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Volunteer computing resembles private desktop grids whereas desktop grids are not fully equivalent to
volunteer computing. There are several attempts to distinguish and categorize them using informal and formal
methods. However, most formal approaches model a particular middleware and do not focus on the general no-
tion of volunteer or desktop grid computing. This work makes an attempt to formalize their characteristics and
relationship. To this end formal modeling is applied that tries to grasp the semantic of their functionalities —
as opposed to comparisons based on properties, features, etc. We apply this modeling method to formalize the
Berkeley Open Infrastructure for Network Computing (BOINC) [Anderson D. P., 2004] volunteer computing
system.
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Jlo6poBoJIbHBIE BHIUMCIICHUS] HallOMUHAIOT yacTHble desktop rpumsl, Torna kak desktop rpuapl He MOJIHO-
CTBIO SKBUBAJICHTHBI JOOPOBOJILHBIM BEIYUCIEHHUSM. VI3BECTHBI HECKOJIBKO TTOTIBITOK OTIMYHUTh M KaTErOPH3HPO-
BaTh WX, MCIIOJIB3YS Kak HeouImanbHble, Tak ¥ (hopmasbpHble MeTobl. OHako, Hanboee GopmabHbIE TIOAXO0-
IIBI MOJIENUPYIOT crierudraeckoe npomexyrognoe [10 (middleware) u He cocpenoTadnBarOTCs Ha O0IIEM II0-
HATHH N0OpoBobHOTO Wwin desktop rpum. Dta paboTa u eCTh MOMBITKA (pOpMaNH30BaTh WX XapaKTEPUCTHKH U
oTHowmeHus. s 9Toi 1enu npumeHsiercs GopMajIbHOS MOJEIUPOBAHUE, KOTOPOE TbITAaeTCsS OXBATUTh CEMaH-
THKY UX (DyHKIIMOHAIBHBIX BO3MOXHOCTEH — B IIPOTHBOIOJIOKHOCTh CPaBHEHUSM, OCHOBAaHHBIM Ha CBOWMCTBAX,
OCOOEHHOCTSIX, W T. II. MBI IPUMEHSAEM 3TOT METOJ MOJACIHMPOBAHHUS C LENbI0 (HOPMaIN30BaTh TOOPOBOJIBHYIO
BeIUMCIHTENBHYIO cucteMy OTkpbiToit MHdpacTpykTypsl bepknu mist cereBbix Bbruricnenuii (BOINC) [Anderson
D. P., 2004].
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1. Introduction

Desktop Grids (DGs) and Volunteer Computing (VC) utilize the idle computing cycles of desk-
top computers to solve embarrassingly parallel type of compute-intensive problems, such as Monte
Carlo simulations or master-worker type applications. Publicly operated ones using mostly volunteer
resources are referred as volunteer computing, or recently as “crowd computing”. Contrary, private
desktop grids are operated within an organization (i. e., university or company) using the computing
resources and applying their local policies. There are several attempts to distinguish and categorize
DGs and VC using informal and formal methods [Characterizing and Classifying Desktop Grid, 2007;
A Taxonomy of Desktop Grids..., 2008; Wang Y., He H., & Wang Z., 2009]. However, most formal
approaches model a particular middleware and do not focus on the general notion of volunteer or desk-
top grid computing. In this work formal modeling is applied that tries to grasp the semantic of their
functionalities — as opposed to comparisons based on properties, features, etc. The result of this work
is a formal model of BOINC that aims at serving as a foundation for formalizing other volunteer com-
puting systems and helps categorizing existing middleware. The model is developed using the abstract
state machines (ASMs) framework and builds on a model that formalized (service) Grid Computing in
general. The paper is organized as follows: the next section summarizes the Abstract State Machines
framework. Section 3 discusses related work. Section 4 details the formal model for BOINC, and fi-
nally section 5 concludes the paper.

