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Problems of multiple covering (k-covering) of a bounded set G with equal circles of a given radius are
well known. They are thoroughly studied under the assumption that G is a finite set. There are several papers
concerned with studying this problem in the case where G is a connected set. In this paper, we study the problem
of minimizing the number of circles that form a k-covering, k ≥ 1, provided that G is a bounded convex plane
domain.

For the above-mentioned problem, we state a 0-1 linear model, a general integer linear model, and
a nonlinear model, imposing a constraint on the minimum distance between the centers of covering circles.
The latter constraint is due to the fact that in practice one can place at most one device at each point. We
establish necessary and sufficient solvability conditions for the linear models and describe one (easily realizable)
variant of these conditions in the case where the covered set G is a rectangle.

We propose some methods for finding an approximate number of circles of a given radius that provide the
desired k-covering of the set G, both with and without constraints on distances between the circles’ centers. We
treat the calculated values as approximate upper bounds for the number of circles. We also propose a technique
that allows one to get approximate lower bounds for the number of circles that is necessary for providing
a k-covering of the set G. In the general linear model, as distinct from the 0-1 linear model, we require no
additional constraint. The difference between the upper and lower bounds for the number of circles characterizes
the quality (acceptability) of the constructed k-covering.

We state a nonlinear mathematical model for the k-covering problem with the above-mentioned constraints
imposed on distances between the centers of covering circles. For this model, we propose an algorithm which
(in certain cases) allows one to find more exact solutions to covering problems than those calculated from linear
models.

For implementing the proposed approach, we have developed computer programs and performed numerical
experiments. Results of numerical experiments demonstrate the effectiveness of the method.
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Introduction

Let G be a bounded convex closed set with nonempty interior in a plane P and let S =
= {K1,K2, . . . ,Km} be a set of closed circles of a given radius r. We say that circles of this set
form a k-fold covering (a k-covering), k ≥ 1, of the set G if each point s in G belongs to at least
k circles in S.

The k-covering problems for plane domains have many applications, in particular, in finding
locations of mobile, navigation, and ambulance stations. One also encounters covering problems
when projecting sensor systems for monitoring the infrastructure of telecommunication networks,
environmental control systems, industrial equipment monitoring systems, smart city systems and so on
(see [Ammari, 2009; Erzin, Astrakov, 2011; Huang, Tseng, 2005; Farahani et al., 2012; Peixoto, Costa,
2017; Wang, 2011; Yeasmin, 2014]). In [Zhang et al., 2009] it was noted that “Wireless sensor
networks (WSNs) are ideal candidates for monitoring the physical space and enabling a variety of
applications. . . ”. In sensor networks, to compensate for the failure of some sensors, one provides
a k-covering of a given area with k ≥ 2.

There are many papers devoted to covering problems for certain bounded plane domains such
as a square, a rectangle etc. (see [Nurmella, 2000; Suzuki, Drezner, 2009] and references therein).
Multiple coverings of bounded domains are studied, for example, in [Galiev, Karpova, 2010; Tabirca
et al., 2013] and in papers referred to therein. In most works on covering problems one minimizes,
as a rule, the radii of covering circles. In practice, the radii of covering circles are given and it is
necessary to find their minimum number. Based on practical problems, we assume that the radii of
covering circles are given.

Note that the covering problem considered is NP-hard (see, for example, [Culberson, Reckhow,
1994; Garey, Jonson, 1979; Megiddo, 1984; Khachai, Poberiy, 2013]).

In this paper, to solve the k-covering problem for a set G, we construct a rectangular grid with
the step Δ, whose nodes form a finite set TΔ. This allows us to reduce the k-covering problem (k ≥ 1)
for the set G with circles of given radii either to a 0-1 linear programming (LP) problem or to a general
integer LP problem.

We establish necessary and sufficient solvability conditions for linear models. In the case where
the covered set G is a rectangle, we propose one (easily realizable) variant of these conditions. We also
propose techniques for finding an approximate number of circles of radius r that provide a k-covering
of the set G and determine the locations of their centers, both with and without constraints imposed on
distances between the circles’ centers. We treat the calculated values as approximate upper bounds for
the number of circles.

We propose a method which allows one to find approximate lower bounds for the number of
circles that is necessary for providing a k-covering of a (nearly arbitrary) domain G. The difference
between the upper and lower bounds for the number of circles characterizes the quality (acceptability)
of the covering.

