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In this paper, a gravitational system is understood as a set of point bodies that interact according to New-
ton's law of attraction and have a negative value of the total energy. The question of the stability (nonstability) of
a gravitational system of general position is discussed by direct computational experiment. A gravitational sys-
tem of general position is a system in which the masses, initial positions, and velocities of bodies are chosen
randomly from given ranges. A new method for the numerical solution of ordinary differential equations at large
time intervals has been developed for the computational experiment. The proposed method allowed, on the one
hand, to ensure the fulfillment of all conservation laws by a suitable correction of solutions, on the other hand, to
use standard methods for the numerical solution of systems of differential equations of low approximation order.
Within the framework of this method, the trajectory of a gravitational system in phase space is assembled from
parts, the duration of each of which can be macroscopic. The constructed trajectory, generally speaking, is dis-
continuous, and the points of joining of individual pieces of the trajectory act as branch points. In connection
with the latter circumstance, the proposed method, in part, can be attributed to the class of Monte Carlo methods.
The general conclusion of a series of computational experiments has shown that gravitational systems of general
position with a number of bodies of 3 or more, generally speaking, are unstable. In the framework of the pro-
posed method, special cases of zero-equal angular momentum of a gravitational system with a number of bodies
of 3 or more, as well as the problem of motion of two bodies, are specially considered. The case of numerical
modeling of the dynamics of the solar system in time is considered separately. From the standpoint of computa-
tional experiments based on analytical methods, as well as direct numerical methods of high-order approxima-
tion (10 and higher), the stability of the solar system was previously demonstrated at an interval of five billion
years or more. Due to the limitations on the available computational resources, the stability of the dynamics of
the planets of the solar system within the framework of the proposed method was confirmed for a period of ten
million years. With the help of a computational experiment, one of the possible scenarios for the disintegration
of the solar systems is also considered.
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B pabore mox rpaBUTAIIMOHHON CUCTEMOM MOHUMAETCS MHOXKECTBO TOYCUHBIX TEJl, B3AUMOICHCTBYIOIINX
COTJIACHO 3aKOHY NPUTsDKEHUS HBI0TOHA M MMEIONINX OTPHIATEIFHOE 3HAUCHHUE MOTHOU 3Hepruu. O0cykaaercs
BOIPOC 00 YCTOWYMBOCTH (0 HEYCTOWYMBOCTH) TPABUTAIIMOHHON CHCTEMBI OOIIETO MOJIOXKCHUS IyTEM IPSMOTO
BBIYHCIIUTENIFHOTO dKCTepuMeHTa. [1oJ rpaBUTAIIMOHHON CHCTEMO OOIIETO MOJOKEHHST TTIOHUMAETCSI CHCTEMA,
Yy KOTOPOW MaccChl, Ha4aJlbHBIC TIO3UITUH U CKOPOCTH TENI BRIOMPAIOTCS CIIyIaifHBIMU U3 3a[JaHHBIX JUATIa30HOB.
Jis mpoBeeHNsT BEIYUCITUTEIHHOTO SKCIIEPUMEHTa Pa3pab0oTaH HOBBIH METOJ YHCICHHOTO pPEIIeHUS OOBIKHO-
BEHHBIX MU PepeHINaIbHBIX YpaBHEHUH Ha OOJBIINX WHTEpBAIaX BpeMeHH. [IpeqmoskeHHbIH METO TTO3BOJIIIL,
C OJHOHM CTOPOHBI, OOECIIEYNTh BBHINIOJIHEHHE BCEX 3aKOHOB COXPAHEHHS IYTEM IMOAXOMISMICH KOPPEKIHH pe-
HIEHUH, C JPYroil — HMCIOJIb30BaTh CTAHAAPTHBIE METObI YMCICHHOIO PEICHUS] CUCTEeM IU(QepeHIHaTbHbIX
YpaBHEHHI HEBBICOKOTO TOPSIIKA ammpoKcUMaIly. B paMkax yka3aHHOTO METOJa TPAEKTOpUS IBUKEHHs Trpa-
BUTAIIMOHHOHN CHCTEMBI B (h)a30BOM MPOCTPAHCTBE COOUPACTCS M3 YACTEH, UIMTEIBHOCTh KAXKIOH U3 KOTOPHIX
MOJKET OBITh Makpockomudeckoi. [TocTpoeHHass TpaeKTOpHs, BOOOIIE TOBOPS, SBJISETCS Pa3pbIBHON, a TOUKU
CTBHIKOBKH OTJICNIEHBIX KYCKOB TPACKTOPHUHU BBICTYIAIOT KaK TOYKH BETBJICHHUS. B CBS3WM C MOCIETHHM OOCTOS-
TEJNBCTBOM TPEIUIOKEHHBIA METOJ OTYACTH MOXKHO OTHECTH K Kitaccy MeTonoB MoHTe-Kapio. O0muii BeiBOA
MPOBEJICHHON CEPHUU BBIYMCIUTEIHHBIX IKCIIEPHUMEHTOB ITOKA3all, YTO TPAaBUTAIIMOHHBIC CHCTEMBI OOIIETro MMOJIo-
JKEHHS ¢ YHCIIOM Tell 3 1 Oolee, BooOIIe TOBOPS, HEYCTOHYMBEL. B paMkax MmpeuioskeHHOTO MEeTo/1a CIICIUAIBHO
paccMOTPEeHBI YaCTHBIE CIyYad PAaBEHCTBA HYJII0 MOMEHTA UMITYJIbCA TPABUTAIIMOHHONW CHCTEMBI C YHCIOM Tel 3
u OoJjee, a TakKe 3a7ada ABIDKEHHS ABYX Ted. OTOeNbHO pacCCMOTPEH CITydail YACIEHHOTO MOJCIHPOBAHUS IIH-
HaMuK# BO BpeMeHU ConHeuHOW cucTeMbl. C TO3UIMKI BRIYUCIUTEIHLHOTO SKCTIIEpUMEHTa Ha 0a3e aHaIWTHYIe-
CKHX METOJIOB, a TaK)Ke MPAMBIX YHCICHHBIX METOJOB BBICOKOTO MOpsiKka anmmpokcumanui (10 u BeIe) ycToi-
yrBOCTh COJIHEUHOW CHCTEMBI paHee MPOJESMOHCTPHUPOBAHA HAa WMHTEpBAJC B IATh W 0OJice MUILIMAPIOB JICT.
B cuiy orpaHnyeHuil Ha UMEIOIUECS BBIYMCIUTENbHbBIE PECYPChl YCTOWYMBOCTh AMHAMUKY TiaHeT CoJTHEYHOH
CHUCTEMBI B PaMKaX HCIOJb30BaHUs MPEIaracMoro MeTo/ia yJ1aioch MOATBEPAUTh Ha CPOK JI€CATh MUJIJTHOHOB
seT. C nOMOILBIO BBIYHUCIUTENFHOTO IKCIEPUMEHTA PACCMOTPEH TaKXKe OJMH U3 BO3ZMOXKHBIX CLIEHApUEB pacma-
na CoTHEeUYHOI CHCTEMEL.

KnroueBble ci10Ba: YMCICHHBIE METOJIbI, OOBIKHOBEHHbBIC NTU(depeHIranbHble YpaBHeHUs, MeTo 1 MoHTe-
Kapno
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1. Introduction

The present article studies the stability of a gravitational system made up of multiple bodies.
Here, the term “gravitational system” refers to a set of bodies whose total energy is negative. In order
to study the stability of such systems, a new numerical method was developed for solving ordinary
differential equations that describe the dynamics of multiple bodies interacting according to Newton’s
gravitational law.

