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A cluster method of mathematical modeling of interval-stochastic thermal processes in complex electronic 

systems (ES), is developed. In the cluster method, the construction of a complex ES is represented in the form of 
a thermal model, which is a system of clusters, each of which contains a core that combines the heat-generating 
elements falling into a given cluster, the cluster shell and a medium flow through the cluster. The state of the 
thermal process in each cluster and every moment of time is characterized by three interval-stochastic state vari-
ables, namely, the temperatures of the core, shell, and medium flow. The elements of each cluster, namely, the 
core, shell, and medium flow, are in thermal interaction between themselves and elements of neighboring clus-
ters. In contrast to existing methods, the cluster method allows you to simulate thermal processes in complex 
ESs, taking into account the uneven distribution of temperature in the medium flow pumped into the ES, the con-
jugate nature of heat exchange between the medium flow in the ES, core and shells of clusters, and the interval-
stochastic nature of thermal processes in the ES, caused by statistical technological variation in the manufacture 
and installation of electronic elements in ES and random fluctuations in the thermal parameters of the environ-
ment. The mathematical model describing the state of thermal processes in a cluster thermal model is a system of 
interval-stochastic matrix-block equations with matrix and vector blocks corresponding to the clusters of the 
thermal model. The solution to the interval-stochastic equations are statistical measures of the state variables of 
thermal processes in clusters — mathematical expectations, covariances between state variables and variance. 
The methodology for applying the cluster method is shown on the example of a real ES. 
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В работе разработан кластерный метод математического моделирования интервально-стохастичес-
ких тепловых процессов в сложных технических, в частности электронных, системах (ЭС). В кластерном 
методе конструкция сложной ЭС представляется в виде тепловой модели, являющейся системой класте-
ров, каждый из которых содержит ядро, объединяющее в себе тепловыделяющие элементы, попадающие 
в данный кластер, оболочку кластера и поток среды, протекающий через кластер. Состояние теплового 
процесса в каждом кластере и в каждый момент времени характеризуется тремя интервально-стохасти-
ческими переменными состояния, а именно температурами ядра, оболочки и потока среды. При этом 
элементы каждого кластера, а именно ядро, оболочка и поток среды, находятся в тепловом взаимодейст-
вии между собой и элементами соседних кластеров. В отличие от существующих методов кластерный 
метод позволяет моделировать тепловые процессы в сложных ЭС с учетом неравномерного распределе-
ния температуры в потоке среды нагнетаемой в ЭС, сопряженного характера теплообмена между пото-
ком среды в ЭС, ядрами и оболочками кластеров и интервально-стохастического характера тепловых 
процессов в ЭС, вызванного статистическим технологическим разбросом изготовления и монтажа элек-
тронных элементов в ЭС, и случайными флуктуациями тепловых параметров окружающей среды.  
Математическая модель, описывающая состояния тепловых процессов в кластерной тепловой модели, 
представляет собой систему интервально-стохастических матрично-блочных уравнений с матричными 
и векторными блоками, соответствующими кластерам тепловой модели. Решением интервально-стохас-
тических уравнений являются статистические меры переменных состояния тепловых процессов в кла-
стерах — математические ожидания, ковариации между переменными состояния и дисперсии. Методика 
применения кластерного метода показана на примере реальной ЭС.  
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1. Introduction 

Thermal design of complex electronic systems (ES) may be adequate when methods of mathe-
matical and computer modeling of thermal processes allow modeling [Sergeyev, Khadakov, 2012; 
Kuuse et al., 2005; Madera, Kandalov, 2016; Madera, 2018; Madera, 2019]: 

• complex ES structures characterized by structural versatility and a large number of both elec-
tronic (active) heat-generating elements (processors, integrated circuits (IC), electric and radio 
elements (ERE)), and structural (passive) heat-dissipating elements (electrical connectors that 
do not consume ERE power, fixing elements, etc.); 

• physical processes arising when the ES is operating, namely, thermal processes and the result-
ing thermal feedback, thermal stress and heat exchange in the fluid flow; 

• impact of destabilizing (chemical, radiation, vibration and mechanical) and climatic factors, 
• thermal and electric processes under the conditions of interval-stochastic uncertainty of the 

physical and structural factors shaping these processes.  
A mathematical model describing thermal and associated physical processes in complex ES is 

a system of time-dependent, non-linear, interval-stochastic differential equations in partial derivatives, 
including equations of motion and energy in the cooling fluid flow both inside, and outside of the ES. 
Considering that the number of equations in the mathematical model is comparable with the number of 
elements in the ES, the solution to the model is extremely difficult in mathematical and computational 
aspects, even when modern supercomputers are used. The hierarchical method of modeling of thermal 
processes in complex ES developed in [Madera, 2019] allows overcoming the above-mentioned diffi-
culties, simplifying the mathematical model significantly and reducing the number of equations, in-
cluding computer computations and RAM memory consumed.  

Thermal processes in the ES structure depend on the energy consumption by active (heat-
generating) elements and heat exchange between active and passive elements in the cooling fluid 
(air or liquid) flow inside the ES. While mathematical modeling of liquid cooling in the ES by the 
liquid flow forced via the channels of the structure has been developed in sufficient details [Ellison, 
2011; Dulnev, 1971; Spolding et al., 1990; Schlichting et al., 2017], mathematical modeling of the 
heat exchange between ES elements in the air flow forced through the ES case still requires to be 
solved and brought to the methodological ES design level. When an ES is designed, despite that heat 
dissipation power in the ES is uneven, it is usually assumed that the temperature of the fluid flow is 
distributed across the ES evenly or linearly. In the first case, the temperature of the fluid is consid-
ered to be isothermal and equal to a mean temperature determined as the arithmetic mean value be-
tween the inlet and outlet temperatures of the ES [Ellison, 2011; Dulnev, 1971]. In the second case, 
it is a priori assumed that the relationship between the air temperature and the distance passed by the 
fluid flow from the inlet to the outlet of the ES is linear [Madera, 2019]. At low flow rates and small 
ES dimensions, the assumption about mean fluid temperature or linear distribution of the tempera-
ture in the ES may in a number of cases give acceptable for the thermal design practice results, 
however, at high fluid flow rates (but with a Mach number < 1) and at larger ES dimensions, distri-
bution of the temperature in the air flow may differ significantly from a linear, and even more, an 
isothermal one. 

