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Padé approximation is a useful tool for extracting singularity information from a power series. A linear
Padé approximant is a rational function and can provide estimates of pole and zero locations in the complex
plane. A quadratic Padé approximant has square root singularities and can, therefore, provide additional
information such as estimates of branch point locations. In this paper, we discuss numerical aspects of computing
quadratic Padé approximants as well as some applications. Two algorithms for computing the coefficients in
the approximant are discussed: a direct method involving the solution of a linear system (well-known in the
mathematics community) and a recursive method (well-known in the physics community). We compare the
accuracy of these two methods when implemented in floating-point arithmetic and discuss their pros and cons.
In addition, we extend Luke’s perturbation analysis of linear Padé approximation to the quadratic case and
identify the problem of spurious branch points in the quadratic approximant, which can cause a significant loss
of accuracy. A possible remedy for this problem is suggested by noting that these troublesome points can be
identified by the recursive method mentioned above. Another complication with the quadratic approximant arises
in choosing the appropriate branch. One possibility, which is to base this choice on the linear approximant, is
discussed in connection with an example due to Stahl. It is also known that the quadratic method is capable of
providing reasonable approximations on secondary sheets of the Riemann surface, a fact we illustrate here by
means of an example. Two concluding applications show the superiority of the quadratic approximant over its
linear counterpart: one involving a special function (the Lambert W -function) and the other a nonlinear PDE
(the continuation of a solution of the inviscid Burgers equation into the complex plane).
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1 Introduction

In many applications of complex variables it is necessary to extract singularity information
of a function, given only a power series representation of that function. Any computation based on
a direct summation of the power series is bound to fail outside the radius of convergence of the
series. To extend the domain of approximation, and in particular to extract singularity information,
different techniques are required. Padé approximation is one of the prominent methods of achieving
this. Standard (linear) Padé approximation leads to a meromorphic approximant, from which pole
information can be extracted. Quadratic Padé approximation, by contrast, leads to a two-sheeted
approximant from which additional information can be extracted. First introduced to the numerical
analysis literature in [Shafer, 1974], this quadratic approximation, and in particular its numerical
computation, is the focus of the present study.

Consider a function f assumed to be analytic in an open neighbourhood of the origin, admitting
the formal series expansion

f(z) =
∞∑
k=0

fkz
k. (1)

The linear (n, n) Padé approximation to f is defined by the polynomials1

p(z) =

n∑
k=0

pkz
k, q(z) =

n∑
k=0

qkz
k, (2)

that satisfy
p(z) + q(z)f(z) = O(z2n+1), z → 0. (3)

This idea can be extended to the quadratic (n, n, n) case, which is defined by polynomials

p(z) =

n∑
k=0

pkz
k, q(z) =

n∑
k=0

qkz
k, r(z) =

n∑
k=0

rkz
k, (4)

such that
p(z) + q(z)f(z) + r(z)f(z)2 = O(z3n+2), z → 0. (5)

In both (3) and (5) there is nonuniqueness in that the polynomials are defined only up to a multiplicative
constant. This can be eliminated by fixing one of the coefficients or enforcing some other constraint.

Dropping the order terms on the right, equations (3) and (5) define, respectively, the (n, n) linear
approximant F1 and the (n, n, n) quadratic approximants F+ and F−:

F1(z) = −p(z)

q(z)
, F±(z) =

−q(z)±√d(z)

2r(z)
. (6)

The discriminant polynomial, d, in the latter formula is given by

d(z) = q(z)2 − 4p(z)r(z). (7)

These approximants can be used to approximate the locations of zeros and singularities of the
function f . The linear approximant F1 has only zeros and poles, at most n of each. The quadratic
approximants F± have zeros, poles, and square root branch points. From the identity F+F− = p/r
one concludes that the zeros of the approximant are defined by the roots of p, provided these roots are
distinct from the roots of r. There are therefore at most n zeros, split between F+ and F−. The same

1 Approximants (m,n) with m �= n are defined similarly but will not be considered here.
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arguments apply to the poles of the approximant, with the roles of p and r reversed. Finally, square root
branch points of the approximant are defined by the roots of d, provided they are of odd multiplicity.
There are at most 2n of these branch points, some of which may approximate the actual branch points
of f and others that may be spurious.