We state a nonlinear mathematical model of the k-covering problem with the above-mentioned
constraint imposed on the minimum distance between the centers of covering circles. We propose an
algorithm that (in certain cases) allows one to find solutions to the covering problems that are more
precise than those calculated from the linear models.

To implement the proposed approach, we have developed computer programs and performed
numerical experiments. Results of numerical experiments demonstrate the effectiveness of the
method.
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Linear mathematical models of the problem

Choose the step size Δ and construct a rectangular grid on the set G with the step
Δx = Δy = Δ. Denote the collection of grid nodes that belong to G as TΔ = {t1, . . . , tn}, ti ∈ G.
Evidently, the TΔ is finite. Let us add some points on the domain boundary to the set TΔ [Galiev,
Khorkov, 2019]. Assume that G, k (k ≥ 1), Δ and r are given, and the finite set TΔ is constructed.
Consider the following problems.

Problem P1. Find a k-covering (k ≥ 1) of the set G with circles of a given radius r so as to
minimize the number of covering circles and determine the locations of their centers in G.

Problem P2. Find a k-covering of the set G with circles of radius r so as to minimize the number
of covering circles and determine the locations of their centers under the condition that the center of
each covering circle should coincide with some point in the set TΔ, while each point in TΔ should
coincide with at most one of the circles’ centers.

Problem P3. Find a k-covering of the set TΔ with circles of radius r so as to minimize the
number of covering circles and determine the locations of their centers and to locate the center of each
covering circle in TΔ in such a way that each point in TΔ coincides with at most one of the circles’
centers.

To establish solvability conditions for linear models of k-covering problems, we mention some
results obtained in [Galiev, Khorkov, 2019]. Let the symbol d(s, t) stand for the Euclidean distance
between points s and t in the plane P . Choose Δ and construct the set TΔ on G. Introduce the
parameter α, 0 < α < r, and the matrix A = (aij), where

aij =

{
1, if d(ti, tj) ≤ r − α,
0, if d(ti, tj) > r − α.

Let us define the vector Z with coordinates z1, . . . , zn, where zi is the number of circles of radius r−α
whose centers coincide with the point ti, 1 ≤ i ≤ n. Let the symbol K stand for the n-dimensional
vector each component of which equals k. Consider the system

z1 + z2 + · · ·+ zn → min (1)

subject to

AZ ≥ K, (2)

zi ∈ {0, 1}, 1 ≤ i ≤ n. (3)

The constructed problem (1)–(3) with α = 0 is the problem of k-covering of TΔ with the least
possible number of circles of radius r such that the circles’ centers coincide with some points in TΔ,
while each point in TΔ coincides with at most one of the circles’ centers. Therefore, system (1)–(3)
solves Problem P3.

It is clear that the model considered allows one to locate sensors at various points of the set TΔ.
At the same time, the above-mentioned system is studied insufficiently, in particular, it is necessary to
find out when it is solvable and how the values k, r, and Δ correlate.

In [Galiev, Khorkov, 2019], we prove that one can find an approximate solution to Problem P2
by reducing the radii of covering circles by the value α0 = Δ

√
2/2 and solving Problem P3 for circles

of radius r − α0. Then we obtain a k-covering of the set G with just obtained locations of the circles’
centers and the initial radius r. We can replace α0 with arbitrary α, α0 ≤ α ≤ 2α0.

We treat an approximate solution of Problem P2 as an approximate solution of Problem P1.
If we allow the centers of some circles to coincide, then we should replace (3) with the following

new constraint:
zi ∈ Z+, 1 ≤ i ≤ n, Z+ = {0, 1, 2, . . .}. (4)
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In this case, system (1),(2) and (4) solves the problem which differs from Problem P3 in that the
condition “each point in TΔ coincides with at most one of the circles’ centers” is not stated. We refer
to problems P2 and P3 without the above-mentioned condition as problems P2* and P3*, respectively.

Let us impose constraints on the distances between the circles’ centers. At present, apart from
our paper mentioned above, there are very few studies where one imposes constraints on the distances
between the centers of covering circles (see [Astrakov, 2017; Kim et al., 2009]); unfortunately, no
numerical results (suitable for comparison) are described there. Let us require that the minimum
distance between the circles’ centers be not less than some given value λ. Using results obtained
in [Galiev, Lisafina, 2013], we impose the following constraints (see [Galiev, Khorkov, 2019] for
details):

BZ ≤ P ∗. (5)

Constraints (5) guarantee that the distances between the circles’ centers are not less than λ.
Consequently, by solving problem (1)–(3), (5) or problem (1), (2), (4), and (5), we determine the
locations of the circles’ centers, taking into account the constraints imposed on the distances between
their centers.

