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The Lipschitz continuous property has been used for a long time to solve the global optimization problem
and continues to be used. Here we can mention the work of Piyavskii, Yevtushenko, Strongin, Shubert, Sergeyev,
Kvasov and others. Most papers assume a priori knowledge of the Lipschitz constant, but the derivation of this
constant is a separate problem. Further still, we must prove that an objective function is really Lipschitz, and
it is a complicated problem too. In the case where the Lipschitz continuity is established, Strongin proposed an
algorithm for global optimization of a satisfying Lipschitz condition on a compact interval function without any
a priori knowledge of the Lipschitz estimate. The algorithm not only finds a global extremum, but it determines
the Lipschitz estimate too. It is known that every function that satisfies the Lipchitz condition on a compact
convex set is uniformly continuous, but the reverse is not always true. However, there exist models (Arutyunova,
Dulliev, Zabotin) whose study requires a minimization of the continuous but definitely not Lipschitz function.
One of the algorithms for solving such a problem was proposed by R. J. Vanderbei. In his work he introduced
some generalization of the Lipchitz property named ε-Lipchitz and proved that a function defined on a compact
convex set is uniformly continuous if and only if it satisfies the ε-Lipchitz condition. The above-mentioned
property allowed him to extend Piyavskii’s method. However, Vanderbei assumed that for a given value of ε it
is possible to obtain an associate Lipschitz ε-constant, which is a very difficult problem. Thus, there is a need
to construct, for a function continuous on a compact convex domain, a global optimization algorithm which
works in some way like Strongin’s algorithm, i.e., without any a priori knowledge of the Lipschitz ε-constant.
In this paper we propose an extension of Strongin’s global optimization algorithm to a function continuous on
a compact interval using the ε-Lipchitz conception, prove its convergence and solve some numerical examples
using the software that implements the developed method.
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Introduction

The Lipschitz continuous property is widely used in theoretical research and in solving applied
problems. In particular, being a global property of a function, the Lipschitz continuity can be used to
solve the global optimization problem.

The first studies in which methods for optimizing a Lipschitz continuous function were proposed
are those of S. A. Piyavskii [Piyavskij, 1967; Piyavskij, 1972], Yu. G. Yevtushenko [Yevtushenko,
1971], B. Shubert [Shubert, 1972], and R. G. Strongin [Strongin, 1978]. To date the amount of research
on this topic has increased significantly. Of special note here is the book of Ya. D. Sergeyev and
D. E. Kvasov [Sergeyev, Kvasov, 2008] (see also references therein).

The extension of the class of optimizable functions is of interest. One of the possibilities for such
an extension is proposed in R. J. Vanderbei’s paper [Vanderbei, 1999], where the idea of ε-Lipschitz
functions was represented: a function f(x) defined on a convex domain A ⊂ R

n is ε-Lipschitz if
condition (1) holds:

∀ε > 0 ∃L(ε) < +∞ ∀x, y ∈ A : |f(x)− f(y)| ≤ L(ε) ‖x− y‖+ ε. (1)

In the same work the following theorem was proved: if A is a convex compact domain, then the
continuity of the function on A and the ε-Lipschitz continuity on A are equivalent notions.

Note that the idea of ε-Lipschitz functions is not a trivial extension of the Lipschitz functions
because not every continuous function is Lipschitz, for example, f(x) =

√|x| on (−1; 1). Moreover,
it is well known that a Lipschitz function is almost everywhere differentiable and there are known
examples (in particular, the Weierstrass function [Gelbaum, Olmsted, 2003, p. 39]) of a nowhere
differentiable continuous functions.

Finally, if there are some instruments for estimating the Lipschitz constant, for example,
a function continuous on a compact A gradient, then in the case of ε-Lipschitz functions we have
no such universal analytic tools of finding L(ε) for a given ε > 0. Finding L(ε) as a function of ε > 0
involves enough difficulties as can be seen from the work [Vanderbei, 1999] where an explicit form
of dependence of L(ε) on ε > 0 was obtained for functions f(x) = xα, x ∈ [0; b], 0 < α < 1

and f(x) =
1

lnx
, x ∈ (0; a]; from the work [Arutyunova, 2013] where similar dependences were

established for the function f(x) = min{√|x− a1|+ b1,
√|x− a2|+ b2,

√|x− a3|+ b3}; and from
the work [Arutyunova et al., 2017] in which an estimate of L(ε) was found for f(x) = arcsinx defined
on [−1; 1].

