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Abstract. — A vector-matrix approach to the theoretical design of metabolic pathways converting 
chemical compounds, viz., preset substrates, into desirable products is described. It is a mathematical 
basis for computer–aided generation of alternative biochemical reaction sets executing the given sub-
strate–product conversion. The pathways are retrieved from the used database of biochemical reac-
tions and utilize the reaction stoichiometry and restrictions based on the irreversibility of a part of 
them. Particular attention is paid to the analysis of restriction interrelations. It is shown that the num-
ber of restrictions can be notably reduced due to the existence of families of parallel restricting planes 
in the space of reaction flows. Coinciding planes of contradirectional restrictions result in the exist-
ence of fixed reaction flow values. The problem of exclusion of so called futile cycles is also consid-
ered. Utilization of these factors allows essential lowering of the problem complexity and necessary 
computational resources. An example of alternative biochemical pathway computation for conversion 
of glucose and glycerol into succinic acid is given. It is found that for a preset “substrate–product” pair 
many pathways have the same high-energy bond balance. 
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Описан векторно-матричный подход для теоретического конструирования метаболических путей, пре-
вращающих химические соединения, а именно заданные субстраты, в желаемые продукты. Это матема-
тическая основа для генерирования альтернативных наборов биохимических реакций, выполняющих 
заданное превращение «субстрат–продукт». Эти пути получаются из применяемой базы данных по био-
химическим реакциям и используют стехиометрию и ограничения, основанные на необратимости неко-
торых реакций. Показано, что число ограничений может быть заметно снижено благодаря существова-
нию семейств параллельных ограничительных плоскостей в пространстве потоков через реакции. Совпа-
дающие плоскости с противоположными направлениями ограничений приводят к существованию 
фиксированных значений потоков через реакции. Рассмотрена также задача исключения так называемых 
футильных циклов. Использование этих факторов позволяет существенно снизить сложность задачи 
и необходимые вычислительные ресурсы. Приведен пример альтернативных биохимических путей пре-
вращения глюкозы и глицерина в янтарную кислоту. Обнаружено, что для заданной пары «субстрат–
продукт» многие пути имеют один и тот же баланс макроэргических связей. 
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Introduction 

The metabolic pathway, one of the basic notions of biochemistry, is a sequence of biochemical 
reactions, which converts one or another set of substrates (consumed substances) into final products 
(formed substances). Experimental research into metabolic pathways includes the isolation of a num-
ber of enzymes from cells, the study of the stoichiometry of reactions catalyzed by these enzymes and 
the arrangement of the reactions in a proper sequence. For many years the pathway layout has been 
made “manually”. At present a vast body of stoichiometric data about biochemical reactions is availa-
ble in Internet databases (e.g. [KEGG]). This makes possible computer-aided theoretical selection of 
necessary reactions and their arrangement into metabolic pathways, which may operate in living cells. 
These pathways should satisfy the law of matter conservation for each chemical element and do not 
include forbidden directions of flows via irreversible reactions. This would be a way for finding alter-
native variants of known biochemical pathways and predicting new ones.  

The vector-matrix approach to the stoichiometry of chemical reactions was developed by Aris 
[Aris, 1965, 1968]. In recent decades this approach was applied to the research into metabolism and, in 
particular, to solving the above problem [Schilling, Palsson, 1998; Schilling et al., 1999; Lee et al., 2000; 
Papin et al., 2004; Schuster et al., 2000; Lewis et al., 2012]. Alongside with an appreciable success, 
a number of details in this field remain obscure. First of all, it is necessary to make the role of analyti-
cal (algebraic) methods greater compared with computational (programming) ones. Interrelations be-
tween numerous restrictions imposed by irreversible reactions need further inquiry. This is a way to 
make solving this problem more efficient. 

The present article offers a compact and detailed account of the problem of metabolic pathway 
design with analysis of many details important for the practical implementation of this task. 

Basic equations and inequalities 

The synthesis of an entire metabolic pathway should be done using a set of single biochemical 
reactions as an assembly kit to choose the necessary components and combine them into a proper se-
quence transforming the given substrate(s) into the specified product(s). Obviously, the stock set of 
reactions from which the necessary ones are selected should be sufficiently broad so that to allow find-
ing alternative solutions.  

The stoichiometry of a collection of reactions is based on the stoichiometry of a single reaction. 
1. A single reaction. By convention, the stoichiometric coefficients for reaction substrates and 

products are considered as a united collection of numbers, where the coefficients for substrates are 
negative and those for products are positive [Prigogine, Defay, 1954]. Then the compact form of a stoi-
chiometric equation of any reaction is as follows:  

 
1

ν 0
K

k k
k

S , (1) 

where each kS  is a -thk  substance involved in the reaction (a substrate or a product), νk  are the stoi-
chiometric coefficients, and 1,...,k K  is the numeration of substances for the given reaction.  

Strictly speaking, record (1) is not quite mathematical but rather a chemical expression since kS  

are not quantities but symbols of substances. On the contrary, νk  are quantities measured in moles. 

Therefore, each term νk kS  is not a mathematical product, the sum in (1) is set-theoretic rather than 
algebraic and the zero in the right-hand side implies that no more substances are involved in the reac-
tion. Nevertheless, (1) can be turned into strict mathematical interrelations if kS  are considered as vec-
tors describing the elemental composition of the substances.  

Consider a formal space  E in which every dimension describes the number of atoms of -thj  type 

in a molecule and one of the dimensions corresponds to the electric charge of the molecule. Let je  be the 
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basis vector in  E , the -thj  component of which is 1 and all the remaining components are zeros. 

Then every substance is described as a vector: 

 
1

J

k j jk
j

a


S e , (2) 

where J  is the number of all chemical elements included in the composition of all kS  plus 1 (electric 

charge), and jka  is the elemental composition of a molecule of -thk  type. For all elements absent in 

the molecule the corresponding jka  are zeros. Also, jka  corresponding to the electric charge is zero 

for an electroneutral molecule. 

Substituting 'skS  in (1) with (2) yields 
1 1 1 1

ν ν 0
K J J K

j jk k j jk k
k j j k

a a
   

   e e , from which, taking in-

to account the linear independence of basis vectors je , we obtain: 

 
1

ν 0
K

jk k
k

a


  for 1,...,j J . (3) 

Interrelations (3) originate from the laws of conservation of every chemical element as well as the 
overall electric charge in the course of the reaction. The stoichiometric coefficients νk  should fit these 
laws. 

Now let us consider the balance of all kS  present in a given space area, e.g., a living cell. Every 
substance, generally, can be formed or consumed in this area due to other reactions, come from out-
side or leave the area. Finally, the substances participate in the reaction considered. Analysis of the 
balance is a necessary part in the formulation of the main problem of this work since each metabolic 
pathway has its beginning and end, i.e., the input of starting substrates and the output of final products. 
Denoting the time derivatives of any quantity by an upper dot, the total amount of kS  in the above 

mentioned area as kB , we have a usual equation: k k kB    , where k  is a sum of all input-output 

flows of the k-th substance and k  is the rate of its consumption or formation in the course of the reac-

tion. According to their meaning, k  are positive for input substances and negative for output ones. 

The above equation for kB  is incomplete as a kinetic equation since the dependences of k  and 

k  on the reagent concentrations are not specified. Nevertheless, it can be used merely as a balance 
equation. Below, a system containing several or many equations like this will be used for the search 
for metabolic pathways. Concentrations of intermediary metabolites in cells are maintained at a very 
low level and can be neglected in material balance analysis yet they often exert a considerable kinetic 
effect. The kinetic mechanisms, which provide a very low level of these concentrations, are unneces-
sary to be included into the balance analysis. The schemes of pathways are usually expressed in terms 
of starting and final amounts of substrate–product transformation. An equivalent form applies input 
and output flows for a steady-state situation. Thus, two variants of the balance are of interest.  

Case 1. The first variant is formulated for a closed biochemical system, i.e., when all 0k  , and 

k kB  . During a finite time interval it gives: 
0 0

T T

k k kB B dt dt    . Below we use the number of 

chemical reaction events during time interval T , denoted as   and measured in moles of these events. 

Then, 
0

T

k kdt   , from which k kB    . 

Case 2. The second variant is formulated for an open biochemical system in a stationary state 
when all 0B  . In reality, the strict constancy of 'sB  cannot take place. However, when the balance 
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of substances is considered during a time span T  large as compared with a period of concentration fluc-
tuations of metabolic oscillations (in the case of several reactions), the mean value of B  variation proves 
to be small and can be neglected. Then, k k k       where   is the rate of reaction progress.  

Both variants can be expressed in a unified form: 

 k kz b   for 1,...,k K , (4) 

where z  is coordinate   or rate   of the reaction progress, kb  are changes of 'sk  substance amounts 

in a closed system, kB , or the rates of 'sk  substance interchange with the surroundings, k . The 

minus at k  brings the signs of k kb    to the same rule of signs as those for k . Actually, 0k   

means an influx of the 'sk  substance into the reaction area and its diminution outside ( 0kb  ) and 

vice versa. Thus, 'skb  are negative for substrates and positive for products. This rule is valid for any 
space supplying substrates and accepting products (the reaction area in Case 1 or the system surround-
ings in Case 2). 