Cubic and higher degree approximations can be defined analogously to (3) and (5), which might
have advantages in the approximation of algebraic branch points of higher order. For examples of
approximating functions with logarithmic branch points, see [Driscoll, Fornberg, 2001]. These are
examples of the more general Hermite – Padé approximation process [Baker, Graves-Morris, 1996], but
only the quadratic case (5) will be considered here. Padé and Hermite – Padé approximation can also be
extended from the power series (1) to Chebyshev series (on a bounded interval; see [Boyd, 2009]), or to
Fourier series (on a periodic interval; see Section 6.2). Alternatively, Hermite – Padé approximants can
be defined in terms of function values rather than expansion coefficients by generalizing the rational
least squares approach of [Gonnet et al., 2011].

The objective here is to see whether the quadratic approximant succeeds in capturing singularity
information of the original function in a domain of reasonable size about the origin, using only
polynomials of relatively low degree. Other computational studies might consider convergence rates at
fixed values of z as n increases, or computing zero, pole and branch point locations to many digits of
accuracy, but that is not our primary focus.

Complementary to the objective mentioned in the previous paragraph, we also address numerical
aspects of quadratic approximations in this paper. Our interest in a floating-point implementation
rather than using symbolic software stems from those applications where the singularity distribution
is parameter dependent. If such parameters range over many thousands of values, the computational
speed offered by floating-point arithmetic is essential.

It is well known that linear Padé approximations can have spurious poles, i.e., poles that do not
correspond to any singularities of f [Stahl, 1998]. Here we show that, analogously, the quadratic
approximant can have spurious branch points, which causes the quadratic equation (5) to be ill-
conditioned. Likewise, if linear systems are used to solve the linear or quadratic problems, the matrices
involved can be highly ill-conditioned. In the linear case it is known that despite these large condition
numbers, the Padé approximation itself can be evaluated to high relative accuracy [Luke, 1980]. We
extend these ideas here to the quadratic case.

The outline of the paper is as follows: In Section 2 we present an example of the approximation
of a simple cube root function. It highlights some of the strengths of the quadratic approximant, for
example, high accuracy on the principal sheet and even moderate accuracy on the secondary sheets.
It also highlights some of its weaknesses, for example, possible ill-conditioning of the quadratic
equation that defines the approximant. In Sections 3–5 we turn to numerical aspects: The standard
method of computing the polynomials in the quadratic approximant by solving linear systems is
discussed, as well as the conditioning of these systems. An alternative recursive method is also
discussed and some of its advantages pointed out. Section 6 is devoted to two applications.

2 Approximation on a Riemann Surface: An Example

To demonstrate the approximation capabilities of the quadratic approximant, we consider the
simple cube root function

f(z) = (1 + z)1/3 =
∞∑
k=0

(1
3

k

)
zk, (8)

where the series converges in the open unit disc centred at z = 0. This is a function on a three-sheeted
Riemann surface, displayed in Figure 1, which we are going to approximate with a two-sheeted surface,
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Figure 1. Representation of the three-sheeted Riemann surface of f(z) = (1 + z)1/3. Here the vertical axis
represents the real part and colour the imaginary part as described in [Corless, Jeffrey, 1998]. The two-sheeted
quadratic Padé approximation to this surface is shown below in Figure 5

as defined by the quadratic approximant. We shall take the domain of interest D somewhat arbitrarily
as the disc of radius 3 centred at the origin (Figures 1 and 5) or the square [−3, 3]× [−3, 3] (Figures 3
and 4).

In our first comparison we restrict the domain to be the real interval [−3, 3] and compare the
accuracy of the linear and quadratic Padé approximations to the principal branch of the function (the
top sheet in Figure 1). Figure 2 shows relative errors, where the first 17 coefficients in the series in (8)
were used to construct the (8, 8) and the (5, 5, 5) approximants. To choose between F+ and F−, we
have used the value closest to the principal branch value of (1 + z)1/3. When the function is known
only through its power series, this will not be possible and the choice will have to be made on other
grounds; see Section 5.1.