The issue involving the (in)stability of gravitational systems has been studied by Newton, La-
place, Euler, Lagrange, and several other researchers for a long time using the Solar System dynamics
as an example. While classical analytical solutions indicated stability and almost periodic motion, nu-
merical and numerical-analytical solutions suggested the chaotic motion of planets [Kholshevnikov,
Kuznetsov, 2007]. The concept of dynamic chaos in relation to the Solar System [Sussman, Wisdom,
1992] enabled a systematic study of the chaotic motion of planets in the long-term and secular per-
spective [Laskar 1996]. An inextricable link between chaos and the dynamics of solar planets, as well
as other infinitesimal bodies, was discovered [Rezonansy ..., 2006]. The focus in studying the dynam-
ics of planets and other Solar System bodies was determined. On the one hand, it was essential for
practice to develop a digital, highly deterministic short-term behavior pattern of the Solar System
[Pit’eva et al., 2019]; on the other, to study dynamics in the long term calculated in the time of the So-
lar System’s existence, i. ., five or more billion years [Zink et al., 2020].

The main reason for developing the new numerical method is that traditional numerical methods
for solving a system of ordinary differential equations [Trenti, Hut, 2008] cannot be used in long-term
calculations. This factor is attributable to the fact that sooner or later, the numerical solution “falls
apart” due to the failure to conserve the energy of a gravitational system. Thus, researchers developed
two ways in order to overcome this difficulty. The first way consists in the developing methods for the
numerical solution of the systems of differential equations exhibiting high-order approximations (ten
or above) [Aarseth, 2003; Rein, Spiege, 2015], allowing the dynamics to be studied for a period of five
or more billion years while ensuring acceptable compliance with the energy conservation law of the
gravitational system for the entire integration period. The second way is associated with introducing
multiple corrections of numerical solutions to comply with all conservation laws during the numerical
calculation period [Nacozy, 1971; Fukushima, 2003]. It will become clear later on that the present
work can be referred to the second way.

Henceforth, bodies comprising a gravitational system will be assumed to be non-extended, i. e.,
point bodies. Here, let us use the dimensionless system of units. As characteristic values of mass,

length and time, we adopted the mass of the Sun M =1.9855- 10" kg, the distance from the Sun to
Neptune, L =4.503-10"” m, and time T=71,§'3#=8.3008-108 s =26.3217 years, where the gravita-

tional constant is y =6.674184-10""" m’s? mg™'. In this case, the characteristic value of speed

amounts to V"= 5.4248 km/s.
Let us write down the dimensionless form of Newton’s equations describing the dynamics of the
gravitational system comprising N point bodies of mass m,,...,m,

Y "
i JeLjzi TR
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where r, =(x,,5,,z), vV, =(v

wisVyisV-;) — positions and velocities of the i-th body, r,, =r,—r,,

iJ
= |56 j=1, ..., N, the point above the quantities denotes a time derivative.

In order to solve the system of equations (1), one of the standard solvers of the MATLAB envi-
ronment was applied in an extended time interval [0, 10°] (=2.63-10° years in dimensional units)
primarily to study the implementation of the energy conservation law. Specifically, the ode23 solver
was used, implementing the second- and third-order Runge—Kutta method [Bogacki, Shampino, 1989],
with relative and absolute accuracy values of 10  and 10 ~°, respectively. For the sake of clarity, it
was assumed that N=15, L =1, and V"= 1. The masses, initial positions in space, and velocities were
chosen uniformly as random from [0, 1], [-L, L]}, and [-V, V], respectively. The total energy was
found not to be conserved over time; a noticeable “bounce” was observed with energy going down
sharply, then turning positive and reaching a certain plateau. Note that all the other solvers in the
MATLAB environment also do not conserve energy in such extensive time intervals.

Let us move to the coordinate system of the center of mass having the following position and ve-

. N N . . .
locity: R=- \% =M#Zzi=1ml.vi where M =Zi=lmi , R=Vit+R,, tis time, R, is some

I
=1 i
fixed vector. In order to describe the bodies of the gravitational system, new coordinates q,,i =1,..., N

and velocities u,,i =1,..., N are introduced according to variable substitution: r, =R+q,, v,=V +u,,

i=1, ..., N. Following variable substitution, the system of equations (1) takes the following form
q;,=u,
== *
where q,;,=q,-q;, ¢,;=q,,|,i,/=1, ..., N. Taking into account the substitution of variables when

transitioning to the center of mass system, as well as the law of momentum conservation, the follow-
ing vector equalities hold

Zil mq; = 0 ) Zil mu; = 0. (3)

In addition to equations (3), the laws of angular momentum and energy conservation must be im-
plemented:

N
k, = Zl_zl mq; xu, , 4)

N N m;m
1 2 _ 1 i
ezi —m‘u‘——g —L, 5
0 =127 2 ij=lizj 4 ( )

A numerical solution of the system of equations (2) intended to overcome energy non-
conservation when using standard solvers combines a special procedure for correcting solutions to
comply with conservation laws with a Monte Carlo method.

The concept of “complete conservatism” as applied to the difference schemes of partial differen-
tial equations was actively discussed by A. A. Samarskii [Samarskii, 1977]. Note that it is quite simple
to construct a finite-difference scheme for the system of Equations (2), implementing the law of mo-
mentum and angular momentum conservation. Conversely, it is somewhat problematic to fulfill the
energy conservation law at the finite-difference level. Here we should note the so-called symplectic
schemes [Wisdom, Holman, 1991; Feng and Qin, 2010], which, under certain restrictions, provide
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complete conservatism, as well as the Kustaanheim—Stiefel transformation known in celestial mechan-
ics [Stiefel, Scheifele, 1975; Kozlov, 2007], offering a new way of presenting and describing the Kep-
lerian orbits of two interacting bodies.

Next, we will show through the computational experiment that a general-position gravitational
system comprising three or more bodies is unstable. Here, general position refers to a situation where
the masses of bodies, their initial positions, and velocities are chosen randomly from specific ranges.
The well-known Lagrange solutions to the three-body problem and several other solutions indicate
that stable gravitational systems exist given a particular choice of masses, initial positions, and veloci-
ties.

Taking the work [Arnol’d et al., 1985] into account, let us adopt the following formal definition
of the stability of a gravitational system. A gravitational system is stable when 0<g, () <C for all

points in time starting from some moment, i.e., at ¢t >¢, where i #j; i, j=1, ..., N; C — some non-
negative constant, f, — the initial moment of time. According to Jacobi’s theorem, if the gravitational

system is stable in the sense indicated above, the total energy is negative. However, the converse is
generally not true. Moreover, even if the total energy is negative, a general-position gravitational sys-
tem is generally unstable at N> 2. In order to illustrate the last statement, let us consider a procedure
for generating phase space points via the Monte Carlo method that satisfy all conservation laws.

2. Algorithm for generating phase space points

Let us prepare an algorithm for generating the points of 6 N-dimensional phase space in the form
of a Monte Carlo procedure. The proposed algorithm must ensure the implementation of all conserva-
tion laws in the form of equations (3)—(5) without any restrictions that could prevent the generation of
any possible points of the hypersurface of conservation laws (dimension 6N — 10).