Multiplication of (4) by jka , summation over 1,...,k K  and utilization of (3) result in 

 
1

0
K

jk k
k

a b


  for 1,...,j J  (5) 

for both cases. 
An important aspect of reactant balance is the assignment of signs to k  and  . For reversible 

reactions the sets of substrates and products may change places. From the mathematical viewpoint, the 
signs of k  may be arbitrary provided they are similar for all substrates and also similar for all prod-
ucts being opposite to those for substrates. However, the classification of biochemical reactions estab-
lished by the Enzyme Commission (EC) [KEGG] enacts definite directions of all reactions in compli-
ance with the established names of the enzymes. Therefore, we assume that for all reactions, both re-
versible and irreversible, the signs of k  are in accord with the EC rules. Further, the value of   for a 
reversible reaction may be both positive and negative. The latter indicates that substances formally 
indicated as products are substrates under the given conditions and vice versa.  

On the contrary, an irreversible reaction can have only one direction. For many of such reactions 
the EC rules give 0   and 0  . It concerns, e.g., all oxygenases and oxidases (enzymes for which 
free oxygen is one of substrates), and the majority of kinases (enzymes transferring phosphate groups 
from high-energy bond containing compounds to other substances). However, exceptions are possible 
in the latter case. For example, pyruvate kinase (EC 2.7.1.40) is formally written as 
ATP + pyruvate  ADP + phosphoenolpyruvate, which defines the signs of k : 1  ATP , 1  pyr , 

1 ADP , 1 PEP  (pyr = pyruvate, PEP = phosphoenolpyruvate). But the thermodynamic properties 
of the reactants allow only the back direction of this reaction: ADP + phosphoenolpyruvate  
ATP + pyruvate. Then, the signs of k  are as mentioned above but the coordinate and rate of this reac-

tion progress can be only nonpositive: 0  , 0  . 

2. Several or many reactions. If we consider an aggregate of reactions numbered by index 
1,...,r R  ( R  is the total number of reactions in the stock set), stoichiometric equation (1) turns into 

the following system: 

 
1

ν 0
K

k kr
k

S  for 1,...,r R . (6) 

Similarly, (3) becomes 

 
1

ν 0
K

jk kr
k

a


  for 1,...,j J  and 1,...,r R . (7) 
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Interrelation (4) turns into 

 
1

R

kr r k
r

z b


  for 1,...,k K , (8) 

where each rz  is equal to coordinate r  or rate r  of the -thr  reaction progress. Below we apply the 

“rate” version of kb  interpretation and refer to rz  as the flow via the -thr  reaction. Then vector kb  

consists of the rates of the reaction area exchange with its surroundings; 0kb   when the -thk  sub-

stance is an overall substrate (consumed by the whole reaction set), and 0kb   if it is the overall prod-
uct. Usually any metabolic pathway has few overall substrates and, correspondingly, products. There-
fore, only a small part of 'skb  are nonzero. The remaining 0kb   relate to intermediary metabolites 
the concentrations of which are close to zero and can be neglected. 

Interrelation (5) remains valid for a system of reactions. It is derived here similarly to the case of 
one reaction. 

Unlike interrelation (4) for a single reaction, in the case of several or many reactions, the nu-
meration 1,...,k K  relates to all the substances involved in the considered stock reaction set. The 
quantities νkr  form the so called stoichiometric matrix [Aris, 1965; Stepanov et al., 1976; Schilling 

et al., 1999]. Its size is K R . Every -thk  row of νkr  relates to the balance of the -thk  substance as 

a result of the operation of all reactions. Every -thr  column describes the stoichiometry of the -thr  
reaction. 

Since every -thr  reaction operates with few substances kS , only a part of νkr  for the given r  

are nonzero. When the stock reaction set is expanded, the number of nonzero elements of every -thr  
column remains constant since the collection of the -thr  reaction participants is invariable. At the 
same time, the inclusion of new substances into the total list of reactants increases the number of zero 
elements of the -thr  column of νkr . Therefore, even not a very great number of stock reactions (about 

several tens) has the so called sparse matrix νkr . 

Every metabolic pathway is described by the values of all rz  included in the whole stock reac-

tion set. The signs of rz  may be positive or negative provided they fit the restrictions on the signs for 

irreversible reactions. If some of the flows 0rz  , it means that the corresponding reaction does not 
take part in pathway operation.  

3. The system of stoichiometric equations. If the values of all the flows rz  are determined, sys-

tem (8) yields the values of kb , i.e., the overall balance of the system. But the measurement of rz  is 

a much more difficult task than the direct measurement of kb . A realistic and practically important 
problem is finding one or more than one set of biochemical reactions, which provide for the transfor-
mation of given substrates into given products. In other words, it is a problem of metabolic pathway 
design. In this case vector kb  should be specified and vector rz  should be found. Then (8) is a system 
of equations with the known right-hand sides. 

Since equations (8) are linear, the solution of this system, on the face of it, seems trivial. Howev-
er, there are several properties which complicate this task. 

First of all, matrix νkr  is nonsquare. The extreme case is one reaction. Then νkr  has one column 

( 1)R   but, in any case, 1K  . For instance, for pyruvate kinase (see above) 4K  . Increasing R  
within several tens retains the relation K R . A further expansion of the reaction database may result 
in the inverse relation between R  and K . Anyway, the number of equations and that of unknown 
quantities in equation system (8) are generally not equal to each other. When K R , the solution of 
the system can exist only when at least K R  equations are linearly dependent on the remaining ones. 
If the number of linearly independent equations is exactly R , system (8) has a single solution; if it is 
less than R , the solution is multiple-valued. 
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A factor of linear interdependence of equations (8) is based on the chemical element and charge 
conservation laws, which result in (5). Therefore, the set of kb  values cannot be arbitrary. The same 

constraints (see (7)) are imposed on the rows of the stoichiometric matrix. Therefore, J  equations (8) 
are linearly interdependent. Another factor of equation linear interdependence is the possible existence 
of parallel chains of reactions in a pathway.  

In this connection, a question arises: which of linearly dependent equations are better to eliminate 
from the system before solving it? To answer the question, it is necessary to indicate the main sub-
strates and products. For example, if the problem under consideration is the synthesis of a target prod-
uct (some organic acid, etc.) from a given raw material (a carbohydrate or something else), the named 
substances should be assumed as the main substrate and product and the rows of νkr  as well as kb  

with corresponding k  should be retained. On the other hand, the rows for O2, CO2, H2O in such a case 
may be eliminated from the equation system. The values of corresponding kb  can, thus, be considered 

as unknown quantities. They can be calculated from (5) or, which is better, using those rz , which are 
found before from the linearly independent part of equations (8). 

To formulate the above said mathematically, let us subdivide the values of indexes k  into two 
subsets: k  , the numbers of linearly independent rows of (8) forming an equation system for rz  de-

termination, and the remaining index values, k . Then the equation system for rz  is 

 
1

R

k r r k
r

z b  


 , 1,...,k K  , (9) 

after solving which the values of kb   can be found as 

 
1

R

k k r r
r

b z 


 . (10) 

K   in (9) is the number of equations selected from (8) to be included into (9). 
It should be noted that the elimination of linearly dependent equations (8) may result in mat-

rix k r   in which the number of rows still exceeds the number of columns. Then, a necessary number 

of rows can be additionally moved into those indexed by k . 
Another important feature of this problem is the presence of restrictions imposed on those rz , 

which correspond to irreversible reactions. Their fraction in the whole stock set of reactions depends 
on the set composition selected from the whole body of presently known reactions. If, e.g., it includes 
reactions participating in the metabolization of aromatic organic compounds (see the example below), 
the corresponding stock set contains a notable number of oxygenase and oxidase reactions due to 
which the fraction of rz  with imposed restrictions increases.  

The majority of the restrictions usually have the form 0rz  . However, some of them may be 

0rz   (see the above mentioned pyruvate kinase reaction). As the experience of solving this problem 

shows, a unified form of restriction, viz., 0rz   is much more suitable for the design of a necessary 

computing algorithm. The replacement of 0rz   by 0rz   is possible by inversion of the signs of k r   

for corresponding 'sr  [Minkevich, 2014]. After the full solution is found the signs of these rz  should 
be changed to the opposites. 

Thus, the further reasoning will be made based solely on 0rz   restrictions. 

Solving the equation system under restrictions on variables 

Here we assume two properties of mathematical formulation of the given problem. 1) The system 
of stoichiometric equations (9) has matrix k r   with the row number smaller than the number of col-
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umns. It means that the number of equations is less than the number of unknown variables rz . 

2) A part of rz  should satisfy restrictions 0rz  . 