Figure 2. Errors in the linear and quadratic Padé approximations of the function f(z) = (1 + z)1/3 (principal
branch). The superiority of the quadratic approximation is most prominent on the branch cut (−∞,−1]. (Note
that the spikes in the blue curve reach all the way to infinity because these are poles of the linear approximant.
In the red curve they have finite maxima because they are caused by spurious branch points in the quadratic
approximant. In fact, at each of these points there is a pair of nearby roots of d; see Section 5.2.)
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Near the origin in Figure 2, both linear and quadratic approximations achieve machine accuracy
(relative error ∼ 10−16 in IEEE arithmetic), as represented by the highly oscillatory error curve. As
one goes out on the positive real axis, the quadratic approximant is about two orders of magnitude
better than the linear one. But the real advantage is on the branch cut (−∞,−1] where the quadratic
approximant is about five orders of magnitude better. (When n is increased from 5 to 7, another one
to two orders of magnitude are gained.) It should be noted that the linear approximant achieves no
accuracy at all on (−∞,−1], because its poles are located on the branch cut as represented by the
spikes in the error curve. For the theory behind this phenomenon we refer to [Stahl, 1997]. There are
also spikes in the error curve of the quadratic approximant, but these are not caused by poles. These
correspond to spurious branch points, i.e., branch points of the approximant that are not in any sense
an approximation to the physical branch points of the original function. The instability associated with
these points is discussed further in Sections 4 and 5.2.

Next, we repeat the above calculation but compare accuracy of the linear and quadratic
approximants in the complex domain D; see Figure 3. Again the superiority of the quadratic
approximant is most striking near the branch cut.

Figure 3. Same as Figure 2, but in the complex plane. The log10 of the relative error in the principal branch is
shown as a contour plot

What about the accuracy of the other branch of the quadratic approximant? The linear
approximant is single-valued and can only approximate the principal branch. As noted in [Short, 1979],
however, quadratic approximants are capable of approximating secondary branches. Two- and three-
dimensional displays of the error are shown, respectively, in Figures 4 and 5. It is noted that the
accuracy of the approximation on the secondary branch is poorer than on the principal branch. This is
due to the fact that the second sheet is effectively farther from the point of expansion.

The function f has a single branch point (and a zero) at z = −1 and is pole-free, whereas, as
noted above, the quadratic approximant can have as many as 2n branch points, n poles and n zeros,
and this is indeed the case for the (5, 5, 5) approximant of (8). On the displayed domains, the branch
points are at2

−0.99914769, −0.96077940±0.00020391i, −0.62144269±0.00000014, 1.64160798±0.00000010.
(9)

2 The close proximity of some of these roots is not a consequence of floating-point error. The roots were checked to high
precision using symbolic software.
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Figure 4. Same as Figure 3, but the relative error on the secondary branch is shown. Only about five-digit
accuracy is achieved, near the negative real axis. By contrast, the accuracy in the principal branch ranges
between five and sixteen digits as shown in Figure 3.

Figure 5. Representation of the two-sheeted Riemann surface of the (5, 5, 5) appproximation to the function
f(z) = (1 + z)1/3. Left: colour is used to represent the imaginary part, same as in Figure 1. Right: colour is
used to represent the log10 of the relative error. The two protruding peaks correspond to poles on the secondary
sheet; see the discussion below (10).

These points correspond to the upward spikes in Figure 2, where the approximant loses accuracy. This
will be discussed further in Sections 4 and 5.2. The poles and zeros of the approximant are, respectively,

−0.97573796, −0.72940734, 0.90299818; (10)

and
−0.99848792, −0.93924683, −0.47451342, 2.69559169.