One of the important applications of the ε-Lipschitzian functions is their optimization. Such
problems appear as an auxiliary task in constructing various numerical algorithms for projection of
a point onto a set of a different nature, for example, in [Arutyunova et al., 2017; Zabotin, Arutyunova,
2013; Arutyunova et al., 2014; Chernyaev, 2016; Zabotin, Chernyaev, 2016; Chernyaev, 2015] and are
of interest in their own right: in [Vanderbei, 1999] Piyavskii’s algorithm was extended to ε-Lipschitzian
functions and in [Arutyunova, 2013] the modification of Yevtushenko’s method for the ε-Lipschitz
functions defined on a compact interval was proposed.

However, all works listed above generally assume a priori knowledge of the dependence of
a constant L(ε) on ε > 0, but this requires solving the complicated problem as noted above.

Thus, there is a need to create a numerical algorithm for an approximate evaluation of a minimal
value of the constant L(ε) for a given value of ε > 0. One of the possible methods for solving this
problem is obtained in [Zabotin, Chernyshevskij, 2018].

In this paper, we consider a numerical minimization algorithm for a function continuous on
a compact interval, and this algorithm does not require a priori knowledge of the L(ε) estimate and
extends, in some ways, Strongin’s algorithm [Strongin, 1978; Vasil’ev, 1988].
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Description of the algorithm and its proof

Note that the definition (1) does not guarantee a positive value of L(ε). To avoid negative
values of the L(ε) minimal estimate (which is attained as shown below), we can use a definition
from [Zabotin, Chernyshevskij, 2018]: a function f and a number ε > 0 are conformed on a set A if
there exists a x0, y0 ∈ A such that 0 < ε < |f(x0)− f(y0)|. In [Arutyunova et al., 2014] the value
l(ε) = inf {L(ε)} is introduced, {L(ε)} being the set of L(ε) estimates for a fixed ε > 0. It follows
from Proposition 1 in [Zabotin, Chernyshevskij, 2018] that l(ε) ∈ {L(ε)} and l(ε) > 0 for a function f
conformed on A and ε > 0.

Throughout this paper we suppose that the conformity constraint is met and it is obvious that
this condition can be easily checked.

Algorithm A.
In:
1) a function f(x) continuous on a compact interval [a; b];
2) a value ε > 0 and the function f(x) conformed on [a; b].
Out:
1) an approximate value of f∗ = min

x∈[a;b]
f(x);

2) a point x∗ from [a; b] in which such an approximate value is attained;
3) a lower estimate of the minimal Lipschitz constant l(ε) determined for the function f on [a; b].
Step 0. Pick two points u0 = v0 = a and u1 = v1 = b. Set method parameters ν > 0, μ0 > 1

and a bounded sequence μk > 1, k = 1, 2, . . . (which is a method parameter too). Put k = 1.
Step 1. Calculate the value Lk(ε):

Lk(ε) =

{
μklk(ε), lk(ε) > 0,
ν, lk(ε) ≤ 0,

(2)

where

lk(ε) = max
0≤j<i≤k

|f(ui)− f(uj)| − ε

ui − uj
. (3)

Step 2. For every interval [ui−1;ui] find the characteristic

Rk(i, ε) = Lk(ε)(ui − ui−1) +
(f(ui)− f(ui−1))

2

Lk(ε)(ui − ui−1) + ε
− 2(f(ui) + f(ui−1)), i = 1, . . . , k, (4)

which plays the same role as the value R(i) proposed by Strongin in [Strongin, 1978, p. 79].
Then determine the minimal number s such that:

Rk(s, ε) = max
1≤i≤k

Rk(i, ε), Rk(i, ε) < Rk(s, ε), i = 1, . . . , s− 1. (5)

Step 3. Put Lk
′(ε) = Lk(ε).

Step 4. Calculate

vk+1 =
(us + us−1)

2
− (f(us)− f(us−1))

2Lk
′(ε)

(6)

and check the constraint
us−1 < vk+1 < us. (7)

If condition (7) is not satisfied, then put Lk
′(ε) = μ0Lk

′(ε) and return to step 4. If the constraint is
satisfied, then go to step 5.