Let us denote the number of k r   rows (i.e., the number of substances the balance of which is de-

scribed by equation system (9)) as K  . Then k r   is K R  matrix. If K   had been equal to R , the 

solution of (9), rz , would have been a unique point in space  rz . However, some components of vec-

tor rz  might contradict restrictions 0rz  . But, as it was mentioned above, K   can be easily made 
lower than R . In this case a diversified set of system (9) solutions exists including those fitting re-
strictions 0rz  , the latter related to all irreversible reactions participating in the found biochemical 
pathways.  

Solving system (9) includes the following steps. 
1. In real variants of the considered problem, matrix k r   often has the rank less than its minimal 

size: rank k r K   . To make (9) suitable for solving, it is necessary to transform it into the form, 

which contains the square matrix of the size equal to rank k r   at the left upper part of the transfor-

med k r  . The k r   may contain several collections of linearly interdependent rows; the same relates to 
columns. Any transpositions of rows and, similarly, of columns are equivalent from the viewpoint of 
achievement of the correct final result. Then (9) turns into 

 
1

R

k r r k
r

z b    


 , 1,...,k K  , (11) 

where k   and r  are transpositions of indexes k   and r . Below we denote rank k r    as K  . 

2. Elimination of k r    rows with  1 ,...,k K K    . These rows relate to equations, which are 

linear combinations of those with 1,...,k K  .  
It should be emphasized that the elimination should not be made if linearly independent rows are 

collected in the upper part of matrix   but linearly independent columns are still not collected in its 
left part: elements which provide the value of k r    rank may be initially localized in its columns with 

 rank 1 ,...,k rr R   . In this case the left square part of k r    will have its own rank lower than 

K  , which will violate the correctness of the subsequent solving of the problem. 
Then system (11) retains its form but operates for 1,...,k K   where, generally, K K  . 
3. Matrix k r    can be represented as a concatenation of square matrix A , and remainder matrix 

C :  k r A C    . The choice of k r    columns to be included into A  is arbitrary, and the only con-

dition for correct subdivision is as follows: rank A K  . The A  can be found, e.g., by a procedure 
using the Gaussian variable elimination algorithm. Similarly, the vector of unknown variables z


 can 

be represented as a concatenation of two vectors: , where rx z 


 at 1,...,r K   and 

ry z 


 at  1 ,...,r K R    ( R  is the number of columns in k r    and “rows” in z


). Finally, denot-

ing kb   as b


 we obtain: 

 Ax Cy b 
 

. (12) 

Further we rename index k   as i  ( 1,...,i I , where I K  ) and introduce separate numeration 
for columns of A  and C , and, correspondingly, for elements of x


 and y


: 1,...,n K   instead of 

1,...,r K   and 1,...,l L  (where L R K   ) instead of  1 ,...,r K R   . Then  inA a , 

 ilC c ,  nx x


,  ly y


. 
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4. The complete mathematical formulation of the problem includes restrictions on part of varia-
bles z


, i.e., on some nx  and some ly . It is mentioned above that all restrictions can be transformed 

into the unified form 0rz   for corresponding values of r . Let us denote the corresponding values of 

n  and l  as rn  and rl . The latter indexes relate to flows via irreversible biochemical reactions. In this 
numeration, the restrictions on the variables are as follows: 

 0
rnx  , 0

rl
y  . (13) 

5. System (12) is a converted set of stoichiometric equations for metabolic flows, which is incom-
plete since the number of equations K   is less than the number of all unknown variables R . An effi-
cient approach to solving this problem is as follows [Minkevich, 2014]. System (12) is represented as 

 Ax b Cy 
 

. (14) 

Vector y


 is assumed to be an independent quantity to which an arbitrary value ( L  scalar values) may 

be assigned. Then, taking into account that A  is a full-rank matrix, vector x


 is found as 

 1 1x A b A Cy f Hy    
   

, (15) 

where 1A  is inverse A , 1f A b
 

, 1H A C . The detailed form of (15): 

 
1

L

n n nl l
l

x f h y


  , (16) 

where nlh  is matrix H . Then the concatenation of x


 and y


 gives the full solution: 

 
x

z
y

 
  
 




 . (17) 

The dimensionality of the space of vector y


 values, which are specified arbitrarily (but fitting re-

strictions (13)) is equal to L , the number of y


 components. According to (15), the dimensionality of 

the space of x


 is also L .1 Hence, the full solution, z


, has L  degrees of freedom. Let us choose L  
linearly independent vectors ( )y    1,..., L  . They form an L -dimensional basis in space  y . Ac-

cording to (15), for each ( )y   the corresponding vector ( )x   is equal to 

 ( ) ( )x f Hy  
 

. (18) 

Then full vector z


, corresponding to ( )y  , equals 
( )

( )

( )

x
z

y






 
  
 




 .  

A question arises: can vectors ( )z   be considered as basis vectors in the full space of solu-

tions  z ? If it were so, every solution z


 would have been equal to ( ) ( )

1

L

z Z z 



 
, where ( )Z   are 

scalar coefficients of decomposition. It means that ( ) ( )

1

L

y Z y 



 
 and ( ) ( )

1

L

x Z x 



 
. Substitution 

                                                      
1 The conclusion concerning the dimensionality of  ly  made in [Minkevich, 2014] should be corrected. The vector partici-

pating in the formation of z


 solution is indeed 
( )

1

y  
 
 


; it is  1L  -dimensional (see [Minkevich, 2014] pages 726–727). 

But one of its components is fixed (equal to 1), due to which this vector has L  degrees of freedom. 
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of these expressions into (15) gives  

 ( ) ( ) ( ) ( )

1 1

L L

Z x f Z Hy   

  

  
 

. (19) 

This equality coincides with (18) only when ( )

1

1
L

Z 



 . In this case, the substitution of f


 with 

( )

1

L

Z f





 makes (19) equivalent to (18). However, equality ( )

1

1
L

Z 



  is valid in a highly particular 

case of z


. Therefore, only the set of ( )y   can be considered as an efficient basis for finding a general 
solution of the problem. The solution is as follows: 

 ( ) ( )

1

L

y Y y 



 
, ( ) ( )

1

L

x f Hy f Y Hy 



   
   

, 
x

z
y

 
  
 




 . (20) 

6. The presence of restrictions (13) significantly complicates finding solutions z


. This is virtu-
ally a kind of a very sharp nonlinearity. Since the x


 part of z


 is expressed in terms of y


, conditions 

0
rnx   are also restrictions upon y


 but more complex ones than 0

rl
y   [Minkevich, 2014] (see (16)): 

1

0
r r

L

n l l n
l

h y f


   for all rn . Every equality 0
rnx   relates to a border of the region of admissible y


 

values, which do not violate the condition 0
rnx   for the given rn , i.e., for the given irreversible reac-

tion. All these borders are described by the equations: 

 
1

r r

L

n l l n
l

h y f


 . (21) 

At 2L   the border is a straight line, at 3L   it is a plane; when 3L   the border is a hyperplane in 
the L -dimensional  ly  space. Below all these borders are, for brevity, called planes. Every -thrn  

row of matrix nlh  is the vector of the corresponding plane normal, 
rnh


. The gradient of each 
rnx  as 

a function of y


 is 
r rn ng h 


 [Minkevich, 2014]. 

Configurations of the admissible region in  ly  are described in detail in [Minkevich 2014]. 

Here we pay main attention to the following feature of the borders of set (21) . Our practice has shown 
that even not a very large database of stock reactions includes one or more series of parallel bor-

ders (21). It means that all vectors 
rnh


 for this series are parallel to one another, and, correspondingly, 

the same relates to gradients 
rng


. This feature allows a substantial reduction of the problem solution 

algorithm. 
Examples which show possible variants of border relative positions in a series are given in Fig. 1 

for the case of 2L  . Higher dimensions do not introduce anything else. The straight lines show the 
borders and the arrows indicate the directions of 

rng


 (the gradients of 
rnx ). 

Fig. 1a is a case of several inequalities 0
rnx   with identical directions of 

rng


. It is clear that the 

border, which represents the most strong inequality (line 3), satisfies all the remaining inequalities. 
Therefore, more weak inequalities can be excluded from consideration and the corresponding 

rnx  can 

be eliminated from the list of reactions the directions of which should be monitored when searching 
for the total problem solution. The whole series of such restrictions picks out a half-space (shadowed 
in Fig. 1a) as a region of admissible ly , i.e., those values of ly , which can be selected as independent 

variables to produce the correct signs of 
rnx . Some of the borders or even all of them can coincide. 
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Then every single border of the coinciding borders can be retained and the remaining ones can be 
eliminated as restrictions. 

 

Fig. 1. Possible variants of parallel border relative positions (for details see text) 

Fig. 1b gives another case when 
rng


 have different directions. The reasoning set forth above is 

applicable to those borders, which have identical 
rng


 directions. Hence, for all unidirectional 
rng


 

a single border can be retained. In the case of Fig. 1b these are borders 3 and 4. They pick out a stripe 
in space  ly  for the region of admissible ly  (shadowed in Fig. 1b).  

However, the borders corresponding to the strongest restrictions for both 
rng


 directions can be 

mutually located in a different way than that in Fig. 1b. Figure 1c shows the case when both inequali-
ties contradict each other (more weak inequalities are not depicted here for simplicity). It means that 
the whole problem does not have a solution. It takes place when the stock reaction database is insuffi-
cient to fulfil the given metabolic process. 

