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Carpooling has gained considerable importance as an effective solution for reducing pollution, mitigation 

of traffic and congestion on the roads, reduced demand for parking facilities, lesser energy and fuel consumption 
and most importantly, reduction in carbon emission, thus improving the quality of life in cities. This work 
presents a hybrid GA-A* algorithm to obtain optimal routes for the carpooling problem in the domain of multi-
objective optimization having multiple conflicting objectives. Though the Genetic Algorithm provides optimal 
solutions, the A* algorithm because of its efficiency in providing the shortest route between any two points 
based on heuristics, enhances the optimal routes obtained using the Genetic algorithm. The refined routes 
obtained using the GA-A* algorithm, are further subjected to dominance test to obtain non-dominating solutions 
based on Pareto-Optimality. The routes obtained maximize the profit of the service provider by minimizing the 
travel and detour distance as well as pick-up/drop costs while maximizing the utilization of the car. The 
proposed algorithm has been implemented over the Salt Lake area of Kolkata. Route distance and detour 
distance for the optimal routes obtained using the proposed algorithm are consistently lesser for the same number 
of passengers when compared to the corresponding results obtained from an existing algorithm. Various 
statistical analysis like boxplots have also confirmed that the proposed algorithm regularly performed better than 
the existing algorithm using only Genetic Algorithm. 
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1. Introduction 

In the twenty-first century, due to the constant development of society and industry, the need for 
mobility has increased rapidly and so has the use of cars, especially in the developing and under-
developed countries [Mulders, 2012, 2013]. This has resulted in traffic congestion, environmental 
pollution as well as caused various cardiovascular and respiratory problems. Carpooling is an effective 
solution to overcome the abovementioned problems [Manzini, Pareschi, 2012; Martino et al., 2011]. 
Research also suggests that carpooling results in less stress than commuting alone. Carpooling is the 
most rapidly evolving solution for the shift from vehicle ownership to shared vehicle usage mobility. 
The future of mobility consists of technology-enabled, door-to-door, multi-modal travel encompassing 
pre-trip, in-trip, and post-trip services to improve journey experience to the Mobility User [Briggs, 
2015]. Carpooling helps users to share a ride to destinations in the same area, by either casual 
carpooling or by real-time carpooling. According to the most used terminology, carpooling is the 
agreement of sharing the use of a particular car by many passengers, usually commuting along the 
same route/ journey at mutually compatible times [Luè, Colorni, 2009]. As carpooling decreases  
the number of vehicles used by travelers, it results in various benefits like mitigation of traffic or 
congestion on the roads, reduced demand for parking facilities, lesser energy or fuel consumption, and 
most importantly, reduction in carbon emission, thus improving the quality of life in cities. 

Genetic Algorithms (GA) represent a class of optimized, adaptive, and iterative algorithms that 
function upon existing data sets and design the developing concepts based on genetic information as 
observed in nature. GA operates on a set of solutions using operations like selection, crossover and 
mutation and stops only when concurrency of the required criterion takes place. These algorithms, even 
though irregular or randomized, mostly use heuristic data to utilize promising regions within the search 
space [Deb, 2011]. A population in a GA is a set of various coinciding search points or solutions. 
A new population is produced for each iterative step, called a generation. A solution, often labeled as 
a chromosome, y = [y1, … , yn], is basically a set of variables in a search space of n dimensions or 
variables [Wan, Birch, 2013]. These n variables are like n-genes. This paper utilizes the essence of GAs 
to provide multiple solutions that are non-dominated equally important when considering a broad array 
of conflicting objectives. Any of these non-dominated solutions can be used as the final route without 
having the driver or the passengers suffer a loss in their interests [Konak et al., 2006]. 

One of the most extensively used path-finding algorithms is the A* algorithm, which is 
a heuristic or an informed search algorithm. A* uses the fundamental concepts of the Greedy Best 
First Search technique like the Dijkstra Algorithm and provides the shortest accessible path between 
the source and the destination. A* algorithm is used majorly in the fields of game development, 
robotics, traversal of graphs and maps, etc. The most important features of this algorithm are its high 
efficiency and its convenience. It uses a valuation function, denoted by f(n), as a guiding capacity to 
find the required path, both effectively and precisely. This valuation function that gives an estimated 
cost of the path from the starting node to the target node, via the intermediate node is expressed as  
 f(n) = g(n) + h(n),  (1) 
where g(n) and h(n) are the actual cost from the starting node to the current node(n) and the 
assessed/heuristic cost of the shortest path from this current node(n) to the target node, respectively. 
The heuristic cost function, h(n), for each intermediate node is calculated by taking the Euclidean 
distance between the current node(n) and the target node. h*(n) denotes the actual cost of the best 
possible path from the present node(n) to the objective node. Now, if h*(n) ≥ h(n) for all intermediate 
nodes, then it is accepted as a reachable route-finding process. It has vast uses in the fields of GIS 
systems along with game routing systems and maps. 