It should be noted that difficulties in mathematical modeling of heat exchange between the fluid 
flow forced through the ES and the active elements of the same are caused, firstly, by a an extremely 
complicated chaotic motion of the fluid flow via the network of channels formed by the structural and 
electronic elements of the ES, which channels have various shapes, directions and cross sections, sec-
ondly, by the interval-stochastic nature of the heat exchange in the fluid flow, and, thirdly, by the con-
jugate nature of the heat exchange, where the interaction between a heated element and the flow en-
thalpy is mutually conditioning, thus closing the feedback loop.  

The air flowing via a network of channels between active heat-generating and passive elements in 
the ES accumulates heat, thus increasing its enthalpy (heat content), which is then transferred and 
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conveyed to ES elements and results both in additional heating, and an increase in the flow enthalpy. 
Therefore, the distribution of temperature in the fluid flow going through ES elements from the inlet to 
the outlet of the ES will be significantly different from an isothermal or a linear one.  

This paper describes a cluster method of mathematical modeling of conjugate interval-stochastic 
thermal processes in complex ES. The method is based on representation of a complex ES structure 
by a thermal model as a system of clusters, each of which contains a core that combines heat-
generating elements falling into a given cluster, a cluster shell, and fluid flow through the cluster. The 
state of the thermal process in each cluster is characterized by three state variables, namely, tempera-
tures of the core, shell, and fluid flow in the cluster. The cluster approach allows simulating distribu-
tion of the temperature in the air forced through the ES, temperature of active heat-generating and 
passive heat-dissipating elements of the ES, and distribution of the temperature in the ES case. Inter-
val-stochastic thermal processes are analyzed using the author’s method of obtaining equations 
for statistical measures of the thermal process — mathematical expectations, covariances and vari-
ances. Application of the method is shown through an example of modeling of an interval-stochastic 
thermal process in a real ES (computer system). The statistical measures produced using the method 
are easily programmed and embedded in automated ES thermal design systems [Madera, 
Reshetnikov, 2017]. 

2. Cluster thermal and mathematical models  
of interval-stochastic thermal processes in ES 

The thermal model of the ES used in the analysis and modeling of thermal conditions in complex 
ES is a system of N isothermal bodies (Fig. 1, a) [Ellison, 2011; Dulnev, 1971; Madera, Kandalov, 
2016], in which both solid-state active and passive elements of the ES structure, and the fluid inside 
the ES case, whose temperature is assumed to be equal to the arithmetic mean value of the inlet and 
outlet fluid flow temperatures in the ES, are isothermal. At low rates and small ES dimensions, such 
an assumption is perfectly reasonable for the engineering ES thermal design practice, however, at 
higher fluid flow rates (but with a Mach number < 1) or larger ES dimensions, distribution of the tem-
perature in the air flow may be significantly different from an isothermal one. 

In a cluster thermal model, a complex ES structure is divided into clusters 1,2, ,k K= …  
(Fig. 1, b), each of which contains a core that combines active elements falling into a given cluster, 
a cluster shell, and fluid surrounding the core and the shell. In real ES structures active and passive 
elements are in conductive thermal interaction with each other carried out through multiple solid-state 
connecting, fixing and mounting elements (printed circuit boards, electrical connectors, heat 
dissipators, etc.), and in convective heat exchange with the fluid flow forced through the cluster and 
radiant heat exchange between the elements and the fluid flow in the cluster, with additional convec-
tive and radiant heat exchange with the environment on the outer surface of the cluster shell. Thus, the 
temperatures of the elements and the environment rapidly mix and equalize in local ES structure vol-
umes, therefore the volume and the shape of each individual cluster may be selected such that it may 
be assumed, with an accuracy sufficient for the engineering practice, that the temperatures of the core, 
shell and fluid within a single cluster are isothermal. A complex ES structure is divided into clusters, 
and the size of the clusters is selected by reference to specific features of the given ES structure, objec-
tives, assumed accuracy of modeling and so that in the resulting clusters, the temperatures of the core, 
shell and fluid flow going through the cluster might, with an accuracy sufficient for the engineering 
practice, assumed to be isothermal. 

The state of the thermal process in each cluster ,k  1,2, , ,k K= …  at any specific time is fully de-
termined by three state variables, namely, the temperature of the core, the temperature of the shell and 
the temperature of the fluid. Thermal processes in real ES, as shown in research papers [Madera, 
Kandalov, 2016; Madera, Kandalov, 2020], are interval-stochastic ones on account of statistical pro-
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cess variation in the manufacture and installation of electronic elements in ES and random fluctuations 
in the thermal parameters of the environment. Therefore, isothermal temperatures of the core, shell 
and fluid in the k-th cluster are interval-stochastic and equal to , ( , ),c kT t ω  , ( , ),s kT t ω  ( ), ,a kT t ω  respec-
tively, where ω  is elementary events from the space of elementary events Ω  in the probability space 
{Ω, , },U P  U  is σ-algebra of subsets Ω,  P is probability in U  [Adomian, 1983; Pugachev, 1962]. 
The fluid flows to the inlet of the k-th cluster and flows out of the cluster with interval-stochastic tem-
peratures ( ), , ,a in kT t ω  and ( ), , , ,a out kT t ω  respectively. Being a combination of active heat-generating 
elements, the core of each k-th cluster consumes total interval-stochastic power ( )k ωΦ  evenly distrib-
uted across the volume of the cluster’s core. 

