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Abstract. — A vector-matrix approach to the theoretical design of metabolic pathways converting
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basis for computer—aided generation of alternative biochemical reaction sets executing the given sub-
strate—product conversion. The pathways are retrieved from the used database of biochemical reac-
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them. Particular attention is paid to the analysis of restriction interrelations. It is shown that the num-
ber of restrictions can be notably reduced due to the existence of families of parallel restricting planes
in the space of reaction flows. Coinciding planes of contradirectional restrictions result in the exist-
ence of fixed reaction flow values. The problem of exclusion of so called futile cycles is also consid-
ered. Utilization of these factors allows essential lowering of the problem complexity and necessary
computational resources. An example of alternative biochemical pathway computation for conversion
of glucose and glycerol into succinic acid is given. It is found that for a preset “substrate—product” pair
many pathways have the same high-energy bond balance.
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OnucaH BEKTOPHO-MATPUYHBIA MOIXOM Ul TEOPETHYECKOrO0 KOHCTPYMPOBAHMS META0OJIMYECKHX IMyTeH, mpe-
BpAIAIOIINX XUMUYECKHE COSIMHEHNs, a IMEHHO 33JaHHbIe CyOCTpaThl, B )KeJIaeMble IPOJYKThl. ITO MaTeMa-
THUYECKas OCHOBA Ul TC€HEPUPOBAHUS albTEPHATHBHBIX HAO0OPOB OMOXMMHYECKHMX pEaKIWi, BBITOJIHSIIOIINX
3aJJaHHOE MPEBpaIlIeHHE «CYOCTPaT—TIPOAYKT». DTH MyTH MOJIYyYaOTCs U3 IIPUMEHsIeMOi 0a3bl JaHHBIX 10 OWO-
XMUMHYECKHM PEaKIMsAM U HCIONB3YIOT CTEXHOMETPHIO M OTPaHWYEHHs, OCHOBaHHBIC HA HEOOPATUMOCTH HEKO-
TOpbIX peakiuii. [Ioka3aHo, YTO YMCIIO OTpaHWYEHUH MOXET OBITh 3aMETHO CHIDKEHO OJiarojapsi CymecTBOBa-
HHIO CEMEHCTB MapaluIeIbHbIX OrPaHMYUTENBHBIX INIOCKOCTEH B IPOCTPAHCTBE MIOTOKOB Yepe3 peakuuu. Cosmna-
JIaI0IIME IUIOCKOCTH C IPOTHUBOINOJOKHBIMUA HANpPAaBICHUSAMHU OIPAaHUYEHHH MNPHUBOIAT K CYLIECTBOBAHMIO
(bMKCHPOBaHHBIX 3HAYEHUH TOTOKOB Yepe3 peakiuu. PaccMoTpeHa Takxe 3ajada HCKITIOYEHUSI TaK Ha3bIBAEMBIX
(GyTHnpHBIX LUKIIOB. Vcrmonb3oBaHue 3THX (DAaKTOPOB IO3BOJSIET CYLIECTBEHHO CHHU3HMTBH CIIOKHOCTH 3aJadyM
Y HEO0OXOJMbIE BBIUMCIHUTENIbHBIE pecypchl. [IprBeeH npuMep albTepHATHBHBIX OMOXMMHUYECKHX IMyTeH mpe-
BpalleHHs TJIIOKO3bl M INIMIEPHHA B SIHTApHYIO Kuciory. OOHapy>KeHO, YTO Ui 3aJaHHOW maphl «cyOcTpar—
MPOJYKT» MHOTHE ITyTH UMEIOT OMH M TOT K€ OanaHC MaKpOIPIrHYECKUX CBSI3EH.

KiroueBsle ciioBa: Teopernueckas OHOXHUMHS, CyOCTpaT, MPOAYKT, KOHBEPCHs, albTepHATUBHBIE MeTadoiInde-
CKHE IIyTH, CTEXHOMETPHSI, BEKTOPHO-MAaTPHYHOE ONMCAHNE, HEOOPATHMBbIE PEAKIIUH, CEMEHCTBA OTPaHUICHUH
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Introduction

The metabolic pathway, one of the basic notions of biochemistry, is a sequence of biochemical
reactions, which converts one or another set of substrates (consumed substances) into final products
(formed substances). Experimental research into metabolic pathways includes the isolation of a num-
ber of enzymes from cells, the study of the stoichiometry of reactions catalyzed by these enzymes and
the arrangement of the reactions in a proper sequence. For many years the pathway layout has been
made “manually”. At present a vast body of stoichiometric data about biochemical reactions is availa-
ble in Internet databases (e.g. [KEGG]). This makes possible computer-aided theoretical selection of
necessary reactions and their arrangement into metabolic pathways, which may operate in living cells.
These pathways should satisfy the law of matter conservation for each chemical element and do not
include forbidden directions of flows via irreversible reactions. This would be a way for finding alter-
native variants of known biochemical pathways and predicting new ones.

The vector-matrix approach to the stoichiometry of chemical reactions was developed by Aris
[Aris, 1965, 1968]. In recent decades this approach was applied to the research into metabolism and, in
particular, to solving the above problem [Schilling, Palsson, 1998; Schilling et al., 1999; Lee et al., 2000;
Papin et al., 2004; Schuster et al., 2000; Lewis et al., 2012]. Alongside with an appreciable success,
a number of details in this field remain obscure. First of all, it is necessary to make the role of analyti-
cal (algebraic) methods greater compared with computational (programming) ones. Interrelations be-
tween numerous restrictions imposed by irreversible reactions need further inquiry. This is a way to
make solving this problem more efficient.

The present article offers a compact and detailed account of the problem of metabolic pathway
design with analysis of many details important for the practical implementation of this task.

Basic equations and inequalities

The synthesis of an entire metabolic pathway should be done using a set of single biochemical
reactions as an assembly kit to choose the necessary components and combine them into a proper se-
quence transforming the given substrate(s) into the specified product(s). Obviously, the stock set of
reactions from which the necessary ones are selected should be sufficiently broad so that to allow find-
ing alternative solutions.

The stoichiometry of a collection of reactions is based on the stoichiometry of a single reaction.

1°. A single reaction. By convention, the stoichiometric coefficients for reaction substrates and
products are considered as a united collection of numbers, where the coefficients for substrates are
negative and those for products are positive [Prigogine, Defay, 1954]. Then the compact form of a stoi-
chiometric equation of any reaction is as follows:

K
3 'S,v, =0, (1)
k=1

where each S, is a k-th substance involved in the reaction (a substrate or a product), v, are the stoi-
chiometric coefficients, and k =1,...,K is the numeration of substances for the given reaction.

Strictly speaking, record (1) is not quite mathematical but rather a chemical expression since S,
are not quantities but symbols of substances. On the contrary, v, are quantities measured in moles.
Therefore, each term S,v, is not a mathematical product, the sum in (1) is set-theoretic rather than

algebraic and the zero in the right-hand side implies that no more substances are involved in the reac-
tion. Nevertheless, (1) can be turned into strict mathematical interrelations if S, are considered as vec-

tors describing the elemental composition of the substances.
Consider a formal space {Z } in which every dimension describes the number of atoms of j-th type

in a molecule and one of the dimensions corresponds to the electric charge of the molecule. Let e; be the
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1244 I. G. Minkevich

basis vector in {£}, the j-th component of which is 1 and all the remaining components are zeros.

Then every substance is described as a vector:
J
S =2, (2)
j=1

where J is the number of all chemical elements included in the composition of all S, plus 1 (electric

charge), and a,, is the elemental composition of a molecule of k-th type. For all elements absent in
the molecule the corresponding a, are zeros. Also, a; corresponding to the electric charge is zero

for an electroneutral molecule.
K J J K
Substituting S, 's in (1) with (2) yields D> > e a,v, = e, > a,v, =0, from which, taking in-
k=1 j=1 j=l k=l

to account the linear independence of basis vectors e, we obtain:

K
>a,v, =0 for j=1,.,J. (3)
k=1

Interrelations (3) originate from the laws of conservation of every chemical element as well as the
overall electric charge in the course of the reaction. The stoichiometric coefficients v, should fit these
laws.

