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Roads are a shared resource which can be used either by drivers and autonomous vehicles. Since the total
number of vehicles increases annually, each considered vehicle spends more time in traffic jams, and thus the
total travel time prolongs. The main purpose while planning the road system is to reduce the time spent on
traveling. The optimization of transportation networks is a current goal, thus the formation of traffic flows by
creating certain ligaments of the roads is of high importance. The Braess paradox states the existence of a network
where the construction of a new edge leads to the increase of traveling time. The objective of this paper is to
propose various solutions to the Braess paradox in the presence of autonomous vehicles. One of the methods
of solving transportation topology problems is to introduce artificial restrictions on traffic. As an example of
such restrictions, this article considers designated lanes which are available only for a certain type of vehicles.
Designated lanes have their own location in the network and operating conditions. This article observes the
most common two-roads traffic situations, analyzes them using analytical and numerical methods and presents
the model of optimal traffic flow distribution, which considers different ways of lanes designation on isolated
transportation networks. It was found that the modeling of designated lanes eliminates Braess’ paradox and
optimizes the total traveling time. The solutions were shown on artificial networks and on the real-life example.
A modeling algorithm for Braess network was proposed and its correctness was verified using the real-life
example.
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Дороги — ресурс, который может использоваться как водителями, так и автономными транспортны-
ми средствами. Ежегодно количество транспортных средств увеличивается, из-за чего каждое отдельно
взятое транспортное средство тратит всё больше времени в пробках, тем самым увеличивая суммарные
временные затраты. При планировании новой дороги ключевой задачей становится сокращение времени
в пути. Оптимизация транспортных сетей в настоящее время часто происходит с помощью добавления но-
вых связующих дорог между высоконагруженными частями трасс. Парадокс Браесса заключается в том,
что построение нового ребра дорожной сети приводит к увеличению времени в пути для каждого транс-
портного средства в сети. Целью данной статьи является предложение различных разрешений парадокса
Браесса при рассмотрении автономных транспортных средств в качестве участников дорожного движе-
ния. Один из вариантов топологического решения транспортной задачи — использование искусственных
ограничителей трафика. Как пример таких ограничителей статья рассматривает введение выделенных по-
лос, доступных только для определенных видов транспорта. Выделенные полосы занимают особое место
в транспортной сети и могут обслуживать поток по-разному. В данной статье рассмотрены наиболее часто
встречающиеся случаи распределения трафика на сети из двух дорог, приведены аналитический и числен-
ный методы оптимизации модели и представлена модель оптимального распределения трафика, которая
рассматривает различные варианты выделения полос на изолированной транспортной сети. В результате
проведенных исследований было обнаружено, что введение выделенных полос решает парадокс Браесса
и приводит к уменьшению общего времени в пути. Решения приведены как для искусственно смодели-
рованной сети, так и на реальных примерах. В статье представлен алгоритм моделирования трафика на
браессовской сети и приведено обоснование его корректности на реальном примере.

Ключевые слова: парадокс Браесса, математическое моделирование, автономные транспортные
средства
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Introduction

The problems of transportation networks have recently become an urgent issue, since the number
of vehicles increased and there is an objective of optimal planning of road systems. The problem is
particularly acute in large cities with lots of cars and public transport. According to WHO, half of the
modern world’s population lives in cities. According to the UN forecast, by 2050, about 85% of the
world’s population will prefer an urban lifestyle [Thorns, 2017]. Since the total number of vehicles
increases annually, the vehicle considered spends more time in traffic jams, and thus the total travel
time prolongs. The main purpose while planning the route is to reduce the time spent on traveling.
Since possible routes require different costs and time depending on the type of the vehicle, this article
presents the model of optimal traffic flow distribution. This model considers different ways of lanes
designation on isolated transportation networks and proposes an algorithm for implementing optimal
traffic flow distribution over the transportation network.

Roads are a shared resource which can be used either by drivers and autonomous vehicles. The
optimization of transportation networks is a current goal, thus the formation of traffic flows by creating
certain ligaments of the roads is of high importance.