A very interesting and often encountered case is presented in Fig. 1d. The strongest restrictions 
for both 

rng


 directions coincide. The coinciding borders are shown in Fig. 1d by a single bold line 

while more weak inequalities are not depicted as in Fig. 1c. It means that only ly  lying on such 

a plane (or straight line, hyperplane) satisfy the series of inequalities. In turn, it means that two 
rnx , 

which correspond to two strongest inequalities in both parts of the series, should be equal to zero. 
Further, we name this border as x-fixing. The values of 

rnx  corresponding to the remaining borders 

of the given series are also fixed (equal to constants), but for weaker restrictions, i.e., for borders not 
coinciding with x-fixing ones, the values of corresponding 

rnx  are nonzero, viz., positive. The con-

stancy of them follows from the fact that all gradients 
rng


 of the given border series are parallel to 

one another. 

3 
4 

y1 

y2 

c 

3 and 4 
y1 

y2 

d

y1 

y2 

1 
2 

3 

4 
5 

6 

b 

y1 

y2 

1 
2 

3 

a (а) (b) 

(c) (d) 
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7. Let us denote a value, which the quantity 
rnx  with a number 1rn  takes on a border plane num-

ber 2rn , as 
1 2r rn nx . From the above said, it follows that all 

1 2r rn nx  are necessary for finding the arrange-

ment of parallel borders in the given series. It can be made using (16) for rn n : 

 
r r rn n nx f h y 

 
, (22) 

where vector 
rnh


 is the -thrn  row of matrix H ; it is a normal vector of the plane describing the 

0
rnx   restriction. Since all 

rnh


 in the series are parallel, their direction can be described by a com-

mon vector k


, the length of which is not an obligatory unit. Then 
r rn nh k
 

 where 
rn  are scalars, 

and (22) becomes 
r r rn n nx f ky 


. On the 1-thrn  plane 

1 1
0

r rn nx   from which 1

1

1

r

r

r

n
n

n

f
ky





 (

1rny


 are 

values of vector y


 everywhere within the 1-thrn  plane). Then 

 2

1 2 2 1

1

r

r r r r

r

n
n n n n

n

x f f



  . (23) 

At 2 1r rn n  (23) gives 
1 1

0
r rn nx  , which fits the meaning of 

1 1r rn nx . All 
1 2r rn nx  form a square matrix.  

Let 1rn  and 2rn  be the numbers of at least two borders, which form an x-fixing plane. Then both 

1rnx  and 
2rnx  on this plane are zeros. If more than two borders coincide as an x-fixing plane, all the 

corresponding 
rnx  are zeros. But the borders in the series, which do not coincide with the x-fixing 

plane, give nonzero fixed 
rnx . 

Calculation of matrix 
1 2r rn nx  according to (23) gives the quickest way to find the relative positions 

of the restriction planes irrespective of their orientation in space  y . 

A special case of restriction, 0
rnx  , which also often takes place, is when normal vector 

rnh


 is 

orthogonal to coordinate plane 
1

0ly  . Then a single component of 
rnh


 is nonzero, 
1

0
rn lh  , whereas 

the remaining ones are zeros, from which (see (16)) 
1 1r r rn n n l lx f h y  . At the border value of 

rnx , viz., 

0
rnx  , we have 

1

1

r

r

n
l

n l

f
y

h
 . A value of 

1
0

rn lh   may be both positive and negative. The free term 
rnf  

may be positive or negative or zero. Division of 
1 1

0
r r rn n n l lx f h y    by 

1rn lh  results in 
1

1

r

r

n
l

n l

f
y

h
  

when 
1

0
rn lh   and in 

1

1

r

r

n
l

n l

f
y

h
  when 

1
0

rn lh  .  

As in a general case of border orientation in space  y , several border planes (for several 'srn ) 

may exist, which are parallel to the same coordinate plane 
1

0ly  . Then the situations described above 

for the general case of a series of parallel borders (for illustration see Fig. 1) are also valid in this par-
ticular case.  

An important feature appears when a direct restriction on 
1l

y  (
1

0ly  , see (13)) is present. Then 

the series of parallel borders 
1 1

0
r r rn n n l lx f h y    should be supplemented with one more, viz., 

1
0ly   

and the above mentioned analysis should be done for the supplemented series of inequalities. Some of 
the possible variants are illustrated by Fig. 2. Similar to Fig. 1, we take here the case 2L  . In Fig. 2 
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1 2l  . The direction of 
1l

y  increase can be indicated by vector 
1l

g


, the gradient of 
1l

y , which is per-

pendicular to plane 
1

0ly   and has the length 
1

1lg 


. 

 

Fig. 2. Possible variants of border series parallel to one another and to a border of 0
rl

y   type. See text 

The pictures in Fig. 2a and Fig. 2b relate to the situation when all the restrictions have the same 
directions of 

rng


 and 
1l

g


. Then a corresponding series of restrictions determines a half-space in  y  

as a region of admissible 
1l

y . Fig. 2a represents the case when 
1

0ly   is the strongest restriction of the 

series. Then restrictions 1, 2 and 3 for corresponding 'srn  should be excluded from the list of re-

strictions 0
rnx   since they are met automatically due to 

1
0ly  ; the latter should be retained. Fig. 2b 

gives another case when the strongest restriction relates to one of 
rnx . Then a single restriction 

1 1

(b)
l ly y  provides for the compliance with the whole restriction series. By analogy, one can consider 

the situation when both directions 
rng


 are present due to which the admissible 
1l

y  lie within a stripe, 

or an admissible 
1l

y  region (and the solution of the whole problem) is absent at all. 

The pictures in Fig. 2c and Fig. 2d relate to the situation when at least two borders with different-
ly directed gradients coincide. Then all 

rnx  related to this series as well as 
1l

y  have fixed values.  

8. Analysis of the parallel border series described here reduces the number of restrictions (13) 
and, hence, the complexity of problem solving. Especially it relates to cases when two or more 

rnx  

values turn to be fixed (see, e.g., Fig. 1d and Figs. 2c and 2d). Finding such coinciding differently di-
rected restrictions results in the preliminary determination of values of some 

rnx  and, possibly, ly .  

0 

2 

3 

y1 

y2 

1 
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1 

b 

y1 

y2 
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0 

d
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When some of the components of vector y


 are fixed, let us denote the number of fixed ly  

as fixL . As it is described above, the fact of 
rnx  and ly  value fixation originates from the interplay of 

the number of restrictions (13). For some number rl , the fixation of  the value of 
rl

y , if it does take 

place, is a consequence of the interaction of restriction 0
rl

y   with at least one restriction 0
rnx  . We 

would recall that ly  are generally independent variables the values of which are established arbitrarily 

within the admissible region. However, the possible presence of fixed ly  results in the reduction of 

admissible region dimensionality: it is not iniL , the initial dimensionality of  y , but ini fixL L . 

An additional factor which reduces computational complexity of the problem considered here is 
as follows. Matrix nlh  in (16) usually contains some amount of rows consisting of only zero elements 

which originates from sparseness of matrix νkr . Then, according to (16), the corresponding n nx f  

irrespective of y


. These nx , thereby, are also fixed values. 
Thus, the process of solving equation system (14) includes the analysis of the set of inequalities 

(13) and, as a rule, the reduction of this set and finding the fixed values of some 
rnx  and ly . When the 

fixed 
rnx  and ly  are found, their values should replace the corresponding rz   in (11) due to which the 

corresponding terms k r rz     in (11) take on definite values and should be transferred to the right-hand 
side of the linear equation system. This results in the elimination of the corresponding elements from 
matrix k r   . Then the procedure of modified matrix k r    subdivision into matrices A  and C  as well 

as the subdivision of variable vector z


 into x


 and y


 should be repeated. A streak of this problem is 
as follows: on a given step of its solving a new series of parallel restriction planes arise. For instance, 
some rows of k r    may be linearly independent due to a part of elements, which are coefficients at 

fixed 
rnx . After the substitution of 

rnx  by their fixed values the obtained constant summands move to 

right-hand side of the system and the remaining parts of the rows become linearly dependent. There-
fore, the procedure of the search for and analysis of parallel restrictions should be repeated until none 
of these series remain. 

9. When the above described stage of restriction analysis is fulfilled, all the residuary restrictive 
planes (straight lines, hyperplanes) intersect one another. The admissible region of y


 values may be 

infinite (open) or finite (closed) (it is considered in detail in [Minkevich, 2014]). The presence of fixed 
variables results in its dimensionality finL  being lower than iniL . When the number of the remaining 

borders 0
rnx   plus the remaining 0

rl
y   is equal to or lower than finL , the admissible region is 

open. Otherwise, this region can be both open and closed.  
The final stage of solution search can be as follows. 1) Select an arbitrary point on a border plane 

intersection as a starting point. 2) Find the sum of all gradients of the remaining 
rnx  and 

rl
y . 3) Equate 

the negative components of the sum vector, which correspond to rl , to zero. 4) Go from the starting 

point along the obtained vector until point 0y


 belonging to the admissible region is achieved. 5) Move 

from 0y


 to independent directions the number of which is finL . The result will be finL  vectors ( )y  . 
Then, instead of (20), we have for the problem solution: 

 
fin

( ) ( )

1

L

y Y y 



  
, 

fin

( ) ( )

1

L

x f Hy f Y Hy 



    
   

, 
x

z
y

 
  
 




  (24) 

( L  is replaced by finL ). Any general solution (24) should satisfy restrictions 0
rnx   for all rn .  