There are numerous pieces of existing literature that have proposed algorithms for the carpooling 
problem. Some authors used Genetic Algorithm, weighted sum methodology, pathfinding algorithms 
like A* algorithm, Dijkstra algorithm, etc. Unfortunately, there are not many optimized car-pooling 
algorithms that support the users along with the service providers to choose the most optimal routes, 
keeping in mind the various real-life constraints that affect this decision-making process. This work 



A hybrid multi-objective carpool route optimization technique…  

 _______________________________________ 2021, Т. 13, № 1, С. 67–85 ______________________________________  

69

proposes a hybrid algorithm that implements carpool route optimization using a Genetic Algorithm 
and refines the route using the A* algorithm. This work aims at providing a choice of optimal routes, 
to facilitate the passengers and the service provider/driver by maximizing car utilization, minimizing 
total distance travelled, as well as keeping in consideration the individual passenger’s cost. Instead of 
using the A* algorithm in its traditional form, where the parameter used to select the most optimal 
route is the distance, here the A* algorithm is used to optimize the set of routes obtained from the 
Genetic Algorithm. Considering the aforementioned conflicting objectives, viz. maximizing car 
utilization, minimizing total distance travelled, minimizing individual passenger’s cost, the authors 
provide a list of non-dominated routes which are all considered equally good for both the passengers 
and the service provider. 

The primary objective for this work is to provide a set of non-dominated routes to solve the 
traditional carpooling problem. It has been motivated by the fact that carpooling is very essential in the 
present scenario and is one of the most effective means in dealing with the detrimental effects of 
pollution. Carpooling works towards providing a greener environment by encouraging riders to share 
rides. Not only does this technique greatly reduce the fuel consumption per person and benefits the 
environment, but it also provides a cost-effective mode of travel for the riders by allowing them to 
travel together and share the cost leading to financial savings. Another objective of this work is to deal 
with the problem of deviating from the main route to pick-up/drop passengers and returning to that 
point before continuing the journey. This leads to excess and redundant travel. This motivated the 
authors to integrate the A* algorithm with GA to produce optimized routes with greater efficiency by 
fetching shorter new routes from the pick-up/drop point to the destination.  

2. Literature survey 

Varied research works have been published in the arena of carpooling to find optimal routes as 
well as to allocate riders while matching their requirements. The concept of carpooling consisted of 
picking up passengers in sequence and dropping them later. It later developed into a “park and ride” 
concept having a common pick up point for all the riders. Recently, due to the growth and spread of 
the internet technology, dynamic carpooling, i.e. picking up and dropping off passengers as and when 
requests arise while travelling, has reached its peak. This modern version of car-pooling witnessed its 
first practical use when John Zimmer, from Cornell University along with Logan Green, from 
University of California, created “Zimride”, a dynamic match-making service to connect drivers and 
passengers using GPS on android phones [Zhang et al., 2014]. 

An automated system was developed [Knapen et al., 2013] to coordinate ridesharing trips. Clients 
registered their profile and periodical information about repeating trips, and the service provider 
prompted the enlisted users to combine their outings through ridesharing. The service provider 
assessed the satisfaction quotient of co-travelers based on prior information. Another model was 
developed [Schreieck et al., 2016] which focused on matching ridesharing offers with ride requests 
and also storing and retrieving routes using inverted index data structures. Google API was used for 
geocoding the source and destination address. This system employed the matching mechanism by 
emphasizing various shortest path algorithms, such as Dijkstra’s Algorithm and A* Search. It was 
observed that the proposed technique performed well enough for real-time applications while being 
simpler than existing optimization-based techniques. Another model [He et al., 2014] concentrated on 
the profitability of the ride. Different GPS directions were mined to get the frequently utilized routes 
using route parting and gathering, grid mapping techniques, etc. An improved carpool system was 
developed [Karande, Bogiri, 2015] that allowed users to avail the services of ridesharing via 
a smartphone. This model defined an advanced Genetic Algorithm based carpool route and matching 
algorithm that provided a solution by securing ideal match arrangements. 

An innovative model was proposed using GA [Masum et al., 2011] to solve the carpooling 
problem that used a fitness function to select desirable parents to reproduce and create the next 
generation. The process of preparation ensured the removal of duplicate genes within the child because 
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of crossover and mutation. Missing genetic information was re-inserted using a heuristic method. 
A GA based carpooling service was proposed in 2016 [Rathod et al., 2016] that generated optimal 
routes of travel within a short period of time. The proposed algorithm generated intermediate paths 
that were used to find the solution to the empty seats available in the car. Later another model was 
developed [Boukhater et al., 2014] that was map-based and provided shared rides for all customers, 
considering their personal inclinations. The proposed algorithm performed better than the traditional 
algorithm. A heuristic algorithm for Maximum Carpool Matching was proposed [Hartman et al.,  
2014] and it demonstrated the Maximum Carpool Matching problem was NP-hard even for the 
situation where the weight function is binary. They introduced a natural integer linear program and 
demonstrated that if the arrangement of drivers is known, an optimal assignment of travelers to drivers 
can be found in polynomial time utilizing a reduction to Network Flow. 