However, some problems occur in planning transportation systems. The main purpose is to
reduce travel costs on transport networks. Therefore, it is important to consider and optimize the
system as a whole and not by parts. Wardrop showed that the total traveling time on all routes used
is not greater than the total traveling time of any vehicle on unused routes, since drivers tend to
choose the route according to the total traveling time criterion [Wardrop, 1952]. Hence, the driver
would not choose the route with less traffic if the total traveling time is greater than on a route with
more traffic. The Nesterov – de Palma model [Nesterov, 2003] is based on the concepts of equilibrium
proposed in [Wardrop, 1952]. Each driver tends to choose the most optimal trajectory, no matter what
other drivers choose. This principle is similar to Nash equilibrium and is called Wardrop equilibrium
[Wardrop, 1952]. However, this equilibrium is not necessarily Pareto-optimal [Wardrop, 1952]. Thus,
the search for Wardrop equilibrium can be represented as a game model [Fisk, 1984]. This leads to the
occurrence of the so-called Braess paradox on transport networks. This paradox states the existence
of a network where the addition of the new edge leads to an increase in traveling time [Braess,
2005]. The search for such inefficient edges is an NP-hard problem [Roughgarden, 2006]. On the
other hand, Miltaich indicated that the network of parallel edges is the only network in which Braess’
paradox is impossible [Milchtaich, 2006]. Valiant and Roughgarden in 2006 showed that the Braess
paradox appearance probability in random graphs with an infinite number of nodes converges to 1
[Valiant, 2010].

One of the methods of solving transportation topology problems is to introduce artificial
restrictions on traffic. As an example of such restrictions consider designated lanes which are available
only for a certain type of vehicles. Designated lanes have their own location in the network and
operating conditions [Kieslingm 2006]. Nevertheless, designating lanes for autonomous vehicles
may lead to an increased capacity of roads which are available for all types of vehicles and, as
a consequence, to a growth in individual and total costs [Rezende, 2014]. It deals with the Downs –
Thomson paradox demonstrated in 1962.

Problem Setting

In general, the real network is represented by a set of roads and road intersections. There are
two main different representation methods for urban street networks, called the primal approach and
the dual approach. The primal representation is a natural and intuitional approach, which takes just the
road segments as edges, and intersections or the ends of roads as vertices for an urban street network.
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We consider a road network as a weighted graph. In what follows, we assume that the travel time cost ti
on the road segment i can be represented by the linear function

ti = τi + bini,

where
τi is travel time at the highest possible speed and in the absence of other vehicles on the road segment i,
bi is inversed coefficient of capacity of the road segment i. This coefficient shows that the more traffic
is on the road, the longer is the travel time for each considered vehicle, and
ni is the number of vehicles on the road segment i.

Generally, in Beckmann-based traffic models the dependence between the fleet-size and the
total delay is not linear. However, the NP-complexity of general problem setting implies the need for
heuristics, which can be developed using linear regression methods. In this article, we define two types
of vehicles: autonomous vehicles and common ones. As far as the designated lanes are concerned, the
travel costs for each of them may differ.

Let tia = τia + bia nia be the travel time of autonomous vehicles, and tic = τic + bic nic be the travel
time of common vehicles.

After splitting the fleet of vehicles into autonomous and common ones, we get:

bia =
bi

λi
,

bic =
biχ

1 − λi
,

where
χ > 1, χ is the efficiency (inefficiency) coefficient and
λi ∈ [0, 1] is the quotient of the number of designated lanes to the total number of lanes.

The coefficient of efficiency shows the rate of change in the speed of autonomous vehicles from
the fleet-size, which depends on the fleet homogeneity [Daganzo, 2002; Kerner, 2006].

Each member of the fleet of common vehicles chooses a path with the minimal travel time cost.
It moves towards the user equilibrium in the traffic network. In what follows the total time cost in
the network is referred as to TC. User equilibrium is not necessary Pareto-optimal. The problem of
minimization of TC leads us to the system optimum [Wardrop, 1952; Beckmann, 1955; Valiant, 2010]
in the network considered. In this article a part of a road network on which Braess’s paradox occurs
is considered. As a solution to the paradox the idea of creating designated lanes for certain types of
transport (e.g. autonomous vehicles) is proposed.