The core, shell and fluid flow are in thermal interaction within a cluster not only between each 
other (Fig. 1, b), but also with the core, shell and fluid of the neighboring clusters and the environment 
outside of the shell having an interval-stochastic temperature ( ).eT ω  

Thermal interaction between the cores and between the ends of the contacting shells of the 
neighboring clusters ,k  1k −  and ,k  1k +  results from the conductive heat exchange carried out 
through solid-state links and connections, and convective and radiant heat exchange with the common 
fluid flow through the clusters. This is a consequence of interaction between the heated cores and 
shells and the fluid flow from through the cluster system when the enthalpy (heat content) of the fluid 
grows and is further transferred and conveyed to downstream clusters. This leads both to additional 
heating of the cores and shells of the clusters and increment in the enthalpy of the fluid flow, and cor-
relation relationship between interval-stochastic thermal processes developing in the clusters of the 
system.  

 
 (a) (b) 

Fig. 1. A cluster thermal model of an ES (a) and a fragment of the system consisting of k – 1, k, k + 1-th clus-
ters (b). Legend: , ( , ),c kT t ω  , ( , ),s kT t ω  ( ), ,a kT t ω  are interval-stochastic isothermal temperatures of the core of 

the k-th cluster, shell of the cluster and fluid flow in the cluster; , , ),( ,a in kT t ω  , ( ),a inT ω  ( )eT ω  are interval-
stochastic fluid temperatures at the inlet of the k-th cluster, inlet of the ES and environment outside of the shell 
of the cluster; l  is the direction of the fluid flow; )(k ωΦ  is the total interval-stochastic heat generation power 
in the k-th cluster, 1,2, ,k K= …   
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The mathematical model describing interval-stochastic processes in the cluster thermal model 
(Fig. 1) is based on the following conditions:  

• the fluid inside the cluster shell is incompressible; the fluid flow rate changes along the flow 
direction (l, Fig. 1) and has constant cross section; the convective heat flow in the fluid signif-
icantly exceeds the heat flow of the thermal conductivity; the internal heat sources originating 
from the fluid viscosity are small to negligible in comparison with heat generation by active 
elements of the ES; 

• the radiation between the clusters, cores, shells and fluid inside and outside of the clusters is 
insignificant and is not taken into account, as the maximum temperature of elements in real ES 
does not exceed 125 °С; 

• the dependence of thermophysical properties of the materials of solid-state elements of the ES 
and fluid inside and outside of the clusters on the temperature in a real range of the operating 
temperatures of the ES (≤ 125 °С) is small to negligible and not taken into account; 

• interval-stochastic values of heat generation power in cluster cores ),(k ωΦ  ambient tempera-
ture )(eT ω  and inlet temperature of the fluid flow in the ES , )(a inT ω  are statistically inde-

pendent with mathematical expectations ,kΦ  eT  and ,a inT  and variances ,
k

DΦ  
eTD  and 

,a inTD  

known from input data; 
• interval-stochastic processes in clusters, whose state is determined by temperatures , ( , ),c kT t ω  

, ( , ),s kT t ω  ( ), , ,a kT t ω  are independent between each other for any clusters with different num-
bers k  and ,i  k i≠  ( , 1,2, , )k i K= …  and any moments of time, while interval-stochastic tem-
peratures , ( , ),c kT t ω  , ( , ),s kT t ω  ( ), , ,a kT t ω  related to the cluster k  are dependent. 

In these conditions, the mathematical model of conjugate interval-stochastic thermal processes in 
the k-th cluster for each ,ω∈Ω  will be as follows [Madera, 2019]:  

• for the core of the k-th cluster with isothermal temperature ( ), ,c kT t ω  in the state of conductive 

heat exchange with the shell of the cluster with the isothermal temperature ( ), , ,s kT t ω  convec-

tive heat exchange with the fluid flow with the temperature ( ), ,a kT t ω  in the cluster, and con-
ductive heat exchange between the cores and the shells of the neighboring clusters 1k −  
and 1k +  

 
( ) ( ) ( ),

, , , , , , ,
,

, , , , , ,c k
c k c s k c k s k c a k c k a k

dT t
h J T T t J T T t

dt
ω

ω ω− −+ + −   

 ( ) ( ) ( ), 1 , , 1 , , , 1 , 1, , , , , , ,c k c k c k c k c k c k ck c k kJ T T t J T T tω ω ω− − − − + +− + = Φ  (1) 

( ), 0, ( ),c k eT t Tω ω= =  

where , , , ,c k c k c k c kh c Vρ=  is the total heat capacity of the core of the k-th cluster with the densi-

ty , ,c kρ  specific heat capacity , ,c kc  volume , ;c kV  )(k ωΦ  is the aggregate power of the inter-
nal heat sources (power of consumption by active elements) in the core of the k-th cluster; 

( ) ( ) ( )( ), , , , , ,, , , , ,cond
c s k c k s k c s k c k s kJ T T t g T t T tω ω ω− −= ⋅ −  

— the conductive heat flow between the core and the shell of the k -th cluster transferred by 
the conductive heat transfer , ;cond

c s kg −  in the absence of conductive contact between the core and 

the shell , 0;cond
c s kg − =   
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 ( ) ( ) ( )( ), , , , , ,, , , , ,conv
c a k c k a k c a k c k a kJ T T t g T t T tω ω ω− −= ⋅ −   

— the convective heat flow between the core of the k-th cluster and the fluid flow forced н 
through the k-th cluster, , , ,

conv
c a k c a k c a kg Sα− − −=  is the convective heat transfer, ,c a kα −  is the 

heat-exchange coefficient [Ellison, 2011; Spolding et al., 1990], ,c a kS −  is the heat-release sur-
face of the core of the k-th cluster;  