A* Search is a procedure majorly utilized in the field of Artificial Intelligence. A bi-directional 
search technique model was proposed [Sharma, Pal, 2015] as an improvement over the traditional 
A* algorithm for finding the shortest path. As, A* algorithm is in general one of the most optimal 
path-searching algorithms that use heuristics, optimizing it even further by applying the bi-directional 
search, resulted in a system that provided the shortest possible path, in very less search time. The 
A* algorithm, both in its unidirectional and its bi-directional forms, provided results much better than 
those of the Dijkstra algorithm in its traditional and bi-directional forms, respectively. The authors 
concluded that the A* algorithm outdid the Dijkstra algorithm in all informed search situations, with 
and without obstacles. A hybrid algorithm was proposed [Arnates et al., 2017] for Unmanned Aerial 
Vehicles (UAVs) that applied a heuristic approach over Genetic Algorithm to provide facilities of 
pathfinding and re-routing. The algorithm involved greedy heuristic to find possible paths and then 
used the GA to provide the most optimal solutions within a comparatively low amount of time. To 
prove the efficiency of the proposed algorithm, experimental simulations were conducted, results of 
which showed that this combination of the given heuristic approach with GAs was a good strategy for 
routing UAVs. 

Researchers [Zeng, Church, 2009] performed various tests on road maps of two regions of 
California to compare the effectiveness of the shortest path algorithms of the Gallo-Pallottino (GP) 
class with the A* algorithm and its three variations. The authors successfully proved that the 
A* algorithm and its variations performed much faster and better compared to what the GP-class 
algorithms do on real-life road maps or networks. It also showed that on-road networks, 
A* algorithm’s performance exceeds even the most optimal execution of the Dijkstra Algorithm, that 
too by a very large margin. This work proved that the A* algorithm’s optimality increases with the 
increase in the size of the road networks. The experiments in this research work also showed that one 
of the three variations of A*, A star with approximate buckets (ASBA) outperformed all the other 
algorithms that were considered. 

A variation of the native A* algorithm, called the A* Hamilton algorithm [Arnates et al., 2017] 
was proposed to navigate to many destinations in any order. The algorithm provided the shortest path 
from a source location to many destinations without any order. Another model was proposed [Meng, 
Zhang, 2019] where a salient feature of the A* algorithm was to move towards the direction of the 
destination by utilizing directional elements, with the goal that the intermediate route procedure will 
move towards the shortest path as soon as possible. Then, the direction factor was utilized to guarantee 
that the priority of the path finding of the A* algorithm was to move towards the direction of the 
target. The proposed technique improved the efficiency of the algorithm as the outcome of the 
A* optimization algorithm was around 20–50% better than the traditional A* algorithm. Also, the best 
case was achieved at around 89%. A dynamic multi-objective ride-sharing model [Herbawi, Weber, 
2012] was proposed that assigned passengers to the car drivers, characterized user requests, and 
coordinated the passengers' pickup and drop off timings, optimally. They proposed a hybrid algorithm 
that acted at two levels and divided each day into a group of time periods, to deal with the ride-
matching problem using time windows. A hybrid path-finding model using Genetic Algorithm was 
proposed very recently in 2018 [Yui et al., 2018] that provided a multi-weighted heuristic (MWH) 
function, which was then used in the A* algorithm to find the most optimal routes. GA provided 
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multiple heuristic functions that acted as agents, which in turn competed to produce children 
chromosomes or agents. On optimizing all these agents, the final MWH function was returned.  

The authors of this paper, inspired by the aforementioned research, thus proposes a hybrid model 
that uses a genetic algorithm for route optimization and aims to use A*algorithm to refine the 
proposed optimal solution for the carpooling problem. The hybrid route search technique controls the 
search towards the destination node by using lower limits on the distance to the target. The proficiency 
of this approach relies on the lower values. A* search utilizes path costs along with heuristic values. 
Here, along with the lower bounds on the distance to the target, the authors optimize the traditional 
A* algorithm by incorporating other parameters, like the density of ride requests generated in a route, 
the total detour taken for picking up and dropping off passengers and the length of the route, to 
provide a result that is optimal for both the passengers and the driver. 

3. Proposed car-pooling model 

It has been observed that hierarchical decision structures [Ibrahim, 2010] suitably represent 
multi-objective problems better in real life business scenario. It is also commonly seen that the higher-
level parameters do affect but does not totally control the lower level objectives. If lower level 
objectives are given priority of choice making at the local level and proper synchronization and 
coordination be maintained with the upper level objectives, it is expected to generate improved results. 
[Takama, Loucks, 1981]. A multi-level multi-objective optimization algorithm was earlier proposed 
[Beed et al., 2020] to solve the carpooling problem. The model used Genetic Algorithm to obtain 
optimized routes maximizing the carpool service provider’s profit. A detailed analysis of the car 
routing problem brings into light the presence of multiple conflicting objectives. The essence of multi-
objective optimization is that it strives to obtain a set of solutions, by applying various mechanisms, so 
that no objective is neglected on the behest of others. This work aims to improve the Hierarchical 
Multi-objective Route Optimization for Solving Carpooling Problem [Beed et al., 2020] by applying 
the proposed hybrid GA-A* algorithm for route optimization.  