The stated problems are integer LP problems. If they are solvable, then one can solve them by
any integer LP method (in this paper, we describe the results obtained with the help of the CPLEX-
12.6.3 library). The decrease in the grid step Δ leads to an increase in the dimension n of the problems
considered and makes their solution more difficult. If a large-dimension problem does not include
constraint (5) (but only (3)), then one can solve this problem using the heuristic algorithm proposed
in [Galiev, Khorkov, 2019].

Solvability conditions for stated LP problems

Let the circle radius and the covering multiplicity in problems P2 and P3 be given. We have
to propose a way to choose the value of the parameter Δ so as to make system (1)–(3) solvable with
given G, k, and r. Note that a grid on G can be rectangular, oblique, or have some other shape.
Regardless of the way used for the grid construction, we obtain a finite set TΔ, which is important
for stating system (1)–(3) for problems P2 and P3. One can easily see that the following condition is
necessary and sufficient for the solvability of problem (1)–(3).

Condition U1: System (1)–(3) is solvable if and only if for any point tj in TΔ there exist at
least k various points ti in TΔ whose distance from tj is at most equal to the radius of the circles that
cover TΔ.

The verification of Condition U1 is a nontrivial task, therefore we propose an easily verifiable
variant of these conditions for the case where the covered set G is a rectangle. Let G be a rectangle,
denote it by Gt. Assume that the lengths a and b of its sides are multiples of the value Δ. For an
arbitrary point s, s ∈ Gt, we let R(s) denote the closed circle of radius r centered at the point s.
Assume that s is a vertex of the rectangle Gt, consequently, s coincides with some point in TΔ. Then
with r = Δ the set Gt∩R(s) contains 3 distinct points that belong to TΔ, and with the radius r = Δ

√
2

the set Gt ∩ R(s) contains 4 distinct points that belong to TΔ and so on. For any other point s in TΔ

the number of various points in TΔ that belong to Gt ∩ R(s) is not less than that in the case where s
is a vertex of the rectangle. Therefore, we conclude that Condition U1 is fulfilled if r and Δ satisfy
the following relations: if Δ = r, then 1 ≤ k ≤ 3; if Δ = r/

√
2, then 1 ≤ k ≤ 4; if Δ = r/2, then

1 ≤ k ≤ 6; if Δ = r/2
√
2, then 1 ≤ k ≤ 9, and in what follows the covering multiplicity k and the

value Δ are related by RΔ = r, where RΔ is the radius of the circle centered at the vertex of Gt, and
this circle contains k points that belong to TΔ.
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Choosing various values of Δ and r, we obtain various numbers of points in the set Gt ∩R(s).
Consequently, we conclude that the number of these points in Gt ∩ R(s) determines the maximum
possible value of the multiplicity of the covering of the whole rectangle Gt. The number of points
in TΔ depends on dimensions of the rectangle and can be very large; however, the mathematical
model (1)–(3) is solvable only when the covering multiplicity depends on the number of points
in Gt ∩R(s). Therefore, we conclude that the value of the multiplicity in system (1)–(3) cannot be
arbitrary.

The constraint imposed on the minimum distance between the circles’ centers also affects the
solvability of the stated LP problem. Evidently, for a 1-fold covering, the minimum distance between
the circles’ centers (λ) cannot exceed the diameter of covering circles, that is, λ ≤ 2r; if the covering
multiplicity is greater than 1, then λ ≤ r. Denote the set of points in TΔ that belong to Gt∩R(s) by T t

Δ.
The number of these points defines the maximum multiplicity of the covering of the rectangle Gt.
Since the minimum distance between points cannot be less than the value λ, we solve the problem
of packing the largest number of circles of radius λ/2 whose centers belong to T t

Δ. As a result, we
calculate the number k∗ of circles whose centers belong to T t

Δ. In particular, if λ = Δ, then the
centers of packed circles belong to T t

Δ, consequently, k∗ = k; if λ = r/2, then the number of packed
circles of radius λ/2 whose centers belong to T t

Δ equals 6 or 7 depending on the value Δ. Therefore,
constraints imposed on the distances between the circles’ centers affect the maximum possible value of
the covering multiplicity. Consequently, if we add constraint (5) to system (1)–(3), then the resulting
system is solvable, provided that the covering multiplicity does not exceed the maximum number of
(packed in Gt) circles of radius λ/2 whose centers belong to T t

Δ. One can state the above-mentioned
packing problem as an LP problem (see [Galiev, Lisafina, 2013]); moreover, the resulting LP problem
is easily solvable, because the number of points in the set T t

Δ is less than that in the set TΔ.