Let a set of 2N three-dimensional vectors {a,,...,a,.b,,...b,} taken uniformly at random

from [ — 1, 1]° be prepared through random sampling. In order to implement the transition to the center
of mass system, this set of vectors undergoes the following operation

N N
A=a,—5-> ma B =b 5> mb, . (6)
Next, let us assume that
(ﬂ’xAxﬂ/I Ayt’ z zz) u _(/’lv xl’luyByﬂ/’lszt) (7)

where i=1, ..., N; 4,4, 4,4, 4,11, — as yet undetermined coefficients. Note that the presentation

of the required set of vectors in the form of (6)—(7) fulfills the condition (3), including the momentum
conservation law.
By substituting (7) into the law of angular momentum conservation (4), we obtain

K = (e A, pt, =, A ph, — Cp A i Oy A, — Cp A i) (®)
where
¢, = zzlmiAy’iBz’i , O = Zz mzAzszl ;
) =ZilmfAz,fo,f » =Zi mA, B, ; ©)

N
c31 :ZizlmiAx,iBy,i H C32 ZZ, lm A‘ IBXI N
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Let us assume that the angular momentum vector k, is given. Then, the system of three equa-

tions takes the following form according to (8)
cl lﬂ’y/’lz - chizll’ly = ko,x’
A H, —CpA i, = kO,y’ (10)
Cy Aoty —Cp At =k .

Let us solve the system of linear equations (10) for A,,4,, and A . When the determinant of the
system (10) A=, p, 1. (¢,,¢,,C5, = €15C50C5,) 18 nONZero, it has a unique solution. Given (9), direct veri-

fication will show that c=c¢c,c;, —¢,,¢0¢,, =0at N=2. In other words, the two-body problem

stands alone, requiring special consideration within this approach. In addition, the case where the an-
gular momentum of the gravitational system equals zero, i. €. k, =0, needs special consideration.

Let us write down the solution to the system of linear equations (10) for 4,4, and A, when the

determinant A is nonzero

e
A, = T(ko,xﬂxczlcﬂ + kO,yll’lyc12c32 + ko,z;uzcncn),
n
ﬂ’y =5 (ky o0y 05 + ko,y:uyclzcm +hy 1.C5C5), (11)
_
A, = T(ko,x:uxczzcn + kO,yluyCIICSI + kO,z:uzclch )-

Let w =VE, p,=VE,, p.=VE where 4,4, and A, are uniformly random numbers
from [ — 1,1], then

_ _ P
A, = sz:zf:c (ko &iCoC5 + ko,yé:yclzcn +ky.S.0000) =5

/1y = ij‘fzc (kO,x§XCZIC31 + ko,yé:yclzcn + kO,zé:zCIZCZZ) =5 (12)

A = V§3§yc (Ko &:CCsy + kO,y§yCllC31 +ky.S.000) =

py
2
P
vV

Taking (12) into account, let us express the phase space point found using the Monte Carlo meth-
od through a single unknown parameter

q; :%(prx,i’pyAy,i’pzAz,i) > 0 = V(axBx,i’E-’yB}’J’F’ZBZJ) =1 LN (13)
By substituting the coordinates of the point (13) into Equation (5), determining the total ener-
gy e, of the gravitational system, we obtain

N m;m;

T
i,j=1,i%j \/px,qm/

VIYLAm(EB, S+ EB) LY —e,=0. (14)

2 42 2 42
+py Ay P AL

Since (14) is a quadratic equation for the unknown characteristic velocity V, two real solu-

. . 2
tions /|, canbe obtained at D=¢,, +4e,, ¢, 20

_ "ot —~D _ "ot +/D
VI T 2¢O V2 T 2¢ 0 (15)
N N . .
_ 1 2 p2 2 p2 2 p2 _ _lz m;m; L _
where ¢, =Y m/(&IB), +&B) +E1B), e, =) NI kinetic and po

tential energies.
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Thus, a Monte Carlo algorithm for generating a set of phase space points lying on the hypersur-
face of all required conservation laws is developed, taking equation (15) into account. By varying the
random variables & ,&,, and £, we obtain an unlimited number of required points (13). Henceforth,

the letter M will denote the number of Monte Carlo experiments.

Note that the phase points lying on the hypersurface of the conservation laws are simultaneously
the points of some trajectories-solutions of the system of equations (2). It remains to connect suitable
pairs of phase points into a single trajectory, obtaining a finite-difference and exact solution at the
same time [Dorodnitsyn, Kaptsov, 2013; Dorodnitsyn, 2001]. With some simplification and reserva-
tions, this very scenario is implemented in the next section.

Figure 1a shows a typical positioning pattern for the bodies comprising a gravitational system
at N=100, M =300, |ko| =2.5, and eo = —10%. The masses in the gravitational system are chosen uni-
formly at random from [0, 1], while the characteristic velocity V is selected equally randomly from the
two values of (15), 1. e., V= {V1, V2}.

Figure 16 shows a positioning fragment of Solar System bodies comprising the Sun and eight
planets in the center of mass system. The positions of the planets are found using the Monte Carlo
generation procedure (6)—(15) at the given angular momentum and energy of the gravitational system.
Among other things, the following constants are used in the calculation: N=9, M =100,
ko= 6.4549-10"*, e9=—10.0034, and V= {V, V2}. In Figure 1b, the Sun is denoted by a circle posi-
tioned in the center of the figure. On the periphery, the largest marker in the form of a dot represents
Jupiter. Smaller dots represent the other planets. The accumulation of points (bodies) in space clearly
indicates the presence of a plane similar to the ecliptic plane of the Solar System.

4 4
(a) (b)

Figure 1. Typical positioning patterns in space: a) for one hundred bodies having a random mass; b) for the Sun
and eight Solar System planets

Note that the accumulation of points in Figure 1a does not look compact; six cone-shaped exten-
sions are clearly visible, potentially going to infinity. This factor indicates that a gravitational system
comprising over two bodies is generally unstable. A similar situation is observed for Figure 15, with
a correction for the quasi-two-dimensionality of the positioning of Solar System bodies.

Two more pieces of indirect evidence showing the instability of the general-position gravitational
system can be provided by plotting the dependences of the lower and upper limits of the stability crite-
rion on the energy of the gravitational system ey and the number of Monte Carlo experiments M.

Let us rewrite the stability criterion of the gravitational system in the following form:
(@)

0<Gpin <4, ; <Gpe Where i#j; i,j=1, ..., N. The dependences of g, = a:lr{l%\?»igq‘

i,j and qmax =

2021, T. 13, Ne 3, C. e487—e511
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= _max ql.(‘j.) on the energy of the gravitational system e are plotted taking into account the proce-
a=l,.,M;i<j =’
dure (6)—(15) for generating phase points (¢'*,u!*,...,q'",u{"), a=1,..,M.

10%¢
1010 qmax
10 M
10° 10° ¢
é é qmin
% S 107
10 i qmin 104 3
10°
10° I ) ) || ,l l ) ) } ) g ) ) ) ) ) )
10 1 2 3 4 5 6 7
-2000 -1000 0 1000 2000 10 10 10 10 10 10 10
e, M
(a) (b)

Figure 2. Dependences of the lower gmin and upper gmax limits of the stability criterion on: a) energy of the gravi-
tational system eo; b) number of Monte Carlo experiments M

Figure 2a shows a typical example of dependences ¢, (e,) and g, (e,). The following values

of parameters are adopted in the calculation: N = 10%, M = 10%, and ko = 2.5. Thus, without factoring in
small random fluctuations, the lower limit of the stability criterion g, (e,) is virtually independent of

the energy e and its sign. With the energy ey transitioning from negative to positive values, the upper
limit of the stability criterion ¢, (e,), as well as its variability taking the logarithmic scale into ac-

count, significantly increases. Given Jacobi’s theorem on the stability of the gravitational system, this
factor is easily explained.

Figure 2b presents typical curves showing the dependence of the lower and upper limits of the
stability criterion on the number of Monte Carlo experiments M. Other adopted values of the calcula-
tion parameters are as follows: N =10, ep =—10, and k) = 0.5. As can be seen, the lower limit of the
stability criterion quasi-monotonically decreases, while the upper limit quasi-monotonically increases
with a rise in the number of Monte Carlo experiments.