Now let us consider the balance of all S, present in a given space area, e.g., a living cell. Every
substance, generally, can be formed or consumed in this area due to other reactions, come from out-
side or leave the area. Finally, the substances participate in the reaction considered. Analysis of the
balance is a necessary part in the formulation of the main problem of this work since each metabolic
pathway has its beginning and end, i.e., the input of starting substrates and the output of final products.
Denoting the time derivatives of any quantity by an upper dot, the total amount of S, in the above
mentioned area as B, , we have a usual equation: B, =6, + ¢, , where 6, is a sum of all input-output
flows of the k-th substance and ¢, is the rate of its consumption or formation in the course of the reac-
tion. According to their meaning, @, are positive for input substances and negative for output ones.

The above equation for B, is incomplete as a kinetic equation since the dependences of ¢, and
6, on the reagent concentrations are not specified. Nevertheless, it can be used merely as a balance

equation. Below, a system containing several or many equations like this will be used for the search
for metabolic pathways. Concentrations of intermediary metabolites in cells are maintained at a very
low level and can be neglected in material balance analysis yet they often exert a considerable kinetic
effect. The kinetic mechanisms, which provide a very low level of these concentrations, are unneces-
sary to be included into the balance analysis. The schemes of pathways are usually expressed in terms
of starting and final amounts of substrate—product transformation. An equivalent form applies input
and output flows for a steady-state situation. Thus, two variants of the balance are of interest.

Case 1. The first variant is formulated for a closed biochemical system, i.e., when all §, =0, and

B, = @, . During a finite time interval it gives: AB, = jBkdt =j¢kdt. Below we use the number of
chemical reaction events during time interval T, denote(oi as & aild measured in moles of these events.
Then, T(pkdt =v, &, from which v,&=AB, .

@. The second variant is formulated for an open biochemical system in a stationary state

when all B=0. In reality, the strict constancy of B's cannot take place. However, when the balance
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of substances is considered during a time span 7' large as compared with a period of concentration fluc-
tuations of metabolic oscillations (in the case of several reactions), the mean value of B variation proves

to be small and can be neglected. Then, ¢, =v,& =—6, where & is the rate of reaction progress.
Both variants can be expressed in a unified form:

v,z=b, for k=1,..,K , 4

where z is coordinate & or rate & of the reaction progress, b, are changes of k's substance amounts
in a closed system, AB,, or the rates of k's substance interchange with the surroundings, —6, . The
minus at 6, brings the signs of b, =—6, to the same rule of signs as those for v, . Actually, 6, >0
means an influx of the k's substance into the reaction area and its diminution outside (b, <0) and
vice versa. Thus, b,'s are negative for substrates and positive for products. This rule is valid for any

space supplying substrates and accepting products (the reaction area in Case 1 or the system surround-
ings in Case 2).
Multiplication of (4) by @, , summation over k =1,...,K and utilization of (3) result in
K
Y a,b, =0 for j=1,..J (5)
k=1
for both cases.

An important aspect of reactant balance is the assignment of signs to v, and & . For reversible
reactions the sets of substrates and products may change places. From the mathematical viewpoint, the
signs of v, may be arbitrary provided they are similar for all substrates and also similar for all prod-
ucts being opposite to those for substrates. However, the classification of biochemical reactions estab-
lished by the Enzyme Commission (EC) [KEGG] enacts definite directions of all reactions in compli-
ance with the established names of the enzymes. Therefore, we assume that for all reactions, both re-
versible and irreversible, the signs of v, are in accord with the EC rules. Further, the value of & for a
reversible reaction may be both positive and negative. The latter indicates that substances formally
indicated as products are substrates under the given conditions and vice versa.

On the contrary, an irreversible reaction can have only one direction. For many of such reactions
the EC rules give £>0 and &>0. It concerns, e.g., all oxygenases and oxidases (enzymes for which
free oxygen is one of substrates), and the majority of kinases (enzymes transferring phosphate groups
from high-energy bond containing compounds to other substances). However, exceptions are possible
in the latter case. For example, pyruvate kinase (EC 2.7.1.40) is formally written as
ATP + pyruvate — ADP + phosphoenolpyruvate, which defines the signs of v, : v =-1, v, =-1,

Vapp =1, Vegp =1 (pyr = pyruvate, PEP = phosphoenolpyruvate). But the thermodynamic properties
of the reactants allow only the back direction of this reaction: ADP + phosphoenolpyruvate —
ATP + pyruvate. Then, the signs of v, are as mentioned above but the coordinate and rate of this reac-

tion progress can be only nonpositive: £<0, £<0.

2°. Several or many reactions. If we consider an aggregate of reactions numbered by index
r=1...,R (R is the total number of reactions in the stock set), stoichiometric equation (1) turns into
the following system:

K
DS, =0 for r=1,.,R. (6)
k=1

Similarly, (3) becomes

K
Zajkvkr =0 for j=1,..,J and r=1,...,R. (7
k=1
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Interrelation (4) turns into

R

D vz, =b, for k=1,..,K, ®)

r=l1
where each z, is equal to coordinate &, or rate (,ér of the r-th reaction progress. Below we apply the
“rate” version of b, interpretation and refer to z, as the flow via the r-th reaction. Then vector b,
consists of the rates of the reaction area exchange with its surroundings; b, <0 when the k-th sub-
stance is an overall substrate (consumed by the whole reaction set), and b, >0 if it is the overall prod-
uct. Usually any metabolic pathway has few overall substrates and, correspondingly, products. There-
fore, only a small part of b,'s are nonzero. The remaining b, =0 relate to intermediary metabolites
the concentrations of which are close to zero and can be neglected.

Interrelation (5) remains valid for a system of reactions. It is derived here similarly to the case of
one reaction.

Unlike interrelation (4) for a single reaction, in the case of several or many reactions, the nu-
meration k=1,...,K relates to all the substances involved in the considered stock reaction set. The
quantities v, form the so called stoichiometric matrix [Aris, 1965; Stepanov et al., 1976; Schilling
et al., 1999]. Its size is K xR . Every k-th row of v, relates to the balance of the k-th substance as
a result of the operation of all reactions. Every »-th column describes the stoichiometry of the r-th
reaction.

Since every r-th reaction operates with few substances S, , only a part of v, for the given r
are nonzero. When the stock reaction set is expanded, the number of nonzero elements of every r-th
column remains constant since the collection of the r-th reaction participants is invariable. At the
same time, the inclusion of new substances into the total list of reactants increases the number of zero
elements of the r-th column of v, . Therefore, even not a very great number of stock reactions (about

several tens) has the so called sparse matrix v,, .

Every metabolic pathway is described by the values of a/l z, included in the whole stock reac-
tion set. The signs of z may be positive or negative provided they fit the restrictions on the signs for
irreversible reactions. If some of the flows z =0, it means that the corresponding reaction does not
take part in pathway operation.

3°. The system of stoichiometric equations. If the values of all the flows z_ are determined, sys-
tem (8) yields the values of b, , i.e., the overall balance of the system. But the measurement of z_ is
a much more difficult task than the direct measurement of b, . A realistic and practically important

problem is finding one or more than one set of biochemical reactions, which provide for the transfor-
mation of given substrates into given products. In other words, it is a problem of metabolic pathway
design. In this case vector b, should be specified and vector z, should be found. Then (8) is a system

of equations with the known right-hand sides.

Since equations (8) are linear, the solution of this system, on the face of it, seems trivial. Howev-
er, there are several properties which complicate this task.

