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This paper studies electromagnetic fields, frequencies of lasing, and emission thresholds of a drop-shaped
microcavity laser. From the mathematical point of view, the original problem is a nonstandard two-parametric
eigenvalue problem for the Helmholtz equation on the whole plane. The desired positive parameters are the
lasing frequency and the threshold gain, the corresponding eigenfunctions are the amplitudes of the lasing
modes. This problem is usually referred to as the lasing eigenvalue problem. In this study, spectral characteristics
are calculated numerically, by solving the lasing eigenvalue problem on the basis of the set of Muller boundary
integral equations, which is approximated by the Nyström method. The Muller equations have weakly singular
kernels, hence the corresponding operator is Fredholm with zero index. The Nyström method is a special
modification of the polynomial quadrature method for boundary integral equations with weakly singular kernels.
This algorithm is accurate for functions that are well approximated by trigonometric polynomials, for example,
for eigenmodes of resonators with smooth boundaries. This approach leads to a characteristic equation for mode
frequencies and lasing thresholds. It is a nonlinear algebraic eigenvalue problem, which is solved numerically
by the residual inverse iteration method. In this paper, this technique is extended to the numerical modeling of
microcavity lasers having a more complicated form. In contrast to the microcavity lasers with smooth contours,
which were previously investigated by the Nyström method, the drop has a corner. We propose a special
modification of the Nyström method for contours with corners, which takes also the symmetry of the resonator
into account. The results of numerical experiments presented in the paper demonstrate the practical effectiveness
of the proposed algorithm.
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1. Introduction

Microcavity lasers have many promising applications in optoelectronics and photonics [Lebental
et al., 2009]. If optical microcavities are thin and flat, then they can be investigated using two-
dimensional models [Smotrova et al., 2005]. Spectral characteristics of disk-like microcavity lasers
were numerically analyzed by the Lasing Eigenvalue Problem (LEP) starting with the pioneering
works [Smotrova et al., 2005], [Smotrova, Nosich, 2004]. Lately, LEP has been effectively used also
for computer simulations of plasmonic nanolasers [Shapoval et al., 2017], [Natarov et al., 2019]. LEP
has two real-valued eigenvalues: the frequency of lasing and the mode threshold gain. This statement
is attractive for the optoelectronics and photonics community since, unlike the classical Complex-
Frequency Eigenvalue Problem (developed for passive cavities), it describes the gain material of the
cavity [Smotrova et al., 2011].

To solve LEP numerically, nonlinear spectral problems for systems of boundary integral
equations were proposed in [Karchevskii, Nosich, 2014], [Nosich, 2016]. The kernels of the systems
are weakly singular, therefore the corresponding operators are Fredholm with zero index. As a result,
many efficient and theoretically justified numerical methods can be applied. One is the most attractive
numerical techniques is the Nyström method presented in [Smotrova et al., 2013] and used recently
in [Spiridonov et al., 2015]– [Spiridonov et al., 2017].

Developing the ideas of the articles cited in the previous paragraph, we have proposed
a convenient (for numerical analysis operator) formulation of LEP [Spiridonov et al., 2018] and have
constructed a modification of the Nyström method taking the symmetry of the problem [Spiridonov,
Karchevskii, 2016] into account. What is important is that all the authors proceeded from the
assumption that the boundary of the cavity was smooth. The current paper proposes an approach
to mathematical and numerical modeling of a drop-shaped active microcavity. In the case of a drop
shape, there is an angle, so we modify the Nyström method by conversion from the previously used
uniform grid to a nonuniform grid with a concentration of points near the corner. Using this approach,
we numerically analyze the spectra, thresholds, and the modal fields.

2. Statement of the problem

Consider a two-dimensional fully active drop-shaped microcavity laser (see Fig. 1). We assume
that the refractive index in the active domain Ωi is complex-valued, νi = αi − iγ, where γ > 0 is the
unknown threshold gain, and αi > 0 is known. In the environment Ωo the refractive index is real-
valued and positive, νo = αo > 0. Denote by Γ the boundary of the domain Ωi except for the corner
point. Assume that the curve Γ defined in this way is twice continuously differentiable. Denote by n
the outer normal unit vector of the curve Γ. As usual, by k we denote the wave number assuming that
the electromagnetic field harmonically depends on time. We are looking for sufficiently smooth (having

Figure 1. Geometry of a drop-shaped microcavity laser
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finite energy in the neighborhood of the corner) nonzero functions u and corresponding eigenvalues
of k > 0 and γ > 0 such that all the following equations are satisfied:

Δu(x) + k2ju(x) = 0, x ∈ Ωj, j = i, o, (1)

u− = u+, ηi
∂u−

∂n
= ηe

∂u+

∂n
, x ∈ Γ, (2)

u(r, ϕ) =

√
2

iπkor
eikorΦ(ϕ), r → ∞. (3)

Here ki/o = kνi/o, u = Hz, ηi/o = ν−2
i/o for the H-polarized electromagnetic field, and u = Ez ,

ηi = ηo = 1 for the E-polarized field. In the Sommerfeld radiation condition (3), by Φ(ϕ) we denote
the far-field angular emission pattern. As usual, we denote the polar coordinates of the point x by (r, ϕ),
and the limits of u from inside and outside of Γ, by u− and u+, respectively.