3. Trajectory construction

Suppose that for a given number of bodies N in a gravitational system, a configuration

(q\”,...,u) is considered as initial taking (3) into account. Then the indicated initial configuration

determines the angular momentum ko and the total energy ey of the gravitational system.
Through one of the standard numerical algorithms, the system of equations (2) is solved in the

time interval [0, 77] starting from the initial data (q\”,...,u(’). Let a configuration (q!",...,u’) be

found at time ¢ = 7 that does not satisfy the conservation laws (3)—(5). It is assumed that the configu-
ration (q\”,...,u!}’)is not too far from the hypersurface of the conservation laws. The meaning of “not

too far” will become clear later on in the text.
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Let us consider a procedure for projecting an arbitrary configuration (q,,...,u, ) onto the hyper-

surface of conservation laws (3)—(5). In order to satisfy (3), it is necessary to perform the following
transformation

N N
4= -5, M, W g mu L i= 1, N (16)
Transformation (16) brings us back to the center of mass coordinate system of the gravitational
system where the equalities Zil mq, =0 and Zil mau, =0 are valid.
In order to satisfy the laws of conservation of angular momentum (4) and energy (5), let us con-

sider the following transformation

q—~>Hyg,,.H4q,,.H.q.,),w, (G, N, 17)

‘ct’ yt’ z zz)

where the parameters H ,H ,H_,G,,G,, and G, have not been determined yet. By applying (17)
in (4) and (5), we obtain

o,H,G. —c,H.G =k, ¢,H.G —c,HG, =k

0pr GG, —c, H G =k, _,
1 2 1 2 1 2
7C41Gx +EC42G}» +EC43GZ _2 ;

y

o, (18)

=e,.

2 2 2.2
i<j \/H G tH YHEE

where

qu_}l zt’ quzz 11’ Z qzz x,i 2 quAIZI’
=2 =2, =DMy € = DMy € = 2, mat
Gy =2, Mg, U, mg, U5 Cog = 2 MU ;5 Cin = 2 MU, ;5 Cpy = MU ; .

According to (18), the implementation of the laws of angular momentum and energy conserva-
tion requires finding a solution to the system of four nonlinear algebraic equations (18) for six un-
knowns: H ,H ,H.,G,,G,,and G..

v

Here, we should note that the transformation procedure (16)—(17) intended to ensure the imple-
mentation of conservation laws is somewhat similar to the method originally proposed in [Nacozy,
1971]. In this work, numerical errors were compensated by correcting the positions and velocities of
all bodies comprising the gravitational system so that the required conservation laws were satisfied. In
our case, the choice of the procedure for correcting solutions to comply with the conservation laws
follows from the procedure for randomly generating points in the phase space of the hypersurface of
the conservation laws. It is also associated with the renormalization of positions and velocities of bod-
ies comprising the gravitational system. At the first stage, the positions and velocities of each of the
bodies are corrected to the center of mass according to (16). At the second stage, a unified correction
of positions and velocities of all bodies comprising the gravitational system is performed according
to (17), (18) to comply with angular momentum and energy conservation laws. The approach present-
ed in [Nacozy, 1971] was further developed in [Fukushima, 2003], introducing a unified coefficient
for the positions and velocities of bodies. This coefficient was selected by solving the corresponding
cubic equation to ensure the implementation of the total energy conservation law. In our model, the
above procedure in terms of equations (17), (18) involves introducing six coefficients to fulfill the an-
gular momentum and energy conservation laws. In this case, instead of a cubic equation, it is neces-
sary to solve a quadratic equation when selecting an appropriate coefficient to satisfy the energy con-
servation law in the gravitational system.
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Let us solve the system of equations (18), assuming that the phase space point (q,,...,u,)1is
slightly spaced from the surface, exhibiting the given momentum and energy values of the gravitation-
al system. This factor suggests that the parameters H ,H, ,H ,G,,G , and G, do not differ much
from unity, i.e., H_=1+h_, ..., G, =1+g_where |h |<1, ..., |g |<1. Leaving first-order infini-

tesimals 7, hy Jh

z

,8,»8,,and g_, we obtain

cll(hy +gz)_cl2(hz +gy) :Akx’ ch(hz +g)c)_022(hx +gz):Aky’
¢y, (h, +gy) —C3 (hy +g)=Ak,, c,g.+ Cp8, tCi8. + Cuh, + c45hy +eu6h, = Ae, (19)

c _ m,.mj 2 c _ m,.mj 2 c _ m,.mj 2
44 _z {i<j gl qx,i,j: 45 = z ‘,l-</- @, qy,i,ja 46 _z Ni<j q; qz,i,j-

In (19), the values of AkX,Aky,Akz and Ae are considered small, characterizing the deviation of

the phase point (q,...,u, ) from the hypersurface at the given values of the angular momentum ko and

energy eo, with Ak =k, —c, +c,, Ak, =k, —c, +c,,,and Ak, =k, —c; +¢;, s

I R P | Ty
Ae—eo 2C473Cy 2c43+2i<j g "

Let us solve the system of the first three equations in (19) for a set of unknowns 4,4, , and ..

This can be done if ¢ =c,c,c;; —€,¢C5, #0. Note that the determinant c=0at N=2, i. e., in the

case of the two-body problem. Similar to the case of generating phase points on a given hypersurface
of the conservation laws, the special cases include the two-body problem, as well as the case of ko = 0.
According to (19), the set of unknowns (%,,h,,h.) is expressed in terms of the set (g,,g,,8.)-

The three latter quantities are related by a single equation of the form &g, +a,g, +a,g. = where

a,,a,,a,,and S are expressed through the known quantities; the corresponding formulas are rather
cumbersome to provide here. In order to solve the latter equation, let us sample three quantities &,&, ,

and &, taken uniformly at random from [—-1, 1] and produce the following expressions

_ 514 _ &P _ &P
8 = G+ raz; 2 g}’ T adtmbrad 0 8:= b +as+azdy ” (20)

Since it is evident that (20) provides the solution, we can find the set of hx,hy ,and 4, and obtain
a phase point {(1+4,)q,,,....(1+g.)u. } lying on the surface determined by the given angular mo-

mentum and energy.

Note that random numbers in (20) make the procedure for correcting the phase point to the con-
servation laws partly random. In this case, the correction procedure can be regarded as a kind of Mon-
te Carlo methods. Moreover, stochasticity is introduced into the dynamics directly rather than arising
from the equations due to the so-called dynamic chaos [Sussman, Wisdom, 1992], which is clearly
present in the initial equations.

Now, let us proceed to construct the motion trajectory. By applying the correction proce-
dure (16)—(20) to the phase point (q\",..,u})) found at ¢=7, we obtain a new phase

point (q'",...,a}})) lying on the surface determined by the conservation laws. With the
point (q!",...,a\))) further considered as initial, the initial system of differential equations (2) is solved
numerically in [7,,7, +7,]. Then, the resulting solution (q'”,..,u'}’) at ¢=T7 +7, is adjusted
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to (q\”,...,a’), etc. Finally, the last calculation for the system of equations (2)

in [T, +..+7T,_,,T, +...+T,] completes the process of motion trajectory unfolding; the obtained solu-

tion (q\”,...,u'}’) is corrected to (q\",...,a') . As a result, we obtain a numerical solution of the sys-

tem of equations (2) in the following form:

(0) M a® (2) q»
@) 2 @)= @) 2 @7 @) > o
@)= @,

[T 4ot Ty Tyt T,
The integration segments {7},...,7,} of the system of equations (2) are found according to the fol-

lowing algorithm. First, the initial value 7, =7, of the integration interval is selected, growing slowly

from step 7, to step 7, at T, <T,, . Then, if the modulo coefficients 4% .k ,g,,g,,and g. exceed

a certain threshold value o at the k-th stage of adjusting the solution to the conservation laws, the inter-
val T, is reduced, for example, by half, while the calculation is repeated in a reduced time interval.