While solving a carpooling problem, the basic intuition is frequently directed towards minimizing 
the distance traveled by the passengers. Considering other factors such as occupancy, detour, and 
passenger pickup and drop cost into consideration can significantly provide better selection of a route. 
The proposed model aims to solve the car-pooling problem by dividing these multiple objectives into 
a hierarchical model, to optimize the solution. Since the higher-level objectives do not completely 
control the parameters of the lower level, the lower level of this hierarchy consists of those conflicting 
objectives that are confined to the individual passengers only, namely detour distance for pickup and 
drop of a passenger and passenger density of the surrounding area. The higher-level objectives 
concentrate on route optimization and consists of minimizing the distance traveled by the car, 
maximizing the utilization of the vehicle, and reducing the pick-up and drop-off cost for a particular 
passenger. Hierarchical decision structures help in realizing real-life situations better. The conflicting 
objectives are hierarchically arranged as in Figure 1. 

 
Fig. 1. Hierarchical optimization structure 
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Mathematically, the upper level objectives are defined as follows: 

Conflicting objectives 

f1: minimization of travel distance 
Here, the travel distance is the net distance between the starting and drop location of the 

1st passenger. A presumption has been made that the trip ends at the drop location of the 1st passenger. 
Considering nth feasible route,  

 Distn = dist ( , ),n x y∑  (2) 

where dist ( , )n x y  are the distances between junctions on the route between pick up and drop point of 
first passenger and Distn is the summation of such distances. It is beneficial to have minimum distance 
as distance is directly proportional to fuel consumption and hence, cost.  

f2: maximization of vehicle utilization 
The vehicle should always be packed to capacity to generate maximum revenue.  

f3: minimization of passenger’s pickup-drop cost 
The cost to pick a particular passenger and drop him/her should be minimized to maximize 

revenue. However, this is not a single objective but a combination of few conflicting objectives which 
influence this cost factor. The lower level objectives are defined later.  

Linking the three conflicting objectives, the main objective is formulated as follows:  

Main objective 

 maximize f ≡  (f1, f2, f3). (3) 

Constraints 

 ( )dist ,n x y  0≥  ,n∀   
 0  ≤  x  4, ≤  as the maximum carrying capacity of the vehicle.  

At the subordinate level the conflicting objectives are as follows. 
 

f4: minimization of detour distance 
Detour distance is the sum of the pickup and drop off distance. As explained earlier, shorter the 

distance travelled, less is the fuel consumption, lower is the cost. For the ith passenger, let xi and yi be 
the pickup and drop off distance respectively,  

 Detour_disti = xi + yi. (4) 

f5: maximize passenger density 
There is a greater likelihood of finding more passengers in densely populated areas leading to 

greater occupancy of the vehicle. Popular areas are expected to be favored over scarcely populated 
areas. ni is considered to be the passenger density inside radius r with respect to passenger i. 

Main objective. Minimize individual’s cost  

 f3 ≡  (f4, f5). (5) 

Constraints 
xi , yi 0  ,i≥ ∀  

 ni 0   ,i≥ ∀   
tmax > t >0. 

The waiting time for a passenger should not exceed the maximum tmax defined in the system. 
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In figure 2, person A wants to seek a carpool ride from location ‘A’ to location ‘a’. There are 
three probable routes between these two points marked orange, green and blue. On closer observation, 
it is seen that the route colored green has the minimum distance but there are just three passengers in 
this route. The second route colored blue has the highest count of passengers but is definitely longer 
than the previous route. The third route colored orange does not have the highest count of passengers 
on the route, but most of the passengers are placed very close to the original route thereby minimizing 
the detour distance. All the routes are equally favorable as they are superior with respect to a certain 
objective.  

 
Fig. 2. Higher level parameters 

In order to formulate the above as a multi-objective problem, the objectives need to conflict with 
one another where improving one leads to the deterioration of the other/s. As minimizing the travel 
distance is directly proportional to the cost incurred, it directly leads to poor utilization of the vehicle 
capacity. Hence it can be concluded that if the service provider maximizes the vehicle’s capacity 
utilization, it is highly likely that the vehicle needs to travel more. Greater the travel, greater are the 
expenses and minimization of profit, thus the conflict. Secondly, minimizing the pickup and drop cost 
may lead to lesser travel which in turn may result in under-utilization of the vehicle thus justifying the 
multi-objective nature of the problem. While selecting an individual passenger, one may consider the 
detour distance (xB + yB) for Passenger B to be much less than the detour distance for Passenger C 
(xC + yC) in Figure 3. However, it may be observed that two other passengers are in the proximity of C 
in contrast to none in the proximity of B. Picking up C would ensure better utilization of the car 
capacity while picking up B would ensure lower detour distance. Hence both the solutions are equally 
enterprising justifying the multi-objective nature, once again.  

 
Fig. 3. Lower level parameters 
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The proposed hybrid algorithm aims to improve the existing algorithm by combining GA with 
A* algorithm. Since the A* algorithm is efficient in providing the shortest route between any two 
points, the authors have utilized this characteristic to generate a route incorporating all the pick-up and 
drop-off points of passengers for every corresponding elite route. This leads to maintaining the same 
level of occupancy while benefiting greatly in other aspects of total distance and detour.  