Approximate lower bounds for the number of circles in a k-covering

Note that covering and k-covering problems are being widely studied in the literature and
establishing bounds for the objective function is a quite nontrivial task.

Choose r, Δ, k (1 ≤ k ≤ 4), λ ≥ 3Δ and put β = Δ
√
2. Introduce the following notation:

• let the symbol nopt stand for the minimum number of circles of radius r that form a k-covering
of the set G, provided that the minimum distance between their centers is not less than λ;

• let the symbol n1 stand for the minimum number of circles of radius r+β obtained as a solution
to problem (1)–(3) (which forms a k-covering of TΔ).

In [Galiev, Khorkov, 2019] we prove that n1 ≤ nopt, consequently, one can find a lower bound
for the number of circles obtained as a solution to Problem P1 by solving Problem P3. Solving
Problem P3, we get an upper bound for the number nopt; denote it by n2. As a result, we get the
relation n1 ≤ nopt ≤ n2. The difference n2 − n1 defines the segment that contains the estimated
value nopt.

Let us now consider problems P2* and P3* whose solution does not require that each point in TΔ

coincide with at most one of the admissible centers of the circles. In this case, the mathematical model
of Problem P3* takes the form (1), (2), and (4). For arbitrary Δ, Δ > 0, Problem P3* is solvable with
any values of the covering multiplicity, because one of the admissible solutions to this problem consists
in placing k centers of covering circles at each point of the set TΔ. To solve Problem P2*, we reduce
the radius of covering circles by α0 ≥ Δ

√
2/2 and seek for a covering with circles of radius r − α0.

One can easily see that this problem is solvable for any values of the covering multiplicity (k), provided
that α ≥ Δ

√
2/2 (for a rectangular grid). Therefore, condition U1 becomes extra here. Having solved
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the stated Problem P2*, in other words, having determined the number of circles and locations of their
centers, we assume that the circles have the initial radius r. The obtained locations of the centers of
circles of radius r form the desired k-covering of the set G.

In [Galiev, Khorkov, 2019], we obtain approximate lower bounds for the number of circles in
a k-covering of G under one additional assumption. Namely, we require that the minimum distance
between the circles’ centers be not less than 3Δ. For problems P2* and P3* such assumptions are
not necessary, because any point of the set TΔ can coincide with more than one circle’s center. We
obtain approximate lower bounds for the number of circles in a k-covering of G in the following way.
Choose Δ, Δ > 0, construct TΔ, and solve system (1), (2) and (4) (Problem P3*), when α = 0,
while the circle radius equals r + Δ

√
2. As a result, we get the minimum number (n∗

1) of circles of
radius r +Δ

√
2 that form a k-covering of TΔ. Let n∗

opt be the minimum number of circles of radius r
that form a k-covering of the set G. Similarly to Theorem 2 in [Galiev, Khorkov, 2019], one can prove
that n∗

1 ≤ n∗
opt.

To obtain an upper bound for n∗
opt, we solve Problem P3* for circles’ radii smaller than r. To

this end, we consecutively put Δ := Δ/2m (α := α/2m), construct TΔ/2m , m = 0, 1, 2, 3, . . ., and
then solve Problem (1), (2), and (4) with α/2m in place of α. As a result, we consecutively calculate
the number n∗

α/2m of circles of radius r − α/2m that form a k-covering of the set TΔ/2m , while

n∗
α ≥ n∗

α/2 ≥ n∗
α/22 ≥ . . . ≥ n∗

α/2m ≥ . . .

In this sequence, starting with some m, all numbers nα/2m+j coincide for any j ≥ 1; denote
nα/2m+j = M . If the radii of these circles are equal to r, then these circles form a k-covering of
the set G. Evidently, nα/2m ≥ n∗

opt. Therefore, for values n∗
α/2j that are less than n∗

α/2m we obtain the
following upper bound for n∗

opt: n
∗
1 ≤ n∗

opt ≤ n∗
α/2. The difference of values n∗

1 and n∗
α/2 (that can be

calculated) characterizes the acceptability of the bound for n∗
opt.