2. Abstract State Machines

The Abstract State Machine is a mathematically well-founded framework for high-level system
design and analysis [Borger E. & Stark R. F., 2003] originally introduced as evolving algebras by
Gurevich [Gurevich Y., 1993]. ASM allows hiding easily the non-important details at the high-level
design phase by formulating the model on a conceptional level rather than based on implementation
details and attributes. Lower detail characteristics can be added to the models later gradually. It is an
agent based modeling system where the system is described from the perspective of an agent. In ASM
states are represented as algebras, 1. ., basic sets (called universes) with functions and relations inter-
preted on them. A signature (or vocabulary) is a finite set of function names each with fixed arity. It
also contains the usual Boolean operators (e.g., A,Vv) and the symbols true, false, = and undef. A state

S of signature ¥ is a nonempty set X together with interpretations of function names in ¥ on X. X is
called the super universe. A nullary function name is interpreted as an element of X this corresponds to
the notion of variables. An r-ary function name is interpreted as a function from &* =+ & _ A location

of S is a pair 1=(fx), where fis a function name of arity » in vocabulary ¥ and x is an r-tuple of ele-
ments of X. The element f{x) is the content of location 1. An update is a pair z=(1,y), where 1 is a loca-
tion and y is another element of X. Firing x at state S means putting y into the location 1 while other
locations remain unchanged. The resulting state is S' (the sequel of ), thus the interpretation of a func-
tion f'at argument x has been modified producing a algebra, 1. e., a new state. The special nullary Self-
function is used to represent the agent and also allows to identify itself amongst other agents. Different
agents interpret it differently. This Self-function can never be the subject of updates. ASM models are
defined as a set of transition rules.

3. Related work

Choi et al. [Characterizing and Classifying Desktop Grid, 2007; A Taxonomy of Desktop
Grids..., 2008] state that DGs have received increased attention for executing high throughput work-
loads as resources are becoming less expensive. They argue that DGs are different from service grids
in many aspects, but there is no taxonomy or survey on DGs. They categorize DGs based on organiza-
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tion (centralized or distributed), platform, scale (Internet or LAN) and resource providers (volunteer or
enterprise) characteristics. They also compare VC (they refer it as volunteer desktop grids) and DGs
(referred as enterprise desktop grids by the authors) to service grids on an informal per attribute basis,
and provide no insight what the relation between the DGs and service grids could be. Wang et al.
[Wang Y., He H., & Wang Z., 2009] uses a formal method inspired by Mobile Ambients to build
a formal model for VC by identifying the different roles for hosts in VC and describing their relation
and interaction. The model is derived mainly based on the characteristics of XtremWeb(-HEP) [Com-
puting on large-scale distributed systems..., 2005]. They state that their model can help to lay a strong
foundation for further research on formalisms of VC. However their model does not distinguish be-
tween DGs and VC and seems generic in an extent that most DG systems could fit it as well. Also it
seems their generic model is derived from a single specific middleware: XtremWeb-HEP (XWHEP).
They do not validate their assumption that XWHEP indeed is a volunteer computing middleware. For
example in [Characterizing and Classifying Desktop Grid, 2007] Choi et al. state: “Lack of trust: In
Desktop Grid, anonymous nodes can participate as a resource provider. Some malicious resource pro-
viders tamper with the computation and then return corrupted results. 4 scheduler should guarantee
the correctness of results”. In their comparison of volunteer and enterprise DGs result certification is
listed for VC. However based on the documentation [ XtremWeb-HEP documentatio, 2014] XWHEP
does not provide this functionality: “Result certification: The XWHEP middleware does not propose
anything on this field. It is the end user responsibility to verify the results of her jobs”. This contradicts
the assumptions for the model by Wang et al. [Wang Y., He H., & Wang Z., 2009].

A formal model for (service) grids based on ASM was presented by Nemeth et al. in [Németh Z.,
& Sunderam V., 2003] and was refined later by Kertesz et al. [Kertész A., & Németh Z., 2009]. Origi-
nally Nemeth et al. compared Grids with other distributed systems based on operational differences.
They proposed a definition for Grids based on (runtime) semantics of the systems rather than compar-
ing their static characteristics.

