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Modeling of carbon nanostructures by means of classical molecular dynamics requires a lot of computations. 

One of the ways to improve the performance of basic algorithms is to transform them for running on SIMD-type com-
puting systems such as systems with dedicated GPU. In this work we describe the development of algorithms for com-
putation of many-body interaction based on Tersoff and embedded-atom potentials by means of OpenCL technology. 
OpenCL standard provides universality and portability of the algorithms and can be successfully used for development 
of the software for heterogeneous computing systems. The performance of algorithms is evaluated on CPU and GPU 
hardware platforms. It is shown that concurrent memory writes is effective for Tersoff bond order potential. The same 
approach for embedded-atom potential is shown to be slower than algorithm without concurrent memory access. Per-
formance evaluation shows a significant GPU acceleration of energy-force evaluation algorithms for many-body po-
tentials in comparison to the corresponding serial implementations. 

Keywords: GPGPU; OpenCL; many-body potentials; Tersoff potential; embedded-atom potential; atomic 
operations 
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Моделирование углеродных наноструктур методом классической молекулярной динамики требует 

больших объемов вычислений. Один из способов повышения производительности соответствующих алго-
ритмов состоит в их адаптации для работы с SIMD-подобными архитектурами, в частности, с графическими 
процессорами. В данной работе рассмотрены особенности алгоритмов вычисления многочастичного взаимо-
действия на основе классических потенциалов Терсоффа и погруженного атома с использованием технологии 
OpenCL. Стандарт OpenCL позволяет обеспечить универсальность и переносимость алгоритмов и может быть 
эффективно использован для гетерогенных вычислений. В данной работе сделана оценка производительности 
OpenCL алгоритмов вычисления межатомного взаимодействия для систем на базе центральных и графиче-
ских процессоров. Показано, что использование атомарных операций эффективно для вычисления потенциа-
ла Терсоффа и неэффективно в случае потенциала погруженного атома. Оценка производительности показы-
вает значительное ускорение GPU реализации алгоритмов вычисления потенциалов межатомного взаимодей-
ствия по сравнению с соответствующими однопоточными алгоритмами. 
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Introduction 

Atomistic modeling is computationally intensive problem. Serial realization of algorithms can be 
done only for modeling of small system of atoms. Cluster type computing systems used in most cases to 
solve the problem of high computational complexity can be good but sometimes have problems with 
long time waiting for resource. Besides creating effective MIMD algorithms is a real challenge. The al-
ternative way is optimization of existing algorithms for SIMD/SIMT hardware devices such as graphic 
processing units (GPU). GPU is a part of contemporary clusters and heterogeneous systems. Using such 
devices allows increasing the performance of algorithms along with decreasing of the power consump-
tion. Such approach is good in sense higher availability of computing resources as some hardware such 
as personal computer with dedicated GPU or GPU-based GRID systems can be built. 

The main problem of using heterogeneous parallel systems is creating of the effective algorithms by 
means of appropriate memory access patterns and load balancing. But the optimal algorithms should take 
into account the architecture of computing system so we are coming to development of algorithm for 
specific devices. That way is proposed by CUDA technology [Jason Sanders, Edward Kandrot, 2010]. 
CUDA is designed for NVidia GPUs only and does not assume free support of CPU computation. Such 
approach is very tedious and one prefers to have an algorithm for all devices. There are also some new 
technologies. For example, such technology as OpenACC give OpenMP-like pragmas for GPGPU adap-
tation but actually it is not free. OpenMP 4.0 is supported by gcc but it is under development and not 
available for all platforms. The only crossplatform technology with free SDKs available for all popular 
operating systems is OpenCL [Gaster et al, 2011]. It is supported by most of hardware vendors, gives 
access to most of GPU features via the frontend and makes it possible to use the same kernel code with 
different devices. So we come to a compromise between the performance and universality. We use 
OpenCL technology for CPU-based systems and for GPU programming as GPUs are the devices with 
the best ratio of performance and power consumption. The latter is also important in Russia as the re-
forms of 90-th result in no hope that electrical energy would ever be less expensive. 