 
Fig. 4. Route Map of GA and GA-A* algorithms represented by solid and dotted lines respectively 

Once the optimal routes are generated by one generation of GA, the routes are now processed 
using the A* algorithm to obtain better solutions. As can be observed from Figure 4, the routes 
generated by the GA (solid lines) require the cars to take additional detours from the route to pick-
up/drop passengers and return back to the original route (solid line). This leads to an unnecessary 
increase in travel distance. Consider the car has picked up Passenger P. The next pickup is 
Passenger Q. Using the traditional algorithm, the car would travel to Point ‘s’, travel along the main 
route (solid line) till Point ‘t’ and then take a detour to pick passenger Q. The proposed hybrid GA-A* 
algorithm improves this drawback by obtaining the shortest route from P to Q using the A* algorithm. 
The process repeats this shortest route search algorithm from every pickup/drop point to its next 
pickup/drop point on the route using this A* algorithm. These routes are further subjected to 
dominance tests to obtain Pareto Optimal solutions.  

It might seem counter-intuitive that the shortest path between the starting and ending points is not 
considered explicitly during route selection by the GA. However, a careful study of the selection 
process across the various generations of the GA reveals that in most cases, the crossover and mutation 
procedures implicitly add the shortest path to the gene pool but it gets eventually eliminated by the 
algorithm on account of a poor fitness score. Although the shortest path might offer the best distance, 
it tremendously neglects the other objectives of better occupancy and car utilization. This makes it 
unwanted from the perspective of a multi-objective model. 

The hybrid algorithm is as follows: 
ALGORITHM(GA-A*): 

Step 1:  Read passenger request log 
Step 2:  If request log is empty then go to Step 20 
Step 3:  If the passenger pickup point is within a radius of t kms 
then  store pickup and drop location of passenger i into X and Y  

 go to step 4 
else  go to step 1 
Step 4:  Set X and Y as source and destination of route; gen = 1 
Step 5:  Generate randomly a pool of m chromosomes being routes between X and Y 
Step 6:  Select randomly q chromosomes for first generation of Genetic Algorithm 
Step 7:  For each generation of GA perform Rank Selection, Crossover and Mutation 
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Step 8:  Perform Dominance test to obtain Pareto Optimal n chromosomes / optimal routes. 
Step 9:  For each route obtained in Step 8, do 
Step 10:  For each point P (pickup/drop point) on the route, do 
Step 11: Use A* algorithm to obtain shortest path from P to the next pickup/drop point Q. 
Step 12: Append path X to P with this new shortest path from P to Q. 
Step 13:  Implement dominance tests on the newly generated route to maintain Pareto Optimality. 
Step 14: End of Step 10 Loop 
Step 15: End of Step 9 Loop 
Step 16: Combine n Pareto optimal chromosomes with another set of k random chromosomes from 
 the pool for a total of q chromosomes. 
Step 17: gen = gen + 1 
Step 18: Go to Step 7 till gen < max_gen  
Step 19: Print n Pareto optimal solutions 
Step 20: Exit 

The A* algorithm functions in the following manner: 

Step 1: Insert starting node into Open List (OL) 
Step 2: Retrieve the first node of OL as the current node (CN) 
Step 3: If CN is the destination node, then exit 
Step 4: Explore the neighboring nodes of CN 
Step 5: Set CN as their parent and calculate valuation functions 
Step 6: If neighbors of CN are not present in Closed List (CL) 
Step 7: Insert neighbors of CN in OL in increasing order of valuation functions. 
Step 8: Remove CN from OL and add to CL.  
Step 9: Go to Step 2. 

where X is the starting point of first passenger (marked A in Figures 2–4),  
Y is the destination of the first passenger (marked a in Figures 2–4), 
P is the current node being processed (marked P in Figure 4),  
Q is the next node to be serviced which may be a pickup point or a drop point (marked Q in Figure 4). 

Step 1 of the algorithm reads the passenger request log. The log comprises of the name of the 
passenger and his geographical location of pickup and drop points. Once the passenger’s pickup 
location is within radius t kms, he is selected and his pickup and drop locations are assigned as the 
route’s start and end points, X and Y respectively. Step 5 generates random routes between these two 
points X and Y and creates the chromosome pool. Step 6 marks the beginning of the Genetic 
Algorithm. The typical operations of GA, i.e. selection (here rank selection has been used), crossover 
(ordered crossover has been used) and mutation (creep mutation) has been performed. Step 8 focuses 
on use of Pareto Optimality for solving multi-objective optimization problems and the utilization of 
the dominance test to generate Pareto Optimal results. As explained earlier, after the GA routes are 
obtained an improvisation is done using the A* algorithm to obtain shorter routes. The main objective 
of this improvisation is to obtain the shortest path using A* algorithm from the current node to the 
next node to be serviced (pickup/drop). The obtained results are subjected to dominance test to obtain 
Pareto Optimal results. This is performed using steps 9 to 15. The process is then repeated for 
a specified number of generations to refine the results obtained thus far. 