Analytical solutions

Consider a simple transportation subnetwork of two parallel roads (Fig. 1). Let

t1a = τ1 + bam1,

t2a = τ2 + dam2,

t1c = τ1 + bcn1,

t2c = τ2 + dcn2,

where a denotes coefficients of autonomous vehicles and c denotes coefficients of common vehicles
and mi > 0 and ni > 0 is the total number of vehicles on the road segment i, i ∈ {1, 2}.
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O D

1st road

2nd road

Figure 1. The main example of a two-roads network. O is a source and D is a sink

Let m1 + m2 = m > 0 be the total number of autonomous vehicles and n1 + n2 = n > 0 be the
total number of common vehicles.

We aim to find the user equilibrium under the assumption that there exist no unused roads. This
implies that there is a positive number of vehicles on each route (m1 + n1 > 0, m2 + n2 > 0). According
to Wardrop equilibrium, the total traveling time on route 1 is equal to the total traveling time on route 2,
then

τ1 + bcn1 = τ2 + dcn2.

Hence,

n1 =
τ2 − τ1 + dcn

dc + bc
,

n2 =
τ1 − τ2 + bcn

dc + bc
.

Since ni ∈ (0, n), we get −dcn < τ2 − τ1 < bcn.
Hence,

TCc =
τ1dc + bcτ2 + bcdcn

dc + bc
n (1)

is the total time cost for common vehicles.
To find the optimal total time, the following must hold:

TCa −→
m1,m2

min .

The minimum of this function is reached if

m0
1 =

2mda + τ2 − τ1

2(da + ba)
,

m0
2 =

2mba + τ1 − τ2

2(da + ba)
.

The solutions satisfy the conditions for equilibrium if m0
1 ∈ (0,m) and m0

2 ∈ (0,m).
Thus,

−dam <
τ2 − τ1

2
< bam.

The system optimum for autonomous vehicles is the solution of the optimization problem

TC0
a =

2mda + τ2 − τ1

2 (da + ba)
τ1 + ba

2mda + τ2 − τ1

2 (da + ba)
+

2mba + τ1 − τ2

2 (da + ba)
τ2 + da

2mba + τ1 − τ2

2 (da + ba)
.

If m0
1 � 0, then all autonomous vehicles should move along the second road, hence

TC0
a =

2mda − τ1 + τ2

2 (da + ba)
τ2 + ba

2mda − τ1 + τ2

2 (da + ba)
.
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286 E.A. Belkina, E. A. Zhestov, A. V. Shestakov

If m0
2 � 0, then all autonomous vehicles move along the first road, hence

TC0
a =

2mba + τ1 − τ2

2 (da + ba)
τ2 + da

2mba − τ1 + τ2

2 (da + ba)
.

Thus, it is possible to optimize the total time costs by setting the optimal vehicles distribution
along the traffic flows. Consider four possible scenarios of arrangement of designated lanes on two
roads:

1. There are designated lanes for autonomous lanes only on one road.

2. One road is available only for autonomous vehicles, while the second one has a designated lane
and lanes for common vehicles.

3. One road has a fixed coefficient for a designated lane and the second road is proposed for
modeling.

4. Both roads have designated lanes.

These options are the main cases of distribution of designated lanes over two roads.