GPU are basically computer graphics devices and they are optimal for rendering. But with uni-
fied architecture we have a capability of GPGPU computation. There are the following advantages of 
GPU over traditional CPU systems: 
 Large number of processor cores. 
 Threads are lightweight and large number of threads hides global memory latency. 
 The L1 cache (local memory) is available for direct access by programmer. 
 Large memory bandwidth. 
 Complete RISC architecture without CISC converter. 

These advantages can be got for good use in computing as long as appropriate technology would 
be applied. OpenCL was chosen as such GPGPU technology. 

There are some algorithms that can be effectively done by means of SIMD-similar hardware. One 
of such problems is molecular dynamics simulation. The critical aspect of classical molecular dynam-
ics [Allen, Tildesley, 1990] and Monte-Carlo methods [Bielajew, 2001] is the choice of an appropriate 
energy function (potential) for describing the interatomic interactions. Our objective is modeling of 
carbon nanostructures such as graphene, fullerenes and nanotubes. So we need special potentials for 
adequate computation of their energetic. The most of these potentials are many-body. In this work we 
evaluate the performance of OpenCL algorithms of Tersoff potential in comparison to EAM potential 
for modeling of metallic systems. 

Complicated form and larger set of parameters of many-body potentials results in large computa-
tional requirements. So the acceleration of existing algorithms of interatomic interaction is especially 
needed. 

Interatomic potentials 

In atomistic modeling quantum chemistry is the best way to reproduce experimental results but it 
is usually used for simulation of relatively small systems of atoms. We have about 1023 atoms in 2 
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gramms of carbon. So we need Exascale supercomputer for modeling of real patterns and that become 
almost impossible by now to do that via quantum mechanical approach. Classical and semi-classical 
simulations are a real compromise and they are used for modeling of relatively large atomic systems. 

Interatomic potential can be described by the potential function. The potential function U(r1,r2, 
…, rN) is the dependence of the potential energy of N-atom system on their coordinates. The forces in 
MD simulation are defined by the potential,  

 1 2( , ,..., )N
l

l

U
 


r r r

F
r

, (1) 

where rl is a position (3D vector) of the atom l, lF  — force (3D vector) acting on the atom l. 

The most popular types of potentials used in numerical software are pair potentials. The interac-
tion of any pair of atoms depends only on their spacing and is not affected by the presence of other 
atoms. Full potential energy in that case is the sum of pair interactions: 
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where rij is a distance between atom i and atom j. The most popular pair potential implemented in the 
most MD software is Lennard-Jones (LJ) potential. 

Though it can be effectively implemented on GPU [Anderson, Lorenz, 2010] it is not good for 
modeling of specific systems such as carbon nanostructures and metallic systems. Indeed, low density 
structures of covalent systems are instable with pair potentials.  

That is why for modeling of covalent crystals, carbon nanostructures, metallic systems and poly-
mers more complicated many-body potentials [Erkoc, 1997] are widely used. The set of parameters of 
many-body potentials are usually derived via quantum mechanical methods [Kumagai et al., 2009, 
Lebedeva et al., 2012]. That is why many-body potentials are much more accurate and can reproduce 
mechanical and transport phonon properties of carbon and metallic nanostructures. 

A general form of many-body potentials such as Tersoff potential [Tersoff, 1989] and embedded-
atom potential [Murray, Foiles, 1993] can be written as a sum of pair and many-body terms [Brenner, 
1989]: 

   mb
i

ij
ij

pair
iji UrUU  

2

1
, (3) 

where Ui is an energy per atom i. 
Embedded-atom potential takes into account many-body interaction by means of nonlinear em-

bedding function in energy functional: 

    



ij

ijjiii
mb
i rcEU  , ,  (4) 

where ρi is an electron density per atom i, Ei is embedded energy per atom i, cj(rij) represents the influ-
ence of atom j to the electron density (ρi) of atom i. 