 ( ) ( ) ( )( ), 1 , , 1 , , 1 , , 1 ,, , , , , ,cond
c k c k c k c k c k c k c k c kJ T T t g T t T tω ω ω− − − − − −= ⋅ −   

 ( ) ( ) ( )( ), , 1 , 1 , , 1 , , 1, , , , ,cond
c k c k ck c k c k c k c k c kJ T T t g T t T tω ω ω− + + − + += ⋅ −   

— the conductive heat flows between the cores of the 1k − -th and k-the clusters and between 
the k-the and 1k + -th clusters, , 1 ,

cond
c k c kg − −  and , , 1

cond
c k c kg − +  are the conductive heat transfers; in 

the absence of conductive thermal contact between the adjacent cores of two clusters the heat 
transfers , 1 ,

cond
c k c kg − −  and , , 1

cond
c k c kg − +  are equal to zero; in contrast, in case of an ideal thermal con-

tact between the adjacent cores, the thermal contact resistances , 1 , , 1 ,1 /cond cond
c k c k c k c kR g− − − −=  and 

, , 1 , , 11 /cond cond
c k c k c k c kR g− + − +=  are equal to zero; 

• for the shell of the k-th cluster with isothermal temperature ( ), ,s kT t ω  in the state of conduc-

tive heat exchange with the core of the k-th cluster with mean temperature ( ), , ,c kT t ω  convec-
tive heat exchange with the fluid flow inside the k-th cluster with isothermal temperature 

( ), , ,a kT t ω  convective heat exchange with the environment with ),(eT ω  conductive heat ex-
change with the shells of the neighboring clusters 1k −  and 1k +  

 
( ) ( ) ( ),

, , , , , ,
,

, , , , , ,s k
s k c s k s k s k s e k s k e

dT t
h J T T t J T T t

dt
ω

ω ω− −− + −   

 ( ) ( ) ( ), , , , 1 , , 1 , , , 1 , , 1, , , , , , , , , 0,s a k s k a k s k s k s k s k s k s k s k s kJ T T t J T T t J T T tω ω ω− − − − − + +− − + =  (2) 

 ( ), 0, ( ),s k eT t Tω ω= =   

where , , , ,s k s k s k s kh c Vρ=  is the total heat capacity of the core of the k-the cluster with the den-

sity , ,s kρ  specific heat capacity ,s kc  and volume , ;s kV  

 ( ) ( )( ), , , , (, , , , ,)conv
s e k s k e s e k s k eJ T T t g T t Tω ω ω− −= ⋅ −   

 ( ) ( ) ( )( ), , , , , ,, , , , ,conv
s a k s k a k s a k s k a kJ T T t g T t T tω ω ω− −= ⋅ −   

— the convective heat flows from the external shell surface to the ambient environment and 
from the internal shell surface to the fluid flow inside the k-th cluster, respectively; 

, , ,
conv
s e k s e k s e kg Sα− − −=  and , , ,

conv
s a k s a k s a kg Sα− − −=  are the convective heat transfers with heat-

exchange coefficients ,s e kα −  and ,s a kα −  [Ellison, 2011; Spolding et al., 1990] and the outside 

,s e kS −  and inside ,s a kS −  heat-release surfaces of the shell;  
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 ( ) ( ) ( )( ), 1 , , 1 , , 1 , , 1 ,, , , , , ,cond
s k s k s k s k s k s k s k s kJ T T t g T t T tω ω ω− − − − − −= ⋅ −   

 ( ) ( ) ( )( ), , 1 , 1 , , 1 , , 1, , , , ,cond
s k s k sk s k s k s k s k s kJ T T t g T t T tω ω ω− + + − + += ⋅ −   

— the conductive heat flows between the shells of the clusters 1k − -th, k-th and k-th, 1k + -th 
with conductive heat transfers , 1 ,

cond
s k s kg − −  and , , 1;cond

s k s kg − +  in the absence of the conductive ther-

mal contact between the shells of the adjacent clusters with the heat transfers , 1 ,
cond
s k s kg − −  and 

, , 1
cond
s k s kg − +  are equal to zero, otherwise, in case of an ideal thermal contact between the shells of 

the adjacent clusters, the thermal contact resistances , 1 , , 1 ,1 /cond cond
s k s k s k s kR g− − − −=  and 

, , 1 , , 11 /cond cond
s k s k s k s kR g− + − +=  are equal to zero;  

• for the fluid flow isothermal temperature ( ), ,a kT t ω  in the k-th cluster in the state of convec-
tive heat exchange with the core and shell of the cluster with isothermal temperatures 

( ), ,c kT t ω  and ( ), , ,s kT t ω  respectively [Madera, Kandalov, 2016; Spolding et al., 1990] 

 
( ) ( ) ( )

( )

,
, , , , , , ,

, , , , ,

,
, , , , , ,

, , , 0,

a k
a k c a k c k a k s a k s k a k

a k a k out a k in

dT t
h J T T t J T T t

dt
J T T t

ω
ω ω

ω

− −− + +

+ =
  

 ( ), 0, ( ),a k eT t Tω ω= =  (3) 

where , , , ,a k a k a k a kh c Vρ=  is the total heat capacity of the fluid flow through the k-th cluster 

with the density , ,a kρ  specific heat capacity , ,a kc  volume , ;a kV
 

 ( ) ( ) ( )( ), , , , , , , , , ,, , , , ,a k a k out a k in a k k a k out a k inJ T T t c G T t T tω ω ω= −   

— enthalpy flow of the fluid accumulating heat from the heat-generating elements of the ES in 
the given cluster; , , , , , , , , , , , ,k a k in a k in a k in a k out a k out a k outG S Sρ υ ρ υ= =  is the mass flow of the fluid 

flowing to the inlet of the k-th cluster through the opening with the area , ,a k inS  at the rate 