Option 1

Suppose there exists a network (Fig. 2). If λ1 ∈ (0, 1), λ2 = 0 (road 2 has no designated lanes),
then all autonomous vehicles move along the road 1, thus

TC = TC0 + TCa =
τ1dc + bcτ2 + dcbcn

dc + bc
n + (τ1 + bam) m,

dc = d (since λ2 ∈ (0, 1)),

bc =
bχ

1 − λ1
; ba =

b
λ1

(since λ1 ∈ (0, 1)),

TC = (n + m) τ1 +
bm2

λ1
+

bnχ (τ2 + dn − τ1)
d (1 − λ1) + bχ

. (2)

The minimum is

λ1 =
m(d + bχ)√

bnχ(τ2 + dn − τ1) + dm
. (3)

Substitute (3) into (2):

TC = (n + m)τ1 +
bm(

√
bnχ (τ2 + dn − τ1) + dm)

(d + bχ)
+

bnχ (τ2 + dn − τ1)

d

⎛⎜⎜⎜⎜⎜⎝1 − m(d + bχ)√
bnχ (τ2 + dn − τ1) + dm

⎞⎟⎟⎟⎟⎟⎠ + bχ

(4)

is the optimal value of TC.

O D

λ1 ∈ (0, 1)

λ2 = 0

Figure 2. A network of two lines where the first lane has a λ1 autonomous vehicles capacity and the second one
is closed for them

КОМПЬЮТЕРНЫЕ ИССЛЕДОВАНИЯ И МОДЕЛИРОВАНИЕ



Methods for resolving the Braess paradox in the presence of autonomous . . . 287

λ is the minimum of the function (1) if B = bnχ(τ2 + dn − τ1) > 0 and λ ∈ (0, 1).

If λ >
m(d + bχ)√

bnχ(τ2 + dn − τ1)+dm
, then TC increases and if λ <

m(d + bχ)√
bnχ(τ2 + dn − τ1)+dm

, TC decreases.

Option 2

Assume that the second road is available only for autonomous vehicles (Fig.3), so λ2 = 1 and
λ1 ∈ (0, 1). This implies:

da = d; bc =
bχ

1 − λ ; ba =
b
λ
.

Suppose τ2 − τ1 = k.
Thus, the minimum is achieved when

m0
1 =

2mda + k
2(d1 + ba)

; m0
2 =

2mba − k
2(d1 + ba)

.

So, the system optimum of TC for common vehicles is

TC =
m (τ1dλ + τ2b + bdm)

b + dλ
+

(
τ1 +

bχ
1 − λn

)
n − k2 · λ

4(b + dλ)
. (5)

Hence,

λ =
−2

√(
χn2) (b + d)2 (2dm + k)2

−4d2χn2 + 4d2m2 + 4dkm + k2
+ +

4bdxn2 + 4d2m2 + 4dkm + k2

−4d2χn2 + 4d2m2 + 4dkm + k2
. (6)

Substitute (6) into (5):

TC = τ1n +
bχn2

(
−(k + 2dm)2 + 4d2χn2

)
4d(b + d)xn2 − 2

√
(b + d)2 x(k + 2dm)2n2

+

+
k2

(
−(k + 2dm)2 − 4bdχn2

)
4(b + d)(k + 2dm)2 − 8d

√
(b + d)2χ(k + 2dm)2n2

+

+
2m(k + 2dm)2 (τ1d + b (τ2 + dm))

2(b + d)(k + 2dm)2 − 4d
√

(b + d)2χ(k + 2dm)2n2
+

+
−8bd2χm (−τ1 + τ2 + dm) n2

2(b + d)(k + 2dm)2 − 4d
√

(b + d)2χ(k + 2dm)2n2
+

+

(
k2 − 4τ1dm

) √
(b + d)2χ(k + 2dm)2n2

2(b + d)(k + 2dm)2 − 4d
√

(b + d)2χ(k + 2dm)2n2
. (7)

Therefore, since the Pareto-optimal value of TC has been found, the total traveling time may be
evaluated. The total optimal traveling time for this case may be evaluated using (7).