All of these poles/zeros are simple and all are located on the second sheet. The remaining three branch
points, two poles and one zero are outside the domains shown. Note that only the second and third
poles in (10) are visible in Figure 5. This is because the first pole has a small residue, 0.0059, and
consequently it is so localised that it is not visible on the discrete grid of function values used to plot
the Riemann surface. The residues of the second and third poles in (10) are larger by comparison,
namely, 0.099 and 1.3.

COMPUTER RESEARCH AND MODELING
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We now turn to the numerical computation of Padé approximants such as those used in this
section.

3 Computing the coefficients

3.1 Solving linear systems

The method of computing the coefficients of the linear Padé approximant by solving a linear
system is described in [Baker, Graves-Morris, 1996, Sect. 1.1]. Following a similar approach for the
quadratic approximant, we substitute the power series (1) and (4) into the quadratic Padé equation (5),
to find

n∑
j=0

pjz
j +

n∑
j=0

qjz
j

∞∑
k=0

fkz
k +

n∑
j=0

rjz
j

( ∞∑
k=0

fkz
k

)2

= O(z3n+2). (11)

Using the well-known convolution property of polynomial multiplication, this becomes

n∑
j=0

pjz
j +

∞∑
k=0

(min(k,n)∑
j=0

fk−jqj

)
zk +

∞∑
k=0

(min(k,n)∑
j=0

f2
k−jrj

)
zk = O(z3n+2), (12)

where f2
� is the �-th coefficient in the formal power series of f2(z), which is itself given by the discrete

convolution

f2
� =

�∑
j=0

f�−jfj. (13)

Equating the first 3n+2 terms on the left and right of (12) and writing p = [p0, p1, . . . , pn]
T , etc., one

obtains the linear system of equations⎡⎣ I
0
0

⎡⎣ Cn

⎤⎦ ⎡⎣ C2
n

⎤⎦ ⎤⎦⎡⎣ p
q
r

⎤⎦ = 0. (14)

I is the (n+1)× (n+1) identity matrix, Cn is the first 3n+2 rows and n+1 columns of the Toeplitz
matrix

C =

⎡⎢⎢⎢⎣
f0
f1 f0
f2 f1 f0
...

...
. . . . . .

⎤⎥⎥⎥⎦, (15)

and C2
n is the first 3n+ 2 rows and n+ 1 columns of C2.
Notice that the matrix in (14) is of dimension (3n + 2)×(3n + 3) and so the linear system is

under-determined, which relates to the arbitrary scaling of p, q, and r in (5). Choosing the conventional
normalisation r0 = 1, one may take the appropriate column of C2

n to the right and solve the resulting
square system using standard techniques (e.g., Gaussian elimination). Similarly to the linear case
described in [Baker, Graves-Morris, 1996, Sect. 1.1], efficiency and stability can be improved by
first solving for q and r using the (2n + 1)×(2n + 2) lower-right subblock of the matrix in (14) and
then recovering p from the result.

As an alternative, one can instead compute the required null vector of the over-determined
linear system (14) (or its lower-right subblock) by using the singular-value decomposition (SVD). One
advantage of this approach is that it will not break down in instances where the normalisation r0 = 1
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fails (i.e., when r vanishes at the origin)3. In the case of linear Padé approximation, a second advantage
of the SVD approach is that it may be used to address the occurrence of “Froissart doublets” (nearby
pole/root pairs which should cancel mathematically, but in floating-point arithmetic do not). This idea
was introduced in [Gonnet et al., 2013] for the linear Padé approximant, but its generalization to
quadratic and higher order Padé approximants will not be considered here.

3.2 Recursive algorithms

The linear system approach of the previous section is not the only algorithm available for
computing linear and quadratic approximants. Alternative algorithms, also for computing more general
Hermite – Padé approximants, are described in [Derksen, 1994; Loi, McInnes, 1984; Sergeyev, 1986]
and elsewhere. We briefly describe Sergeyev’s algorithm, simplified to the quadratic case.