, ,a k inυ  and with the temperature ( ), , ,a k inT t ω , and flowing out of the k-th cluster through the 

outlet with the area , ,a k outS  at the rate , ,a k outυ  and with the temperature ( ), , , .a k outT t ω  

It should be noted that the constants of the time of thermal processes in the air ( )aτ  and  
solid-state elements ( )sτ  are interrelated to each other as .a sτ τ  Therefore, thermal processes in the 
air run at a significantly higher rate than in sold-state elements, and the temperature setting time in the 
air is significantly shorter that in sold-state elements. In view of this, it may be assumed, with an accu-
racy sufficient for the engineering practice, that the average temperature of the fluid flow within  
a single cluster is correlated to the temperatures of the flow at the input and the output of the  
cluster as ( ) ( ) ( ), , , , ,2 , , ,a k a k out a k inT t T t T tω ω ω−=  [Ellison, 2011; Dulnev, 1971; Madera, Kandalov, 

2016], therefore the flow ( ), , , , ,, , ,a k a k out a k inJ T T t ω  may be written as ( ), , , , ,, , ,a k a k out a k inJ T T t ω =  

( ) ( )( ), , , ,2 , .,a k k a k a k inc G T t T tω ω= −  
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By applying the expressions for the thermal processes to the equations (1), (2), (3), we will get 
a mathematical model of interval-stochastic processes in the k-th cluster: 

• for the core of the k-th cluster 

 

( ) ( ) ( )( )
( ) ( )( ) ( ) ( )( )

( ) ( )( ) ( )

,
, , , ,

, , , , 1 , , 1 ,

, , 1 , , 1

,
, ,

, , , ,

, , ,

c k cond
c k c s k c k s k

conv cond
c a k c k a k c k c k c k c k

cond
c k c k c k c k k

dT t
h g T t T t

dt
g T t T t g T t T t

g T t T t

ω
ω ω

ω ω ω ω

ω ω ω

−

− − − −

− + +

+ ⋅ − +

+ ⋅ − − ⋅ − +

+ ⋅ − = Φ

 (4) 

• for the shell of the k-th cluster 

 

( ) ( ) ( )( ) ( ) ( )( )
( ) ( )( ) ( ) ( )( )

( ) ( )( )

,
, , , , , ,

, , , , 1 , , 1 ,

, , 1 , , 1

,
, , ,

, , , ,

, , 0,

s k cond conv
s k c s k c k s k s e k s k e

conv cond
s a k s k a k s k s k s k s k

cond
s k s k s k s k

dT t
h g T t T t g T t T

dt
g T t T t g T t T t

g T t T t

ω
ω ω ω ω

ω ω ω ω

ω ω

− −

− − − −

− + +

− ⋅ − + ⋅ − −

− ⋅ − − ⋅ − +

+ ⋅ − =

 (5) 

• for the fluid flow in the k-th cluster 

 
( ) ( ) ( )( ) ( ) ( )( )

( ) ( )( )

,
, , , , , , ,

, , , ,

,
, , , ,

2 , , 0,

a k conv conv
a k c a k c k a k s a k s k a k

a k k a k a k in

dT t
h g T t T t g T t T t

dt
c G T t T t

ω
ω ω ω ω

ω ω

− −− ⋅ − + ⋅ − +

+ − =
 (6) 

or in matrix form 

 ( ) ( ) ( ),
, , ,k

k k k k
dT t

H T t P t
dt

ω
ω ω+ ⋅ =G   

 ( ) ( )0, ,k eT t T Iω ω= =  (7) 

where ( ) ( ) ( ) ( )( ), , ,, , , , , ,
T

k c k s k a kT t T t T t T tω ω ω ω=  is the vector of the interval-stochastic tempera-

tures of the core, shell and fluid flow in the k-th cluster; (1, 1, 1 )I =  is the unit vector; 

, , ,diag{ , , }k c k s k a kH h h h=  is the deterministic diagonal matrix of the total heat capacities of the 

core , ,c kh  shell ,s kh  and fluid flow ,a kh  in the k-th cluster; kG  is the deterministic matrix of thermal 
heat transfers of the k-th cluster equal to  

 

(1)
, ,

(2)
, ,

(3)
, ,

,

cond conv
c s k c a kk

cond conv
k c s k s a kk

conv conv
c a k s a k k

g g g

g g g

g g g

− −

− −

− −

⎛ ⎞− −
⎜ ⎟

= ⎜ − ⎟
⎜ ⎟
⎜ ⎟−⎝ ⎠

G   (8) 

 (1)
, , , 1 , , , 1,cond conv cond cond

c s k c a k c k c k c k c kkg g g g g− − − − − += + + +   

 (2)
, , , , 1 , , , 1,cond conv conv cond cond

c s k s e k s a k s k s k s k s kkg g g g g g− − − − − − += + − + +   

 (3)
, , ,2 ;conv conv

c a k s a k a k kkg g g c G− −= − +   
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( ),kP t ω  is the interval-stochastic vector of the right-hand side of the matrix equation (7) 

 ( )
( ) ( ) ( )
( ) ( ) ( )

( )

, 1 , , 1 , , 1 , 1

, , 1 , , 1 , , 1 , 1

, , ,

, ,

, , , .
2 ,

cond cond
k c k c k c k c k c k c k

conv cond cond
k s e k e s k s k s k s k s k s k

a k k a k in

g T t g T t

P t g T g T t g T t
c G T t

ω ω ω

ω ω ω ω
ω

− − − − + +

− − − − − + +

⎛ ⎞Φ + +
⎜ ⎟

= + +⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

 (9) 