First of all, matrix v, is nonsquare. The extreme case is one reaction. Then v, has one column

(R=1) but, in any case, K >1. For instance, for pyruvate kinase (see above) K =4. Increasing R

within several tens retains the relation K > R . A further expansion of the reaction database may result
in the inverse relation between R and K . Anyway, the number of equations and that of unknown
quantities in equation system (8) are generally not equal to each other. When K > R, the solution of
the system can exist only when at least K — R equations are linearly dependent on the remaining ones.
If the number of linearly independent equations is exactly R, system (8) has a single solution; if it is
less than R, the solution is multiple-valued.
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A factor of linear interdependence of equations (8) is based on the chemical element and charge
conservation laws, which result in (5). Therefore, the set of b, values cannot be arbitrary. The same

constraints (see (7)) are imposed on the rows of the stoichiometric matrix. Therefore, J equations (8)
are linearly interdependent. Another factor of equation linear interdependence is the possible existence
of parallel chains of reactions in a pathway.

In this connection, a question arises: which of linearly dependent equations are better to eliminate
from the system before solving it? To answer the question, it is necessary to indicate the main sub-
strates and products. For example, if the problem under consideration is the synthesis of a target prod-
uct (some organic acid, etc.) from a given raw material (a carbohydrate or something else), the named
substances should be assumed as the main substrate and product and the rows of v, as well as b,

with corresponding & should be retained. On the other hand, the rows for O,, CO,, H,O in such a case
may be eliminated from the equation system. The values of corresponding b, can, thus, be considered
as unknown quantities. They can be calculated from (5) or, which is better, using those z, , which are

found before from the linearly independent part of equations (8).
To formulate the above said mathematically, let us subdivide the values of indexes £ into two
subsets: &', the numbers of linearly independent rows of (8) forming an equation system for z, de-

termination, and the remaining index values, k" . Then the equation system for z, is

R
Yz =be, k'=1...K', ©)

r=1

after solving which the values of b,. can be found as
R
b =D Vinz, . (10)
r=1

K' in (9) is the number of equations selected from (8) to be included into (9).
It should be noted that the elimination of linearly dependent equations (8) may result in mat-
rix v, in which the number of rows still exceeds the number of columns. Then, a necessary number

of rows can be additionally moved into those indexed by £" .
Another important feature of this problem is the presence of restrictions imposed on thosez, ,

which correspond to irreversible reactions. Their fraction in the whole stock set of reactions depends
on the set composition selected from the whole body of presently known reactions. If, e.g., it includes
reactions participating in the metabolization of aromatic organic compounds (see the example below),
the corresponding stock set contains a notable number of oxygenase and oxidase reactions due to
which the fraction of z, with imposed restrictions increases.

The majority of the restrictions usually have the form z >0. However, some of them may be
z, <0 (see the above mentioned pyruvate kinase reaction). As the experience of solving this problem
shows, a unified form of restriction, viz., z, >0 is much more suitable for the design of a necessary
computing algorithm. The replacement of z. <0 by z, >0 is possible by inversion of the signs of v,,
for corresponding r's [Minkevich, 2014]. After the full solution is found the signs of these z, should

be changed to the opposites.
Thus, the further reasoning will be made based solely on z, >0 restrictions.

Solving the equation system under restrictions on variables

Here we assume two properties of mathematical formulation of the given problem. 1) The system
of stoichiometric equations (9) has matrix v,, with the row number smaller than the number of col-
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umns. It means that the number of equations is less than the number of unknown variables z, .
2) A part of z, should satisfy restrictions z, >0.

Let us denote the number of v,, rows (i.e., the number of substances the balance of which is de-
scribed by equation system (9)) as K'. Then v,, is K'xR matrix. If K" had been equal to R, the
solution of (9), z,., would have been a unique point in space {z,} . However, some components of vec-
tor z, might contradict restrictions z, >0. But, as it was mentioned above, K' can be easily made

lower than R . In this case a diversified set of system (9) solutions exists including those fitting re-
strictions z, >0, the latter related to all irreversible reactions participating in the found biochemical

pathways.
Solving system (9) includes the following steps.
1°. In real variants of the considered problem, matrix v,, often has the rank less than its minimal

size: rank v, <K'. To make (9) suitable for solving, it is necessary to transform it into the form,
which contains the square matrix of the size equal to rank v,, at the left upper part of the transfor-
med v,, . The v,, may contain several collections of linearly interdependent rows; the same relates to

columns. Any transpositions of rows and, similarly, of columns are equivalent from the viewpoint of
achievement of the correct final result. Then (9) turns into

R
D Vpmeze =bp, k" =1, K, (11)

r"=l1

where k" and " are transpositions of indexes &’ and r . Below we denote rank v,.. as K" .
2°. Elimination of v,.. rows with £" = (K "+ 1),...,K ". These rows relate to equations, which are

linear combinations of those with k" =1,.... K" .

It should be emphasized that the elimination should not be made if linearly independent rows are
collected in the upper part of matrix v but linearly independent columns are still not collected in its
left part: elements which provide the value of v,.. rank may be initially localized in its columns with

r=(rank v,., +1),...,R . In this case the left square part of v,.. will have its own rank lower than

K", which will violate the correctness of the subsequent solving of the problem.
Then system (11) retains its form but operates for k" =1,..., K" where, generally, K" < K'.
3°. Matrix v,.. can be represented as a concatenation of square matrix A, and remainder matrix

C: Vpn=(A4 C). The choice of v,... columns to be included into A is arbitrary, and the only con-

dition for correct subdivision is as follows: rank 4= K" . The A can be found, e.g., by a procedure
using the Gaussian variable elimination algorithm. Similarly, the vector of unknown variables Z can

. - X .
be represented as a concatenation of two vectors: zZ=| ~ |, where X=z. at r"=1..,K" and
y

y=z.atr"= (K " 1),...,R (R is the number of columns in v,.. and “rows” in Z ). Finally, denot-
ing b,. as b we obtain:
AZ+Cy=bh . (12)

Further we rename index k" as i (i=1,...,/ , where I =K") and introduce separate numeration
for columns of 4 and C, and, correspondingly, for elements of X and y: n=1,..,K" instead of

r"=1,.,K" and [/=1,..,L (where L=R—-K") instead of r"’=(K'"+1),...,R. Then Az{am},
C={c,}, ¥={x,}, ¥={n}.
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4°. The complete mathematical formulation of the problem includes restrictions on part of varia-
bles Z, i.e., on some x, and some y,. It is mentioned above that all restrictions can be transformed

into the unified form z, >0 for corresponding values of r . Let us denote the corresponding values of
n and / as n, and / . The latter indexes relate to flows via irreversible biochemical reactions. In this
numeration, the restrictions on the variables are as follows:

x, 20, y, 20. (13)
5°. System (12) is a converted set of stoichiometric equations for metabolic flows, which is incom-

plete since the number of equations K" is less than the number of all unknown variables R. An effi-
cient approach to solving this problem is as follows [Minkevich, 2014]. System (12) is represented as

AX=b-Cy. (14)

Vector y is assumed to be an independent quantity to which an arbitrary value ( L scalar values) may
be assigned. Then, taking into account that A is a full-rank matrix, vector X is found as

Xx=A"'b-A"Cy=f-Hy, (15)
where A7 isinverse A, f=A"'b, H=A"'C . The detailed form of (15):
L
xn :fn_zhnlyl s (16)
=1

where /4, is matrix H . Then the concatenation of X and y gives the full solution:

X
2=(aj- (17)
y

The dimensionality of the space of vector y values, which are specified arbitrarily (but fitting re-
strictions (13)) is equal to L, the number of y components. According to (15), the dimensionality of
the space of X is also L . Hence, the full solution, Z , has L degrees of freedom. Let us choose L
linearly independent vectors 3 (a = 1,...,L) . They form an L -dimensional basis in space { y} . Ac-

cording to (15), for each 7 the corresponding vector ¥ is equal to

7@ :]r_HJ-;(a) ] (18)

~(a)
. - o [X
Then full vector Z , corresponding to 3’ , equals 7'“) :( j .

