (0) (0), , , ,x y z x yh h h g g , and (0)
zg are given. Let us choose 

the latter as uniformly random numbers from the interval [–, ]. The system of equations (48) is 
solved numerically in [0, T1] using conventional methods. If, after applying the procedure (51)–(53), it 
turns out that at least one of the six inequalities | | , ..., | |x zh g    is violated, the time interval is re-

duced, and the calculation is repeated from the same initial data. If all six inequalities remain valid, the 
solutions of equations (48) are corrected according to the formulas 

((1 ) ,(1 ) ,(1 ) ), ((1 ) ,(1 ) ,(1 ) )x x y y z z x x y y z zh q h q h q g u g u g u       q u . 

Next, a new integration interval 1 1 2[ , ]T T T  is selected, and the entire procedure is repeated. At 

this point, the presentation of the algorithm for solving the system of equations (48) and the procedure 
for reducing solutions to the given values of the laws of angular momentum k0 and energy e0 conser-
vation can be considered complete. 

Figure 7b illustrates the construction of motion trajectories in space for a pair of bodies compris-
ing a gravitational system, taking into account the procedure (50)–(53) for correcting the solutions to 
the given values of the laws of angular momentum k0 and energy e0 conservation. The following pa-
rameter values are adopted: k0 = 0.125, e0 = –0.25, T1 = 1, and  = 0.005. The final integration interval 
is [0, 646.55], while the oscillation period corresponding to the analytical solution amounts 
to T = 2.67. In Figure 7b, the pentagrams indicate when the procedure for reducing the solution to the 
specified angular momentum and energy values is applied. In total, n = 500 procedures are performed. 

6. Stability of the Solar System 

Let us move on to consider the results of modeling the Solar System dynamics. Actual data are 
adopted as the initial positions and velocities of bodies, i.e., when the planets (given the barycenter 
of the “Earth + Moon” system) move in the vicinity of the ecliptic plane, i.e., in a three-dimensional 
barycentric coordinate system. Several authors [Simon et al., 2013] present ephemerides obtained over 
a long interval in [Index of…, accessed November 2020]. For our calculations, a Julian ephemeris date 
of JD 2405730.5 is chosen, which corresponds to 06/25/1874 of the Gregorian calendar. The correc-
tion of solutions to comply with conservation laws is carried out according to the procedure (16)–(20). 

Figure 8a presents a typical position of the orbits of the Solar System planets after performing 
calculations for a period of ≈ 1.05×107 years, i.e., more than ten million years. The orbits of the plan-
ets are plotted according to the latter ≈ 9.01×104 years. The points on the graphs of planetary trajecto-
ries indicate the moments of correcting solutions to comply with the conservation laws. The other 
adopted calculation parameters are as follows: 1 max 30T T  , n = 12984, δ = 0.025, as well as the rel-

ative and absolute accuracy values of the solver of the system of differential equations amounting 
to 2∙10–7 and 2∙10– 8, respectively. Figure 8b shows the time dependences of the distances from the 

center of mass to the Sun and the planets during the entire calculation period of 7[0,1.05 10 ]  years. 
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The graphs in Figure 8b show that the orbits of the lightest planets, i. e., Mercury and Mars, vary con-
siderably over time, while the entire planetary system remains stable. 

The dynamics of the Solar System planets calculated from actual initial positions, but with 
rougher relative and absolute accuracies of 10–6 and 10–7, respectively, revealed that a noticeable trans-
formation of the Solar System began after ≈ 6.5∙106 years. Figure 8c shows the result of the transfor-

mation lasting for 7[0,2.27 10 ]  years, i.e., more than twenty million years. The transformation scenar-

io for the Solar System is reduced to the order in which the planets leave the Solar System: Venus  

 Mars  Mercury  Earth  Uranus  Neptune  Saturn, followed by the formation of the dou-
ble system “Sun + Jupiter.” The other adopted calculation parameters are as follows: 1 max 30T T  , 

n = 29500, and δ = 0.025. All possible transformation scenarios for the Solar System can be divided 
into three groups: 1) most of the planets leave the Solar System; a double system consisting of the Sun 
and one of the heavy planets remains; 2) two planets crash into each other, or one of the planets crash-
es into the Sun; 3) a mixed version. 

 

Figure 8. Fragment showing the dynamics of the Solar System planets (a); time dependence of the distances 
from the center of mass to the Sun and the planets (b); dynamics of the Solar System transformation (c) 

 
Note that the onset of a noticeable transformation of the Solar System can be significantly pushed 

forward in time if the values of the absolute and relative accuracy of the used calculation scheme are 
reduced. However, the computational resources available to the present author do not allow the above 
calculation scheme to be applied to the relative and absolute accuracies of much smaller values 
of 2∙10– 7 and 2∙10–8, respectively. 

7. Conclusion 

The present article studies the stability of a gravitational system comprising multiple bodies by 
means of a computational experiment. In order to perform a long-term calculation of the systems of 
differential equations, a new method was developed. This method combines the use of conventional 
numerical methods for solving differential equations, as well as a specially designed procedure for 
correcting solutions to the given integrals of motion. This correction procedure makes the method con-
servative while introducing a random component into the calculations. As a result, this method can be 
referred to the class of Monte Carlo methods, with the entire computation scheme becoming stochas-
tic-deterministic. 

The paper presents a generator of phase space points from the hypersurface of the conservation 
laws of a gravitational system. The performed computational experiment indicates that the accumula-
tion of phase space points in the configuration space is not compact when the number of bodies com-
prising the gravitational system exceeds two. This factor means that a general-position gravitational 
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system is unstable (at N > 2), including when the total energy is negative. In the present work, the gen-
eral position refers to a situation where the masses, as well as the initial positions and velocities of 
bodies, are random variables selected from certain fixed ranges. 

The method described in this paper is applied to calculating the Solar System dynamics, drawing 
on the actual values of ephemerides. Due to the limited computational resources, the stability of the 
Solar System is confirmed by the performed calculation only for a period of about ten million years. 
At the end of the specified period, the structure of the Solar System is generally preserved, except for a 
noticeable orbital realignment of Mercury and Mars. At rougher values of the relative and absolute 
accuracies of the calculation algorithm, the full transformation cycle of the Solar System can be 
traced, which includes the release of the planets and the final formation of the “Sun + Jupiter” pair. 
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