After a number of manipulations, and taking into account the recurrence relation 
( ) ( ) ( ), , , , 1,, 2 , ,a k in a k a k inT t T t T tω ω ω−= −  resulting from an obvious equation ( ), , ,a k inT t ω =  

( ), 1, , ,a k outT t ω−=  1,2, , ,k K= …   instead of the equation (7) we will obtain a matrix-block equation 

expressed through the a priori known inlet temperature , )(a inT ω  of the fluid flow in the ES 

 ( ) ( ) ( ),
, ( ),   0, ( ) ,e

dT t
H T t Q T t T I

dt
ω

ω ω ω ω+ ⋅ = = =G  (10) 

where ( ) ( ) ( ) ( )( )1 2, , , , , , , T
KT t T t T t T tω ω ω ω= …  is a block vector of interval-stochastic temperatures 

of clusters, where each k-the vector block is equal to ( ) ( ) ( ) ( )( ), , ,, , , , , ,, 
T

k c k s k a kT t T t T t T tω ω ω ω=  

1,2, , ;k K= …  1 2diag{ , , , }KH H H H= …  is a deterministic block-diagonal matrix of total heat capaci-
ties of clusters, consisting of diagonal matrix blocks , , ,diag{ , , },k c k s k a kH h h h=  1,2, , ;k K= …  

( )1 2( ) ( ), ( ), , ( ) T
KQ Q Q Qω ω ω ω= …  is an interval-stochastic block vector containing a priori  

known cluster power ( ),k ωΦ  temperatures of the ambient environment  ( )eT ω  and fluid flow  
at the inlet of the ES , ( ),a inT ω  where the k-th vector block is equal to ( ),kQ t ω =

 
( )1

, , ,( ),  ( ),2( 1) ;( )
Tconv k

k s e k e a k k a ing T c G Tω ω ω−
−= Φ −  G  is a deterministic block 3 3K K× -matrix of the 

heat transfers of the clusters with the structure 

 

11 12

21 22 23

,1 ,2 ,3

0 0
0

K K K KK

⎛ ⎞
⎜ ⎟
⎜ ⎟= ⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

G G
G G G

G

G G G G

 (11) 

with diagonal matrix blocks ,kkG  1,2, , ,k K= …  equal to matrixes ,kG  as shown in (8), and diagonal 
matrix blocks equal to: 

, 1 , 1 , , 1 , ,diag { ,  ,  4 },cond cond
i i c i c i s k s i a i ig g c G− − − − −=G    2,3, , ,i K= …  

, 1 , , 1 , , 1 ,diag { ,  ,  4 },cond cond
i i c i c i s i s i a i ig g c G+ − + − +=G    1,2, , 1,i K= … −  

,( 1) diag {0, 0,  4 },i j
ij a i ic G−= −G     3,4, , ,i K= …  1,2, , 2.j K= … −  
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3. Determination of equations for interval statistical measures  
of the state variables of interval-stochastic thermal processes  
in clusters 

The states of interval-stochastic measures of thermal processes in the k-th cluster are determined 
by the temperatures of the core ( ), , ,c kT t ω  shell ( ), ,s kT t ω  and fluid flow ( ), , ,a kT t ω  which are fully 
characterized by their statistical measures [Madera, 2020; Madera, Kandalov, 2016], namely: 

• mathematical expectations of the temperatures 

( ) ( )
0

,, { , },c kc kT t E T t ω=    ( ) ( ) ( )
0

, , ,, , ,c k c k c kT t T t T tω ω= −  

( ) ( )
0

,, { , },s ks kT t E T t ω=    ( ) ( ) ( )
0

, , ,, , ,s k s k s kT t T t T tω ω= −  

( ) ( )
0

,, { , },a ka kT t E T t ω=    ( ) ( ) ( )
0

, , ,, , ,a k a k a kT t T t T tω ω= −  

where { }E ⋅  is the mathematical expectation operator; 

• covariance matrix ( ) ( )
0 0

( ) { , ( , ) }T
k kTTK t E T t T tω ω= ⋅  of the vector of state temperatures of the 

k-th cluster ( ) ( ) ( ) ( ), , ,, ( , , , , ;, )T
k c k s k a kT t T t T t T tω ω ω ω=  

• variances 
,

,
c kTD  

,
,

s kTD  
,a kTD  equal to diagonal matrix elements ( ),TTK t  and standard devia-

tions 
,

,
c kTσ  

,
,

s kTσ  
,

.
a kTσ  

The resulting statistical measures T  and Tσ  of the interval stochastic temperature ( ),T t ω  are 

used to find the intervals [ ( ), ( )],bot upT t T t  which will contain real values of the temperatures ( ),T t ω  of 
various clusters in the thermal model of the ES. The lower and the upper limits of the intervals ( )botT t  
and ( )upT t  are 

( ) ( ) ( )bot TT t T t tσ= − ⋅ε  and ( ) ( ),up TT t T tσ= + ⋅ε  

where ε  is a coefficient determined by the confidence level and Chebyshev's inequality [Pugachev, 
1962; Madera, Kandalov, 2016].  