Note that the numerical result of solving the system of equations (2) is not a separate determinis-
tic curve in the phase space since the time points ¢ =7,,7, +T,,...,T, +...+ T, at which the solution is
adjusted to the conservation laws act as solution branch points. Thus, the described procedure for as-

sembling the motion trajectory generally generates an ensemble of trajectories. In addition, the ob-
tained trajectories are not continuous; the size of the jumps serves as a control parameter .

\ #35, #64
#11, #33

(a) (b)

Figure 3. Example of dynamics: a) a three-body gravitational system (trajectories are marked with solid, dotted,
and dashed lines, respectively); b) contribution to the potential energy of each body comprising the gravitational
system, N = 10?

Figure 3a presents an application of the algorithm (16)—(21) to calculating the dynamics of
a three-body gravitational system (N = 3). The choice of this example is intentional. The aim is to re-
veal the presence of non-trivial dynamics over a noticeable period of time when all three bodies are
actively interacting, with none of the bodies going to infinity. Among other things, the following pa-
rameters are selected: » =100, 71 =1, and 6 = 0.025. In addition, the body masses, initial positions,
and velocities are chosen uniformly at random from [0, 1], as well as from [-L,L]’ and [-V,V']

at L =1 and V= 1. As a result, the calculation yields a noticeable value of 7, =T +...+ T, =228.26. In
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Figure 3a, one of the bodies (solid line) is rotating around another pair of bodies (dotted and dashed
lines, respectively). However, we should note that the statistics of many computational experiments
indicates that, for most solutions, one of the three bodies goes to infinity.

In calculations involving a noticeable number of bodies in a gravitational system, the dynamics
typically develop in such a way that bodies go to infinity over time, with one or more pairs of bodies
accumulating = 95 % of the total potential energy. Thus, Figure 35 shows the typical temporal dynam-
ics of the contribution of each body R

pot i’

i=1,...,N to the potential energy of the gravitational sys-

: ; m; m;m;
tem. These values are calculated using the formula R, ; =—2:”’ Z -- where e, —%Ziij.
i,j ij

Among other things, it is assumed that: N = 10% n=1300, T; = 1, and J = 0.025. The mass of bodies,
their initial position, and velocity are chosen the same as in the previous calculation. Figure. 35 shows
two pairs of bodies (Nos. 11 and 33; Nos. 35 and 64), dividing the = 96 % of potential energy approx-
imately equally between them.

4. Angular momentum of the gravitational system amounting to zero

In Section 2 discussing the Monte Carlo algorithm for the generation of phase space points lying
on the surface of the conservation laws, several special cases are noted that require special considera-
tion. For example, one special case consists in the absence of angular momentum in a gravitational
system comprising three or more bodies, i.e., the case where N > 2 and ko = 0.

At ko = 0, the system of equations (10) can be solved for 2,4, and A, in six ways, i. e., there

are generally six solutions. Taking into account the energy conservation law (5) and choosing the val-
ues of &,&,,¢., and & uniformly at random from [-1, 1], we obtain

1) /le ZO’ /uy :ny’ ILIZ Vé:z’j’ O /1 Clny%VI;//i’z :cllgz%‘/l

_ mm; 2 1 2p2 2p2 N .
i _Z,<, GE2A, 2L, /[V Ziim"(é:yByv" +§ZBZJ) e0:|’

2’) ﬂx = Vé:x’ /Lly = 0’ Itlz = Vé:z’ /1)( = CZlé:x %VZ’ //{’y = 0’ ﬂ"z = 02252 \_;VZ
_ mm; 2 1 2p2 2p2 N _ .

vV, = Zi<j R, rchEA, /[V Z,-z m (& B, +&7B) 60] :

3) /le :Vgx’ /’ly :V§y’ /uz :O’ //{’x =C32§x%v3’/1y C}légy \§\V3’/I 0’

— mm; 2 1 2p2 2p2
V3_Zi<f B e A /[V Zﬂmi(fxBfJJrévBN) eo]

Y yig

where ¢,,,¢,,,¢,,,¢,,,¢5,,¢;, are obtained according to formulas (9),

4) /ux:()a,uyzouuz Vésa, = Oﬂ' =0,4, = \g\

_ mm; 2 1 2np2 .
Vs = Zi<j \Az,,‘,\/(V Z'Emiéz Bz,i _eo)’

5) =0, =VE ,u.=0;4 =0, = \5\ v, A, =0;

_ mm; zzl 2p2 X
Vs _Zi<j \Ay,,;,\/(V i2mi§)’By,i eo)’

6) 'ux:Vgx"uy zo’luz :O;E’xzévé’/ly:o’/lz :Oa

_ m;m; 2 1 2p2
V6 - ij ‘Ax,i.j‘/(V Zi 2 migx Bx,i eO) .
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The solutions presented above contain one free parameter ¥, which, on the one hand, determines
the characteristic velocity of the bodies of the gravitational system and, on the other, can be considered
as arbitrary. Factoring in the above solutions, we can determine the required phase space point:

q, =(AA,,4,A4,,,44.,), w,=(uB 1B 1B, (22)

AN R idt- N |

A A

X002 Ty itz

where A4 B_.,B =1,...,N are obtained according to (6).

x,i2 Py Pz

When obtaining a set of phase space points (22) lying on a hypersurface with a given total ener-
gy e, and zero angular momentum ko = 0, the set of quantities {4, ,4 ,4., 4,4, 4.} should be chosen
with equal probability from the six solutions presented above.

The phase space points (22) obtained on the basis of six solutions, in terms of spatial positioning,
lie either on one of the three coordinate planes, or on one of the three axes of the Cartesian coordinate
system. Thus, the existence of the ecliptic plane in the Solar System can be attributed to small angular
momentum. Figure 4a shows a typical format for the positioning of bodies comprising a gravitational
system in a set of statistical experiments at ko = 0. Other adopted calculation parameters are as fol-

lows: N=25M =10,V =1, and ¢, =—50. Figure 4a shows the positioning of bodies in a cu-
be [-1.5,1.5]. With an increase in the side of the indicated cube, the positioning pattern of points be-

comes similar to that shown in Figure 1a (case where ko # 0). Thus, the cluster of points is clearly
non-compact in both cases (at ko # 0 and ko = 0), i. ., the gravitational system is generally unstable.

25¢
2 7
1.5}
1.