A question arises: can vectors Z'“’ be considered as basis vectors in the full space of solu-

L
tions {z} ? If it were so, every solution Z would have been equal to Z =) Z“Z'*  where Z“’ are

a=1

L L
scalar coefficients of decomposition. It means that y = ZZ @35 and ¥ = ZZ (@%@ Substitution
a=1

a=1

' The conclusion concerning the dimensionality of { yl} made in [Minkevich, 2014] should be corrected. The vector partici-
(@)
pating in the formation of Z solution is indeed (yl } ; it is (L + 1) -dimensional (see [Minkevich, 2014] pages 726-727).

But one of its components is fixed (equal to 1), due to which this vector has L degrees of freedom.
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of these expressions into (15) gives
L

_ L
Zz(a)x(a) — f _zz(a)H)-;(a) . (19)
a=1

a=1

L —
This equality coincides with (18) only when ZZ ) =1, In this case, the substitution of f with

a=1

L - L
>"Z'“ f makes (19) equivalent to (18). However, equality » Z‘“’ =1 is valid in a highly particular

a=1 a=l1
case of Z . Therefore, only the set of 7* can be considered as an efficient basis for finding a general
solution of the problem. The solution is as follows:

= S a) =(a = 7 7 - a a - X
yZZY( )y(),xzf_H)_}:f_zY( )Hj}()’Z:[_,J' (20)
a=1

6°. The presence of restrictions (13) significantly complicates finding solutions Z . This is virtu-
ally a kind of a very sharp nonlinearity. Since the X part of Z is expressed in terms of ¥, conditions

x, 20 are also restrictions upon y but more complex ones than y, >0 [Minkevich, 2014] (see (16)):
L

Zhnr, v, —f, <0 forall n . Every equality x, =0 relates to a border of the region of admissible y
=1

values, which do not violate the condition x, >0 for the given n, , i.e., for the given irreversible reac-

tion. All these borders are described by the equations:
L
2 hayi=1,. @1
=1

At L =2 the border is a straight line, at L =3 it is a plane; when L >3 the border is a hyperplane in
the L -dimensional { yl} space. Below all these borders are, for brevity, called planes. Every n, -th

row of matrix /4, is the vector of the corresponding plane normal, l;m . The gradient of each x, as
a function of ¥ is g, =—h, [Minkevich, 2014].

Configurations of the admissible region in { y,} are described in detail in [Minkevich 2014].

Here we pay main attention to the following feature of the borders of set (21) . Our practice has shown
that even not a very large database of stock reactions includes one or more series of parallel bor-

ders (21). It means that all vectors fzn’_ for this series are parallel to one another, and, correspondingly,
the same relates to gradients g, . This feature allows a substantial reduction of the problem solution

algorithm.

Examples which show possible variants of border relative positions in a series are given in Fig. 1
for the case of L =2. Higher dimensions do not introduce anything else. The straight lines show the
borders and the arrows indicate the directions of g, (the gradients of x, ).

Fig. 1a is a case of several inequalities x, >0 with identical directions of g, . It is clear that the

border, which represents the most strong inequality (line 3), satisfies all the remaining inequalities.
Therefore, more weak inequalities can be excluded from consideration and the corresponding x, can

be eliminated from the list of reactions the directions of which should be monitored when searching
for the total problem solution. The whole series of such restrictions picks out a half-space (shadowed
in Fig. 1a) as a region of admissible y,, i.e., those values of y,, which can be selected as independent

variables to produce the correct signs of x, . Some of the borders or even all of them can coincide.
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Then every single border of the coinciding borders can be retained and the remaining ones can be
eliminated as restrictions.

AR

3 and 4

Fig. 1. Possible variants of parallel border relative positions (for details see text)

Fig. 1b gives another case when g, have different directions. The reasoning set forth above is
applicable to those borders, which have identical g, directions. Hence, for all unidirectional g,
a single border can be retained. In the case of Fig. 15 these are borders 3 and 4. They pick out a stripe
in space {y,} for the region of admissible y, (shadowed in Fig. 1b).

However, the borders corresponding to the strongest restrictions for both g, directions can be

mutually located in a different way than that in Fig. 1b. Figure 1¢ shows the case when both inequali-
ties contradict each other (more weak inequalities are not depicted here for simplicity). It means that
the whole problem does not have a solution. It takes place when the stock reaction database is insuffi-
cient to fulfil the given metabolic process.

A very interesting and often encountered case is presented in Fig. 1d. The strongest restrictions
for both g, directions coincide. The coinciding borders are shown in Fig. 1d by a single bold line
while more weak inequalities are not depicted as in Fig. 1c. It means that only y, lying on such
a plane (or straight line, hyperplane) satisfy the series of inequalities. In turn, it means that two x, ,
which correspond to two strongest inequalities in both parts of the series, should be equal to zero.
Further, we name this border as x-fixing. The values of x, corresponding to the remaining borders
of the given series are also fixed (equal to constants), but for weaker restrictions, i.e., for borders not
coinciding with x-fixing ones, the values of corresponding x, are nonzero, viz., positive. The con-
stancy of them follows from the fact that all gradients g, of the given border series are parallel to

one another.
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7°. Let us denote a value, which the quantity x, with a number 7, takes on a border plane num-
ber n,,,as x, , . From the above said, it follows that all x, , —are necessary for finding the arrange-

ment of parallel borders in the given series. It can be made using (16) for n=n, :
x, =f, —h, 7, (22)

where vector # is the n-th row of matrix H ; it is a normal vector of the plane describing the
x, >0 restriction. Since all 4, in the series are parallel, their direction can be described by a com-

mon vector k , the length of which is not an obligatory unit. Then 4, =&, k where x, are scalars,

and (22) becomes x, = f, —«, ky. On the n,-th plane x, , =0 from which i, =£ (y, are
r r r 171 1 Kn 1
values of vector y everywhere within the #n ,-th plane). Then
Kn 2
x"rl"’rz :f;”rz _‘f;lrl = (23)
K,

L3

At n, =n,, (23) gives x, , =0, which fits the meaning of x, , . All x,  form a square matrix.

Let n,, and n., be the numbers of at least two borders, which form an x-fixing plane. Then both
x, and x, —on this plane are zeros. If more than two borders coincide as an x-fixing plane, all the
corresponding x, are zeros. But the borders in the series, which do not coincide with the x-fixing
plane, give nonzero fixed x, .
Calculation of matrix x, , —according to (23) gives the quickest way to find the relative positions
of the restriction planes irrespective of their orientation in space { y} .
A special case of restriction, x, >0, which also often takes place, is when normal vector En,, is

orthogonal to coordinate plane y, =0. Then a single component of h, is nonzero, h,, #0, whereas

the remaining ones are zeros, from which (see (16)) x, =/, —h,,», . At the border value of x, , viz.,

x, =0, we have y, = fL A value of #,, #0 may be both positive and negative. The free term f,

n.y

may be positive or negative or zero. Division of x, =/, —h,,» >0 by &, results in y < =

n.y

when 7

n.d,

>0 andin y, Z{L when #,, <0.

n.y
As in a general case of border orientation in space { y} , several border planes (for several n.'s)
may exist, which are parallel to the same coordinate plane y, =0. Then the situations described above

for the general case of a series of parallel borders (for illustration see Fig. 1) are also valid in this par-
ticular case.
An important feature appears when a direct restriction on y, (y, 20, see (13)) is present. Then

the series of parallel borders x, = f, —4,,y, 20 should be supplemented with one more, viz., y, 20

and the above mentioned analysis should be done for the supplemented series of inequalities. Some of
the possible variants are illustrated by Fig. 2. Similar to Fig. 1, we take here the case L=2. In Fig. 2
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l, =2. The direction of y, increase can be indicated by vector g, , the gradient of y, , which is per-

pendicular to plane y, =0 and has the length ‘ g, ‘ =1.
(a)

(b)

R )
»n
0 ®) 1) 3
N Y2
OI T 3 T 2
t ) 1 i
1 , : t ;
(©) (d)
2
»2
U ! ) !
0 T ¢ i 3 'yz(b) ¢ T 2 and3
2 1
1 ) 0 1 "

Fig. 2. Possible variants of border series parallel to one another and to a border of y, >0 type. See text

The pictures in Fig. 2a and Fig. 2b relate to the situation when all the restrictions have the same
directions of g, and g, . Then a corresponding series of restrictions determines a half-space in { y}

as a region of admissible y, . Fig. 2a represents the case when y, >0 is the strongest restriction of the

series. Then restrictions 1, 2 and 3 for corresponding 7,'s should be excluded from the list of re-
strictions x, >0 since they are met automatically due to y, >0 the latter should be retained. Fig. 2b

gives another case when the strongest restriction relates to one of x, . Then a single restriction
y, 2 yll(b) provides for the compliance with the whole restriction series. By analogy, one can consider
the situation when both directions g, are present due to which the admissible y, lie within a stripe,
or an admissible y, region (and the solution of the whole problem) is absent at all.