10. The solutions found as described above usually represent a sum of minimal flow sets provid-
ing conversion of the substrates into the products, with some additional flows, which are not necessary 
for such conversions. It is a well-known property of linear equations: a general solution of linear non-
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homogeneous equation system is a sum of its any partial solution with solution(s) of the corresponding 
homogeneous equations, the latter (solutions) being taken with arbitrary coefficients. This property 
matters when solution(s) of homogeneous equations is (are) non-zero. It is quite the case for a system 
of linear equations with variable number bigger than the system rank, which is considered here. 

The system of homogenous equations corresponding to (12) is 0Ax Cy 
 

, which results in the 
analog of (15): 

 1x A Cy Hy   
  

. (25) 

Term b


 and, therefore, 1f A b
 

 is zero here, which means the absence of metabolite interchange 
between the enzyme system and its surroundings. Accordingly, equations (21) for border planes turn 
into 

 
1

0
r

L

n l l
l

h y


 . (26) 

It means that restrictions on 
rnx  in the case 0b 


 may be not the same as in the case 0b 


.  

Distinctions of (25) and (26) from (15) and (21) imply that the results of solving a non-
homogeneous equation system may be incorrect for the homogeneous case, and the described above 
analysis should be fulfilled for (25) and (26) from the very beginning. In particular, the number of fi-

nal restrictions, finL , may differ from finL  of the non-homogeneous case. Linearly independent solu-

tions ( )x   for the case 0b 


 (the number of which is finL ) are found from the following interrela-
tions: 

 ( ) ( ) ( )x Y H y   
 

, (27) 

where fin1,..., L  ; ( )y   are linearly independent vectors satisfying restrictions (13), H  is a matrix 

analogous to H , and ( )Y   are arbitrary coefficients. Then the final basis solutions for ( )y   denoted 

below as ( )
finy   are as follows: 

 
fin

( ) ( ) ( ) ( )
fin ( )

1

L

y y Y y   


 

    
, (28) 

where ( )
( )Y 
  should be selected so as to completely exclude superfluous pathways ( )y   from the ini-

tially found solutions of ( )y  . The coefficients ( )
( )Y 
  are, generally, different for all ( )

finy  .  

The final solutions of ( )
finz   should satisfy restrictions (13). 

An example of the approach application: biosynthesis of succinate 

Succinic acid possesses important regulatory properties in human metabolism, due to which it has 
acquired pharmaceutical importance [Kondrashova, 1991]. Therefore, we have chosen it as a product 
of the metabolic conversion of two possible substrates, glucose and glycerol. To illustrate how the ap-
proach works in this case, we selected a collection of biochemical reactions (viz., 95) given in Table 1. 
The full list of metabolites involved in these reactions is given in Table 2.  

The numbers of irreversible reactions in Table 1 are bolded and asterisked. Thus, 40 of 95 reac-
tions are irreversible, which is a rather big part of their total number. This is not a general property of 
the whole cellular metabolism. Reactions 47–82 relate to the degradation of aromatic compounds. 
They, undoubtedly, do not participate in the processes for which we are going to find metabolic path-
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ways. It is these reactions that result in a so large fraction of irreversible reactions in their total 
amount. This was made intentionally to test the operation of the computer program based on the above 
described method. The program finds the solution set within a few seconds. 

Vector b


 (see (14)) was established as follows (the numbers of compounds correspond to Ta-
ble 2): 43 1b   (succinate), 24 1b    (when the substrate is glucose), 95 2b    (when the substrate is 

glycerol). Quantities ib  for compounds 1–12 were found after computing the metabolic flows via all 

reactions 1–95. The remaining components of b


 were taken to equal zero. 
The results of computation are shown in Tables 3–7. The table cells containing zero values of 

flows are shadowed to make nonzero flows apparent.  
Table 3 is a summary of six variants of the pathways, i.e., six different collections of enzymes 

and flows due to which glucose can be transformed into succinate based solely on possible selections 
from the established stock set of reactions. Table 4 represents some overall properties of these vari-
ants. The high-energy bond (HEB) balance is the difference between the HEB content in products and 
substrates of the whole process. Here it means the number of ATP, GTP and (if present) pyrophos-
phate formed in the process due to the participation of the electron transport chain and some reactions 
of substrate phosphorylation. The overall reactions for variants 2–4 are identical in spite of the differ-
ences in details of the pathways. The HEB balance is the same in the mentioned variants as well as in 
variant 1, viz., 14.5. Variants 5 and 6 show a slightly lower efficiency of HEB formation: 13.5. 

Table 5 shows metabolic cycles, which are obtained as superfluous circulations unnecessary for 
required conversions. The pathways represented in Table 3 as well as those for glycerol as a substrate 
(shown below in Table 6) were obtained by subtraction of Table 5 cycles from the initially found solu-
tions for the pathways. It should be emphasized that the cycles of Table 5 are determined by the stock 
reaction set only and do not depend on process substrate and product. Variants 3 and 5 in Table 5 do 
not make any metabolic transformations. Variant 4 fulfils the high-energy bond exchange between 
different HEB carriers: ATP + GDP = ADP + GTP. These cycles do not result in HEB loss. Variants 1 
and 2 carry out the following overall process: H2O + ATP  H3PO4 + ADP, viz., the so called futile 
cycle; one circulation of such cycle results in the loss of one high-energy bond. The grounds for exclu-
sion of the cycles are given below in the Discussion section. 
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Table 1. Enzymes included in the stock set of reactions 

No. Enzyme name EC number 
1 ETC (complex I) multienzyme
2* ETC (remaining part) multienzyme
3 NAD(P)+transhydrogenase (AB-specific) 1.6.1.2 
4* Hexokinase 2.7.1.1 
5 Glucose-6-phosphate isomerase 5.3.1.9 
6* Phosphofructokinase 2.7.1.11 
7 Fructose bisphosphate aldolase 4.1.2.13 
8 Triosephosphate isomerase 5.3.1.1 
9 Glyceraldehyde phosphate dehydrogenase (phosphorylating) 1.2.1.12 
10 Phosphoglycerate kinase 2.7.2.3 
11 Phosphoglycerate mutase 5.4.2.1 
12 Enolase 4.2.1.11 
13* Pyruvate kinase 2.7.1.40 
14* Pyruvate decarboxylase 4.1.1.1 
15 Alcohol dehydrogenase 1.1.1.1 
16* Pyruvate dehydrogenase complex multienzyme
17* Pyruvate carboxylase 6.4.1.1 
18* Citrate synthase 2.3.3.1 
19 Aconitase (step 1) 4.2.1.3 
20 Aconitase (step 2) 4.2.1.3 
21 Isocitrate dehydrogenase (step 1) 1.1.1.41 
22* Isocitrate dehydrogenase (step 2) 1.1.1.41 
23* Oxoglutarate dehydrogenase 1.2.4.2 
24 Succinyl coenzyme A synthetase (GTP) 6.2.1.4 
25 Succinate dehydrogenase 1.3.5.1 
26 Fumarase (fumarate hydratase) 4.2.1.2 
27 Malate dehydrogenase 1.1.1.38 
28 Acetyl coenzyme A synthetase 6.2.1.1 
29 Lactate dehydrogenase 1.1.1.27 
30 Acetaldehyde dehydrogenase 1.2.1.10 
31 Isocitrate lyase 4.1.3.1 
32* Malate synthase 2.3.3.9 
33 Glyoxylate reductase 1.1.1.26 
34* Phosphoenolpyruvate carboxykinase (ATP) 4.1.1.49 
35 Glucose-6-phosphate dehydrogenase 1.1.1.49 
36 6-phosphogluconolactonase 3.1.1.31 
37* Phosphogluconate dehydrogenase (decarboxylating) 1.1.1.44 
38 Ribose-5-phosphate isomerase 5.3.1.6 
39 L-ribulose-5-phosphate 3-epimerase 5.1.3.22 
40 Transketolase (KEGG R01641) 2.2.1.1 
41 Transaldolase (KEGG R08575) 2.2.1.2 
42 Transketolase (KEGG R01067) 2.2.1.1 
43* Glucose 6-phosphatase 3.1.3.9 
44* CoA-independent aldehyde dehydrogenase (NAD) 1.2.1.3 
45 Succinyl-CoA malate CoA-transferase 2.8.3.- 
46 Malate-CoA ligase 6.2.1.9 
47 Tetrahydroxynaphthalene reductase 1.1.1.252 
48 Salicylaldehyde dehydrogenase 1.2.1.65 
49* 1,6-Dihydroxycyclohexa-2,4-diene-1-carboxylate dehydrogenase 1.3.1.25 
50 cis-1,2-Dihydro-1,2-dihydroxynaphthalene dehydrogenase 1.3.1.29 
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Table 1. Enzymes included in the stock set of reactions (continued) 