Given a function f defined by the power series (1), the algorithm recursively computes quadratic
Padé approximations of the form

Sk(z) := Pk(z) +Qk(z)f(z) +Rk(z)(f(z))
2 = O(zk) (16)

for k = 0, 1, . . . by using the residuals Sk(z) = zk(αk+βkz+γkz
2+ . . .). It is easy to verify that (16)

is satisfied for k = 0, 1, 2 by setting

P0(z) = 1, Q0(z) = 0, R0(z) = 0, S0(z) = 1;

P1(z) = −f0, Q1(z) = 1, R1(z) = 0, S1(z) = f(z)− f0;

P2(z) = f2
0 , Q2(z) = −2f0, R2(z) = 1, S2(z) =

(
f(z)− f0

)2
.

For k > 2, the polynomials Pk(z), Qk(z), Rk(z) and the residuals Sk(z) can all be computed from the
above starting values and the following four-term recursion:

sk(z) = (αk−3βk−2 − αk−2βk−3)sk−1(z)− αk−3αk−1sk−2(z) + αk−2αk−1zsk−3(z).

Note that P0,P1,P2 are constants; P3,P4,P5 are linear polynomials; P6,P7,P8 are quadratic polynomials;
and so forth. A similar pattern holds for the Qk and the Rk. Here the first linear polynomials are Q4

and R5. The polynomials p, q, and r defined by (5) can thus be obtained by calculating P3n+2, Q3n+2,
and R3n+2. In particular, it should be noted that the above recursion ensures that Sk(z) = O(zk).

One advantage of the recursive algorithms is the fact that they are often touted to be of
lower computational complexity than the linear system approach. This advantage is seldom realised
in practical floating-point calculations, however, because the degrees of the polynomials in practice
hardly ever exceed twenty or thirty (for larger degrees, numerical stability is a bigger concern than
computational complexity; see Section 4). There is, however, a very real advantage of the recursive
algorithms, namely, in the detection of spurious branch points. Because the polynomials Pk, Qk, Rk

are built up with increasing degree, branch points can be monitored by computing the roots of the
corresponding discriminant polynomials. Those that converge to a fixed limit are possible candidates
for physical branch points and the others are likely to be spurious.

We conclude this section by comparing the accuracy of the linear system approach with that of
the Sergeyev algorithm outlined above. To compare the two approaches, we first compute the exact
Padé polynomials by solving the linear system of Section 3.1 using symbolic software. Then the
polynomials are recomputed using the two methods in IEEE arithmetic.

As will be discussed in Section 4, it is not useful to compare these polynomials directly.
Rather, at certain chosen points in the complex plane, we will compare the symbolically computed

3 One example is f(z) = log(1 + z), for odd values of n.
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approximant F± with the numerical counterparts F±,L and F±,S , which are computed using the linear
system and the Sergeyev algorithm, respectively. In each case, for consistency, we will choose the
branch of the approximant which is closest to the function f .

Table 1 shows such a comparison for (n, n, n) Padé approximants of the function f(z) =
= (1 + z)1/3. The approximants computed using the linear system are somewhat more accurate than
those computed using the Sergeyev algorithm, but the difference is never great. This trend seems to
hold with other functions f and other values of z.

Table 1. A comparison between the accuracy of quadratic approximants as computed by (S) the Sergeyev
algorithm and (L) the linear system approach. The function is f(z) = (1 + z)1/3.

z = 1 z = 2 z = i

n |F±,L − F±| |F±,S − F±| |F±,L − F±| |F±,S − F±| |F±,L − F±| |F±,S − F±|
4 0.0 6.7× 10−16 2.2× 10−16 6.7× 10−16 5.6× 10−17 6.7× 10−16

8 2.2× 10−16 2.2× 10−16 4.4× 10−16 3.8× 10−15 2.5× 10−16 6.9× 10−16

12 0.0 1.8× 10−14 4.2× 10−15 2.6× 10−14 2.3× 10−16 4.9× 10−14

16 4.4× 10−16 1.1× 10−13 5.3× 10−15 2.2× 10−15 2.2× 10−16 9.5× 10−14

20 6.7× 10−16 1.1× 10−14 2.2× 10−15 3.4× 10−14 5.0× 10−16 7.3× 10−14

4 Conditioning of the linear systems

The linear systems mentioned in Section 3.1 are typically ill-conditioned, as demonstrated
in Table 2. Because of this ill-conditioning, large relative errors can be expected in the computed
coefficients. One finds, however, that the Padé approximant can nevertheless be evaluated to high
relative accuracy (as already observed in Table 1).