The nonlinear model of the covering problem

Consider the problem of the k-covering of the set G with a given number (N) of equal circles
with the minimum possible radius rmin. Denote the center of the circle Kj by cj and the coordinates of
the center cj by xj , yj , 1 ≤ j ≤ N . Put u = (x1, y1, . . . , xN , yN ). The calculation of rmin is reduced
to the evaluation of the following expression (see [Galiev, 1994]):

rmin = min
u

max
s∈G

min
j∈JK

d(s, cj), (6)

where Jk is the set of subscripts of the centers cj of N − k + 1 circles, whose distances from s are
not less than that of the remaining k − 1 centers among cj , 1 ≤ j ≤ N . The calculation of rmin is
a nonsmooth optimization problem, one can solve it by known nondifferentiable optimization methods.
Making use of the properties of these problems, in [Galiev, 1994] we propose algorithms that allow
one (at least) not to increase the radius on each step.

For chosen N in the segment [n1, n2], we assume that an approximate value r̃ of radius rmin

is already calculated. We compare it with the circle radius r in Problem P1. If it appears that r̃ ≤ r,
then N circles of radius r̃ form a k-covering of the set G. Then, evidently, N circles of radius r also
form a k-covering of the set G. Therefore, the minimum number of circles that form a k-covering of
the set G belongs to the segment [n1, N ].

One can calculate the value rmin by formula (6), using any algorithm proposed in [Galiev, 1994].
Imposing no constraint on the distances between the circles’ centers, in this paper we use Algorithm IV
proposed in the work mentioned above. In the case where the problem statement includes the indicated
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constraints, we use the modification of Algorithm V described in the above-mentioned paper. First of
all, we introduce the following definition:

A k-multiple Voronoi – Dirichlet domain Dk
j for a set of points {cj , 1 ≤ j ≤ N} is defined as

follows:
Dk

j = Dk
j (u) = {s ∈ G : d(s, cj) ≤ min

i∈Jk
d(s, cj)}.

In the case of a constraint imposed on the minimum distance between the circles’ centers, it is
necessary to introduce an additional condition (along with condition (6)), namely,

d(ci, cj) ≥ λ, 1 ≤ i, j ≤ N, i �= j. (7)

To calculate (with fixed N ) the value r̃ in accordance with (6) and (7), we use the following
modification of Algorithm V.

Algorithm V*:

1. Choose initial locations of the centers of N circles Kj , 1 ≤ j ≤ N . The coordinates of the
centers of these circles form the vector u = (x1, y1, . . . , xN , yN ). One can obtain this initial
location of the circles’ centers satisfying conditions (7) from the solution to the LP problem (1),
(2), (4), when the number of circles exceeds N , arbitrarily dropping extra points.

2. On the set G, construct k-multiple Voronoi – Dirichlet domains Dk
j for the set of points

{cj , 1 ≤ j ≤ N}.
3. Among elements cj , 1 ≤ j ≤ N , choose ci which is at the maximal distance from the farthest

vertex v of the set Dk
i . Let c∗i be the center of the minimum circle that contains Dk

i . In the
segment [ci, c∗i ] choose a point bi such that it is at the maximal distance from ci and all points
of the segment [ci, c∗i ] satisfy inequalities (7). If, in addition, this point c∗i coincides with ci, then
choose the next point cl in {c1, . . . , cN} \ {ci} and repeat the search for an analogous point bl.
The point bi obtained (different from ci) together with the set {c1, . . . , cN}\{ci} generate a new
vector u∗.

4. If the Euclidean distance between u and u∗ does not exceed given ε > 0, then stop, otherwise
put u = u∗ and go to step 2.

Note that the radius of the circles that form a k-covering of G, at least, does not increase on
each step of this algorithm.

As a drawback of the described algorithm, we mention the fact that it does not guarantee that the
solution obtained provides the global minimum value of the circle radius rmin. For finding the global
minimum, one can make use of the Lipschitz property of the objective function (one can prove that the
function in (1) is Lipschitz for the above-mentioned Jk), but we do not do it in this paper.