The main advantage of many-body potentials over pair potentials is the ability to describe the 
variation of the bond strength with coordination. Tersoff and Tersoff-Brenner potentials can reproduce 
the same mechanism by means of bond order formalism. Bond order function includes angle depend-
ence that makes Tersoff potential many-body. The simplest functional form of Tersoff potential can be 
written in the following form: 

 



i ij

ij
i

i UUU
2

1
,  



A. A. Knizhnik, A. S. Minkin, B. V. Potapkin 

 ____________________ КОМПЬЮТЕРНЫЕ ИССЛЕДОВАНИЯ И МОДЕЛИРОВАНИЕ ____________________  

552 

    ijRij
pair

ij rVrU  ,  

  



ij

ijAij
mb
i rVbU

2

1
,  

    ijAijijR
mb
ij

pair
ijij rVbrVUUU  ,   

      ijijijijijijR rArfrV ,1exp  , [repulsive term] 

      ijijijijijijA rBrfrV ,2exp  , [attractive term] 

   nn
ij

n
ijb 2

1

1


  ,  [bond order function] 

       



),(

,3exp
jik

m
ikij

m
ijkikikijkiij rrrfG  ,  

  
  












2
0

2

2

2

2

coscos
1




d

c

d

c
G ijkijki ,  [angle dependence function] 

    
, if ,

 . if ,0

2
sin1

2

1

, if ,1

DRrDR

DRr

D

Rr

DRr

rf ik

ik

ik

ikik 

























 








 [cutoff function]  

The Tersoff potential is short-ranged as it uses the cutoff function. So the local environment has 
limited number of atoms. That is why neighbor list can be used to represent the local environment [Al-
len, Tildesley, 1990]. Neighbor lists allow to speed up the computation of interatomic interaction by 
eliminating of N2 search. That is especially important for computational expensive many-body 
potentials. 

So many-body potentials have the following advantages: 
 That is more adequate model of interatomic interaction than pair potentials. So more macroscopic 

parameters and physical constants can be represented by many-body potentials as they have more 
complicated parametric form. 

 Appropriate parallel algorithms can be effectively designed because of interaction locality. 
The disadvantages of many-body potentials are concerned with the need to match a lot 

ofconstants customized just for specific chemical compounds and their computational complexity. 
The problem of high computational complexity of many-body potentials can be solved by the ad-

aptation of the algorithms to such computing architectures as GPU and accelerators. Unfortunately the 
basic serial algorithms cannot be used on GPU without adaptation as some features of the accelerator 
architecture such as memory hierarchy are needed to be taken into account [Jason Sanders, Edward 
Kandrot, 2010, Gaster et al., 2011].  

The following subsections are dedicated to description of various algorithms with concurrent 
memory access without it.  

GPU algorithms for Tersoff potential 

GPU algorithms for potential can be represented by computation of per atom energy along with 
force acting on atom. So we have parallel thread for each atom in systems. The more threads we have 
the best as global memory latency would be hided. 

Parallel GPU algorithm for Tersoff potential can be represented in two forms: 
1. Algorithm with atomic operations with memory (Algorithm A). 
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2. Algorithm without atomics (Algorithm WA). 
Algorithm A can be represented as a transformation of the serial algorithm in the following form: 

 Algorithm A is assumed to run for N work-items in 1D index space (N GPU threads). 
 Each thread i 

1. calculates Ui: 
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where j are the numbers of neighboring atoms of atom i (j≠i); 
2. calculates iF :  
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3. Calculates and sums with atomic operations jF и kF  ( j and k are the numbers of neighbor-

ing atoms of atom i (j≠i, k≠i ): 
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Atomic operations are intended to summarize correctly the force contributions to the interaction 
in parallel streams. In this case, memory is a shared resource and atomicity is achieved in several 
stages: blocking of the resource, summation, release of the resource. Three of these steps provide 
exclusive access to a portion of memory and atomicity prevents wrong updates, i.e. atomic operation is 
either successful or returns the occupation of the shared resource. In the case of occupation, the update 
of the memory cell by the other stream is delayed, i.e. the access of multiple threads to the same 
memory location serializes, resulting in a relative decrease of parallel efficiency.  