Figure 4. Typical format for positioning bodies comprising a gravitational system in a set of statistical experi-
ments at ko = 0 (a); an example showing the motion trajectories of three bodies in the x-y plane (trajectories are
marked with a solid, dotted, and dash-dotted lines, respectively) (b)

Let us assemble the trajectory of the bodies comprising the gravitational system for one of the
first three special cases. Here, we will consider solution number 3, in which the dynamics of the gravi-
tational system occur in the x-y plane. In this case, it is assumed that z= 0. As a result, it is necessary
to solve the following system of differential equations:

q.i=Ueis q,; =U, ;5

_ m;(q.; =4y, ;) . _Z mi(4yi=dy,)
](q j+q‘ xza y j(q 2, x/za

(23)

where i =1,...,N .
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Prior to constructing the trajectory of the gravitational system described by the system of equa-

tions (23), the initial configuration qfrol),q(vol),uiol),u;of,z—l ,N is obtained. Taking the condi-

tion ko = 0 into account in the system of equations (10), we obtain

Al’

q)(fol) ﬂ’ Ax i’ qfol) ﬂ’ A1 R (0) Vng (O) V§ B} i (24)
where
ﬂ’x_c xmv //i’y 31 y%‘@’ gx’éy’ge[_l’l]'

The trajectory is assembled according to the procedure (16)—(20). Taking (19) into account, we
obtain from equations (18)

(25)

ey h, _c32hy —C38, TC638, =Cy — Gy,
Cuh, +eysh, +c,8, +cp8, = Ae,

where
_ mm; _ mm; 2,
Ca = Zi<j (4% 2 i qx ijo Cas = Zi<j (@2, ;+a2, )" 9y.ij»
m.m ;
Ae=e, —Lc, —1c,, + Z _
0 2 741 2742 i<j qf,:,j*'qv\z',r,j

Let us assume that 2, =0 and &, =0 in the procedure for correcting the obtained solution to the

given conservation laws (k, = 0,¢, ). By substituting the latter equalities in (25) and solving the result-

ing system for the unknowns g, and g, we obtain

(e31=¢3 )eap +¢3,A¢ (e3p=¢31)carteple
gx = ‘031041“32042 ? y = 031041“};42 ) (26)

Figure 4b provides an example showing the motion trajectories in the plane of three bodies

(N =3) interacting according to equations (23)—(26). The pentagrams on the trajectories indicate the
moments when the procedure for adjusting the motion to the given conservation laws is carried out.
The other adopted calculation parameters are as follows: k, =0,e, =—-0.5, n =25, T1 =1, 6= 0.025,

and V= 1. The motion trajectories are marked by different lines: solid, dotted, and dash-dotted. The
total time interval for integrating the system of equations (23), including correction procedures to the
conservation laws, is [0, 28.46].

Let us construct the motion trajectories of bodies comprising the gravitational system for one of
the special cases: No. 4, No. 5, or No. 6. We will consider solution number 6, in which the dynamics
of the gravitational system occur on the coordinate line x. In this case, it is assumed that y, z=0. As
a result, it is necessary to solve the following system of differential equations:

X =u,

i i

lz.l — m;%i,;
i : 30
J ‘X,,,"

27

where x, , =x,—x,, i,j=1..N.

1

The first step is to determine the initial configuration xfo),ul.(o),i =1,..., N ; then, taking into ac-
count the particular solution No. 6, we obtain
0 0
xi() \E\VﬁAv,i’ i() gv i? f,gx e[—l,l]. (28)
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(a) (b)

Figure 5. Examples showing the dynamics of positions on the x-axis: a) three bodies, N =3, e =—1.5; b) seven
bodies, N=7, ep=-1

When assembling trajectories by analogy with (17), we will follow the transfor-
mations x, > H x;and u, - G u, to comply with the energy conservation law. In this case, we obtain

2 1 -
Geey +e,, =€

pot 0
_ 1 2 _ mm;
where ¢, = Zl_ T, €, = ij R

By solving Equation (29) for H,, we get

(29)

= %
H = v (30)
“p

ot

Assuming G, =1, we can find H =

according to (30). The integration interval 7, is re-

duced when the following inequality holds:| H —1|=] % >3.

Figure 5 illustrates the calculations of the position dynamics of bodies comprising a gravitational
system performed according to the algorithm for assembling trajectories (27) — (30) for two cases:
N=3 and N=7. The other adopted parameters are as follows: 6= 0.025 and V= 1. Pentagram mark-
ers on the graphs indicate the moments when the procedure for correcting the trajectory to the set val-
ue of the total energy ¢, is carried out.

The dynamics format in Figure 5a is specially selected to demonstrate that a pair of bodies are
approaching each other while the third body is going to infinity. A typical format for a large number of
bodies is shown in Figure 5b. The latter case is characterized by the bodies of the gravitational system
accelerating and approaching each other, taking the energy conservation law into account. Note that
such dynamics can be referred to a class characterized by escalation, with the bodies of the gravita-
tional system falling into a common center at some finite point in time and their velocity reaching in-
finity. We will consider this case in more detail below, using the two-body problem as an example.

5. Two-body problem

Let us focus on a special case where N =2 and the angular momentum of a pair of bodies is ab-
sent, i. e., ko = 0. By solving the system of equations (10), we obtain

A, =&p.C5C ly = 5;%-012031, A =8p.c ¢y, (€29)

where £— some as yet undetermined parameter.
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Let us sample the quantities z,x, , and 4, according to

/'lx :Vgx’ ;Lly :V§y7 lle :ngﬂ (32)
where & ,& &, — uniformly random numbers from [-1, 1]; V' — characteristic speed scale.

After substituting (32) into (31), we get

A, =VEE ccsy, /1y = V§§yclzc3l, A =VEE ¢ ¢ . (33)

Taking (13)—(14) into account, let us specify the form of phase-space vectors:
qQ; =VEq; =VE(8,.cpind, ,6,nes Ay 1n6.01C A, y) (34)
u =l =V(.B,,,¢B, 5B, ), i=12. (35)

Let us find the unknown quantity £ using the energy conservation law (5), i. e.

4 2112 M — =6 =0, (36)

By solving Equation (36) for |£], we obtain

v=ld = (Xt —e,). (37)

Taking (34), (35), and (37) into account, we can write down the Monte Carlo procedure for gen-
erating an unlimited number of phase space points, with all of them having the given values of angular
momentum (ko = 0) and energy (ep), 1. €.

q=Viva, w =, i=12; (38)

1

where {— uniformly random number from [-1,1].

Figure 6a illustrates the positioning of a pair of bodies within a gravitational system obtained us-
ing the Monte Carlo method according to (31)—(38). The dots and asterisks indicate bodies Nos. 1
and 2, respectively. The following values of other parameters are adopted: M =10°, ¢,=-0.5, V =1,
m, =0.41, and m, =0.97.

According to formulas (37) and (38), the positions of phase points in the configuration space
cannot go to infinity. In other words, the cluster of points in Figure 6a has a compact shape, indicating
the stable nature of interaction in a two-body gravitational system.

The next step is to find an analytical solution of the two-body problem and compare it with a nu-
merical solution obtained according to the solution assembly procedure, taking the implementation of
the conservation laws into account ko = 0 and e.

From equations (2), we obtain q, =--tq, and u, =—-tu, at N=2. In this case, the angular

momentum (3) for the pair of bodies takes the form of k,=mgq,xu, +m,q,xu,=
= (m1 -I—%)q1 xu, =0. The latter equation can be satisfied assuming that u, = ¢q, where ¢ =¢@(¢) is

some as yet undetermined scalar time function. In order to determine @(¢), we obtain equations simi-
lar to (2) for this case
q =u, (39)
u, = 7],

(1+ml/m2) g
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(a) (b)
Figure 6. Example showing the positioning of a pair of bodies in a set of statistical experiments at ko = 0 (dots

and asterisks indicate bodies Nos. 1 and 2, respectively) (a); a typical graph showing the temporal dynamics of
the distance between the pair of bodies (b)

0.5 05

With u, = ¢q, taken into account in (39), we obtain the following differential equation after some

transformations
P+50p+3¢0° =0. (40)
The solution of Equation (40) that we are interested in can be easily found, i.e., @ =¢(¢) =

= ((oo’ '+ %t)il where ¢(0) = ¢, . The latter expression allows a solution to the system of equations (39)

to be obtained

-1

q, =(1+%(/70t)2/3 o> U, =(1+%(00t) : Q0> (41)

where ¢, #0 and q,,=q,(0) is some constant vector. After substituting (41) into (39), we ob-

2m,

tain @, =+ . At ¢, =0, the solution (41) takes the following form

(L+my /my)? 1113,0

2/3

q,=17q,, W z%t_mql,oa (42)