Numerical results

Solvability conditions for the stated linear models of covering problems depend on the set G,
the varying parameters of mathematical models, and the grid step. Constructing the grid in various
ways (as a rectangular or oblique one), varying the grid step Δ and the radius r of covering circles, we
obtain various numbers of points in TΔ that belong to the set G∩R(s), and the number of these points
in G∩R(s) defines the maximum possible value of the covering multiplicity for the whole given set G
in problems P2 and P3.

In Table 1, we give maximum values of the covering multiplicity (k) with which the
system (1)–(3) is solvable depending on the chosen domain (a rectangle Gt or an equilateral triangle Tr)

2019, Vol. 11, No. 6, P. 1101–1110
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Table 1. Maximum values of the covering multiplicity, with which the system (1)–(3) is solvable

The covered set The radius of covering circles r = m×Δ

Δ 2Δ 3Δ 10Δ 20Δ 40Δ 60Δ 80Δ 100Δ

Gt 3 6 11 90 335 1297 5101 6452 7995

Tr 3 6 10 72 264 1010 2237 3953 5300

and radius r. In this table, the value Δ equals 0.01, while the radius r of covering circles takes the
form r = m×Δ, 1 ≤ m ≤ 100. For the rectangle, we construct a rectangular grid, while in the case
of an equilateral triangle, by straight lines parallel to the triangle sides, measuring the step Δ along
a triangle side, we construct an oblique grid.

For linear and nonlinear models of the covering problem, we have calculated the number of
circles of radius r that cover the 1.22 × 0.82 rectangle so that the minimum distance between the
circles’ centers is not less than r/2.

In Table 2, for the above-mentioned values of the covering multiplicity (k) and the radius of
covering circles (r), we indicate consecutively: 1) approximate lower bounds for the number of circles
of radius r in the k-covering of Gt obtained with the use of LP, 2) approximate upper bounds for the
number of circles of radius r in the k-covering of Gt obtained with the use of LP, 3) approximate upper
bounds for the number of circles of radius r in the k-covering of Gt obtained with the use of LP and
the nonlinear model of the covering problem.

Table 2. Approximate values of the number of circles in the k-covering of G

Circle radius r The covering multiplicity k

k = 1 k = 2 k = 3

0.50 3 3 3 6 6 6 9 10 9

0.45 3 4 4 7 8 8 10 12 10

0.40 4 4 4 8 8 8 12 13 12

According to the data given in Table 2, the bounds obtained using the nonlinear model are in
some cases better than those obtained from only the linear model. For example, the nonlinear model
allows us to conclude that 10 circles of radius 0.45 are sufficient for a 3-fold covering, while the linear
model estimates this number as 12 circles.

On the left-hand side of Fig. 1, we present locations of the centers of circles of radius 0.45 that
form a 3-fold covering of G obtained with the use of the linear model, while on the right-hand side
we do those obtained with the use of both linear and nonlinear models. In each case, the minimum
distance between the circles’ centers is not less than r/2.

The calculations were carried out using a computer Intel Core i7-3537U, 2.5GHz, 6 GB RAM,
OS Windows 10. The solution time was acceptable (it varied from several minutes to several hours);
we do not give its precise values here, because in practice one usually solves the covering problems in
advance (rather than online).

Conclusion

For a convex bounded plane domain G with nonempty interior, we state linear and nonlinear
mathematical optimization models of the multiple covering problem with circles of a given radius r. We
establish necessary and sufficient solvability conditions for linear models introduced in a known way
with the help of grids constructed on G. We state a nonlinear mathematical model for the k-covering

COMPUTER RESEARCH AND MODELING
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Figure 1. Locations of 12 (on the left-hand side) and 10 (on the right-hand side) circles of radius 0.45 that form
a 3-fold covering of the 1.22× 0.82 rectangle

problem and propose an algorithm which (in some cases) allows one to find more exact solutions
than those obtained only with the use of linear models. To implement the proposed approach, we
have developed programs and performed numerical experiments. Results of numerical experiments
demonstrate the effectiveness of the method.

The proposed method implying the construction of a grid on G can be extended for covering
problems in spaces of three and more dimensions. While solving the problem of covering with circles
of a given radius r, we obtain an integer LP problem of the dimension n×n, where n is the number of
nodes in the grid on G. In the case of covering in s dimension space when G is covered with balls of
a given radius r, the dimension of the integer LP problem is ns, provided that no constraint is imposed
on the distances between the circles’ centers. The solution of such problems is time-consuming and
requires developing new methods for solving large-scale integer LP problems.
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