Table 2. 2-norm condition numbers of the linear systems for solving the (n, n) linear and (n, n, n) quadratic Padé
approximation problems for the function f(z) = (1 + z)1/3, where n is such that the total number of degrees of
freedom in each case is �. (For example, the � = 5 column corresponds to (2, 2) and (1, 1, 1) approximants, and
the � = 11 column to (5, 5) and (3, 3, 3).) We present the condition number of the square lower-right subblock
of the matrix in (14) after normalising such that r0 = 1, as described in 3.1

� 5 11 17 23

Linear 1.7× 101 3.5× 105 1.1× 1010 3.5× 1014

Quadratic 3.0× 102 4.4× 107 7.3× 1012 1.5× 1017

The explanation of [Luke, 1980] for the linear case is based on a perturbation analysis: Consider
F1 = −p/q, and perturb it to F̃1 = −(p + δp)/(q + δq). Taylor expansion, to first order in δp and δq,
leads to

F̃1(z) ≈ F1(z) +
∂F1

∂p
δp +

∂F1

∂q
δq. (17)

The partial derivatives are computed by setting the right-hand side of (3) to zero, and differentiating
the left-hand side implicitly

∂F1

∂p
=

−1

q
,

∂F1

∂q
=

−F1

q
. (18)

By substituting (18) into (17) one obtains

F1(z)− F̃1(z)

F1(z)
≈ �1(z)

q(z)F1(z)
, �1(z) := δp(z) + δq(z)F1(z). (19)

2019, Vol. 11, No. 6, P. 1017–1031
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One concludes that if �1 is small, then the relative error is small, except near the zeros of F1. Luke
argues that �1 is small even if δp and δq are relatively large, by showing that �1 = O(zn+1), z → 0.
Numerical computations are given in [Luke, 1980] to support the theory.

In the quadratic case, the partial derivatives analogous to (18) follow from implicit differentiation
of (5):

∂F±
∂p

=
−1

q + 2rF±
,

∂F±
∂q

=
−F±

q + 2rF±
,

∂F±
∂r

=
−F 2±

q + 2rF±
. (20)

Using a Taylor approximation analogous to (17) and the fact that q + 2rF± = ±√
d, one obtains

F±(z)− F̃±(z)
F±(z)

≈ ±�±(z)√
d(z)F±(z)

, �±(z) := δp(z) + δq(z)F±(z) + δr(z)F±(z)2. (21)

By similar reasoning as in [Luke, 1980], it follows that �±(z) = O (zn+1
)
, z → 0. When �±

is small the relative error is small, except near the zeros of F± and near the zeros of the discriminant
polynomial d. The latter zeros correspond to branch points of F±. These points have already been
observed to be troublesome in Figure 2.

The validity of the estimate (21) is confirmed by the contour plots in Figure 6, which shows the
two quantities either side of the ≈ sign in the complex plane. We could compute the quantities δp,
δq and δr for this simple function by computing p, q and r to high precision in symbolic software.
The effect of the factor

√
d(z) in (21) can be seen at certain locations of the plot, for example, near

z = 1.64 and z = −0.96; see (9).

Figure 6. Left: Contour plot of the relative difference between F±(z) and F̃±(z), where the former is the (5, 5, 5)
quadratic approximant as computed with exact polynomials p, q and r (available from [Sergeyev, 1986]) and the
latter is the corresponding quadratic approximant computed by solving the linear system (14). The function is
f(z) = (1 + z)1/3, and this formula was used in choosing between F+(z) and F−(z) at each value of z. Right:
Estimated relative difference based on (21). Although the relative errors in the computed p, q, and r are large in
this region (∼10−5, not shown), F±(z) itself has good relative accuracy, as predicted by (21)