No. Enzyme name EC number 
51 Dibenzothiophene dihydrodiol dehydrogenase 1.3.1.60 
52* Catechol 1,2-dioxygenase 1.13.11.1 
53* Catechol 2,3-dioxygenase 1.13.11.2 
54* Protocatechuate 3,4-dioxygenase 1.13.11.3 
55* Gentisate 1,2-dioxygenase 1.13.11.4 
56* 1,2-Dihydroxynaphthalene dioxygenase 1.13.11.56 
57* Benzoate 1,2-dioxygenase 1.14.12.10 
58* Naphthalene 1,2-dioxygenase 1.14.12.12 
59* Salicylate 1-monooxygenase 1.14.13.1 
60* 4-Hydroxybenzoate 3-monooxygenase 1.14.13.2 
61* Benzoate 4-monooxygenase 1.14.13.12 
62* Salicylate 5-hydroxylase 1.14.13.- 
63* 3-Oxoadipyl-CoA thiolase 2.3.1.174 
64 3-Oxoadipate CoA-transferase 2.8.3.6 
65* 3-Oxoadipate enol-lactonase 3.1.1.24 
66 Acetylsalicylate deacetylase 3.1.1.55 
67 Acylpyruvate hydrolase 3.7.1.5 
68 2-Hydroxymuconate-semialdehyde hydrolase 3.7.1.9 
69* 4-Carboxymuconolactone decarboxylase 4.1.1.44 
70* 6-Methylsalicylate decarboxylase 4.1.1.52 
71* Salicylate decarboxylase 4.1.1.91 
72 trans-o-Hydroxybenzylidenepyruvate hydratase-aldolase 4.1.2.45 
73 4-Hydroxy-2-oxovalerate aldolase 4.1.3.39 
74 2-Oxopent-4-enoate hydratase 4.2.1.80 
75 Maleylpyruvate isomerase 5.2.1.4 
76 Muconolactone delta-isomerase 5.3.3.4 
77 Muconate cycloisomerase 5.5.1.1 
78 3-Carboxy-cis,cis-muconate cycloisomerase 5.5.1.2 
79 2-Hydroxychromene-2-carboxylate isomerase 5.99.1.4 
80 2-Hydroxymuconate semialdehyde dehydrogenase 1.2.1.32 
81 gamma-Oxalocrotonate isomerase 5.3.2.- 
82* gamma-Oxalocrotonate decarboxylase 4.1.1.77 
83* Formate dehydrogenase-N 1.1.5.6 
84* Glycerol kinase 2.7.1.30 
85 Glycerol-3-phosphate 1-dehydrogenase (NADP+) 1.1.1.177 
86 Glycerol NAD+ oxidoreductase 1.1.1.21 
87* Triose kinase 2.7.1.28 
88 Aldehyde dehydrogenase (NAD+) 1.2.1.3 
89* Glycerate 3-kinase 2.7.1.31 
90* Glycerate-2-kinase 2.7.1.165 
91 Glycerol NAD+ 2-oxidoreductase 1.1.1.6 
92 Glycerol-3-phosphate dehydrogenase (NAD+) 1.1.1.8 
93 Glycerol-3-phosphate dehydrogenase [NAD(P)+] 1.1.1.94 
94* Glycerone kinase 2.7.1.29 
95* Phosphoenolpyruvate-glycerone phosphotransferase 2.7.1.121 
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Table 2. Metabolites involved in the reactions listed in Table 1 

No. Compound No. Compound 
1 O2 51 6-Phosphogluconate 
2 CO2 52 Ribulose 5-phosphate 
3 H2O 53 Ribose 5-phosphate 
4 H+ 54 L-Xylulose 5-phosphate 
5 H3PO4 55 Sedoheptulose 7-phosphate 
6 Pyrophosphate 56 Erythrose 4-phosphate 
7 ATP 57 1,6-Dihydroxycyclohexa-2,4-diene-1-carboxylate 
8 ADP 58 5-Oxo-2,5-dihydrofuran-2-acetate 
9 AMP 59 1,2-Dihydroxydibenzothiophene 
10 GTP 60 1,3,6,8-Naphthalenetetrol 
11 GDP 61 2,5-Dihydro-5-oxofuran-2-acetate (Muconolactone) 
12 GMP 62 2,5-Dihydroxybenzoate (Gentisate) 
13 NADH 63 2-Carboxy-2,5-dihydro-5-oxofuran-2-acetate 
14 NAD+ 64 2-Hydroxy-2,4-pentadienoate 
15 NADPH 65 2-Hydroxychromene-2-carboxylate 
16 NADP+ 66 2-Hydroxymuconate semialdehyde 
17 Ubiquinol (QH2) 67 

2-Oxo-2,3-dihydrofuran-5-acetate (3-Oxoadipate enol-
lactone) 18 Ubiquinone (Q) 

19 Coenzyme A 68 3,4-Dihydroxybenzoate 
20 Acetyl-coenzyme A 69 3-Carboxy-cis,cis-muconate 
21 Succinyl-coenzyme A 70 3-Cresol 
22 3-Oxoadipyl-coenzyme A 71 3-Fumarylpyruvate 
23 L-Malyl-coenzyme A 72 3-Oxoadipate 
24 Glucose 73 4-Hydroxy-2-oxopentanoate 
25 Glucose 6-phosphate 74 4-Hydroxybenzoate 
26 Fructose 6-phosphate 75 6-Methylsalicylate 
27 Fructose 1,6-bisphosphate 76 Aspirin (Acetylsalicylate) 
28 Glycerone phosphate 77 Benzoate 
29 Glyceraldehyde 3-phosphate 78 Catechol 
30 1,3-Bisphosphoglycerate 79 cis-1,2-Dihydronaphthalene-1,2-diol 
31 3-Phosphoglycerate 80 cis-1,2-Dihydroxy-1,2-dihydrodibenzothiophene 
32 2-Phosphoglycerate 81 cis,cis-Muconate 
33 Phosphoenolpyruvate 82 Gentisate aldehyde 
34 Pyruvate 83 Homogentisate 
35 Acetaldehyde 84 Maleylpyruvate 
36 Ethanol 85 Naphthalene-1,2-diol 
37 Oxaloacetate 86 Naphthalene 
38 Citrate 87 Phenol 
39 cis-Aconitate 88 Salicylaldehyde 
40 Isocitrate 89 Salicylate 
41 Oxalosuccinate 90 Scytalone 
42 2-Oxoglutarate 91 trans-O-Hydroxybenzylidenepyruvate 
43 Succinate 92 Formate 
44 Fumarate 93 2-Hydroxymuconate 
45 L-Malate 94 gamma-Oxalocrotonate 
46 Acetate 95 Glycerol 
47 Lactate 96 sn-Glycerol 3-phosphate 
48 Glyoxylate 97 D-Glyceraldehyde 
49 Glycolate 98 D-Glycerate 
50 6-Phosphogluconolactone 99 Glycerone 
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Table 3. Metabolic flows carrying out the conversion of glucose into succinate 

Reaction (enzyme) 
Flows for pathway variants 16 
1 2 3 4 5 6 

ETC (complex I) 5 5 5 5 6 5 
ETC (remaining part) 5 5 5 5 5 5 
NAD(P)transhydrogenase (AB-specific) 0 0 0 0 –6 0 
Hexokinase 1 1 1 1 1 1 
Glucose-6-phosphate isomerase 1 1 1 1 –2 1 
Phosphofructokinase 1 1 1 1 0 1 
Fructose bisphosphate aldolase 1 1 1 1 0 1 
Triosephosphate isomerase 1 1 0 1 0 1 
Glyceraldehyde phosphate dehydrogenase (phosphorylating) 2 2 2 2 1 2 
Phosphoglycerate kinase –2 –2 –2 -2 –1 –2 
Phosphoglycerate mutase 2 2 2 2 1 2 
Enolase 2 2 2 2 1 2 
Pyruvate kinase –2 –2 –2 –2 –1 –2 
Pyruvate decarboxylase 0 0 0 1 0 1 
Pyruvate dehydrogenase complex 2 1 1 0 0 0 
Pyruvate carboxylase 0 1 1 1 1 1 
Citrate synthase 1 1 1 1 0 1 
Aconitase (step 1) 1 1 1 1 0 1 
Aconitase (step 2) 1 1 1 1 0 1 
Isocitrate dehydrogenase (step 1) 0 1 1 1 0 1 
Isocitrate dehydrogenase (step 2) 0 1 1 1 0 1 
Oxoglutarate dehydrogenase 0 1 1 1 0 1 
Succinyl coenzyme A synthetase (GTP) 0 –1 –1 –1 0 –1 
Succinate dehydrogenase 0 0 0 0 –1 0 
Fumarase (fumarate hydratase) 0 0 0 0 –1 0 
Malate dehydrogenase 1 0 0 0 –1 0 
Acetyl Co-A synthetase 0 0 0 0 0 1 
Acetaldehyde dehydrogenase 0 0 0 1 0 0 
Isocitrate lyase 1 0 0 0 0 0 
Malate synthase 1 0 0 0 0 0 
Glucose-6-phosphate dehydrogenase 0 0 0 0 3 0 
6-phosphogluconolactonase 0 0 0 0 3 0 
Phosphogluconate dehydrogenase (decarboxylating) 0 0 0 0 3 0 
Ribose-5-phosphate isomerase 0 0 0 0 1 0 
L-ribulose-5-phosphate 3-epimerase 0 0 0 0 2 0 
Transketolase (KEGG R01641) 0 0 0 0 1 0 
Transaldolase (KEGG R08575) 0 0 0 0 1 0 
Transketolase (KEGG R01067) 0 0 0 0 1 0 
CoA-independent aldehyde dehydrogenase (NAD) 0 0 0 0 0 1 
Glycerol-3-phosphate 1-dehydrogenase (NADP) 0 0 1 0 0 0 
Glycerol-3-phosphate dehydrogenase [NAD(P)] 0 0 –1 0 0 0 
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Table 4. High-energy bond (HEB) balance of different pathways of glucose conversion to succinate 