We use the well-known integral representations

u(x) = −
∫
Γ

(
u−(y)

∂Gi(x, y)

∂n(y)
−Gi(x, y)

∂u−(y)
∂n(y)

)
dl(y), x ∈ Ωi, (4)

u(x) =

∫
Γ

(
u+(y)

∂Go(x, y)

∂n(y)
−Go(x, y)

∂u+(y)

∂n(y)

)
dl(y), x ∈ Ωo, (5)

where Gi/o(x, y) =
i

4
H

(1)
0

(
ki/o|x− y|), and reduce the original problem (1)–(3) to the following

nonlinear eigenvalue problem for the system of boundary integral equations:

u(x)−
∫
Γ

K1,1(x, y)u(y)dl(y) −
∫
Γ

K1,2(x, y)v(y)dl(y) = 0, (6)

v(x) −
∫
Γ

K2,1(x, y)u(y)dl(y) −
∫
Γ

K2,2(x, y)v(y)dl(y) = 0, (7)

u = u− = u+, v =
ηo + ηi
2ηo

∂u−

∂n
=
ηo + ηi
2ηi

∂u+

∂n
,

K1,1(x, y) =
∂Go(x, y)

∂n(y)
− ∂Gi(x, y)

∂n(y)
, K1,2(x, y) =

2 (ηoGi(x, y)− ηiGo(x, y))

ηo + ηi
,

K2,1(k, γ;x, y) =
∂2Go(k;x, y)

∂n(x)∂n(y)
− ∂2Gi(k, γ;x, y)

∂n(x)∂n(y)
,

K2,2(k, γ;x, y) =
2

ηo + ηi

(
ηo∂Gi(x, y)

∂n(x)
− ηi∂Go(x, y)

∂n(x)

)
. (8)

3. Nyström method

In this section, for numerical solution of the problem (6)–(7), we construct the Nyström method.
In the computations, we use the following parametrization of the boundary of the drop-shaped
microcavity [Colton, Kress, 2013]:

r(t) =

(
a sin

(
t

2

)
− a

2
, b sin(t)

)
, t ∈ [0, 2π].

2019, Vol. 11, No. 6, P. 1083–1090



1086 A. O. Spiridonov, E. M. Karchevskii

Clearly, this curve has the corner at t = 0 (see Fig. 1). The kernels Ki,j defined in the previous section
are weakly singular and we can write them in the form

Ki,j(t, τ) = Qi,j(t, τ) ln

(
4sin2

t− τ

2

)
+ Pi,j(t, τ), i, j = 1, 2, (9)

where functions Qi,j(t, τ) and Pi,j(t, τ) are continuous on [0, 2π] × [0, 2π].
Following [Colton, Kress, 2013], we introduce the strictly monotonically increasing and

infinitely differentiable function ω: [0, 2π] → [0, 2π] so that

ω(s) = 2π
[υ(s)]p

[υ(s)]p + [υ(2π − s)]p
,

where s ∈ [0, 2π], p ≥ 2 and

υ(s) =

(
1

p
− 1

2

)(
π − s

π

)3

− 1

p

π − s

π
+

1

2
.

Denote by N the set all positive integers, and take n ∈ N. By Ξ̃n = {sj}2n−1
j=0 we denote

the uniform grid on the interval [0, 2π]. The mesh size of this grid is h = π/n, and sj = jπ,
j = 0, . . . , 2n − 1. Then the grid Ξn = {tj}2n−1

j=0 , where tj = ω(sj), is nonuniform.
Using the representation t = ω(s), τ = ω(σ), we obtain

2π∫
0

Ki,j(t, τ)ψ(τ)dτ =

2π∫
0

Ki,j (ω(s), ω(σ))ψ (ω(σ))ω′(σ)dσ

and write

Ki,j(t, τ) = Ki,j(ω(s), ω(σ)) = Q̃i,j(s, σ) ln

(
4sin2

s− σ

2

)
+ P̃i,j(s, σ), i, j = 1, 2.

The following decompositions are related to (9):

Q̃i,j(s, σ) = Qi,j(ω(s), ω(σ)),

and

P̃i,j(s, σ) =

⎧⎪⎨
⎪⎩
Ki,j(ω(s), ω(σ)) − Q̃i,j(s, σ) ln

(
4sin2

s− σ

2

)
, s �= σ,

Pi,j(ω(s), ω(s))− 2 lnω′(s)Qi,j(ω(s), ω(s)), s = σ.