5 Evaluating the quadratic approximation

Having computed the polynomials that define the quadratic approximant, the quadratic formula
in (6) has to be evaluated. This involves two steps: (a) choosing between F+ and F−, and
(b) implementing the formula so that it is stable against floating-point cancellation error.
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5.1 Branch cuts

The quadratic formula in (6) is double-valued. If a single-valued approximant in the desired
domain is required, branch cuts have to be introduced. This choice is up to the user and involves
among other things the computation of the roots of the discriminant (7) and then distinguishing between
physical and spurious branch points. For large n this is no simple task, but this may be simplified by
the observation that the spurious ones often occur in pairs; compare for example (9). In addition, if
a recursive algorithm such as the one of Section 3.2 is used, it is possible to detect spurious branch
points as described in that section.

Here we discuss a particular choice of branch cuts, which may not be practical in all situations
but it has a well-defined meaning as described below. Namely, we let the linear approximant dictate
where the branch cuts should go, by picking the value of F+ or F− closest to the value of F1, i.e.,

F2(z) =

{
F+(z) if |F+(z)− F1(z)| ≤ |F−(z)− F1(z)|,
F−(z) otherwise.

(22)

It is well known that if a function is multivalued, then the linear approximant will model this
by putting poles and zeros on special curves emanating from the branch points. These curves are sets
of minimal capacity as defined in [Stahl, 1997]. It is expected that the choice (22) will put the branch
cuts in the quadratic approximant close to these sets of minimal capacity. To demonstrate this, we take
an example from [Stahl, 1997], namely,

f(z) =

√
1− 2

z2
+

9

z4
, (23)

which has four branch points, at z = ±√
2±i. We let ζ = 1/z2, and compute the first 29 coefficients of

(1− 2ζ +9ζ2)1/2 to create the (14, 14) linear approximation and the (9, 9, 9) quadratic approximation.
(Using lower degree polynomials does not resolve the branching structure adequately.) The results,
shown as phase plots4, can be seen in Figure 7. This should be compared to Figure 1 in [Stahl, 1997].

Figure 7. Left: Phase plot of the linear approximant to (23). The poles (and zeros) line up on curves of
mimimal capacity as defined in [Stahl, 1997]. Middle: Quadratic approximant, with branch cuts determined
from the linear approximant. Right: The colour wheel according to which the phase φ(z) ∈ [−π, π)
of a function f(z) = |f(z)| exp(iφ(z)) is indicated in a phase plot. (The figure is taken from
https://dlmf.nist.gov/help/vrml/aboutcolor.)

4 Phase plots are described here: http://www.visual.wegert.com/.
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5.2 Evaluating the quadratic formula

The quadratic formula in (6) can be ill-conditioned when the discriminant polynomial (7)
vanishes, i.e., near branch points of F±, see (21). It can also suffer from floating-point cancellation,
whenever 4|pr| 	 |q|2, which happens near roots/poles of F±. While the problem of ill-conditioning
cannot be avoided, the numerical instability can be avoided by the standard techniques described in
undergraduate numerical analysis courses. That is, one first evaluates F+ and F− as in (6) and then
uses the identity F+F− = p/r to set

F±(z) =

{
F±(z), if |F±(z)| ≥ |F∓(z)|,
p(z)/(r(z)F∓(z)), otherwise.

This formula is based on the fact that floating-point cancellation in the formula (6) more acutely affects
the smaller of the two values of F+(z) and F−(z).

The destructive effect of spurious branch points can be seen in Figures 2, 3, and 6. First, in
Section 4 we saw that large relative errors can be expected where the discriminant polynomial vanishes.
Second, at these points the quadratic equation defined by (5) has a root of double multiplicity, and
rootfinding is known to be ill-conditioned in this situation. The combination of these two effects means
that in the vicinity of the branch points (spurious or otherwise) degradation in accuracy should be
expected. This loss of accuracy can be seen as the upward spikes in Figure 2, as well as less clearly in
the right frames of Figures 3 and 6.