In their ASM model Nemeth et al. consider an application (members of universe APPLICA-
TION) as consisting of several processes (universe PROCESS). All processes are owned by a user
(USER) and need resources to perform work. Abstract resources are present in resource request and
are represented by the ARESOURCE universe, while the PRESOURCE universe represents physical
resources allocated to processes. Processes execute a specific task (universe TASK). The physical rep-
resentation of a task is a static realization of a running process, thus it must be present on the same
node (universe NODE) where the process is. This is represented by the installed: TASK x NODE—
{true, false} relation. Nodes, tasks and resources have certain attributes (universe ATTR). A subset of
ATTR is the architecture type represented by universe ARCH. The relation compatible: ATTR x ATTR
— {true, false} denotes whether to attributes are compatible according to some reasonable definition.
A user can login to certain nodes if CanLogin: USER x NODE— {true, false} evaluates to true. A us-
er is authorized to use given resource if the CanUse: USER x PRESOURCE— f{true, false} relation
evaluates to true. The model is centered on processes and their life cycle is described by their states
using the state PROCESS — {running, waiting, receive waiting} function. In grids the resource re-
quests can be satisfied from various nodes in various ways. The user and the application has no infor-
mation about the state of the pool of resources a new agent executing module is needed that handles
the mapping between them, thus the resource mapping functionality is introduced that provides the
mapping via the PROCESS x ARESOURCE — PRESOURCE function. It does not specify how re-
sources are actually chosen (it is rather an implementation detail), only assures that compatible physi-
cal resources are mapped to each resource request using the compatible: ATTR x ATTR — {true, false}
relation. In grids the fact that a user can access the pool of resources does not mean that she can login
to the nodes providing the resources Vu e USER,Vr € PRESOURCE,

Vn e NODE : CanUse(u,r) = CanLogin(u,n). Resources are granted by the operating system to pro-

cesses on the same node, thus a process of the application — belonging to the user — must be present
on the node. However users are not authorized to login and start processes. This contradiction is re-
solved by providing a mapping between the real person, the user who has credentials to access to the
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resources of the pool (globaluser) and the user — not necessarily a real person — who has login rights
on the node (localuser). The user mapping functionality provides this mapping. The model is a dis-
tributed multi-agent ASM where the agents are processes, 1. €., elements of the PROCESS universe. It
is depicted from the perspective of the processes, where the Self~function is represented
as p € PROCESS , i. e., different agents interpret p differently.

4. A formal model for BOINC

The here presented model for BOINC is part of a series of models introduced in [Marosi A. Cs.,
& Nemeth Z., 2013]. It builds on a previous model for volunteer computing (VC) in general, which is
shown as MVC-VOTE on Fig. 1/c. The firs model in the series (Mgrounp.ng) is based on the model
presented in [Németh Z., & Sunderam V., 2003; Kertész A., & Németh Z., 2009]. In this paper only
the BOINC model (Mponc) is discussed, but where necessary details from the previous models are
included. The model presented here is a multi-agent ASM model where agents are jobs (i. e., elements
from the JOB universe). The nullary self function je JOB allows an agent to identify itself among

other agents. The different agents interpret it differently. Its rules form a module, i. e., a single-agent
model that is executed by each agent. Due to space constraints the model transition rules — including
the initial state — are going to be detailed in a future paper.

BOINC is a widely used volunteer computing framework with more than 70 public deployments
around the world. A deployment of BOINC is generally referred as a project. The formal model pre-
sented here aims to capture the major semantics of BOINC as follows: (i) BOINC follows centralized
client-server architecture. (ii) Applications cannot be submitted as part of jobs. Jobs must refer a pre-
viously at the project deployed application. An administrator must register applications by hand at the
project application repository. (iii) BOINC implements a result certification mechanism based on
comparing returned finished job instances. Result validators must be supplied on a per application ba-
sis. It is an application specific task to determine whether to job instances can be considered as match-
ing or not. (iv) Its owner based on a per application basis can restrict access to a host. Each donor is
able to filter the applications of the different BOINC project she contributes to. Finally (v) as reward
and incentive donors are awarded virtual credits for each job instance they successfully complete
based on the amount of contributed processor time.