Coming to the A* algorithm, the open list contains the nodes that are not yet accessed and may 
be visited. The closed list contains the nodes that have already been visited. At the beginning, both the 
open list and closed list are empty. Step 1 of the algorithm adds the starting node to the open list. 
Step 2 retrieves the topmost node of the open list, i.e., the node with the lowest value of the valuation 
function and sets it as the current node (CN). Step 3 checks whether the current node is the destination 
node. If so, the path is complete, and the algorithm is terminated. In steps 4 and 5, the valuation 
functions of the neighboring nodes of the current node are calculated. In steps 6 and 7, the neighbors 
which are not present in the closed list are updated in the open list with their positions in the open list 
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determined by the valuation function. A smaller value is placed nearer to the top because the smaller 
value denotes a tendency for the path through that node to be shorter. Step 8 adds the current node to 
the closed list and the algorithm is executed again from step 2. 

For each generation of GA, the routine represented in Figure 5 is executed to select the 
passengers served along each route. This is done as part of the Rank Selection procedure. The fitness 
score is defined as the ratio of the length of the route and the number of passengers served. Each 
chromosome is assigned a fitness score. The following sub-functions / data structures are used to 
generate the passenger list (i) passenger request: stores the pickup and drop-off points of passenger, 
(ii) serviceable request: A passenger request R whose pickup point is in the neighborhood of a node 
in the route and the drop-off point of the request is in the direction the car’s journey. The total detour 
of such a request from the initial route should not exceed the predetermined threshold value, 
(iii) request-list: A list to store all the passenger requests that is served by the car while travelling 
from X to Y (iv) service-list: A list to store the pickup and drop-off points in the order that they are 
serviced (v) base route: It is the route generated by the GA, (vi) occupancy: It is the number of 
passengers currently present in the car. The maximum permissible occupancy is four. 

For each node in the base route, the request-list is searched for nearby drop-off points. If a drop-
off exists, the drop-off point is added to the service-list and the occupancy is reduced by one. If the 
occupancy is less than the maximum permissible limit, the global request pool is then searched for 
nearby serviceable requests. If found, the request is added to the request-list, the occupancy 
incremented by one, and its pickup point is added to the service-list. Standard algorithms have been 
used for ordered crossover and creep mutation.  

 

 
Fig. 5. Diagrammatic representation of the passenger selection module 

4. Experimentation and results 

The map of Salt Lake area of Kolkata has been used as a prototype to implement this algorithm. 
The map was divided into 116 junction points or nodes. The Google Map API was used to obtain the 
actual distance between the nodes and a corresponding distance matrix was created. A request matrix 
was dynamically generated and used by the algorithm to generate routes. The initial request was 
randomly generated. 



A hybrid multi-objective carpool route optimization technique…  

 _______________________________________ 2021, Т. 13, № 1, С. 67–85 ______________________________________  

77

On executing the program code, the following results are obtained. 

Table 1. The data displayed in the above table represents the result of a particular execution 

GA Route GA-A* Route Occu-
pancy

Total 
Dist. 
GA 

Total 
Dist. 

GA-A*

Detour 
GA 

Detour 
GA-A* 

Improve-
ment in 
distance 

73|84|92|93|105|106| 
107|115| 

73|84|92|93|105|106|112|106|103|
106|112|115| 

5 7280 4320 4300 1400 40.66% 

73|84|92|93|94|93| 
105|106|112|115| 

73|84|92|93|105|102|94|95|94|93| 
105|106|112|106|103|106|112|115|

6 9120 6220 5600 3300 31.80% 

73|60|73|84|92|93| 
105|106|107|115||  

73|84|92|93|105|106|112|106|103|
106|112|115| 

5 7880 4320 4300 1400 45.18% 

73|84|92|108|109| 
112|115| 

73|84|92|93|105|106|112|106|105|
106|112|115| 

4 8020 4420 4400 1500 44.89% 

73|84|92|108|109|112|
109|112|109|112|115| 

73|84|92|93|105|106|112|106|105|
106|112|115| 

5 11420 4420 6000 1500 61.30% 

73|84|92|93|105|102| 
94|102|103|104|107| 
106|105|109|112|115|  

73|84|92|93|105|102|103|102|94| 
95|94|102|105|102|103|97|103| 
106|107|106|112|106|103|106|105|
109|112|115 

10 15760 9680 10060 6760 38.58% 

73|74|61|74|73|84|92|
108|109|112|115| 

73|74|61|74|86|87|95|94|93|105| 
106|112|115|  

4 9120 3880 3600 960 57.46% 

73|74|73|84|92|93|94|
85|94|93|105|109|112|
106|107|115| 

73|84|92|93|105|102|94|95|87|95| 
94|93|105|109|112|106|105|102| 
103|106|112|115| 

7 14230 7540 7900 4620 47.01% 

73|84|92|84|92|108| 
92|108|109|112|115| 

73|84|92|93|105|109|105|93|92|93|
105|106|112|106|105|106|112|115|

5 12620 6720 5800 3800 46.75% 

73|84|92|84|73|74|86|
88|86|88|89|90|91|97|
103|106|107|106|112|
115||  

73|84|92|93|92|84|73|74|75|76|77|
78|79|80|98|104|103|106|105|102|
103|106|112|106|105|106|105|109|
112|115 