Step 5. Check the termination condition (which can be selected arbitrarily). If it is satisfied, then
put f∗ = f(vk+1), x∗ = vk+1, l(ε) = lk(ε) and stop. If the condition is not satisfied, then reindex
points u0, . . . , uk, vk+1 in the order of increasing such that u0 = a < u1 < . . . < uk < uk+1 = b, put
k = k + 1 and return to step 1. The algorithm is formulated.
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Figure 1. A situation where the (next) point vk+1 obtained by the proposed search algorithm satisfies the condition
us−1 < vk+1 < us, i.e., it is inside the current search interval [us−1, us]. This situation is guaranteed for the
Lipschitz functions

Figure 2. A situation where the (next) point vk+1 obtained by the proposed search algorithm does not satisfy the
condition us−1 < vk+1 < us, i.e., it is outside the current search interval [us−1, us]. This situation is possible
because of the ε-Lipschitz condition, but it cannot happen in the case of Lipschitz functions. It is easy to see
from the figure that the inequality vk+1 < us−1 holds

Figure 3. A situation similar to that considered in Fig. 2 when the search point vk+1 satisfies the condition
vk+1 > us

REMARK 1. It is important to note that, as distinct from the case of the Lipschitz functions, the fulfillment
of condition (7) is not guaranteed for every step of the algorithm and it is explained in Figs. 1–3. If the condition
fails, the algorithm can get into an infinite loop, which can take place during the numerical experiments. To
avoid it we involve steps 3 and 4. One may note that step 4 can be done by a finite number of iterations because

for a fixed us−1 and us we have lim
L′

k(ε)→∞
vk =

us + us−1

2
.

The working sequence {Lk(ε)} produced during algorithm A is nondecreasing, starting with
some number k0 such that lk0(ε) > 0 and Lk(ε) > 0 for every k ≥ k0. If this number does not exist,
then Lk(ε) = ν > 0 for every number k.

COMPUTER RESEARCH AND MODELING
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From the construction of Lk(ε), lk(ε) and the definition of l(ε) we have the following
inequalities:

0 < Lk(ε) ≤ max{ν; l(ε) sup
k≥1

μk} < ∞. (8)

Now we formulate and prove Propositions 1 and 2, which extend in a certain way Theorems 1
and 3 in [Vasil’ev, 1988, p. 53–58] to a function which is continuous on a compact interval and is not
necessarily Lipschitz.

Proposal 1. Let a function f be continuous on a compact interval [a; b] and the value ε > 0 and
the function f be conformed on [a; b]. Let the sequence {vk} constructed by the algorithm A, v∗ and w∗
be any limit points of the sequence {vk}. Then the following estimate is correct:

f(v∗)− ε

4
≤ f(vi), i = 0, 1, . . . (9)

and the following inequality holds

|f(v∗)− f(w∗)| ≤ ε

4
. (10)

Proof. The proof is based on the ideas from Theorem 1 in [Vasil’ev, 1988, p. 53–58]. Let us
introduce the following notation:

[um(k)−1;um(k)] is a sequence of intervals, each has point v∗ and an infinite number of points
vk not the same as v∗ and, moreover, um(k)−1 ≤ um(k+1)−1 < um(k+1) ≤ um(k) (k = 1, 2, . . .);

N(v∗) is the set of numbers k ≥ 1 such that um(k)−1 < um(k+1)−1 or um(k+1) < um(k).
Repeating the proof of Theorem 1 in [Vasil’ev, 1988, p. 53-58] because of (5), we have

Rk(m(k), ε) ≥ Rk(i, ε), i = 1, . . . , k, k ∈ N(v∗). (11)

Then,as in [Vasil’ev, 1988, p. 53–58] and taking into account that condition (7) holds for every
point vk, we have

0 < um(k+1) − um(k+1)−1 < um(k) − um(k)−1, k ∈ N(v∗),

and
lim
k→∞

(um(k) − um(k)−1) = 0, lim
k→∞

um(k)−1 = lim
k→∞

um(k) = v∗. (12)

One can easily show that

lim
k→∞

Rk(m(k), ε) = −4f(v∗). (13)

Indeed, if we put in (4) i = m(k) and find the limit (4) increasing k → ∞ (k ∈ N(v∗)) inclusive
of (7), (8), (12) and because of the uniform continuity of f , we obtain (13).