Fig. 1/a summarizes the universes for the model only the new and changed components com-
pared to [Németh Z., & Sunderam V., 2003; Kertész A., & Németh Z., 2009] are discussed here. The
PLATFORM universe is introduced to represent the different preset combination of operating system
and system architecture requirements of applications in BOINC. The REPOSITORY universe repre-
sents all application repositories where applications are deployed. Other new universes are as follows.
USER: A user of BOINC is the entity that submits jobs and retrieves results. There might be multiple
users each responsible for their own jobs. NODE: Umbrella term for user interfaces, managers and
hosts (see below). UI: user interface (UI). A node type from where users can submit jobs to BOINC. It
acts as a gateway and the pool of resources can be accessed through it. MANAGER: The main com-
ponent of a desktop grid. It is a type of node that manages resources and allocates Jobs to hosts. Jobs
are submitted through Uls to managers. HOST: provides physical resources (PRESOURCE) for jobs
and thus, executes them. Hosts are computers of a lab, office and etc. resources for BOINC. The
worker component is installed on the hosts. This worker acts as a handler on behalf of the host for
BOINC. Since all hosts have workers installed these won't be distinguished in the model rather, only
the host referenced with different context. TASK: The physical representation of a job installed on
a host. All processes of a specific job executing on a host are represented by a task. A unit of work
represented by the UNITOFWORK universe incorporates all data and metadata that can be specific for
a job (e.g., command line parameters or input data and required libraries). The DONOR universe is
introduced to represent the owners of the hosts who donate theirs to the BOINC project (i. e., the vol-
unteers). Fig. 1/b maps the universes of the model to their counterparts in BOINC. Based on the iden-
tified major semantics the following functionalities compose the model:
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Fig. 1 a.: universes used in the model, b.: the components used in the model and their counterparts in BOINC,
and c.: the place of the BOINC model in the series of formal models for DGs and VC

(1) Resource mapping. Resource requests of applications are consolidated into platforms in
BOINC. During resource mapping it must be ensured that the host supports one of the platforms the
application has available. Applications can have multiple implementations, each for a different plat-
form, thus the selected platform is rather mapped to the job instead of the application. Still unitofworks
have resource requests and mapped resources unchanged. The supportsPlatform: APPLICATION x
PLATFORM — {true, false} function tells if an application has an instance for the given platform.
This must platform must match the platform the host is reporting. The mapped platform of the job is
represented by the mappedplatform: JOB — PLATFORM function. The platfotm: {HOST, JOB} —
PLATFORM returns a platform the entity supports (there is no restriction that only a single one can be
supported). The donor has the privilege to select allowed applications for her hosts as she wishes.
BOINC projects usually run a single application aimed at solving some (grand) scientific challenge.
However there are umbrella projects that host different applications. In this case the donor is given the
freedom to disable application that she does not wish to support by accepting their jobs. This is repre-
sented by the appAllowed: DONOR % APPLICATION — {true, false} relation.

(2) User abstraction. BOINC provides a client program — the worker — that is installed every
host and provides the global user to local user mapping. The worker acts on behalf of the host as a
handler for the physical resources and provides the local part for the user mapping. In BOINC the
globaluser — localuser mapping is straightforward since all users of BOINC have access to all hosts.
The only restriction is imposed by the allowed applications list of donors.

(3) Delayed jobs. BOINC relies on non-dedicated, volatile resources, thus the possibility when a
job is delayed for any reason (or even lost) must be taken in account. The cause for such delay can be
numerous, €.g., resource requirements cannot be satisfied, or the host the job is mapped is claimed by
its owner or is permanently shut down. This is represented by the high-level jobDekayed: JOB—
{true, false! monitored function. In BOINC a deadline is set for each job (result) to finish. Once the
deadline passes the job is overdue and it is aborted by sending the ABORT event to the job: event
():=ABORT.