: —__om)”
with ¢, = 2% (Lemy /my )P
Let us determine the distance vector between the pair of bodies q,, =q, —q, = (1 +::—;)q1. Then

taking (41) into account, we obtain
12 :|q1,2| :(1+%)(1+%¢ot)2/3|q1,0|- (43)

On physical grounds, it is clear that a pair of bodies are attracted to each other, i. e., the dis-
tance ¢,, between them decreases. Taking (41) into account, g,, — 0, ¢, <0 while the time increas-

2

es, remaining below 7, = e

i.e. t<t,. The time 7, will be referred to as focusing time. Zero dis-

tance ¢,, =0 between a pair of bodies can be interpreted as their agglomeration.
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Here, the procedure for constructing a trajectory (16)—(18) is applied, taking into account the fact
that we are considering the two-body problem and ko=0. Let there be a certain configura-
tion {q,,q,,u,,u,}; the idea is to modify it to comply with the angular momentum conservation law,

ko = 0, and the given value of the total energy eg. To this end, we can apply transformation (17); then,
given (33), we obtain:

H = vclzan H, = vclzc31G H, = vc“c31G (44)

y’

where £ is an arbitrary random number from [-1, 1];
= "y 2 1 2
V= (G me +GZ mu +GZ mu )
\/GgCIZZC."?qu,I,Z+G)2»CIZZC§Iq<§AL2 +G:ZCIZIC.%quZ,I,2 / * 27 x:

According to (44), we can find the set of H ,H , and H_ knowing G_,G , and G.. Since there

are no restrictions on Gx,Gy ,and G, we can assume that G_= Gy =G_ =1. In this case, the integra-

tion segment 7, is reduced when one of the three inequalities holds: |HX —1|>5 ,

v 1‘ >0,
and |[H, —1|> 6.
Figure 6b shows a typical trajectory sample describing the time dynamics of distances between

a pair of bodies. In Figure 65, the distance to the power of 3/2 is plotted on the ordinate axis since, ac-
cording to the analytical solution (43), qi/zz is a linear time function. The constructed trajectory is con-

sistent with a straight line, i. e., fully corresponds to the analytical solution (43). The remaining pa-
rameters of the computational experiment are as follows: eo =—0.5, =1, and 6= 0.025. In Figure 6b,
pentagrams, as above, indicate the moments when the solution is corrected to satisfy the conservation
laws.

Let us continue our consideration of the two-body problem at ko # 0. In this case, the calculation
procedure (6)—(15) does not work. It is necessary to introduce the relative vectors of posi-
tion q=q, —q, and velocity u=u, —u,; thus, the positions and velocities of each of the bodies, as

well as the law of angular momentum and energy conservation, take the following form:

— q — q . — u —__u_ .
A = Gy 2 Q2 = ~Tomm > W = amm) > W2 = e, imp) (45)
mlmz
my+m, q Xu= kO 2 (46)
a1 _mmy 2 mymy
2 my+m, u q €> (47)

where u =|u| and g =|q]|.
The angular momentum ko and the energy ey in (46)—(47) cannot be considered arbitrary inde-

myn,

pendently of each other. Thus, equation (46) yields constraint 1: k, <

qu ; whereas constraint 2

my+n,

follows from equation (47): ¢, >—~*. Constraints 1 and 2 imply constraint 3: Llmm) o o<

mymyu -
which, given (47), leads to constraint 4 on the possible values of the relative velocity modu-
lus: mﬁmg—ﬁ <y < mﬁm%%@

—  mmyk,

pr— . The latter inequality is valid only under constraint 5: D=m'm; +
+2mm, (m, +m,)kie, > 0.
Let us introduce a pair of vectors of unit length: a =2 , and g =1 then the following scheme for

obtaining phase space points via the Monte Carlo method is 1mplemented. Step 1: Select the vector ko
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and the constant eo to fulfill the following inequality: D =m'm; +2mm,(m, +m,)k;e, >0 . Step 2:

2
m]2m§ —D ml“mz2 +VD
mmyky 2 mymyk,

Select a relative velocity modulus « uniformly at random from [ } Step 3: From equa-

tion (47), find the modulus of the relative distance ¢ = ——=—

m 2"
+m)y U —¢

Step 4: The ort & is chosen randomly

provided it is orthogonal to the angular momentum vector, i. e. (a,k,)=0. Step 5: Taking (46) into

account, find the angle 6 between a pair of vectors a,f that has two possible values: 6=

(my +my ) ky (my+my ) ky

and 0 =z —arcsin

mmyqu mmyqu°

= arcsin Step 6: Obtain the vector # by rotating the vector a by

one of the two angles relative to the angular momentum vector; the choice of one of the two angles is
considered equally probable. Step 7: Given that q = ga and u=uf, find the positions and velocities of

each of the two bodies using formulas (45).

Figure 7a illustrates all possible positions of a pair of bodies in space (with asterisks and dots in-
dicating the first and second bodies, respectively); these bodies interact according to Newton’s law
and have the given values of the angular momentum and energy (|ko| = 0.125, e¢o =—0.25). Figure 7a
shows the results of M = 10’ statistical experiments on positioning a pair of bodies comprising a gravi-
tational system, obtained under the procedure described above.

0.5

—5 0 0.2

_ 0.
3 0.2 x

04 o4 0.
(b)

Figure 7. Examples: a) random positions of a pair of bodies comprising the gravitational system at the given val-
ues of the angular momentum and energy (asterisks and dots indicate the first and second bodies, respectively);
b) space motion trajectory of bodies comprising the gravitational system

Taking Step 3 into account, it is clear that a relative distance between a pair of bodies cannot be-
come infinite, i.e., the phase points in the configuration space cannot go to infinity. This factor, in turn,
means that the cluster of points in Figure 7a is compact, with the pair of bodies exhibiting stable mo-
tion.

Let us proceed to illustrate the presented algorithm by solving a system of equations describing
the motion of a pair of bodies in terms of relative positions and velocities:

_mytmy

q:ll, u= —q. (48)

q

The system of equations (48) permitting the conservation laws (46)—(47) can be solved using
standard measures [Landau, Lifshitz, 1976]. They consist of the following steps: 1) a coordinate sys-
tem is introduced, in which, for example, the applicate axis is directed along the angular momentum
vector; 2) a polar coordinate system is considered for relative positions and velocities in the plane of
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the abscissa and ordinate axes; 3) for example, an equation describing the dynamics of the distance g
between a pair of bodies as a time function is derived, then

g=+" g — g Yg - 4") (49)

mim +3[D

(m]+m2)k

where ¢, = . Two signs before the radical in the right side of (49) indicate two solutions that

intersect at the rotation points ¢, ,, with the solution ¢ oscillating within the segment [q1, ¢2] for a pe-

. 3.3
riodof T =27, |—2%2 |

B(my +my )~ )

One of our aims is to test a numerical method for solving the system of equations (49) along with
a procedure for correcting the solution, which ensures that the laws of angular momentum (46) and
energy (47) conservation are satisfied. Given (17), we obtain the following transformation:

q_)(qux’quy’quz)’ u_>( Gu quz)' (50)

FL Yoy
Let us select the undetermined coefficients H ,H y,Hz,Gx,Gy ,and G._ such that the laws of an-
gular momentum and energy conservation are fulfilled, i. e., the following equations hold:

o, H,G. —c,H.G, =k

0,x°
chHsz - CZZHsz = kO,y’
C3|HxGy _C32Hny :kO,z’ (51)

mym,

2 2 2 2 2 2
\/H\q,\',l,2+quy,l,2+H:qz,l,2

1 2 1 2 1 2 —
7¢4,G; +7c42Gy +5¢,G0 - =€,

where
n=HGU,, Gy =HqU,, G = HG U, Cp =HG U, Gy =HqU,, Gy = HG U

_ 2 _ 2 _ 2,
g THU, Cp = MU, Cpy = MU,

myny

p =20 — reduced mass.