The pictures in Fig. 2¢ and Fig. 2d relate to the situation when at least two borders with different-
ly directed gradients coincide. Then all x, related to this series as well as y, have fixed values.

8°. Analysis of the parallel border series described here reduces the number of restrictions (13)
and, hence, the complexity of problem solving. Especially it relates to cases when two or more x,

values turn to be fixed (see, e.g., Fig. 1d and Figs. 2¢ and 2d). Finding such coinciding differently di-
rected restrictions results in the preliminary determination of values of some x, and, possibly, .
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When some of the components of vector y are fixed, let us denote the number of fixed y,
as L, . As it is described above, the fact of x, and y, value fixation originates from the interplay of

the number of restrictions (13). For some number / , the fixation of the value of y, , if it does take
place, is a consequence of the interaction of restriction y, >0 with at least one restriction x, >0. We

would recall that y, are generally independent variables the values of which are established arbitrarily
within the admissible region. However, the possible presence of fixed y, results in the reduction of

admissible region dimensionality: it is not L, ., the initial dimensionality of { y} ,but L . —L. .

ini °

An additional factor which reduces computational complexity of the problem considered here is
as follows. Matrix /%, in (16) usually contains some amount of rows consisting of only zero elements

which originates from sparseness of matrix v, . Then, according to (16), the corresponding x, = f,
irrespective of y. These x, , thereby, are also fixed values.

n

Thus, the process of solving equation system (14) includes the analysis of the set of inequalities
(13) and, as a rule, the reduction of this set and finding the fixed values of some x, and y,. When the

fixed x, and y, are found, their values should replace the corresponding z,. in (11) due to which the

corresponding terms v,...z,. in (11) take on definite values and should be transferred to the right-hand

side of the linear equation system. This results in the elimination of the corresponding elements from
matrix v,... Then the procedure of modified matrix v,.. subdivision into matrices 4 and C as well

as the subdivision of variable vector Z into X and y should be repeated. A streak of this problem is

as follows: on a given step of its solving a new series of parallel restriction planes arise. For instance,
some rows of v,.. may be linearly independent due to a part of elements, which are coefficients at

fixed x, . After the substitution of x, by their fixed values the obtained constant summands move to

right-hand side of the system and the remaining parts of the rows become linearly dependent. There-
fore, the procedure of the search for and analysis of parallel restrictions should be repeated until none
of these series remain.

9°. When the above described stage of restriction analysis is fulfilled, all the residuary restrictive
planes (straight lines, hyperplanes) intersect one another. The admissible region of ¥ values may be
infinite (open) or finite (closed) (it is considered in detail in [Minkevich, 2014]). The presence of fixed
variables results in its dimensionality L. being lower than L .. When the number of the remaining

fin
borders x, =0 plus the remaining y, =0 is equal to or lower than L , the admissible region is
open. Otherwise, this region can be both open and closed.

The final stage of solution search can be as follows. 1) Select an arbitrary point on a border plane
intersection as a starting point. 2) Find the sum of all gradients of the remaining x, and y, . 3) Equate

the negative components of the sum vector, which correspond to /

I3

, to zero. 4) Go from the starting
point along the obtained vector until point ), belonging to the admissible region is achieved. 5) Move

from ¥, to independent directions the number of which is L . The result will be L, vectors ¥ .
Then, instead of (20), we have for the problem solution:
Lg, _ ~ Lg, ;C
ﬁ=ZY(“)f“”,%=f—Hf=f—ZY(“’HP(“),E=(ﬁ (24)
a=1 a=1 y

(L isreplaced by Ly, ). Any general solution (24) should satisty restrictions x, >0 forall n,.

10°. The solutions found as described above usually represent a sum of minimal flow sets provid-
ing conversion of the substrates into the products, with some additional flows, which are not necessary
for such conversions. It is a well-known property of linear equations: a general solution of linear non-
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homogeneous equation system is a sum of its any partial solution with solution(s) of the corresponding
homogeneous equations, the latter (solutions) being taken with arbitrary coefficients. This property
matters when solution(s) of homogeneous equations is (are) non-zero. It is quite the case for a system
of linear equations with variable number bigger than the system rank, which is considered here.

The system of homogenous equations corresponding to (12) is 4x + Cy =0, which results in the

analog of (15):
¥=—A"'Cy=-Hy. (25)

Term b and, therefore, ]7 =A"'b is zero here, which means the absence of metabolite interchange

between the enzyme system and its surroundings. Accordingly, equations (21) for border planes turn
into

L
> h,y,=0. (26)
=1

It means that restrictions on x, in the case 5 =0 may be not the same as in the case b #0.

Distinctions of (25) and (26) from (15) and (21) imply that the results of solving a non-
homogeneous equation system may be incorrect for the homogeneous case, and the described above
analysis should be fulfilled for (25) and (26) from the very beginning. In particular, the number of fi-

nal restrictions, L, , may differ from L of the non-homogeneous case. Linearly independent solu-

tions ¥/ for the case b =0 (the number of which is L_ﬁn) are found from the following interrela-
tions:

D =y HFP 27)

where S = 1,...,L_ﬁn; 7P are linearly independent vectors satisfying restrictions (13), H is a matrix

analogous to H , and Y'”) are arbitrary coefficients. Then the final basis solutions for #“ denoted
below as 3% are as follows:

)72:) — )-;(a) _ Z Y(flﬁ;) ‘)7('6) , (28)
p=1

where @ should be selected so as to completely exclude superfluous pathways 3% from the ini-

tially found solutions of ¥'“. The coefficients @ are, generally, different for all 7.

The final solutions of Z\* should satisfy restrictions (13).

An example of the approach application: biosynthesis of succinate

Succinic acid possesses important regulatory properties in human metabolism, due to which it has
acquired pharmaceutical importance [Kondrashova, 1991]. Therefore, we have chosen it as a product
of the metabolic conversion of two possible substrates, glucose and glycerol. To illustrate how the ap-
proach works in this case, we selected a collection of biochemical reactions (viz., 95) given in Table 1.
The full list of metabolites involved in these reactions is given in Table 2.

The numbers of irreversible reactions in Table 1 are bolded and asterisked. Thus, 40 of 95 reac-
tions are irreversible, which is a rather big part of their total number. This is not a general property of
the whole cellular metabolism. Reactions 47—82 relate to the degradation of aromatic compounds.
They, undoubtedly, do not participate in the processes for which we are going to find metabolic path-
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ways. It is these reactions that result in a so large fraction of irreversible reactions in their total
amount. This was made intentionally to test the operation of the computer program based on the above
described method. The program finds the solution set within a few seconds.

Vector b (see (14)) was established as follows (the numbers of compounds correspond to Ta-
ble 2): b,; =1 (succinate), b,, =—1 (when the substrate is glucose), b,; =—2 (when the substrate is

glycerol). Quantities b, for compounds 1-12 were found after computing the metabolic flows via all

reactions 1-95. The remaining components of b were taken to equal zero.