To find the statistical measures of the interval-stochastic temperatures ( ), , ,c kT t ω  ( ), ,s kT t ω  

and ( ), , ,a kT t ω  we will use the method [Madera, Kandalov, 2016; Madera, 2019; Madera, 2020]  
in all clusters of the thermal model, and obtain equations for the statistical measures  
of the interval-stochastic block vector ( ) ( ) ( ) ( )1 2, ( , , , , , , )T

KT t T t T t T tω ω ω ω= …  in all clusters, name-

ly, the vector of mathematical expectations ( ) ( ){ , }T t E T t ω=  and covariance matrix 

( ) ( )
0 0

( ) { , ( , ) }T
TTK t E T t T tω ω= ⋅  of the centered interval-stochastic vector of temperatures 

( ) ( ) ( )
0

, , .T t T t T tω ω= −  

The equation for the vector of mathematical expectations of the temperatures ( )T t  will be ob-
tained right after the mathematical expectation operator has been applied to the equation (10) 

 ( ) ( ) ( ),  0 , e
dT t

H T t Q T t T I
dt

+ ⋅ = = =G  (12) 
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where ( ) ( ) ( ) ( )1 2( , , , )T
KT t T t T t T t= …  is a block vector of mathematical expectations of the tempera-

tures of the clusters (core, shell, fluid), where each vector block is equal to 
( ) ( ) ( ) ( ), , ,( , , ;)T

k c k s k a kT t T t T t T t=  1 2( , , , )T
KQ Q Q Q= …  is block vector of mathematical expectations, 

where each vector block is equal to 1
, , ,( ,   ,  2( 1) .)conv k T

k k s e k e a k k a inQ g T c G T−
−= Φ −  

The equation for the covariance matrix ( )TTK t  will be obtained by subtracting the equation (12) 
from the equation (10): 

 ( ) ( ) ( ) ( ) ( )
0

0 0 0 0,ω
,ω ω ,   0,ω ω ,k e

d T t
H T t Q T t T I

dt
+ ⋅ = = =G   

and applying the method [Madera, Kandalov, 2016; Madera, 2019; Madera, 2020] to the same. This 
will result in the equation for the covariance matrix ( ):TTK t  

 ( ) ( ) ( ) ( ) ( ) ,TT T T
TT TT TQ TQ

dK t
H H K t H HK t HK t K t H

dt
+ ⋅ + ⋅ = +G G   

 ( 0) ,
e

T
TT TK t D I I= = ⋅  (13) 

which is solved along with the matrix-block equation for the covariance matrix ( )TQK t =  

( ) ( )
0 0

{ , ( , ) }TE T t Q tω ω= ⋅  

 
( ) ( ) ( ),  0 ,

e

TQ
TQ QQ TQ T

dK t
H K t K K t D

dt
+ = = =G Q  (14) 

where ( ) ( ) ( )
0 0

{ ( ) }T
QQK t E Q Qω ω=  is square block covariance matrix with diagonal matrix blocks 

equal to 

,, , , , ,diag {0,   ,  4( 1)  },
e a in

conv conv i j
Q ij s e i s e j T a i a j i j TK g g D c c G G D+

− −= −  

,, , , , ,diag { ,  ,  4( 1) };
i e a in

conv conv i j
Q ii s e i s e j T a i a j i j TK D g g D c c G G D+

Φ − −= −  

Q  is rectangular block 3K K× -matrix with rectangular 1 3×  matrix blocks ,(0,  ,0).
e

conv
ij s e j Tg D−=Q  

To find the interval statistical measures for the equations (12), (13), (14), first we need to solve 
the matrix-block equation (12) for mathematical expectations of the temperatures ( )T t  in all clusters, 
then the matrix-block equation (14) for the covariance matrix ( ),TQK t  which will then be applied to 
the equation (13) and solved for the sought correlation matrix ( ).TTK t   

The sets of equations (12), (13), (14) are matrix-block linear differential equations in ordinary 
first-order derivatives, which are solved using known numerical methods. 

4. Application of the cluster method  

Let us consider the application of the cluster method through an example of an ES, which is a de-
vice in a flat case (laptop) and contains four electronic modules (EM) cooled by the air flow forced 
from the environment to the inlet of the ES (Fig. 2). Due to statistical process variation in the manu-
facture of the electronic elements installed in the ES, and, consequently, heat generation power in EM, 
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as well as the stochastic nature of the ambient temperature, thermal processes in the ES are interval-
stochastic ones. The thermal model of the ES contains five clusters with the fourth EM being divided 
into two clusters — the fourth and the fifth ones (Fig. 2). The statistical measures (mathematical ex-
pectation (ME), variation interval (VI), standard deviation (SD)) of the interval-stochastic input data, 
which are entries for modeling, are provided in Table 1.  
 

 
Fig. 2. Electronic system and cluster thermal model. The dashed line shows division into clusters 

Table 1. Statistical measures (ME, VI, SD) of the interval-stochastic input data  
for modeling of thermal processes in ES 

Statistical 
measures 

Temperature of the ambient 
environment and fluid flow 

at the inlet of the ES, °С 
Heat generation power of the ES, W 

( )eT ω  , ( )a inT ω  1( )ωΦ  2 ( )ωΦ  3( )ωΦ  4 ( )ωΦ  5 ( )ωΦ  

ME 23 23 22 10 15 8 14 

VI 19.7÷23.3 19.7÷23.3 17.5÷26.5 7.6÷12.4 12÷18 6.2÷9.8 10.4÷17.6 

SD 1.1 1.1 1.5 0.8 1 0.6 1.2 
 
 
Interval-stochastic thermal processes in the ES have been modeled for stationary (steady-state) 

conditions, described by a stationary mathematical model following from the equations (12), (13), (14), 
namely: 

 , T Q⋅ =G   

 ,T T
TT TT TQ TQK H HK HK K H⋅ + ⋅ = +G G   

 . TQ QQK K=G  (15) 
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The first equation in (15) describes 3 5× -block vector of stationary mathematical expectations 
in five clusters ( ) 1 2 3 4 5( , , , , )TT t T T T T T=  with vector blocks , , ,( , , )T

k c k s k a kT T T T=  containing mathe-
matical expectations of the temperatures of the core, shell and fluid in the k-th cluster, 

1, 2, 3, 4, 5.k =  The first part of the equation is a 3 5×  block vector 1 2 3 4 5( , , , , )TQ Q Q Q Q Q=  with 

vector blocks 1
, , ,( ,   ,  2( 1) ,)conv k T

k k s e k e a k k a inQ g T c G T−
−= Φ −  1, 2, 3, 4, 5.k =  The second equation of the 

set (15) determines a covariance 15 15×  matrix TTK  containing covariances between the tempera-
tures of the core and fluid flow in all five clusters. The equation is solved along with the third equa-
tion in the set (15), which determines a matrix of covariances between the temperatures of the core, 
shell and fluid in all clusters, as well as between the temperatures of the core, shell and fluid in all 
clusters with known reference temperatures of the ambient environment and fluid flow at the inlet of 
the ES. 