Algorithm A is the most evident modification of serial algorithm but it can be transformed in the 
form without atomic operations with memory. That is possible for most potentials but for the sake of 
increasing the number of operations inside the thread. We need atomic operations with memory only 
to compute forces. In case of energy no concurrent access is needed. But the force computation can 
also be done without atomics as following (Algorithm WA): 

 Algorithm WA is assumed to run for N work-items in 1D index space (N GPU threads). 
 Each thread i  

1. Calculates  
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The Algorithm WA has the following features: 
1. The neighbor list must be calculated with double cut radius (two coordination radius) for cor-

rect calculation of ijib r /  as  
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has the functional dependence from the  jkjk rf  term, i.e. the whole neighbor list of the atom i  needs 

also to include all atoms  j with rij > R+D and rjk < R+D. 
2. Additional calculations of ijb , jib , iijb r / , ijib r /  and ijkb r /  must be done inside of 

each thread. So we have more computations than in the Algorithm A. 
3. The present version of the Algorithm WA has more local variable per kernel than the Algo-

rithm A. The limitation of register number per thread (64 registers for NVidia Fermi architec-
ture) results in significant register spilling. 

So we need extra computations and global memory transactions for Tersoff potential for the sake 
of eliminating of atomic operations. 

GPU algorithms for embedded-atom potential 

Many-body embedded-atom potential can also be implemented on GPU with atomic operations 
(Algorithm A): 

 Algorithm A is assumed to run for N work-items in 1D index space работ (N GPU threads). 
 Each thread i  

1. Calculates 
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3. Calculates and sums with atomic operations all jF ( j are the numbers of neighboring at-

oms of atom i,  j≠i ):  
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The more natural way is to compute embedded-atom potential without atomic operations: 
 Algorithm WA is assumed to run for N work-items in 1D index space работ (N GPU threads). 

 Each thread i  

1. Calculates 
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Results 

The performance of the described algorithms for Tersoff and embedded-atom potentials is evalu-
ated via the following computer systems: 
 CPU: Intel Core i5 760, GPU: GeForce GTX 470, Windows 7, Visual Studio 2008, *. 
 CPU: Intel Xeon X5650, GPU: Tesla M2050, Linux, **.  

For the following testing configurations AMD APP SDK 2.8 was used as a realization of 
OpenCL CPU platform and CUDA Toolkit (CUDA 4.2.1) as a realization of OpenCL GPU platform. 
All GPU computations and comparisons were done on one node of computer system mostly with 
single precision arithmetic. 

The main point of the comparison is to find the impact of the atomic operations with memory on 
the performance of calculation of the forces due to many-body interaction between the atoms. The re-
sults of benchmarks are summarized in Table 1. The corresponding optimal algorithm is highlighted 
with italic (lower is better). 

Table 1. Performance of the OpenCL algorithms for many-body interaction 

Execution time ratio \ Number of 
atoms 

1000 2000 4000 8000 16000

Tersoff CPU, 
Algorithm WA / Algorithm A* 33.43 33.49 33.54 32.8 33.68 

Tersoff GPU, 
Algorithm WA / Algorithm A* 9.67 9.62 10.42 10.68 11.94 

Tersoff GPU, 
Algorithm WA / Algorithm A** 48.89 54.25 55.37 60.29 70.55 

EAM CPU, 
Algorithm WA / Algorithm A* 0.66 0.86 0.76 0.69 0.49 

EAM GPU, 
Algorithm WA / Algorithm A* 0.51 0.48 0.47 0.48 0.49 

EAM GPU, 
Algorithm WA / Algorithm A** 0.63 0.41 0.09 0.23 0.20 

 

The next point is a speedup comparison. The following variants of energy and force computation 
algorithms are considered: 
 Serial CPU algorithm; 
 OpenCL algorithm with atomic operations; 
 OpenCL algorithm without atomic operations. 