Let us solve the nonlinear algebraic system of four equations (51) for the six unknowns in the
linear approximation. Suppose that H_=1+4h_,|h |1, ..., G, =1+g_,| g, |<1; then equations (51)

take the following form in the linear approximation:

4 =c11(hy +g.)—c,(h, +gy)—Akx =0,
fi=cy(h +g)—cy(h, +8.) = Ak, =0,
fi=c;,(h, +gy)—c32(hy +g.)—Ak =0,
Ja=cn8, +¢pg, +cpg. teyh esh, +ch. —Ae=0,

(52)

where

mm, 2 mymy mymy

Cyy = thqxa Cys = sq}, Ch = xqza

Ak, =k, —p(qu. —qu,), Ak, =k, —u(qu —qu.),

m1 mz

Ak, =k, —p(qu, —qu,), Ae=e,—1m’+
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The undetermined linear system of equations (52) for the six unknowns %,k ,h.,g ,g , and g.

is solved by minimizing a function of the following form:

q)(hx’hy’hz’gx’gy’gz):M-"—f_A' (53)

2(Ak]+AKT+AKD) 2467

The minimization procedure performed, for example, via the gradient descent method typically

0) () (0)

implies that the initial values of the unknowns 4", h”, 1, g, ¢'”  and g'” are given. Let us choose

the latter as uniformly random numbers from the interval [-0, &]. The system of equations (48) is
solved numerically in [0, 71] using conventional methods. If, after applying the procedure (51)—(53), it
turns out that at least one of the six inequalities |/ _|<0,...,| g, |< O is violated, the time interval is re-

duced, and the calculation is repeated from the same initial data. If all six inequalities remain valid, the
solutions of equations (48) are corrected according to the formulas

q—=>((A+n)g,,(I+h)q,,(1+h)q.), w—>(A+g)u,(+g)u,(1+g )u.).

Next, a new integration interval [7],7, +7,] is selected, and the entire procedure is repeated. At

this point, the presentation of the algorithm for solving the system of equations (48) and the procedure
for reducing solutions to the given values of the laws of angular momentum ko and energy ey conser-
vation can be considered complete.

Figure 7b illustrates the construction of motion trajectories in space for a pair of bodies compris-
ing a gravitational system, taking into account the procedure (50)—(53) for correcting the solutions to
the given values of the laws of angular momentum ko and energy e, conservation. The following pa-
rameter values are adopted: ko = 0.125, eo =—0.25, T1 = 1, and 6= 0.005. The final integration interval
is [0, 646.55], while the oscillation period corresponding to the analytical solution amounts
to 7= 2.67. In Figure 7b, the pentagrams indicate when the procedure for reducing the solution to the
specified angular momentum and energy values is applied. In total, » = 500 procedures are performed.

6. Stability of the Solar System

Let us move on to consider the results of modeling the Solar System dynamics. Actual data are
adopted as the initial positions and velocities of bodies, i.e., when the planets (given the barycenter
of the “Earth + Moon” system) move in the vicinity of the ecliptic plane, i.e., in a three-dimensional
barycentric coordinate system. Several authors [Simon et al., 2013] present ephemerides obtained over
a long interval in [Index of..., accessed November 2020]. For our calculations, a Julian ephemeris date
of JD 2405730.5 is chosen, which corresponds to 06/25/1874 of the Gregorian calendar. The correc-
tion of solutions to comply with conservation laws is carried out according to the procedure (16)—(20).

Figure 8a presents a typical position of the orbits of the Solar System planets after performing
calculations for a period of = 1.05x107 years, i.e., more than ten million years. The orbits of the plan-
ets are plotted according to the latter ~ 9.01x10* years. The points on the graphs of planetary trajecto-
ries indicate the moments of correcting solutions to comply with the conservation laws. The other
adopted calculation parameters are as follows: 7, =7, =30, n=12'984, § = 0.025, as well as the rel-

max

ative and absolute accuracy values of the solver of the system of differential equations amounting
to 2:1077 and 2-10° %, respectively. Figure 8b shows the time dependences of the distances from the

center of mass to the Sun and the planets during the entire calculation period of [0,1.05-107] years.
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The graphs in Figure 85 show that the orbits of the lightest planets, i. e., Mercury and Mars, vary con-
siderably over time, while the entire planetary system remains stable.

The dynamics of the Solar System planets calculated from actual initial positions, but with
rougher relative and absolute accuracies of 10° and 1077, respectively, revealed that a noticeable trans-
formation of the Solar System began after ~ 6.5-10° years. Figure 8¢ shows the result of the transfor-
mation lasting for [0,2.27-10"] years, i.e., more than twenty million years. The transformation scenar-

io for the Solar System is reduced to the order in which the planets leave the Solar System: Venus —
— Mars — Mercury — Earth — Uranus — Neptune — Saturn, followed by the formation of the dou-
ble system “Sun + Jupiter.” The other adopted calculation parameters are as follows: 7, =7 =30,

max

n=29'500, and J = 0.025. All possible transformation scenarios for the Solar System can be divided

into three groups: 1) most of the planets leave the Solar System; a double system consisting of the Sun
and one of the heavy planets remains; 2) two planets crash into each other, or one of the planets crash-
es into the Sun; 3) a mixed version.

) l.u:‘lll || shturn

o
‘ Sun

0051152253354 0 2 4 6 8 10
! x10* 4 x10°
(a) (b) (c)

Figure 8. Fragment showing the dynamics of the Solar System planets (a); time dependence of the distances
from the center of mass to the Sun and the planets (b); dynamics of the Solar System transformation (c)

Note that the onset of a noticeable transformation of the Solar System can be significantly pushed
forward in time if the values of the absolute and relative accuracy of the used calculation scheme are
reduced. However, the computational resources available to the present author do not allow the above
calculation scheme to be applied to the relative and absolute accuracies of much smaller values
of 2:10"7 and 2-10°%, respectively.

7. Conclusion

The present article studies the stability of a gravitational system comprising multiple bodies by
means of a computational experiment. In order to perform a long-term calculation of the systems of
differential equations, a new method was developed. This method combines the use of conventional
numerical methods for solving differential equations, as well as a specially designed procedure for
correcting solutions to the given integrals of motion. This correction procedure makes the method con-
servative while introducing a random component into the calculations. As a result, this method can be
referred to the class of Monte Carlo methods, with the entire computation scheme becoming stochas-
tic-deterministic.

The paper presents a generator of phase space points from the hypersurface of the conservation
laws of a gravitational system. The performed computational experiment indicates that the accumula-
tion of phase space points in the configuration space is not compact when the number of bodies com-
prising the gravitational system exceeds two. This factor means that a general-position gravitational
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system is unstable (at N > 2), including when the total energy is negative. In the present work, the gen-
eral position refers to a situation where the masses, as well as the initial positions and velocities of
bodies, are random variables selected from certain fixed ranges.

The method described in this paper is applied to calculating the Solar System dynamics, drawing
on the actual values of ephemerides. Due to the limited computational resources, the stability of the
Solar System is confirmed by the performed calculation only for a period of about ten million years.
At the end of the specified period, the structure of the Solar System is generally preserved, except for a
noticeable orbital realignment of Mercury and Mars. At rougher values of the relative and absolute
accuracies of the calculation algorithm, the full transformation cycle of the Solar System can be
traced, which includes the release of the planets and the final formation of the “Sun + Jupiter” pair.
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