The results of computation are shown in Tables 3—7. The table cells containing zero values of
flows are shadowed to make nonzero flows apparent.

Table 3 is a summary of six variants of the pathways, i.e., six different collections of enzymes
and flows due to which glucose can be transformed into succinate based solely on possible selections
from the established stock set of reactions. Table 4 represents some overall properties of these vari-
ants. The high-energy bond (HEB) balance is the difference between the HEB content in products and
substrates of the whole process. Here it means the number of ATP, GTP and (if present) pyrophos-
phate formed in the process due to the participation of the electron transport chain and some reactions
of substrate phosphorylation. The overall reactions for variants 2—4 are identical in spite of the differ-
ences in details of the pathways. The HEB balance is the same in the mentioned variants as well as in
variant 1, viz., 14.5. Variants 5 and 6 show a slightly lower efficiency of HEB formation: 13.5.

Table 5 shows metabolic cycles, which are obtained as superfluous circulations unnecessary for
required conversions. The pathways represented in Table 3 as well as those for glycerol as a substrate
(shown below in Table 6) were obtained by subtraction of Table 5 cycles from the initially found solu-
tions for the pathways. It should be emphasized that the cycles of Table 5 are determined by the stock
reaction set only and do not depend on process substrate and product. Variants 3 and 5 in Table 5 do
not make any metabolic transformations. Variant 4 fulfils the high-energy bond exchange between
different HEB carriers: ATP + GDP = ADP + GTP. These cycles do not result in HEB loss. Variants 1
and 2 carry out the following overall process: H,O + ATP — H;PO,4 + ADP, viz., the so called futile
cycle; one circulation of such cycle results in the loss of one high-energy bond. The grounds for exclu-
sion of the cycles are given below in the Discussion section.
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Table 1. Enzymes included in the stock set of reactions

No. Enzyme name EC number
1 ETC (complex I) multienzyme
2* ETC (remaining part) multienzyme
3 NAD(P)"transhydrogenase (AB-specific) 1.6.1.2
4* Hexokinase 2711
5 Glucose-6-phosphate isomerase 5.3.1.9
6* Phosphofructokinase 2.7.1.11
7 Fructose bisphosphate aldolase 4.1.2.13
8 Triosephosphate isomerase 5.3.1.1
9 Glyceraldehyde phosphate dehydrogenase (phosphorylating) 1.2.1.12
10 Phosphoglycerate kinase 2.7.2.3
11 Phosphoglycerate mutase 54.2.1
12 Enolase 4.2.1.11
13* Pyruvate kinase 2.7.1.40
14* Pyruvate decarboxylase 4111
15 Alcohol dehydrogenase 1.1.1.1
16* Pyruvate dehydrogenase complex multienzyme
17* Pyruvate carboxylase 6.4.1.1
18* Citrate synthase 2.3.3.1
19 Aconitase (step 1) 4213
20 Aconitase (step 2) 4.21.3
21 Isocitrate dehydrogenase (step 1) 1.1.1.41
22* Isocitrate dehydrogenase (step 2) 1.1.1.41
23* Oxoglutarate dehydrogenase 1.24.2
24 Succinyl coenzyme A synthetase (GTP) 6.2.1.4
25 Succinate dehydrogenase 1.3.5.1
26 Fumarase (fumarate hydratase) 4.21.2
27 Malate dehydrogenase 1.1.1.38
28 Acetyl coenzyme A synthetase 6.2.1.1
29 Lactate dehydrogenase 1.1.1.27
30 Acetaldehyde dehydrogenase 1.2.1.10
31 Isocitrate lyase 4.1.3.1
32* Malate synthase 2.3.3.9
33 Glyoxylate reductase 1.1.1.26
34* Phosphoenolpyruvate carboxykinase (ATP) 4.1.1.49
35 Glucose-6-phosphate dehydrogenase 1.1.1.49
36 6-phosphogluconolactonase 3.1.1.31
37* Phosphogluconate dehydrogenase (decarboxylating) 1.1.1.44
38 Ribose-5-phosphate isomerase 5.3.1.6
39 L-ribulose-5-phosphate 3-epimerase 5.1.3.22
40 Transketolase (KEGG R01641) 2.2.1.1
41 Transaldolase (KEGG R08575) 2212
42 Transketolase (KEGG R01067) 2.2.1.1
43* Glucose 6-phosphatase 3.1.3.9
44 CoA-independent aldehyde dehydrogenase (NAD) 1.2.1.3
45 Succinyl-CoA malate CoA-transferase 2.8.3.-
46 Malate-CoA ligase 6.2.1.9
47 Tetrahydroxynaphthalene reductase 1.1.1.252
48 Salicylaldehyde dehydrogenase 1.2.1.65
49* 1,6-Dihydroxycyclohexa-2,4-diene-1-carboxylate dehydrogenase 1.3.1.25
50 cis-1,2-Dihydro-1,2-dihydroxynaphthalene dehydrogenase 1.3.1.29
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Table 1. Enzymes included in the stock set of reactions (continued)

No. Enzyme name EC number
51 Dibenzothiophene dihydrodiol dehydrogenase 1.3.1.60
52* Catechol 1,2-dioxygenase 1.13.111
53* Catechol 2,3-dioxygenase 1.13.11.2
54* Protocatechuate 3,4-dioxygenase 1.13.11.3
55* Gentisate 1,2-dioxygenase 1.13.11.4
56* 1,2-Dihydroxynaphthalene dioxygenase 1.13.11.56
57* Benzoate 1,2-dioxygenase 1.14.12.10
58* Naphthalene 1,2-dioxygenase 1.14.12.12
59* Salicylate 1-monooxygenase 1.14.13.1
60* 4-Hydroxybenzoate 3-monooxygenase 1.14.13.2
61* Benzoate 4-monooxygenase 1.14.13.12
62* Salicylate 5-hydroxylase 1.14.13.-
63* 3-Oxoadipyl-CoA thiolase 2.3.1.174
64 3-Oxoadipate CoA-transferase 2.8.3.6
65* 3-Oxoadipate enol-lactonase 3.1.1.24
66 Acetylsalicylate deacetylase 3.1.1.55
67 Acylpyruvate hydrolase 3.7.1.5

68 2-Hydroxymuconate-semialdehyde hydrolase 3.7.1.9
69* 4-Carboxymuconolactone decarboxylase 4.1.1.44
70* 6-Methylsalicylate decarboxylase 4.1.1.52
71* Salicylate decarboxylase 4.1.1.91
72 trans-o-Hydroxybenzylidenepyruvate hydratase-aldolase 4.1.2.45
73 4-Hydroxy-2-oxovalerate aldolase 4.1.3.39
74 2-Oxopent-4-enoate hydratase 4.2.1.80
75 Maleylpyruvate isomerase 5.21.4

76 Muconolactone delta-isomerase 5.3.34

77 Muconate cycloisomerase 5511

78 3-Carboxy-cis,cis-muconate cycloisomerase 55.1.2

79 2-Hydroxychromene-2-carboxylate isomerase 5.99.14
80 2-Hydroxymuconate semialdehyde dehydrogenase 1.2.1.32
81 gamma-Oxalocrotonate isomerase 5.3.2.-

82* gamma-Oxalocrotonate decarboxylase 4.1.1.77
83* Formate dehydrogenase-N 1.1.5.6
84* Glycerol kinase 2.7.1.30
85 Glycerol-3-phosphate 1-dehydrogenase (NADP™) 1.1.1.177
86 Glycerol NAD" oxidoreductase 1.1.1.21
87* Triose kinase 2.7.1.28
88 Aldehyde dehydrogenase (NAD") 1.2.1.3
89* Glycerate 3-kinase 2.7.1.31
90* Glycerate-2-kinase 2.7.1.165
91 Glycerol NAD" 2-oxidoreductase 1.1.1.6