6 Applications

6.1 The Lambert W -function

The Lambert function w = W (z) is defined by the equation wew = z, and it has the power
series

w = z

∞∑
k=0

(−1− k)k

(k + 1)!
zk, (24)

which converges for |z| < 1/e [Corless et al., 1996]. We approximate the principal branch of
this function, which has a square root branch point at z = −1/e. Computing linear and quadratic
approximants from the first 17 terms of (24) yields the errors shown in Figure 8. The quadratic
approximant improves on the linear approximant by several orders of magnitude, particularly near the
branch cut (−∞,−1/e].

6.2 The Burgers equation

In [Bessis, Fournier, 1990] the authors investigated the Riemann surface associated with a shock
in the inviscid Burgers equation

ut + uux = 0, u(x, 0) = u0(x), −∞ < x < ∞. (25)

By choosing the initial condition, u0, to be a cubic polynomial, they could apply Cardano’s formula
to the implicit solution formula u = u0(x − ut). Thus they showed that, for t > 0, the solution has
a conjugate pair of branch point singularities on the imaginary axis. As t increases these branch points
travel along the imaginary axis until they meet on the real axis at the instant of shock formation.
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Figure 8. Left: Contour plot of log10 of the relative error in the (8, 8) linear Padé approximant for the Lambert
W function (principal branch). Right: Same for the (5, 5, 5) quadratic Padé approximant. Each case corresponds
to 17 degrees of freedom, i.e., the number of nonzero terms used in the power series expansion. The white dot
represents the branch point at z = −1/e

Figure 9. Same as Figure 8, but the function is the solution of the Burgers equation as defined by (28), with t = 1
2 .

The branch points, given for this example by ±iy with y = log(2+
√
3)−√

3/2, are indicated by the white dots
on the imaginary axis.

Here we consider a different initial condition, u0(x) = − sin(x), which qualitatively leads to
the same singularity dynamics (mod 2π) but without the availability of Cardano’s formula. Instead, we
shall base approximations on the Fourier series solution derived in [Platzman, 1964], namely,

u(x, t) = −2

∞∑
k=1

ck(t) sin(kx), ck(t) =
Jk(kt)

kt
. (26)

The Jk denote the Bessel functions. For the purpose of Padé approximation, consider the series

f(z, t) =
∞∑
k=0

ck+1(t)z
k, (27)

which enables one to continue the solution (26) into the complex plane via

u(z, t) = ieizf(eiz, t)− ie−izf(e−iz, t). (28)
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For the particular case t = 1
2 , we truncated the series (27) to 17 terms and approximated it with

the (8, 8) linear and (5, 5, 5) quadratic approximants, which were used to compute (28). The resulting
approximations were compared with the solution obtained by applying Newton iteration to solve for u
from u = u0(z−ut). The relative differences are shown in Figure 9. As with all the other examples we
have seen, the quadratic Padé approximant is significantly better in resolving the underlying function.
Note that the region of high accuracy is not localized to a circular region about the origin, as was the
case in Figures 3 and 8. Instead, the high accuracy region is spread out in a strip along the real axis,
which is typical for Fourier approximations.

We conclude with Table 3, which shows how well the location of the branch point can be
determined by these Padé approximants. For the quadratic Padé approximant the branch point location
was computed by finding the roots of the discriminant polynomial (7). For the linear Padé approximant
we simply selected the pole closest to the true value as given in the caption of Figure 9. The error in
the linear approximant decreases algebraically, while in the quadratic case it decreases exponentially.

Table 3. Approximation to the branch point locations shown in Figure 9, with absolute errors in brackets. � is the
number of terms used in the series (27)

� Linear Quadratic

5 0.7080 (3× 10−1) 0.461352248460 (1× 10−2)

11 0.5163 (7× 10−2) 0.450932810000 (3× 10−7)

17 0.4803 (3× 10−2) 0.450932499771 (7× 10−9)

23 0.4675 (2× 10−2) 0.450932492988 (2× 10−10)

exact 0.4509 0.450932493145

7 References
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Stahl H. The convergence of Padé approximants to functions with branch points // J. Approx. Theory. —

1997. — Vol. 91, No. 2. — P. 139–204.
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