
КОМПЬЮТЕРНЫЕ ИССЛЕДОВАНИЯ
И МОДЕЛИРОВАНИЕ 2015 Т. 7 № 3 С. 517−520

СЕКЦИОННЫЕ ДОКЛАДЫ

УДК: 004.04

Efficient processing and classification of wave energy
spectrum data with a distributed pipeline

I. G. Gankevich a, A. B. Degtyarev b

Saint Petersburg State University, University ave. 35, Peterhof, St. Petersburg, 198504, Russia

E-mail: aigankevich@cc.spbu.ru, bdeg@csa.ru

Received October 1, 2014

Processing of large amounts of data often consists of several steps, e.g. pre- and post-processing stages, which
are executed sequentially with data written to disk after each step, however, when pre-processing stage for each task is
different the more efficient way of processing data is to construct a pipeline which streams data from one stage to an-
other. In a more general case some processing stages can be factored into several parallel subordinate stages thus form-
ing a distributed pipeline where each stage can have multiple inputs and multiple outputs. Such processing pattern
emerges in a problem of classification of wave energy spectra based on analytic approximations which can extract
different wave systems and their parameters (e.g. wave system type, mean wave direction) from spectrum. Distributed
pipeline approach achieves good performance compared to conventional “sequential-stage” processing.

Keywords: distributed system, big data, data processing, parallel computing

Эффективная обработка и классификация энергетических спектров
морского волнения на основе распределенного вычислительного кон-
вейера

И. Г. Ганкевич, А. Б Дегтярев

Санкт-Петербургский государственный университет, Россия, 198504, г. Санкт-Петербург, Петергоф,
Университетский просп., д. 35

Обработка больших массивов данных обычно происходит в несколько последовательно выполняемых
этапов, таких как пред- и постобработка, после каждого из которых промежуточные данные записываются
на диск; однако, для каждой задачи этап предварительной обработки может отличаться, и в таком случае
непосредственная передача данных по вычислительному конвейеру от одного этапа (звена) к другому бу-
дет более эффективным с точки зрения производительности решением. В более общем случае некоторые
этапы можно разделить на параллельные части, сформировав таким образом распределенный вычисли-
тельный конвейер, каждое звено которого может иметь несколько входов и выходов. Такой принцип обра-
ботки данных применяется в задаче о классификации энергетических спектров морского волнения, которая
основана на аппроксимациях, позволяющих извлекать параметры отдельных систем волн (тип волн, гене-
ральное направление волн и т. п.). Система, построенная на этом принципе показывает более высокую про-
изводительность по сравнению с часто применяемой поэтапной обработкой данных.

Ключевые слова: распределенные системы, большие данные, обработка данных, параллельные вы-
числения

The research was carried out using computational resources of Resource Center Computational Center of Saint Peters-
burg State University (T-EDGE96 HPC-0011828-001) and partially supported by Russian Foundation for Basic Research
(project No. 13-07-00747) and Saint Petersburg State University (project No. 9.38.674.2013 and 0.37.155.2014).

Citation: Computer Research and Modeling, 2015, vol. 7, no. 3, pp. 517–520.

© 2014 Иван Геннадьевич Ганкевич, Александр Борисович Дегтярев

I.G. Gankevich, A.B. Degtyarev

 ____________________ КОМПЬЮТЕРНЫЕ ИССЛЕДОВАНИЯ И МОДЕЛИРОВАНИЕ ____________________

518

Introduction

The problem of classification of wave energy spectra is both data- and compute-intensive which
makes it on one hand amenable to data-centric programming approaches like Hadoop and on the other
hand to parallel programming techniques. In the “mapping” phase spectra should be pre-processed and
converted to some convenient format and in the “reduction” phase resulting spectra are classified us-
ing genetic optimisation algorithm. These steps represent general algorithm for data processing with
Hadoop, however, classification algorithm is itself parallel which makes it difficult to program in Java
(the language in which Hadoop programmes are usually written). Therefore, we feel that Hadoop is
not the most efficient way to solve the problem and a distributed programme which mimics useful
Hadoop behaviour should be used instead.

This work is a short preview of a alternative technological framework being developed and it is
compared to Hadoop implementation only.

1. Implementation

The NDBC dataset1 consists of spectra which are sorted by year and station where measurements
were made. Data for each spectrum is stored in five variables which are used to reconstruct original
frequency-directional spectrum with the following formula:

        1 2 0

1 1
cos sin 2 .

2 1 2S ω,θ = + r θ α + r θ α S ω
π
    

Here ω denotes frequency, ϑ — wave direction, r1,2 and α1,2 are parameters of spectrum decomposi-
tion and S0 is the non-directional spectrum [Marshall D. Earle, 1996]; values of r1,2, α1,2, S0 are acquired
through measurements. Detailed properties of the dataset used in evaluation are listed in Table 1.