Since we can rewrite the formula (4) as

Rk(i, ε) = (Lk(ε)(ui − ui−1) + ε)

(
1 +

f(ui)− f(ui−1)

Lk(ε)(ui − ui−1) + ε

)2

− 4f(ui)− ε

and

Rk(i, ε) = (Lk(ε)(ui − ui−1) + ε)

(
1− f(ui)− f(ui−1)

Lk(ε)(ui − ui−1) + ε

)2

− 4f(ui−1)− ε,

we have the following inequalities, as in the proof of Theorem 1 in [Vasil’ev, 1988, p. 53–58]:

−4f(ui) + ε < Rk(i, ε) ≤ Rk(m(k), ε)

for every k ∈ N(v∗) and i = 0, 1, . . . , k. From this, as in [Vasil’ev, 1988, p. 53–58], one can show that

f(v∗)− ε

4
≤ f(vi), i = 0, 1, . . . .

Continuing the proof of Theorem 1 in [Vasil’ev, 1988, p. 53–58], we have inequality (10). �

2019, Vol. 11, No. 6, P. 1111–1119



1116 V. I. Zabotin, P. A. Chernyshevskij

The following set U∗ = {u : u ∈ [a; b], f(u) = f∗ = min
x∈[a;b]

f(x)} is introduced in [Vasil’ev,

1988, p. 53–58].

Proposal 2. Let a function f be continuous on a compact interval [a; b]. In addition, let the
following constraint hold in the algorithm A:

Lk(ε) ≥ 2l(ε), (14)

starting with some iteration and v∗ — any limit point of the sequence {vk} constructed by the
algorithm A. Then the following estimate is correct:

f(v∗)− f∗ ≤ ε. (15)

Proof. Repeating the proof of Theorem 3 in [Vasil’ev, 1988, p. 53-58] for some point u∗ ∈ U∗
(ur(k)−1 ≤ u∗ ≤ ur(k), k = 1, 2, . . .) because of the condition (1) (l(ε) ∈ {L(ε)}) and the definition
of the point u∗ ∈ U∗ we have

f(ur(k))− f(u∗) ≤ l(ε)(ur(k) − u∗) + ε,

f(ur(k)−1)− f(u∗) ≤ l(ε)(u∗ − ur(k)−1) + ε.

Summing the inequalities above, we obtain

f(ur(k)) + f(ur(k)−1) ≤ l(ε)(ur(k) − ur(k)−1) + 2f(u∗) + 2ε.

By virtue of the formula (4) and condition (14) we have

Rk(r(k), ε) ≥ Lk(ε)(ur(k) − ur(k)−1)− 2(f(ur(k)) + f(ur(k)−1)) ≥
≥ Lk(ε)(ur(k) − ur(k)−1)− 2l(ε)(ur(k) − ur(k)−1)− 4f(u∗)− 4ε =

= (Lk(ε)− 2l(ε))(ur(k) − ur(k)−1)− 4f(u∗)− 4ε ≥ −4f(u∗)− 4ε.

Hence,
Rk(r(k), ε) ≥ −4f(u∗)− 4ε, k = 1, 2, . . . . (16)

From (15), taking i = r(k) and (16) as in [Vasil’ev, 1988, p. 53–58], we have the following
inequalities:

Rk(m(k)) ≥ Rk(r(k)) ≥ −4f(u∗)− 4ε ≥ −4f(v∗)− 4ε.(k ∈ N(v∗)).

Taking condition (13) into account, we have

lim
k→∞

Rk(m(k)) = −4f(v∗) ≥ −4f(u∗)− 4ε ≥ −4f(v∗)− 4ε

and from this we directly derive the estimate (15). �
REMARK 2. As in [Strongin, 1978; Vasil’ev, 1988], one can show that condition (14) can be guaranteed

by an appropriate selection of the method parameters ν and μk:

ν ≥ 2l(ε), μk ≥ 2
l(ε)

lk(ε)
.