O D

λ1 ∈ (0, 1)

λ2 = 1

Figure 3. A network of two lines where the first lane has a λ1 autonomous vehicles capacity and the second one
is opened only for them
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Option 3

Consider the case where the road 2 has a fixed coefficient of designated lanes and λ1 ∈ (0, 1)
(Fig. 4). This implies

da =
d
λ2

; bc =
bχ

1 − λ1
; ba =

b
λ1

; dc =
bχ

1 − λ2
,

TCc =
τ1dχ

1 − λ2
+

τ2bχ
1 − λ1

+

bndχ2

(1 − λ1) (1 − λ2) n
dχ

1 − λ2
+

bχ
1 − λ1

n,

TC0
a =

m(
d
λ2
+

b
λ1

)
[
τ1

d
λ2
+ τ2

b
λ1
+

db
λ2λ1

m

]
− (τ2 − τ1)2

4

(
b
λ1
+

d
λ2

) .

The minimum of the TC = TCc + TCa is reached at the point

λ1 =

√
C

(
b
d

(1 − λ2) + 1

)
− √B

bλ2

d√
B +
√

C
, (8)

where

A =

⎛⎜⎜⎜⎜⎜⎜⎝τ1n +
m

(
4τ1d − (τ2 − τ1)2 λ2

)
4d

⎞⎟⎟⎟⎟⎟⎟⎠,

B = n

(
b (1 − λ2)

d
(τ2 − τ1) + bχn

)
,

C =
mb
d

⎛⎜⎜⎜⎜⎜⎜⎝(τ2λ2 + dm) −
λ2

(
4τ1d − (τ2 − τ1)2 λ2

)
4d

⎞⎟⎟⎟⎟⎟⎟⎠.

However, the constraints imposed on λ ∈ (0, 1) can provide the boundary solutions described in
Options 1 and 2.

O D

λ1 ∈ (0, 1)

λ2

Figure 4. A network of two lines where the first lane has a λ1 autonomous vehicles capacity and autonomous
vehicles capacity coefficient for the second road λ2 is fixed

Option 4

Consider the case where the autonomous vehicles can move along both roads and the coefficient
for each road is not fixed, λ1 ∈ (0, 1), λ2 ∈ (0, 1) (Fig. 5). In this case we have to find the extrema of
the function of two variables: λ1, λ2. This leads us to the search for two separate extrema as functions

КОМПЬЮТЕРНЫЕ ИССЛЕДОВАНИЯ И МОДЕЛИРОВАНИЕ
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O D

λ1 ∈ (0, 1)

λ2 ∈ (0, 1)

Figure 5. A network of two lines where λi is an ith lane’s autonomous vehicles capacity coefficient

of λi from λ j, i, j = 1, 2, based on the results obtained in Option 3. However, the boundary solutions
have more complex structure in this case.

TC = TCc + TC0
a =

=
τ1d (1 − λ1) − bτ2 (1 − λ2) + bdχn

b (1 − λ2) + d (1 − λ1)
n +

m
(dλ1 + bλ2)

×

×
(
[τ1dλ1 + τ2bλ2 + dbm] − 1

4
(τ1 − τ2)2 λ1λ2

)
. (9)

Suppose k = τ2 − τ1.
Thus, ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ1 =
(b + d) (2mb + kλ2)

b
(
2mb + kλ2 + 2

√
ψ
) − dλ2

b
,

λ2 =
(b + d) (2mb + kλ1)

b
(
2mb + kλ1 + 2

√
ξ
) − dλ1

b
,

(10)

where ψ = nb (k (1 − λ2) + bnχ), ξ = nb (k (1 − λ1) + bnχ).
The solution of (10) can be found using a computer environment with further substitution of the

resulting values into equation (9). Equation (9) implies that λ1 and λ2 exist only if:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

nd(k(1 − λ2) + dnχ) � 0;

nb(k(1 − λ1) + bnχ) � 0;
dnχ

k
− 1 � λ2;

bnχ
k
− 1 � λ1;

λ1 ∈ (0, 1), λ2 ∈ (0, 1).

If (10) has no solutions on the interval (0, 1), then the optimal values are not in the domain.
Therefore, consider λ1, λ2 ∈ {0, 1}, where λi = 0 corresponds to the road without designated lanes
and λi = 1 corresponds to the road available only for autonomous vehicle. Hereby, all special cases of
designating lanes on two roads were considered.