Variant 
No. 

Reactions 
involved 

Overall reaction 
HEB 

balance

1 19 2.5 O2 + 14.5 H3PO4 + 14.5 ADP + Glucose = 
     2 CO2 + 17.5 H2O + 14.5 ATP + Succinate 14.5 

2 21 2.5 O2 + 14.5 H3PO4 + 13.5 ADP + GDP + Glucose = 
     2 CO2 + 17.5 H2O + 13.5 ATP + GTP + Succinate 14.5 

3 22 2.5 O2 + 14.5 H3PO4 + 13.5 ADP + GDP + Glucose = 
     2 CO2 + 17.5 H2O + 13.5 ATP + GTP + Succinate 14.5 

4 22 2.5 O2 + 14.5 H3PO4 + 13.5 ADP + GDP + Glucose = 
     2 CO2 + 17.5 H2O + 13.5 ATP + GTP + Succinate 14.5 

5 22 2.5 O2 + 13.5 H3PO4 + 13.5 ADP + Glucose = 
     2 CO2 + 16.5 H2O + 13.5 ATP + Succinate 13.5 

6 23 
2.5 O2 + 14.5 H3PO4 + 13.5 ADP + GDP + Glucose = 
     2 CO2 + 16.5 H2O + 12.5 ATP + AMP + GTP +  
     Pyrophosphate + Succinate 

13.5 

 
 

Table 5. Flows of metabolic cycles to be excluded from final solutions 

Cycles 3 and 5 have no input-output substances.  
Overall equation of cycles 1 and 2: H2O + ATP = H3PO4 + ADP, 
That of cycle 4: ATP + GDP = ADP + GTP. 

Reaction (enzyme) Flows for cycle variants 15 
1` 2 3 4 5 

NAD(P)+transhydrogenase (AB-specific) 0 0 0 0 1 
Hexokinase 1 0 0 0 0 
Triosephosphate isomerase 0 0 1 0 1 
Pyruvate kinase 0 –1 0 0 0 
Pyruvate carboxylase 0 1 0 0 0 
Succinyl coenzyme A synthetase (GTP) 0 0 0 –1 0 
Phosphoenolpyruvate carboxykinase (ATP) 0 1 0 0 0 
Glucose 6-phosphatase 1 0 0 0 0 
Succinyl-CoA malate CoA-transferase 0 0 0 –1 0 
Malate-CoA ligase 0 0 0 1 0 
Glycerol-3-phosphate 1-dehydrogenase (NADP) 0 0 –1 0 –1 
Glycerol-3-phosphate dehydrogenase (NAD) 0 0 0 0 1 
Glycerol-3-phosphate dehydrogenase [NAD(P)] 0 0 1 0 0 

 
Tables 6 and 7 represent analogous results for succinate synthesis from glycerol. In this case 

twelve linearly independent variants of pathways are present for the same stock reaction set. The over-
all reaction is the same for variants 2, 3, 6–8, 11, 12. All of them produce 19.5 high-energy bonds. The 
same number of HEBs is formed by variants 1 and 4, the overall reactions of which differ one from 
another and from those of mentioned above. Finally, a group of variants 5, 9, 10 form 18.5 HEBs, 
a little less than 19.5. 
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Table 6. Metabolic flows carrying out the conversion of glycerol to succinate 

Reaction(enzyme) 
Flows for path variants 112 

1 2 3 4 5 6 7 8 9 10 11 12
ETC (complex I) 7 7 7 7 7 7 7 7 7 7 7 7 
ETC (remaining part) 7 7 7 7 7 7 7 7 7 7 7 7 
NAD(P)transhydrogenase (AB-specific) –2 –2 –2 –2 –2 –2 –1 –1 –1 –1 –1 –1
Triosephosphate isomerase 0 0 0 0 0 1 0 1 0 0 1 1 
Glyceraldehyde phosphate dehydrogenase 
(phosphorylating) 

2 2 2 2 2 2 2 2 1 1 2 2 

Phosphoglycerate kinase –2 –2 –2 –2 –2 –2 –2 –2 –1 –1 –2 –2
Phosphoglycerate mutase 2 2 2 2 2 2 2 2 1 2 2 2 
Enolase 2 2 2 2 2 2 2 2 2 2 2 2 
Pyruvate kinase –2 –2 –2 –2 –2 –2 –2 –2 –2 –2 –2 –1
Pyruvate decarboxylase 0 0 1 0 1 0 0 0 0 0 0 0 
Pyruvate dehydrogenase complex 2 1 0 1 0 1 1 1 1 1 1 1 
Pyruvate carboxylase 0 1 1 1 1 1 1 1 1 1 1 1 
Citrate synthase 1 1 1 1 1 1 1 1 1 1 1 1 
Aconitase (step 1) 1 1 1 1 1 1 1 1 1 1 1 1 
Aconitase (step 2) 1 1 1 1 1 1 1 1 1 1 1 1 
Isocitrate dehydrogenase (step 1) 0 1 1 1 1 1 1 1 1 1 1 1 
Isocitrate dehydrogenase (step 2) 0 1 1 1 1 1 1 1 1 1 1 1 
Oxoglutarate dehydrogenase 0 1 1 1 1 1 1 1 1 1 1 1 
Succinyl coenzyme A synthetase (GTP) 0 –1 –1 –2 –1 –1 –1 –1 –1 –1 –1 –1
Malate dehydrogenase 1 0 0 0 0 0 0 0 0 0 0 0 
Acetyl Co-A synthetase 0 0 0 0 1 0 0 0 0 0 0 0 
Acetaldehyde dehydrogenase 0 0 1 0 0 0 0 0 0 0 0 0 
Isocitrate lyase 1 0 0 0 0 0 0 0 0 0 0 0 
Malate synthase 1 0 0 0 0 0 0 0 0 0 0 0 
CoA-independent aldehyde dehydrogenase 
(NAD) 

0 0 0 0 1 0 0 0 0 0 0 0 

Succinyl-CoA malate CoA-transferase 0 0 0 –1 0 0 0 0 0 0 0 0 
Malate-CoA ligase 0 0 0 1 0 0 0 0 0 0 0 0 
Glycerol kinase 2 2 2 2 2 2 1 2 1 1 1 1 
Glycerol-3-phosphate 1-dehydrogenase (NADP) 2 2 2 2 2 1 1 1 1 1 1 1 
Glycerol NAD oxidoreductase 0 0 0 0 0 0 1 0 1 1 0 0 
Triose kinase 0 0 0 0 0 0 1 0 0 0 0 0 
Aldehyde dehydrogenase (NAD) 0 0 0 0 0 0 0 0 1 1 0 0 
Glycerate 3-kinase 0 0 0 0 0 0 0 0 0 1 0 0 
Glycerate-2-kinase 0 0 0 0 0 0 0 0 1 0 0 0 
Glycerol NAD 2-oxidoreductase 0 0 0 0 0 0 0 0 0 0 1 1 
Glycerol-3-phosphate dehydrogenase (NAD) 0 0 0 0 0 0 0 1 0 0 0 0 
Glycerol-3-phosphate dehydrogenase [NAD(P)] 0 0 0 0 0 1 0 0 0 0 0 0 
Glycerone kinase 0 0 0 0 0 0 0 0 0 0 1 0 
Phosphoenolpyruvate-glycerone 
phosphotransferase 

0 0 0 0 0 0 0 0 0 0 0 1 
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Table 7. High-energy bond (HEB) balance of different pathways of glycerol conversion to succinate 

Variant 
No. 