92 Glycerol-3-phosphate dehydrogenase (NAD") 1.1.1.8

93 Glycerol-3-phosphate dehydrogenase [NAD(P)'] 1.1.1.94
94* Glycerone kinase 2.7.1.29
95* Phosphoenolpyruvate-glycerone phosphotransferase 2.7.1.121
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Table 2. Metabolites involved in the reactions listed in Table 1

No. Compound No. Compound

1 0O, 51 6-Phosphogluconate

2 CO, 52 Ribulose 5-phosphate

3 H,O 53 Ribose 5-phosphate

4 H* 54 | L-Xylulose 5-phosphate

5 H;PO, 55 | Sedoheptulose 7-phosphate

6 Pyrophosphate 56 Erythrose 4-phosphate

7 ATP 57 1,6-Dihydroxycyclohexa-2,4-diene-1-carboxylate
8 ADP 58 5-Oxo0-2,5-dihydrofuran-2-acetate

9 AMP 59 1,2-Dihydroxydibenzothiophene

10 | GTP 60 1,3,6,8-Naphthalenetetrol

11 GDP 61 2,5-Dihydro-5-oxofuran-2-acetate (Muconolactone)
12 | GMP 62 | 2,5-Dihydroxybenzoate (Gentisate)
13 | NADH 63 | 2-Carboxy-2,5-dihydro-5-oxofuran-2-acetate
14 | NAD" 64 | 2-Hydroxy-2,4-pentadienoate

15 | NADPH 65 | 2-Hydroxychromene-2-carboxylate
16 | NADP" 66 | 2-Hydroxymuconate semialdehyde
17 | Ubiquinol (QH,) 67 2-Ox0-2,3-dihydrofuran-5-acetate (3-Oxoadipate enol-
18 | Ubiquinone (Q) lactone)

19 | Coenzyme A 68 | 3,4-Dihydroxybenzoate

20 | Acetyl-coenzyme A 69 | 3-Carboxy-cis,cis-muconate

21 Succinyl-coenzyme A 70 | 3-Cresol

22 | 3-Oxoadipyl-coenzyme A 71 3-Fumarylpyruvate

23 | L-Malyl-coenzyme A 72 | 3-Oxoadipate

24 | Glucose 73 | 4-Hydroxy-2-oxopentanoate

25 | Glucose 6-phosphate 74 | 4-Hydroxybenzoate

26 | Fructose 6-phosphate 75 | 6-Methylsalicylate

27 | Fructose 1,6-bisphosphate 76 | Aspirin (Acetylsalicylate)

28 | Glycerone phosphate 77 | Benzoate

29 | Glyceraldehyde 3-phosphate || 78 Catechol

30 | 1,3-Bisphosphoglycerate 79 | cis-1,2-Dihydronaphthalene-1,2-diol
31 3-Phosphoglycerate 80 | cis-1,2-Dihydroxy-1,2-dihydrodibenzothiophene
32 | 2-Phosphoglycerate 81 cis,cis-Muconate

33 | Phosphoenolpyruvate 82 Gentisate aldehyde

34 | Pyruvate 83 Homogentisate

35 | Acetaldehyde 84 Maleylpyruvate

36 | Ethanol 85 Naphthalene-1,2-diol

37 | Oxaloacetate 86 Naphthalene

38 | Citrate 87 Phenol

39 | cis-Aconitate 88 Salicylaldehyde

40 | Isocitrate 89 [ Salicylate

41 Oxalosuccinate 90 [ Scytalone

42 | 2-Oxoglutarate 91 trans-O-Hydroxybenzylidenepyruvate
43 | Succinate 92 Formate

44 | Fumarate 93 | 2-Hydroxymuconate

45 | L-Malate 94 | gamma-Oxalocrotonate

46 | Acetate 95 [ Glycerol

47 | Lactate 96 sn-Glycerol 3-phosphate

48 | Glyoxylate 97 D-Glyceraldehyde

49 | Glycolate 98 D-Glycerate

50 | 6-Phosphogluconolactone 99 [ Glycerone
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Table 3. Metabolic flows carrying out the conversion of glucose into succinate

Reaction (enzyme)

Flows for pathway variants 1+6
3

ETC (complex I)

ETC (remaining part)

NAD(P)transhydrogenase (AB-specific)

Hexokinase

Glucose-6-phosphate isomerase

Phosphofructokinase

Fructose bisphosphate aldolase

Triosephosphate isomerase

Glyceraldehyde phosphate dehydrogenase (phosphorylating)

Nl | Ool0VO1] —
Nl ol
[\ [ S N N N 11 P, 1 13,0 B
Nf=l=]=l=]=lo|o|lala

N|O|==]|=]|= |||,

Phosphoglycerate kinase

|
N
|
N
|
N
1
N
|
N

Phosphoglycerate mutase
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Table 4. High-energy bond (HEB) balance of different pathways of glucose conversion to succinate

Variant | Reactions Overall reaction HEB
No. involved balance
1 19 250, + 14.5H;P0O, + 14.5 ADP + Glucqse = 145
2C0O, + 17.5H,0 + 14.5 ATP + Succinate )
5 1 250, + 14.5H;P0O, + 13.5ADP + GDP + Glucgse = 145
2C0O, +17.5H,0 + 13.5 ATP + GTP + Succinate )
3 2 250, + 14.5H;P0O, + 13.5ADP + GDP + Glucqse = 145
2C0O, +17.5H,0 + 13.5 ATP + GTP + Succinate )
4 2 250, + 14.5 H;PO, + 13.5ADP + GDP + Glucgse = 145
2C0O, +17.5H,0 + 13.5 ATP + GTP + Succinate )
5 2 2.50, + 13.5H3P0O, + 13.5 ADP + Glucose = 135
2C0O, + 16.5H,0 + 13.5 ATP + Succinate )
250, + 14.5H;P0O, + 13.5 ADP + GDP + Glucose =
6 23 2C0O, +16.5H,0 + 12.5 ATP + AMP + GTP + 13.5
Pyrophosphate + Succinate

Table 5. Flows of metabolic cycles to be excluded from final solutions

Cycles 3 and 5 have no input-output substances.
Overall equation of cycles 1 and 2: H,O + ATP = H3PO, + ADP,

That of cycle 4: ATP + GDP = ADP + GTP.

Reaction (enzyme) Fl‘ows for cycle variants 1+5

1 2 3 4 5

NAD(P)+transhydrogenase (AB-specific) 0 0 0 0 1
Hexokinase 1 0 0 0 0
Triosephosphate isomerase 0 0 1 0 1
Pyruvate kinase 0 —1 0] 0] 0
Pyruvate carboxylase 0 1 0 0 0
Succinyl coenzyme A synthetase (GTP) 0 0 0 -1 0
Phosphoenolpyruvate carboxykinase (ATP) 0 1 0 0 0
Glucose 6-phosphatase 1 0 0 0 0
Succinyl-CoA malate CoA-transferase 0 0 0 —1 0
Malate-CoA ligase 0 0 0 1 0
Glycerol-3-phosphate 1-dehydrogenase (NADP) 0 0 —1 0 —1
Glycerol-3-phosphate dehydrogenase (NAD) 0 0 0 0 1
Glycerol-3-phosphate dehydrogenase [NAD(P)] 0 0 1 0 0

Tables 6 and 7 represent analogous results for succinate synthesis from glycerol. In this case
twelve linearly independent variants of pathways are present for the same stock reaction set. The over-
all reaction is the same for variants 2, 3, 68, 11, 12. All of them produce 19.5 high-energy bonds. The
same number of HEBs is formed by variants 1 and 4, the overall reactions of which differ one from
another and from those of mentioned above. Finally, a group of variants 5, 9, 10 form 18.5 HEBs,
a little less than 19.5.
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Table 6. Metabolic flows carrying out the conversion of glycerol to succinate

Flows for path variants 1+12

Reaction(enzyme)
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Table 7. High-energy bond (HEB) balance of different pathways of glycerol conversion to succinate

Variant | Reactions Overall reaction HEB
No. involved balance

1 17 3.50, +19.5H;P0O, + 19.5ADP + 2 Glyqerol = 195
2CO0O, + 24 5H,0 + 19.5 ATP + Succinate )