Model description on Braess’ network

Consider the simple Braess network (Fig. 6). Let Na,Nc be the total number of autonomous and
common vehicles, respectively.

Thus, the total number of autonomous and common vehicles on each of the five roads is equal to

n1 = N1 + N3, n2 = N1, n3 = N2, n4 = N2 + N3, n5 = N3.

2021, Т. 13, № 2, С. 281–294
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O

1

2

D

Figure 6. An example of a simple Braess network

O

1

2

D O

1

2

D O

1

2

D

Figure 7. 1st network traversal
option

Figure 8. 2nd network traversal
option

Figure 9. 3rd network traversal
option

Using the results obtained from Options 1, 2, 3, and 4, TC for each route can be evaluated.
At the same time computational modeling allows evaluation of possible delays in general form.

Algorithm

We propose the following algorithm:

1. Fix the set of lambda.

2. Look for the social optimum for the autonomous vehicles. It will reach the minimum TCa on the
set Na on 3 trajectories.

TCa = (t1
a + t2

a)N1
a + (t1

a + t4
a + t5

a)N3
a + (t3

a + t4
a)N2

a .

3. Look for the user equilibrium for the common vehicles. Choose the quant of size Q which is
a small part of a virtual vehicle.

4. Set W as a number of common vehicles. There will be W · Q of quants in queue.

5. Extract the next quant from queue and find the best route for it. Repeat until the queue becomes
empty. Add the quant size to route counters.

6. TCc is calculated from the values of the route counters.

7. Find TC = TCa + TCc. Repeat step 1 to step 6 to find the minimum TC.

The algorithm (page 290) iterates through the possible combinations of edges and distribution
of designated lanes on them, calculating the smallest value of TC and the corresponding value λ.
According to the principle of greedy behavior, each driver chooses the optimal route in terms of the
total traveling time. This forms Wardrop equilibrium and the system optimum is reached. The algorithm
(page 290) was realized in C++ programming language.
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Results of modeling

Only common vehicles

Assume that we have only common vehicles on all routes. At first compute TC and the
equilibrium on traffic flows. Fix the parameters of the Braess paradox network which were proposed
in [Steinberg, 1983] (Fig. 10) and increase the value of the lanes coefficient λ for autonomous vehicles
on edge A − B.

S

A

B

E

10
+

n

10 · n 50 + n

50 + n 10 · n

Figure 10. An example of Braess’ network that was used for testing our numerical model

From the results shown in the chart TC(λ) (Fig. 11) it can be concluded that the optimal solution
is reached if the road A–B is available only for autonomous vehicles. The same results were obtained
in [Steinberg, 1983], which proves the correctness of the developed program and the applied algorithm.

Figure 11. Relation between TC and λ graph

Autonomous and common vehicles

Consider the traffic flows in the same transportation network and explore the dependence of the
optimal total time on the efficiency coefficient χ. If we fix the parameter λ and increase parameter
χ, we get the results of the algorithm [Steinberg, 1983] (page 290) which are demonstrated on the
following chart TC(χ).

This chart (Fig. 12) shows the linear dependence, which implies that there should be no common
vehicles on route 3 (Fig. 9), nor on route A–B. In the case of Braess’ paradox in the model with
common vehicles, the only solution is to make the road A–B available only for autonomous vehicles.
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Figure 12. Relation between TC and χ graph

Examples of real-life network modeling

It is not a rare scenario when Braess’ paradox occurs after some time when the amount of
traffic on the network reaches a certain value. The simplest way to deal with it is to remove the
“problematic” edge from the network. In this article an alternative solution is proposed. This solution
involves the traffic flow adjustment method, which is based on the principle of addition of designated
lanes. Consider an example of an isolated network in one of Moscow districts (Fig. 13).