The speedup of OpenCL algorithms is estimated by comparison of their execution time 
with the corresponding execution time of the serial algorithms (Fig. 1 and 2).  
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Fig. 1. Comparison of speedup of Tersoff potential (evaluated on the testing platform *) 

 

Fig. 2. Comparison of speedup of EAM potential (evaluated on the testing platform *) 

One can see that Algorithm WA for the Tersoff potential provides greater acceleration than 
Algorithm A, both for the CPU and GPU. That result is mostly associated with a large number of 
arithmetic operations in the Algorithm WA. However, the higher value of the acceleration relative to 
the serial implementation does not mean the optimality of the algorithm itself according to the 
Table. 1. Algorithm A for Tersoff potential works 10 times faster on average in spite of atomic 
operations with memory. 

Embedded-atom potential contains less arithmetic operations compared to Tersoff potential. The 
algorithms with and without atomic operations have approximately the same computational 
complexity. In that case, the effect of atomic operations with memory results in decrease of the 
performance. Thus, embedded-atom potential can be effectively implemented without atomic 
operations and the optimal algorithm is similar to that for pair potentials. So the result for 
embedded-atom potential is completely opposite to Tersoff potential (Table 1). 

The last point is to note the influence of double precision arithmetic on the performance of GPU 
computations. The corresponding comparison for Tersoff potential (evaluated on the testing plat-
form**) can be seen on Fig. 3. The speedup of algorithm depends on the floating point precision used 
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for performance evaluation and the hardware. For Algorithm A large values of speedup can be 
obtained for single precision arithmetic. For double precision the speedup is not as large and is similar 
to the Algorithm WA. For Algorithm WA the difference in speedup between single and double 
precision is not so clearly pronounced. 

 

Fig. 3. The influence of floating point precision on the performance of Tersoff potential 

Conclusions 

Adequate modeling of nanostructures using classical methods requires accounting effects of the 
many-body interaction which leads to the increase of the computational complexity of the algorithms. 
Using GPU is the effective way of their acceleration. The performance of algorithms is greatly affect-
ed by the memory access patterns, floating-point arithmetic and some hardware features. Atomic oper-
ations are one of such patterns that are good or bad depending on the algorithm. As for the interatomic 
potentials one should always take into account their types and the architecture of the computing sys-
tem for implementation. Some general notes can be seen as a conclusion. 

Tersoff potential requires a significant amount of computation compared to pair potentials and 
embedded-atom potential. Using atomic operations is the optimal approach to the implementation of 
Tersoff potential. That gives significant reduction of the computational complexity. So the theoretical 
analysis and performance evaluation show that using atomic operations with memory does not always 
lead to poor performance. That is the case for Tersoff potential and can be assumed for other bond or-
der potentials. 

Embedded-atom potential gives the opposite result. The best way to compute EAM does not 
mean using atomic operations and critical sections. In that work such implementation was given just to 
show that difference.  

Performance evaluation shows a significant acceleration of the GPU algorithms for many-body 
potentials. The average performance of the OpenCL algorithms is about 50 times compared to serial 
implementations. Using GPU is a good way for accelerating algorithms for interatomic interaction and 
particularly for the many-body interactions. OpenCL technology is universal tool to run the same algo-
rithm on different hardware architectures. GPU algorithms for interatomic potentials can be used as 
building block of general molecular dynamics implementation for supercomputer systems. 
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