It is clear that if the values of l(ε) and lk(ε) are unknown, then the appropriate selection of ν and μk can
be performed by repeating the algorithm with various method parameters. The work [Zabotin, Chernyshevskij,
2018] can be useful in deriving the estimate of l(ε).

In conclusion, we present some results of the numerical experiments performed by the developed
algorithm.
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EXAMPLE 1. In [Arutyunova, 2013] the minimum of a function

f1(x) = min{
√

|x+ 4| − 1;
√

|x+ 1| − 1.005;
√

|x− 3|+ 0.5}

was found on the intervals [−5; 5] and [−10; 10] by the modified Yevtushenko method with the
previously obtained dependence of the constant l(ε) on the value of ε. By using the proposed
algorithm A for the specified cases, we found the minimum point and the minimal function value
without knowledge of any a priori estimate of l(ε). The computational results are presented in Table 1.
The following values of the method parameters were used: v = 1, μ0 = 2, μk = 2 (k = 1, 2, . . .). For
a given accuracy δ > 0 we chose the following termination condition:{

|f(xk+1)− f(xk)| ≤ δ,

|xk+1 − xk| ≤ δ.

Computational results agree exactly with the results in [Arutyunova, 2013]. For clarification, a function
graph is shown in Fig. 4.

Table 1. The results of minimization of the function f1(x) = min{√|x+4|−1;
√|x+1|−1.005;

√|x−3|+0.5}
by the proposed algorithm. The following notation is used: x∗ is the minimum point derived by the algorithm,
f∗ is the approximate minimum value, Ln(ε) is the approximate estimate of the l(ε) constant, δ > 0 and ε > 0
are method parameters

Interval Accuracy δ > 0 ε x∗ f∗ Number of steps Ln(ε)

[−5; 5]

0.01
0.005 −4.002216430 −0.952921022 97 24.39441821

0.001 −4.284787036 −0.466345583 1058 388.34939613

0.001
0.005 −1.000002183 −1.003522488 309 69.2886888

0.001 −0.999998643 −1.003835130 1534 388.34939613

0.0001
0.005 −1.000002183 −1.003522488 309 69.2886888

0.001 −0.999999993 −1.00491671 1608 413.02619174

[−10; 10]

0.01
0.005 −0.999999692 −1.004445223 379 60.134909

0.001 −3.999518109 −0.978048002 232 38.042857

0.001
0.005 −0.999999696 −1.004448987 498 88.904087

0.001 −0.999998028 −1.003596067 2057 352.695801

0.0001
0.005 −0.999999696 −1.004448987 498 88.904087

0.001 −0.999999938 −1.004751327 2131 363.081258

Figure 4. A graph of the function f1(x) whose global minimum was found by the proposed algorithm
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EXAMPLE 2. We find a minimum for the function

f2(x) =

⎧⎪⎨
⎪⎩
− arcsin(x+ 2), −3 ≤ x ≤ −1,

arcsinx, −1 ≤ x ≤ 0,

− arcsinx, 0 ≤ x ≤ 0.9,

on the interval [−3; 0.9]. In [Arutyunova et al., 2017] for the function arcsin x the l(ε) estimate was
derived. It should be noted again that the results given below do not require knowledge of an a priori
l(ε) estimate. The computational results are presented in Table 2. For clarification, a graph of the
function considered is shown in Fig. 5.

Table 2. Results of minimization of the function f2(x) by the proposed algorithm. The following notation is
used: x∗ is the minimum point derived by the algorithm, f∗ is the approximate minimum value, Ln(ε) is the
approximate estimate of the l(ε) constant, and δ > 0 and ε > 0 are the method parameters

Interval Accuracy ε x∗ f∗ Number of steps Ln(ε)

[−3; 0.9]

0.01
0.005 −0.999999322 −1.569632160 158 193.415676

0.001 −0.967354969 −1.314576854 384 485.179488

0.001
0.005 −0.999999849 −1.570247277 159 193.415676

0.001 −0.999999997 −1.5707287854 697 854.145954

0.0001
0.005 −0.999999999 −1.570761253 162 193.415676

0.001 −0.999999997 −1.5707287854 697 854.145954

Figure 5. A graph of the function f2(x) whose global minimum was found by the proposed algorithm
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