Solutions to the mathematical model equations (15) represented by statistical measures, namely, 
mathematical expectations (ME), and minimum (MIN) and maximum (MAX) temperature interval 
values of the core, shell, and fluid in all five clusters are provided in Table 2.  

 
 

Table 2. Modeling results for the temperatures of the core , ,c kT  shell , ,s kT   

fluid ,a kT  (°С) in clusters 1 5k = −  

Statistical 
measures  

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 

,1cT  ,1sT  ,1aT  ,2cT ,2sT ,2aT ,3cT ,3sT ,3aT ,4cT ,4sT  ,4aT  ,5cT  ,5sT ,5aT

ME 76.9 27.4 25.9 64.7 33.4 30 77.3 37.5 32.7 66.7 40.9 35 57.1 42.8 36.2

MIN 62.5 23.2 22 51.6 27.9 25.2 63 31.1 27.3 53.7 33.8 29.1 45.5 35.2 30 2

MAX 91.2 31.6 29.8 77.8 38.9 34.7 91.6 43.9 38 79.7 48 40.8 68.6 50.5 42.4
 

 

Fig. 3 shows the calculated distributions of the mathematical expectation (center line), minimum 
(bottom line) and maximum (top line) of the temperature values of the core and fluid flow in clusters 
along the entire flow path from the inlet to the outlet of the ES. The results obtained are indicative of 
a significant variation of the temperature values of the core, and a little lower variation of the tempera-
ture in the fluid flow. Thus, maximum variation in the temperature of the core (cluster 1) is 28.6 °С, 
while variation in the temperature of the fluid flow (in cluster 5) is 12.4 °С. The reason is that the core 
of a cluster consisting of multiple active elements is heat-generating, while the fluid flow accumulates 
heat from the core. The results also show that the distribution of the temperature in the fluid flow 
along the path to the ES is different from a linear one, therefore the assumption that the distribution of 
temperature in the fluid flow to the ES is of linear nature may not be considered adequate. Interval 
temperature values in the clusters (core, shell, fluid flow) obtained from modeling suggest that any 
temperature from the variation intervals may be observed in operation of real ES of the same type. 
Considering significant dependence of the electrical parameters of ES on temperature, variation of the 
temperature of active elements (processors, integrated circuits) causes variation of electrical parame-
ters. Thus, for a number of processors, an increase in the temperature of the core by 1 grade leads to 
a drop in performance by 3.5%, and considering that in the ES under examination the maximum inter-
val variation in the temperature of the processor (core of the cluster) is almost 30 degrees, the drop in 
performance will be 35%.  
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Fig. 3. Distribution of mathematical expectation (center line), minimum (bottom line) and maximum (top line) of 
the temperature values of the core and fluid flow by clusters k in the thermal model 

5. Conclusion 

The existing methods of modeling of thermal processes in complex ES assume that the distribu-
tion of temperature in the fluid flow forced through the ES is even. However, thermal interaction be-
tween the fluid flow and heat-generating elements in the ES in practice leads to an uneven distribution 
of temperature in the fluid flow. Indeed, the fluid flow inside the ES accumulates heat from heated 
elements, thus increasing its enthalpy, which is further transferred and conveyed to heat-generating 
elements upstream of the flow and causes their additional heating and a growth of the enthalpy of the 
flow resulting in the growth of the fluid temperature at the outlet of the ES over the inlet fluid temper-
ature. Modeling of the heat exchange between the fluid and heat-generating elements in the ES should 
be also be considered in conjugate settings, where the interaction between the fluid and heated ele-
ments leads to a growth of the enthalpy of the flow, which in turn causes heating of elements, thus 
closing the feedback loop. In addition, due to unavoidable process variation in the manufacture and 
installation of elements in the ES, and random fluctuations in the thermal parameters of the environ-
ment, thermal processes in the ES are interval-stochastic ones. Ignoring such factors as uneven distri-
bution of the fluid temperature in the ES, conjugate nature of the heat exchange between the fluid flow 
and heat-generating elements, and interval-stochastic nature of the thermal processes in ES, leads to 
inadequate modeling and significant errors in the ES design, and, eventually, creation of uncompeti-
tive hardware. 

The cluster method of modeling described in this paper allows determination of the distribution of 
temperature in heat-generating elements, ES case and fluid flow considering uneven temperature dis-
tributions, conjugate nature of the heat exchange and interval stochastic nature of the thermal process-
es in the ES. The cluster thermal model of the ES structure is a system of clusters, in each of which the 
state of a thermal process is characterized by three interval-stochastic and isothermal temperatures, 
namely, temperature of the core of the cluster heat-generating elements falling into the given cluster, 
temperature of the cluster shell, and temperature of the fluid flow within the volume of the cluster. All 
elements of an individual cluster (core, shell, fluid) and interacting elements of the neighboring clus-
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ters are in the state of conjugate heat exchange. The cluster mathematical model is based on the cluster 
thermal model being a system of interval-stochastic matrix-block equations with matrix and vector 
blocks corresponding to various clusters of the thermal model. These equations are used to obtain ma-
trix-block equations for statistical measures of the state of stochastic thermal processes in clusters — 
mathematical expectations, covariances between state variables, and variances. Application of the de-
scribed method is shown through an example of a real ES being a computer system containing several 
EM, which are in the state of heat exchange with the cooling fluid flow inside the ES case and the am-
bient environment. 
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