Reactions 
involved 

Overall reaction 
HEB 

balance 

1 17 3.5 O2 + 19.5 H3PO4 + 19.5 ADP + 2 Glycerol =  
     2 CO2 + 24.5 H2O + 19.5 ATP + Succinate 19.5 

2 19 3.5 O2 + 19.5 H3PO4 + 18.5 ADP + GDP + 2 Glycerol =  
     2 CO2 + 24.5 H2O + 18.5 ATP + GTP + Succinate 19.5 

3 20 3.5 O2 + 19.5 H3PO4 + 18.5 ADP + GDP + 2 Glycerol =  
     2 CO2 + 24.5 H2O + 18.5 ATP + GTP + Succinate 19.5 

4 21 3.5 O2 + 19.5 H3PO4 + 17.5 ADP + 2 GDP + 2 Glycerol =  
     2 CO2 + 24.5 H2O + 17.5 ATP + 2 GTP + Succinate 19.5 

5 21 
3.5 O2 + 19.5 H3PO4 + 18.5 ADP + GDP + 2 Glycerol =  
     2 CO2 + 23.5 H2O + 17.5 ATP + GTP + AMP + 
     Pyrophosphate + Succinate 

18.5 

6 21 3.5 O2 + 19.5 H3PO4 + 18.5 ADP + GDP + 2 Glycerol =  
     2 CO2 + 24.5 H2O + 18.5 ATP + GTP + Succinate 19.5 

7 21 3.5 O2 + 19.5 H3PO4 + 18.5 ADP + GDP + 2 Glycerol =  
     2 CO2 + 24.5 H2O + 18.5 ATP + GTP + Succinate 19.5 

8 21 3.5 O2 + 19.5 H3PO4 + 18.5 ADP + GDP + 2 Glycerol =  
     2 CO2 + 24.5 H2O + 18.5 ATP + GTP + Succinate 18.5 

9 22 
3.5 O2 + 18.5 H3PO4 + 17.5 ADP + GDP + 2 Glycerol =  
     2 CO2 + 23.5 H2O + 17.5 ATP + GTP + Succinate 18.5 

10 22 
3.5 O2 + 18.5 H3PO4 + 17.5 ADP + GDP + 2 Glycerol =  
     2 CO2 + 23.5 H2O + 17.5 ATP + GTP + Succinate 18.5 

11 22 
3.5 O2 + 19.5 H3PO4 + 18.5 ADP + GDP + 2 Glycerol =  
     2 CO2 + 24.5 H2O + 18.5 ATP + GTP + Succinate 19.5 

12 22 
3.5 O2 + 19.5 H3PO4 + 18.5 ADP + GDP + 2 Glycerol =  
     2 CO2 + 24.5 H2O + 18.5 ATP + GTP + Succinate 19.5 

 
Some variants of the glucose  succinate conversion present in Table 3 are illustrated by usual 

biochemical schemes in Figs. 3–6. The names of the enzymes are boxed. The values of the flows are 
shown close to the corresponding arrows. Irreversible flows are depicted by thick lines; reversible 
ones by thin lines.  

Fig. 3, 4 and 5 relate to variants 1 and 2. Fig. 3 represents a part of pathways of variants 1 and 2. 
It is the classical glycolysis well known from biochemistry textbooks. Fig. 4 and 5 show different parts 
of both variants. The differences relate to tricarboxylic acid cycle reactions and so called anaplerotic 
reactions involved in the pathways. Fig. 6 gives the pathway of variant 5. It includes a part of glyco-
lytic reactions as well as those of the pentose phosphate pathway.  

Discussion 

The process of metabolic pathway synthesis consists of several stages. 1) Selection of input-output 
flows, which should be calculated at the end of the whole calculation. They can be chosen based on 
physiological considerations. Then we obtain an incomplete system of linear equations for flows via 
biochemical reactions. 2) Subdivision of the vector consisting of these flows, z


, into two subvectors, 

y


 (which we specify) and x


 (which we found from the given y


). Correspondingly, the system matrix 

k r    is also subdivided into two matrices:  A C . 3) Elimination of unnecessary restrictions on the 

values of some metabolic flows; finding of fixed x


 and y


 components. 4) Search for point 0y


, initial 

for result calculations. 5) Determination of basis vectors ( )
finy   by linearly independent variations 

around 0y


, and calculation of corresponding vectors x


. 6) Exclusion of unnecessary metabolic cycles. 
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Fig. 3. The first part of pathways for the synthesis of 
succinate from glucose, common for variants 1 and 2 
(see Table 3). This part converts glucose to pyruvate 

Fig. 4. The second part of the pathway for the synthesis 
of succinate from glucose, variant 1 (see Table 3). This 
part converts pyruvate to succinate 

 

 

 

 

 

Fig. 5. The second part of the pathway for the synthesis 
of succinate from glucose, variant 2 (see Table 3). This 
part converts pyruvate to succinate 
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Fig. 6. The pathway for the synthesis of succinate 
from glucose, variant 5 (see Table 3). Reactions of 
the electron transport chain are not shown here. They 
are similar to those of variants 1 and 2 (Figs. 4 and 5) 
but flows are slightly different (see Table 3) 

 

 
Basis vectors ( )y   should satisfy inequalities (13) imposed by the non-negativity of flows via ir-

reversible reactions, which correspond to a part of components of both x


 and y


. These restrictions 
are linear; each of them segregates a semi-infinite space edged by a plane. An intersection of such 
half-spaces is a convex body [Rockafellar, 1970] but not obligatory a cone (as, e.g., it is considered in 
[Schilling et al., 1999]). The number of restricting planes usually considered by researchers in this 
field equals, at least, the total number of irreversible reactions of the used database. If all reversible 
reactions are considered as two separate (forward and backward) half-reactions, the number of restrict-
ing planes becomes very big: the total number of reactions plus the number of all reversible reactions.  

We found the existence of parallel restrictive planes, which results in two consequences: i) the 
number of really working planes is substantially lower than the number of irreversible reactions, and 
ii) there exist fixed values of some flows due to which the number of linearly independent solutions 
may be lower than it is supposed to be based only on the properties of linear spaces [Schilling et al., 
1999]. It makes needless the utilization of half-reaction representation. At least some of intersections 
of the retained planes lie on the border between admissible and forbidden y


 values. It facilitates the 

search for basis vectors ( )y   and for the whole solution (20). The approach described here maximizes 
the analytical part of the problem solving and, appropriately, minimizes numerical computation. 

Aspects of this problem widely discussed in the literature are the genomic side of metabolic 
pathway picture and the concept of “elementary flux modes” [Schilling et al., 1999; Schuster et al., 
2000; Bordbar et al., 2014]. These are not a subject of detailed consideration in this article. Neverthe-
less, we would like to note the following. Elementary modes are possible mathematically but they 
hardly reflect a real flux picture. The latter is rather a combination of several modes due to which 
product formation from a given substrate may branch so that now one possible pathway prevails, now 
another; this branching is stochastic. Therefore, the choice of basis vectors seems to be arbitrary. Sub-
division of the whole metabolism into standard units such that the metabolism of any organism could 
be represented as a composition of these units seems unrealistic.  
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On the other hand, the presence of enzymes necessary for one pathway or another in the genome 
of the organism of interest is crucial for pathway realization. Utilization of an intentionally redundant 
stock reaction database provides pathways both realizable in a given organism and those which are not 
realizable but possible due to its gene engineering modification. Thus, metabolic pathway considera-
tion can be subdivided into two stages: i) theoretical synthesis of the pathways, and ii) consideration of 
pathway possibility in a given organism. The present work is related to the first stage. 

Researchers emphasize the existence of metabolic cycles, especially the so called futile cycles, in 
obtained solutions [Schilling et al., 1999; Schuster et al., 2000]. The cycles are present as constituents 
of the solutions initially obtained in the way described in this work. For example, the database accept-
ed in this work gave five cycles presented in Table 5. There are three types of cycles: i) those which 
have no input-output substances, ii) those which exchange high-energy bonds (HEB) between differ-
ent HEB carriers but do not change the number of HEBs, iii) those degrading HEBs. The first and se-
cond may be present in the metabolism as a kind of by-passes. The third type is a kind of futile cycles. 
The existence and role of futile cycles have been discussed for a number of years. We consider ration-
al the following viewpoint: the forward and reverse branches of such cycles are reciprocally regulated 
and, therefore, these branches usually do not operate simultaneously [Sel’kov, 2010]. Therefore, futile 
cycles, which are found theoretically, are not, as a rule, actually present in the metabolism. The latter 
substantiates the elimination of futile cycles from initially found metabolic pathways. The same is re-
lated to the remaining types of cycles. In this way we obtain minimal (from the viewpoint of the num-
ber of the reactions) solutions. 

Another aspect not properly taken into account is cell compartmentation. Cells, especially eukaryot-
ic ones, are spatially partitioned (e.g., mitochondria and cytosol); an enzyme can be present in one com-
partment and absent in another; the same is related to metabolites especially as not all of them are trans-
ported across compartment-delimiting membranes. This can be described by indicating the presence or 
absence of enzymes in a given compartment and including transport reactions into the general database. 

The identity of the energy balance of most alternative pathways, found in this work, seems to be 
a general property of cell metabolism on a specified substrate. 
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