) 19 3.50, +19.5H;P0O, + 18.5ADP + GDP + 2 Glyperol = 195
2C0O, + 24 5H,0 + 18.5 ATP + GTP + Succinate )

3 20 3.50, + 19.5H;P0, + 18.5 ADP + GDP + 2 Glycerol = 195
2C0O, + 24 5H,0 + 18.5 ATP + GTP + Succinate )

4 1 3.50, + 19.5H3P0O, + 17.5 ADP + 2 GDP + 2 Glycerol = 195

2C0O, + 24 5H,0 + 17.5 ATP + 2 GTP + Succinate
3.50, + 19.5H;P0O, + 18.5 ADP + GDP + 2 Glycerol =
5 21 2C0O;, +23.5H,0 + 17.5ATP + GTP + AMP + 18.5
Pyrophosphate + Succinate
3.50, + 19.5H;P0O, + 18.5 ADP + GDP + 2 Glycerol =

6 21 2CO0, + 24.5H,0 + 18.5ATP + GTP + Succinate 19.5
7 1 3.50;, + 19.5H;P0, + 18.5ADP + GDP + 2 Glygerol = 19.5
2C0O, + 24 5H,0 + 18.5 ATP + GTP + Succinate )
] 1 3.50;, + 19.5H;P0, + 18.5ADP + GDP + 2 Glygerol = 18.5
2C0O, + 24 5H,0 + 18.5 ATP + GTP + Succinate )
9 2 3.50;, + 18.5H3P0, + 17.5 ADP + GDP + 2 Glygerol = 18.5
2C0O, + 23.5H,0 + 17.5 ATP + GTP + Succinate )
10 2 3.50;, + 18.5H3P0, + 17.5 ADP + GDP + 2 Glygerol = 18.5
2C0O, + 23.5H,0 + 17.5 ATP + GTP + Succinate )
1 2 3.50;, + 19.5H;P0, + 18.5ADP + GDP + 2 Glygerol = 19.5
2C0O, + 24 5H,0 + 18.5 ATP + GTP + Succinate )
12 2 3.50, + 19.5H;P0O, + 18.5 ADP + GDP + 2 Glycerol = 19.5

2C0O, + 24 5H,0 + 18.5 ATP + GTP + Succinate

Some variants of the glucose — succinate conversion present in Table 3 are illustrated by usual
biochemical schemes in Figs. 3—6. The names of the enzymes are boxed. The values of the flows are
shown close to the corresponding arrows. Irreversible flows are depicted by thick lines; reversible
ones by thin lines.

Fig. 3, 4 and 5 relate to variants 1 and 2. Fig. 3 represents a part of pathways of variants 1 and 2.
It is the classical glycolysis well known from biochemistry textbooks. Fig. 4 and 5 show different parts
of both variants. The differences relate to tricarboxylic acid cycle reactions and so called anaplerotic
reactions involved in the pathways. Fig. 6 gives the pathway of variant 5. It includes a part of glyco-
lytic reactions as well as those of the pentose phosphate pathway.

Discussion

The process of metabolic pathway synthesis consists of several stages. 1) Selection of input-output
flows, which should be calculated at the end of the whole calculation. They can be chosen based on
physiological considerations. Then we obtain an incomplete system of linear equations for flows via
biochemical reactions. 2) Subdivision of the vector consisting of these flows, Z , into two subvectors,
vy (which we specify) and X (which we found from the given ). Correspondingly, the system matrix
Vs 18 also subdivided into two matrices: (4 C). 3) Elimination of unnecessary restrictions on the
values of some metabolic flows; finding of fixed X and y components. 4) Search for point y,, initial
for result calculations. 5) Determination of basis vectors ¥\’ by linearly independent variations

around y,, and calculation of corresponding vectors X . 6) Exclusion of unnecessary metabolic cycles.
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Basis vectors »* should satisfy inequalities (13) imposed by the non-negativity of flows via ir-
reversible reactions, which correspond to a part of components of both X and y. These restrictions

are linear; each of them segregates a semi-infinite space edged by a plane. An intersection of such
half-spaces is a convex body [Rockafellar, 1970] but not obligatory a cone (as, e.g., it is considered in
[Schilling et al., 1999]). The number of restricting planes usually considered by researchers in this
field equals, at least, the total number of irreversible reactions of the used database. If all reversible
reactions are considered as two separate (forward and backward) half-reactions, the number of restrict-
ing planes becomes very big: the total number of reactions plus the number of all reversible reactions.
We found the existence of parallel restrictive planes, which results in two consequences: i) the
number of really working planes is substantially lower than the number of irreversible reactions, and
ii) there exist fixed values of some flows due to which the number of linearly independent solutions
may be lower than it is supposed to be based only on the properties of linear spaces [Schilling et al.,
1999]. It makes needless the utilization of half-reaction representation. At least some of intersections
of the retained planes lie on the border between admissible and forbidden y wvalues. It facilitates the

search for basis vectors 7“ and for the whole solution (20). The approach described here maximizes

the analytical part of the problem solving and, appropriately, minimizes numerical computation.

Aspects of this problem widely discussed in the literature are the genomic side of metabolic
pathway picture and the concept of “elementary flux modes” [Schilling et al., 1999; Schuster et al.,
2000; Bordbar et al., 2014]. These are not a subject of detailed consideration in this article. Neverthe-
less, we would like to note the following. Elementary modes are possible mathematically but they
hardly reflect a real flux picture. The latter is rather a combination of several modes due to which
product formation from a given substrate may branch so that now one possible pathway prevails, now
another; this branching is stochastic. Therefore, the choice of basis vectors seems to be arbitrary. Sub-
division of the whole metabolism into standard units such that the metabolism of any organism could
be represented as a composition of these units seems unrealistic.
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On the other hand, the presence of enzymes necessary for one pathway or another in the genome
of the organism of interest is crucial for pathway realization. Utilization of an intentionally redundant
stock reaction database provides pathways both realizable in a given organism and those which are not
realizable but possible due to its gene engineering modification. Thus, metabolic pathway considera-
tion can be subdivided into two stages: i) theoretical synthesis of the pathways, and ii) consideration of
pathway possibility in a given organism. The present work is related to the first stage.

Researchers emphasize the existence of metabolic cycles, especially the so called futile cycles, in
obtained solutions [Schilling et al., 1999; Schuster et al., 2000]. The cycles are present as constituents
of the solutions initially obtained in the way described in this work. For example, the database accept-
ed in this work gave five cycles presented in Table 5. There are three types of cycles: i) those which
have no input-output substances, ii) those which exchange high-energy bonds (HEB) between differ-
ent HEB carriers but do not change the number of HEBs, iii) those degrading HEBs. The first and se-
cond may be present in the metabolism as a kind of by-passes. The third type is a kind of futile cycles.
The existence and role of futile cycles have been discussed for a number of years. We consider ration-
al the following viewpoint: the forward and reverse branches of such cycles are reciprocally regulated
and, therefore, these branches usually do not operate simultaneously [Sel’kov, 2010]. Therefore, futile
cycles, which are found theoretically, are not, as a rule, actually present in the metabolism. The latter
substantiates the elimination of futile cycles from initially found metabolic pathways. The same is re-
lated to the remaining types of cycles. In this way we obtain minimal (from the viewpoint of the num-
ber of the reactions) solutions.

Another aspect not properly taken into account is cell compartmentation. Cells, especially eukaryot-
ic ones, are spatially partitioned (e.g., mitochondria and cytosol); an enzyme can be present in one com-
partment and absent in another; the same is related to metabolites especially as not all of them are trans-
ported across compartment-delimiting membranes. This can be described by indicating the presence or
absence of enzymes in a given compartment and including transport reactions into the general database.

The identity of the energy balance of most alternative pathways, found in this work, seems to be
a general property of cell metabolism on a specified substrate.
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