(4) Mapped resources become unavailable. Owners of the resources are prioritized in BOINC and
thus resources mapped and assigned to jobs can get unavailable for shorter or longer periods of time
(i. e., the owner claims her computer). Here the presource: JOB — PRESOURCE function denotes the
mapped physical resources of the job. The pre PROCESS,he HOST : provides(pr,h) = false func-

tion denotes that the host h (through the worker software) can not provide (some or all of) the mapped
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physical resources for the job any more. In this case the job must be suspended using the suspend
event. The actual revocation (users (j, presource (j)):=false) happens in the state transition rule for
suspend. It is assumed that the unavailability is a temporal state and not all of the resources need to be
released, thus the job only needs to be suspended while so. If the resources are available again (repre-
sented by provides (pr,h)) = true) and the job is not using the resources (represented by users (j,
pr):=false) task can be started.

(5) Donor interaction. Donors have direct control over the host(s) they donate to BOINC. They
can suspend, resume computation in general and force to start, stop and abort specific tasks on their
hosts. These are represented as events in the model. Specific events can be sent to jobs and the transi-
tion rules interpret these. Also the maskEvents: JOB x 25" x MASKENTITY — {true, false} relation
allows to mask specific events from a given job. This allows e.g., if a user suspended all computation
on her host, then no task will receive the start event, thus none is allowed to start. Not just the donor
can generate events, but also the host, the MASKENTITY tuple represents these two entities
(MASKENTITY ={donor, host}).

(6) Result validation. Comparing returned results is an application specific task in BOINC since
it depends on the application which results can be considered matching and which not. The validator
components provide this functionality. There must be a validator provided for each application. The
comparison of results is performed by the checkset and checkpair functions. Each of the validator
modules provides an implementation for these functions that check the successful results of a single
application. BOINC also provides validators for some common cases that can be reused by applica-
tions, e.g., a bitwise validator that compares results bit-by-bit. The functions are used by the
doValidation macro that provides the common functionality for all validator modules. Ultimately the
module determines if the successful finished results indeed produced correct outputs. This state is rep-
resented by the validateState function of the results: valid, invalid or inconclusive if no decision could
be made. Validation is achieved in two ways depending on if a representative result ("canonical" result
denoted by the canonicalresult: JOB — JOB function) is already found for the work unit. If it was al-
ready found (canonicalResult(j) # undef) then all new results are compared against it (using the
checkPair function). The outcome of this comparison can be that either the results match thus the new
one is valid (validateState(r) = valid) or they mismatch and the result is invalid. If there is no canoni-
cal result available yet then first it is checked whether there are enough successful results available to
form a quorum and select one (the number is determined by the minQuorum function). Next a check is
run on the set of results with checkSet. This function compares all results, decides whether they are
valid or invalid and selects a canonical result from the valid ones. It is still a possibility that no canoni-
cal result is found (validateState(r) = inconclusive for all results). In this case the validation procedure
is rerun later when a new successful result is returned. However if the limit for successful results is
reached and still there is no consensus on the validation the work unit is considered failed. If there is
no consensus but the limit is not reached then the targetNResults is increased for the work unit and a
new result (job instance) will be created. If a canonical result is found by checkset then there is no
need to send the unsent results to clients, thus abort event is generated for them. However already in
progress results should be accepted (and validated) when they are returned. For valid results the vali-
dator grants credit (represented by the grantCredit function).

The here presented functionalities (with the transition rules and initial state) form a formal model
of BOINC.

5. Conclusions

In this paper a formal model for BOINC was presented using the ASM method. The model (see
Msgomc on Fig. 1/¢) is based on a series of models for Desktop Grid and Volunteer Computing [Marosi
A. Cs., & Nemeth Z., 2013] and a formal model for Service Grids defined in [Németh Z., & Sunderam
V., 2003; Kertész A., & Németh Z., 2009]. This model has three goals. First a validation for the previ-
ous models in the series: a real VC system can be modeled using them. Second it aims to be
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a foundation for formalizing other volunteer computing systems. Finally the model acts as a basis for
the next model in the series (see Mggp_gomc on Fig. 1/c), which models a novel method for federating
distinct volunteer computing projects and enables workload sharing.
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