9 17640 11570 10560 8650 34.41% 

 
A single execution of the proposed algorithm generates several non-dominated solutions which 

are all equally good. Table 1 lists all such feasible non-dominated routes between starting location 73 
and end location 115. The other columns of the table provide a comparative study with respect to the 
detours and total distance of the routes provided by the GA and the GA-A* algorithms. As seen in 
Figure 4, the solid lines represent the distances obtained using the existing algorithm [Beed et al., 
2020] and the route is given in Column 1, the route distance in Column 4 and the detour distance in 
column 6, measured in metres. Column 2 represents the route obtained using the dotted line in the 
same figure, columns 5 represents the route distance using the proposed hybrid GA-A* algorithm. 
Column 7 gives the detour distance which has been calculated as the difference between the total route 
distance displayed in column 5 and the shortest distance between the between the start and end points 
of the request. Although the routes under the Column 1 appears to contain a fewer number of nodes 
and hence, by intuition, should have a lesser total distance, it is to be noted that these routes just 
represent the basic travel path of the car and does not take into account the detours for picking up and 
dropping off passengers, which need to be added to the main route distance while assessing total 
distance and cost. Since the routes generated by the GA-A* algorithm includes the pickup and drop-
off points of the passengers, there is no additional detour. The following chart (Figure 6) displays the 
percentage improvement in the total distance of the routes over a single execution for ten different 
routes after being optimized using the GA-A* algorithm (Column 8 of Table 1). 
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Fig. 6. Percentage improvement in Distance over a single execution 

Statistical Analysis for comparison of Results obtained by Hybrid GA-A* algorithm  
and existing GA 

The box plots in Figure 7 clearly show consistently lower values for total distance using the 
proposed algorithm as compared to the existing GA in ten different routes generated using a single 
run. Also, the variability in the values of total distances by GA-A* as compared to that of GA is less. 

The box plots in Figure 8 clearly show consistently lower values for detour distances using the 
proposed algorithm as compared to the detour distances obtained using the existing GA for ten 
different routes generated in a single execution between the same start and end points. It is also noted 
that on an average, the total distance and the detour in case of the proposed GA-A* algorithm are 
clearly less than the existing GA algorithm. The above observations are confirmed using statistical 
tests given below: 

Table 2. Two-sample t test for Total_Dist GA vs Total_Dist GA-A* 

 N Mean StDev SE Mean 
Total_Dist GA 10 11309 3629 1148 

Total_Dist GA-A* 10 6309 2618 828 
 
Difference = mean (Total_Dist GA) – mean (Total_Dist GA-A*) 
t-Test of difference = 0 (vs >): t-Value = 3.53, P-Value = 0.001 

 
Fig. 7. Showing boxplots of total distance using GA and total distance using GA-A*. The distances represented 
along the y-axis are in meters 
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Fig. 8. Showing boxplots of Detour distance using GA and Detour distance using GA-A*. The distances 
represented along the y-axis are in meters 

 
p-value clearly indicates rejection of the null hypothesis that there is no difference in the mean 

total distances against the greater than type alternative hypothesis at 5% level of significance. Hence 
we conclude that the average total distance by GA is significantly greater than the average total 
distance under the proposed algorithm under 5% level of significance. 

Table 3. Two-sample t test for Detour GA vs Detour GA-A* 

 N Mean StDev SE Mean 
Detour GA 10 6252 2462 779 

Detour GA-A* 10 3389 2618 828 
 
Difference = mean (Detour GA) – mean (Detour GA-A*) 
t-Test of difference = 0 (vs >): t-Value = 2.52, P-Value = 0.011  

 
p-value clearly indicates rejection of the null hypothesis that there is no difference in the  

mean total detour distances against the greater than type alternative hypothesis at 5% level of 
significance. Hence, we conclude that the average total detour distance by GA is significantly  
greater than the average total detour distance under the proposed algorithm under 5% level of 
significance. 

A simulation run of twenty different executions has revealed that the average GA-A* distance 
triumphs over the average total distance provided by GA in all executions, thus providing evidence 
that the routes have been optimized while maintaining an identical level of occupancy. The following 
table records the observed average total travel distance of the routes selected by the GA and the routes 
improvised by the GA-A* Hybrid algorithm for each of the 20 executions. 

The following chart (Figure 9) uses the data from Table 4 to compare the average Total GA 
Distance and GA-A* Distance for 20 different executions of the algorithm.  

The following chart (Figure 10) uses the data from Figure 9 to demonstrate the percentage 
improvement in the average distance per execution obtained on using the A* algorithm to optimize the 
routes generated by the GA. 

The following three charts (Figures 11, a–c) compare the distance of the route generated by the 
GA and the corresponding route generated by GA-A* for three different iterations. It can be observed 
that every route in each iteration is shortened after optimization using the A* algorithm. 
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Table 4. Data for Average Total GA Distance and Average GA-A* distance for 20 executions 

Execution 
No 

Average 
Total GA 
Distance 

Average 
GA-A* 
Distance 

Improvement 
in Hybrid 
Algorithm 

Execution 
No 

Average 
Total GA 
Distance 

Average 
GA-A* 
Distance 

Improvement 
in Hybrid 
Algorithm 

1 16169 12775 21% 11 19851 12938 35% 
2 2257 1905 16% 12 14809 9954 33% 
3 6058 3330 45% 13 24684 16856 32% 
4 25667 13837 46% 14 13189 8068 39% 
5 17724 13708 23% 15 13104 9928 24% 
6 15808 11823 25% 16 29620 16988 43% 
7 2882 2122 26% 17 3139 2614 17% 
8 3084 1203 61% 18 9925 6674 33% 
9 5302 3950 25% 19 20810 11830 43% 