There are two possible ways to get to VDNKh when the vehicle moves along the Schyolkovskoye
highway (Fig. 13). The first trajectory is along Third Ring Rd and then along Prospekt Mira (white
trajectory) or along Rostokinsky proezd (red trajectory). The black route is faster, since it takes

Figure 13. Map used for modeling, [OpenStreetMap, CODD, Otraslevoy...]
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16 minutes to get from the starting point (red) to the end point (blue) without traffic jams. The white
toute takes 23 minutes without traffic jams. However, the white route has greater capacity (4 lanes
may serve up to 8300 vehicles per hour), while the black route has only 2 lanes and a capacity of
6700 vehicles per hour.

Since Rostokinsky proezd is located near Bogorodskoye and Metrogorodok districts, increasingly
more drivers from these districts choose the black route. In order to save time, the driver would rather
choose Rostokinsky proezd. When the number of vehicles on this route is large, the traffic will be
backed up. This is the situation when Braess’ paradox occurs. If there were no route Schyolkovskoye
highway – Veteranov Avenue – Rostokinsky proezd, the traffic on this road system would be more
optimal. Perform analysis for this network. Consider the graph of the network.

There are two possible trajectories. The capacity of the route through Metrogorodok is
6700 vehicles per hour and through TRR – 8300 vehicles per hour. If the traffic through Rostokinsky
proezd is restricted for drivers from Schyolkovskoye highway, the total system load decreases. To
solve the paradox, we can delete the Schyolkovskoye highway – Metrogorodok edge from the
network. Consider an example. Assume that there are 7000 vehicles. 5000 vehicles move along the
Schyolkovskoye highway and have to choose the trajectory and the remaining 2000 vehicles are in
Metrogorodok. Suppose that 2000 vehicles choose Rostokinsky proezd and 3000 choose TRR (the data
was obtained during observation from 7 to 8 am during rush hours).

Let the total time cost on the road segment i, where i ∈ {1, 2} is the set of trajectories, be a linear
function ti = τi + bini, where for routes 1 and 2 b1 =

60
6700

= 0.009, b2 =
60

8300
= 0.007, respectively.

Thus, T = t1 + t2 = τ1 + b1n1 + τ2 + b2n2 = 96 min is the total traveling time through both trajectories.
The average time is 48 min.

Now consider the case where there is no edge which connects the Schyolkovskoye highway and
Metrogorodok. Then n1 = 2000, n2 = 5000. Thus T = t1 + t2 = τ1 + b1n1 + τ2 + b2n2 = 92 min. The
average time is 46 min.

Therefore, this implies that the removal of this edge from the network optimizes the total network
load.

Now consider the modeling on this transportation network. According to gucodd.ru, in
Moscow, public transport accounts for 2% of the total amount of vehicles. Thus, if we have
7000 vehicles in total, 140 of them are public. According to the efficiency coefficient, χ = 0.7,
which implies that the public transport traffic is less effective. Since λ1 ∈ (0, 1), λ2 = 0 by definition,
all public vehicles will move along the first road. Therefore,

TC = (n + m)τ1 +
bm(

√
bnχ (τ2 + dn − τ1) + dm)

(d + bχ)
+

bnχ (τ2 + dn − τ1)

d

⎛⎜⎜⎜⎜⎜⎝1 − m(d + bχ)√
bnχ (τ2 + dn − τ1) + dm

⎞⎟⎟⎟⎟⎟⎠ + bχ

is the optimal value of TC for this system (5).
Therefore, the total time cost is

TC = 112 000 +
62.72
0.0133

+
2377.9
0.013

= 299 631.

By evaluating the average traveling time for both trajectories in this network for a common
vehicle, we get

t1,2 =
299 631

7000
= 42.8 min.

Hence, the proposed method allows to reduction of the network load.
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Conclusion

In this article the problem of network system modeling has been solved using a set of examples.
It was shown that Braess’ paradox can significantly amplify the total network load. The model of
designated lanes was proposed. Simple cases of organizing designated lanes were considered. Optimal
strategies for common and autonomous vehicles were obtained. The model realization was illustrated
by an example. It was found that the modeling of designated lanes eliminates Braess’ paradox and
optimizes the total traveling time. The algorithm which simulates drivers’ behavior to determine the
system equilibrium was proposed and realized in programming language.
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