Table 1. Dataset properties

Dataset size 144MB
Dataset size (uncompressed) 770MB
Number of wave stations 24
Time span 3 years (2010–2012)
Total number of spectra 445422

The algorithm of processing spectra is as follows. First, current directory is recursively scanned

for input files. All directories are recursively distributed to processing queues of each machine in the
cluster. Processing begins with joining corresponding measurements for each spectrum variables into a
tuple which is subsequently classified by a genetic algorithm (this algorithm is not discussed in the
paper and in fact can be replaced by any other suitable classification algorithm). While processing re-
sults are gradually copied back to the machine where application was executed and when the pro-
cessing is complete the programme terminates. The resulting implementation is shown in Figure 1.

Directory structure can be arbitrary and the only thing it serves is to distribute the data, however,
files containing corresponding measurements should be placed in a single directory so that no joining
of variables residing in different machines can happen. In this test spectra were naturally sorted into
directories by year and station.

The feature which makes this implementation different from other similar approaches is that both
processors and disks work in parallel throughout the programme execution. Such behaviour is
achieved with assigning a separate thread (or thread pool) for each device and placing tasks in the
queue for the corresponding device in this pool. As tasks that read from the disk complete they pro-

1 http://www.ndbc.noaa.gov/dwa.shtml

Efficient processing and classification of wave energy …

 ______________________________________ 2015, Т. 7, № 3, С. 517–520 ______________________________________

519

duce tasks for CPUs to process this data and place them into the processor task queue. In similar way
when data processing tasks complete they place tasks to write the data into the disk task queue. In sim-
ilar vein via a separate task queue network devices transmit the data to a remote node. So, each device
has its own thread (or thread pool) and all of them work in parallel by placing tasks in each other's task
queues. Since tasks “flow” from one queue to another and queues can reside on different machines this
approach is called distributed pipeline.

Fig. 1. Implementation diagram for distributed pipeline

2. Evaluation

The system setup which was used to test the implementation consisted of commodity hardware
and open-source software (Table 2) and evaluation was divided into two stages. In the first stage
Hadoop was installed on each node of the cluster and was configured to use host file system as a
source of data so that performance of parallel file system which is used by default in Hadoop can be
factored out from the comparison. To make this possible the whole dataset was replicated on each
node and placed in the directory with the same name. In the second stage Hadoop was shut down and
replaced by newly developed application and dataset directories were statically distributed to different
nodes to nullify the impact of parallel file system on the performance.

Table 2. Hardware and software components of the system

Component Details Component Details
CPU model Intel Q9650 Operating system Debian Linux 7.5
CPU clock rate (GHz) 3.0 Hadoop version 2.3.0
No. of cores per CPU 4 GCC version 4.7
No. of CPUs per node 1 Compile flags -std=c++11
RAM size (GB) 4
Disk model ST3250318AS
Disk speed (rpm) 7200
No. of nodes 3
Interconnect speed (Mbps) 100

In the test it was found that Hadoop implementation has low scalability and maximum perfor-
mance of approx. 1000 spectra per second and alternative implementation has higher scalability and
maximum performance of approx. 7000 spectra per second (Fig. 2). The source of Hadoop inefficien-
cy was found to be temporary data files which are written to disk on each node. These files represent
sorted chunks of the key-value array and are part of implementation of merge sort algorithm used to

I.G. Gankevich, A.B. Degtyarev

 ____________________ КОМПЬЮТЕРНЫЕ ИССЛЕДОВАНИЯ И МОДЕЛИРОВАНИЕ ____________________

520

distribute the keys to different nodes. For NDBC dataset the total size of these files exceeds the size of
the whole dataset which appears to be the consequence of Hadoop not compressing intermediate data
(the initial dataset has compression ratio of 1:5, see Table 1). So, the sorting algorithm and careless
handling of compressed data led to performance degradation and inefficiency of Hadoop for NDBC
dataset.

Fig. 2. Performance of Hadoop and distributed pipeline implementations

The sorting is not needed to distribute the keys and in the alternative implementation directory
hierarchy is used to determine machine for reduction. For each directory a separate task is created
which subsequently creates tasks for each sub-directory and each file. Since each task can interact with
its parent when the reduction phase is reached reduction tasks are created on the machines where par-
ents were executed previously.

Conclusions and future work

No redundant sorting nor any kind of temporary files are used in the alternative implementation
which allows it to scale well and show better performance compared to Hadoop approach. The future
work is to incorporate dynamic distribution of files to hosts and fault tolerance into the implementa-
tion.

References

Marshall D. Earle. Nondirectional and Directional Wave Data Analysis Procedures (NDBC Technical
Document 96-01), 1996, URL: http://www.ndbc.noaa.gov/wavemeas.pdf.