10 13081 6178 53% 20 13106 9454 28% 
 

 
Fig. 9. Comparison of the average distance per execution of GA and GA-A* for 20 executions 

 
Fig. 10. Percentage improvement in Distance over 20 executions 
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Fig. 11. Distances of the routes generated by GA and GA-A* in different instances of execution 

Statistical Analysis for comparison of Results obtained  
by Hybrid algorithm and existing algorithm 

The box plots (Figure 12) are clear indicating lesser average distances by the proposed algorithm 
as compared to the existing GA algorithm. The proposed algorithm, having lesser spread in the values, 
seems to be more consistent than the existing one. Statistical test to confirm the above observations are 
given below: 
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Table 5. Two-sample t test for average Total_Dist in GA vs average Total_Dist in GA-A* in 20 independent 
runs 

 N Mean StDev SE Mean 
Total_Dist GA 20 13513 8110 1813 

Total_Dist GA-A* 20 8807 5074 1135 
 

Difference = mean (Average Total_Dist_GA) – mean(Average Total_Dist_GA-A*) 
t-Test of difference = 0 (vs >): t-Value = 2.20 , P-Value = 0.018 
 

p-value clearly indicates rejection of the null hypothesis that there is no difference in the mean 
total distances against the greater than type alternative hypothesis at 5% level of significance in 20 
independent runs of the algorithms. Hence it can be concluded that the average total distance by GA is 
significantly greater than the average total distance under the proposed algorithm under 5% level of 
significance. 

 
Fig. 12. Boxplots of average total distances generated using GA and that using hybrid GA-A* for 20 executions. 
The distances represented along the y-axis are in metres 

5. Conclusion 

The carpooling or ride-sharing algorithms proposed in the past have focused mainly on the 
shortest route to generate maximum profit though the real life scenario has clearly indicated there are 
multiple factors which influence this passenger and route selection. The hybrid algorithm proposed in 
this paper adds a new concept of considering multiple conflicting objectives to solve the carpooling 
problem in a hierarchical manner. This hierarchical structure has a better resemblance of the reality. 
Pareto-optimal technique has been preferred over the popular weighted sum technique for solving 
multiple conflicting objectives as the latter suffers from certain drawbacks. Genetic Algorithm has 
been used to generate optimal results and routes have been refined over generations. To these routes, 
A* algorithm has been applied to further reduce the route distances. The simulated experiments 
conducted by this model to provide car-pooling routes in a real road map proved that the proposed 
Hybrid algorithm, using both GA and A* algorithms, provides more optimal routes than in the case 
where only GA is used. Also, on an average, the total distance and the detour in case of the proposed 
algorithm are clearly less than the existing GA algorithm. So, this work has successfully contributed in 
producing a hybrid algorithm that can be used for real life carpooling situations to provide time 
efficient results, for both the users and the service provider.  
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From the results it is clear that the routes generated by the existing genetic algorithm are 
generally longer and the cars have to retract back to the point of diversion to return to the original 
route after completing the pick-up/drop. However, in real life, it might not be feasible to retract back 
to the original route. This shortcoming is greatly improved by using the A* algorithm to reroute and 
optimize the original route. As is evident from the results that have been provided, the optimization 
provides vast improvements on the previously observed results. This mainly stems from the fact, that 
A* is an algorithm that emphasizes finding the shortest possible route between two points while 
limiting the computations to a minimum. The new route that is generated includes the pick-up and 
drop-off points of the passengers while maintaining the same level of occupancy, thus providing 
shorter paths. This, in turn, decreases the overall travel of the car, thus ensuring shorter trip times for 
passengers as well as lesser fuel cost on the part of the driver. This also deals with the negative aspect 
of having to return to the point of deviation, in cases where it is completely unnecessary. This presents 
a more practical approach to determining the route thus making the algorithm implementable in the 
real world. 

According to the above experiments and observations, the paths generated by the Genetic 
Algorithm are not generally the shortest as these paths initially do not include the pick-up and drop-off 
distance of the passengers. As a result, the cars must take various detours by deviating from the main 
route to pick-up or drop-off a passenger and then again return back to the point of deviation. GA 
generates final paths which are comparatively longer than the paths generated by the optimized  
GA-A* algorithm. Secondly GA requires considerably longer time to generate the route which is 
considerably reduced by using A* algorithm. The model proposed by this work can be further 
improved by taking into consideration various other conflicting objectives like (i) Traffic lights: 
Larger number of crossings and/or traffic lights along the route may cause congestion and thus loss of 
time. (ii) Road networks: Aspects like blockage of various roads, or restricted movements of vehicles 
in particular directions, (iii) Road surface quality: This may also be a factor affecting the choice of 
routes and can sometimes be very important to reduce the total travel time and (iv) Congestion: There 
might be an enormous amount of traffic congestion along the shortest route whereas the longer routes 
may have lesser traffic. 
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