Using the representations τj = ω(σj), aj = ω′(σj), r̃(σ) = r(ω(σ)), we write the approximate
solution of the problem (6)–(7) as follows:

u(n)(s) =

2n−1∑
j=1

aj

(
R

(n)
j (s)Q̃1,1(s, σj) +

π

n
P̃1,1(s, σj)

)
|r̃′(σj)|uj

+

2n−1∑
j=1

aj

(
R

(n)
j (t)Q̃1,2(s, σj) +

π

n
P̃1,2(s, σj)

)
|r̃′(σj)|vj , (10)

v(n)(s) =

2n−1∑
j=1

aj

(
R

(n)
j (s)Q̃2,1(s, σj) +

π

n
P̃2,1(s, σj)

)
|r̃′(σj)|uj

+
2n−1∑
j=1

aj

(
R

(n)
j (s)Q̃2,2(s, σj) +

π

n
P̃2,2(t, σj)

)
|r̃′(σj)|vj , (11)
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where |r̃′(σ)| =
√

(r′1(ω(σ))2 + (r′2(ω(σ)))2, s, σ ∈ [0, 2π], ui = u(ω(si)), vi = v(ω(si)),

R
(n)
j (s) = −2π

n

n−1∑
m=1

1

m
cosm(s− sj)− π

n2
cosn(s− sj), i, j = 1, . . . , 2n − 1.

It is important to note that a0 = 0. The unknown values uj and vj , j = 0, . . . , 2n − 1, satisfy the
following system of linear algebraic equations:

ui −
2n−1∑
j=1

aj

(
R

(n)
|i−j|Q̃1,1(si, sj) +

π

n
P̃1,1(si, sj)

)
|r̃′(sj)|uj

−
2n−1∑
j=1

aj

(
R

(n)
|i−j|Q̃1,2(si, sj) +

π

n
P̃1,2(si, sj)

)
|r̃′(sj)|vj = 0, (12)

vi −
2n−1∑
j=1

(
R

(n)
|i−j|Q̃2,1(si, sj) +

π

n
P̃2,1(si, sj)

)
|r̃′(sj)|uj

−
2n−1∑
j=1

aj

(
R

(n)
|i−j|Q̃2,2(si, sj) +

π

n
P̃2,2(si, sj)

)
|r̃′(sj)|vj = 0, (13)

where i = 0, . . . , 2n − 1 and

R
(n)
j = R

(n)
j (0) = −2π

n

n−1∑
m=1

1

m
cos

mjπ

n
− (−1)jπ

n2
, j = 0, . . . , 2n − 1.

Note that the matrix entries in (12) and (13) nonlinearly depend on the desired parameters k > 0
and γ > 0. Thus, we get the nonlinear algebraic spectral problem, which we solve numerically.

4. Numerical results

In our computations we use a = 2, b = 1, p = 8 and find H-polarized modes of the drop-shaped
microcavity laser with the refractive index α = 2.63, which is the effective value of the refractive
index for a 200-nm GaAs skin in the infrared spectrum. The curve Γ is symmetric with respect to
the x1 axis. Following [Spiridonov et al., 2017], we calculate solutions having the same symmetry
or antisymmetry. Figures 2 and 3 present semilog color maps of the inverse condition number of the
matrix A of the system (6)–(7) on the plane (κ, γ) for x1-even and x1-odd modes of the drop-shaped
microcavity laser, respectively. Using the local minima indicated in Figs. 2, 3 as initial approximations
for the method of inverse iterations, we obtain solutions presented in Fig. 4.

Figure 5 shows the near and far fields for some of the modes appearing in Fig. 4. Analyzing the
patterns for the near fields, we conclude that the thresholds are lower for those modes in which the
field is aligned along the rounded part of the boundary.

5. Conclusion

In this paper we have proposed and studied a new modification of the Nyström method specially
tailored for domains with corners. We applied this method for numerical calculations of emission
characteristics of drop-shaped microcavity lasers. In our forthcoming work we are going to investigate
the convergence of this method theoretically.
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Figure 2. The inverse condition number of the matrix A as a function of the parameters κ = ka and γ for
x1-even modes of the drop-shaped microcavity laser

Figure 3. The inverse condition number of the matrix A as a function of the parameters κ = ka and γ for x1-odd
modes of the drop-shaped microcavity laser

Figure 4. Normalized emission frequencies and the corresponding threshold gains for the modes of the drop-
shaped microcavity laser. Red pluses denote even modes, blue crosses denote odd modes
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Figure 5. Some modes of a drop-shaped microcavity laser. Here, ka is the normalized frequency of lasing, γ is
the threshold gain, D is the directivity of the mode
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