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This paper targets programmers and developers interested in utilizing parallel programming techniques to 
enhance application performance. The Oracle Solaris Studio software provides state-of-the-art optimizing and 
parallelizing compilers for C, C++ and Fortran, an advanced debugger, and optimized mathematical and 
performance libraries. Also included are an extremely powerful performance analysis tool for profiling serial and 
parallel applications, a thread analysis tool to detect data races and deadlock in memory parallel programs, and 
an Integrated Development Environment (IDE). The Oracle Message Passing Toolkit software provides the 
high-performance MPI libraries and associated run-time environment needed for message passing applications 
that can run on a single system or across multiple compute systems connected with high performance 
networking, including Gigabit Ethernet, 10 Gigabit Ethernet, InfiniBand and Myrinet. Examples of OpenMP and 
MPI are provided throughout the paper, including their usage via the Oracle Solaris Studio and Oracle Message 
Passing Toolkit products for development and deployment of both serial and parallel applications on SPARC and 
x86/x64 based systems. Throughout this paper it is demonstrated how to develop and deploy an application 
parallelized with OpenMP and/or MPI. 
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Данная работа нацелена на программистов и разработчики, заинтересованных в использовании тех-
нологии параллельного программирования для увеличения производительности приложений. Программ-
ное обеспечение Oracle Solaris Studio обеспечивает современную оптимизацию и распараллеливание 
компиляторов для языков C, C ++ и ФОРТРАН, продвинутый отладчик, и оптимизированные математи-
ческие и быстродействующие библиотеки. Также включены чрезвычайно мощный инструмент анализа 
производительности для профилирования последовательных и параллельных приложений, инструмент 
анализа для обнаружения состязания при передаче данных и блокировки в памяти параллельных про-
грамм и IDE. Программное обеспечение Oracle Message Passing Toolkit обеспечивает высокопроизводи-
тельные MPI библиотеки и сопряжённую среду во время работы программы, необходимую для приложе-
ний передачи сообщений, которые могут работать на одной системе или по всему множеству вычисли-
тельных систем с высокопроизводительным сетевым оснащением, включая Gigabit Ethernet, 10 Gigabit 
Ethernet, InfiniBand и Myrinet. Примеры OpenMP и MPI представлены по всему тексту работы, включая их 
использование через программные продукты Oracle Solaris Studio и Oracle Message Passing Toolkit для раз-
вития и развертывания последовательных и параллельных приложений на основе систем SPARC и x86/x64. 
В работе продемонстрировано, как развивать и развертывать приложение, распараллеленное с OpenMP 
и/или MPI.  
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Multicore Processor Technology 

In a multicore processor architecture there are multiple independent processing units available to 
execute an instruction stream. Such a unit is generally referred to as a core. A processor might consist 
of multiple cores, with each core capable of executing an instruction stream. Since each core can oper-
ate independently, different instruction streams can be executed simultaneously. Nowadays all major 
chip vendors offer various types of multicore processors. A block diagram of a generic multicore ar-
chitecture is shown in Figure 1. 

 

Fig. 1. Block diagram of a generic multicore architecture 

In some architectures, each core has additional hardware support to efficiently execute multiple 
independent instruction streams in an interleaved way. For example, while one instruction stream 
waits for data to come from memory, another stream may be able to continue execution. This is 
transparent to the application and reduces, or even entirely avoids, processor cycles being wasted 
while waiting. It also adds a second level of parallelism to the architecture. Although a very important 
feature to improve both the throughput and single application parallel performance, we will not make 
this distinction in the remainder. 

On the memory side, multiple levels of fast buffer memory can be found. These are generally 
referred to as cache memory or cache(s) for short. Today first level caches are typically local to the 
core. Higher-level caches can be local, but may also be shared across the cores. Typically at least the 
highest level of cache often is shared. 

The instruction streams can be completely unrelated. For example, one might watch a video on 
a laptop, while having an email client open at the same time. This gives rise to (at least) two 
instruction streams. We say “at least” because each of these applications could be internally 
parallelized. If so, they might each execute more than one instruction stream.  

On a dual-core processor, one core can handle the application showing the video, while the other 
core executes the email client. This type of parallel execution is often referred to as throughput 
computing. A multicore architecture greatly improves throughput capacity.  

What is a Thread? 

A thread consists of a sequence of instructions. A thread is the software vehicle to implement 
parallelism in an application. A thread has its own state information and can execute independently of 
the other threads in an application. The creation, execution and scheduling of threads onto the cores is 
the responsibility of the operating system. This is illustrated in Figure 2. 

In general it is best for performance to make sure the hardware resources used are not overloaded 
and do not exceed their capacity. In case a resource is overloaded, the common phrase is to say that 
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Fig. 2. Software threads scheduled onto the cores 

this resource is oversubscribed. For example, when executing more than one application on a single 
core, the operating system has to switch between these programs. This not only takes time, but 
information in the various caches might be flushed back to main memory as well. In that respect, one 
should see the operating system itself as an application too. Its various daemons have to run in 
conjunction with the user level programs. This is why it is often most efficient to not use more 
software threads than cores available in the system, or perhaps even leave some room for these 
daemons to execute as well. 

The exception is if a core has hardware support for multiple threads. In this case, some level of 
oversubscription of a core could be beneficial for performance. The number of software threads to use 
depends on the workload and the hardware implementation details. 

On current operating systems, the user can have explicit control over the placement of threads 
onto the cores. Optimally assigning work to cores requires an understanding of the processor and core 
topology of the system. This is fairly low-level information, but it can be very beneficial to exploit this 
feature and improve the performance by carefully placing the threads. 

To improve cache affinity, one can also pin the threads down onto the cores. This is called 
binding and essentially bypasses the operating system scheduler. It could work well in a very 
controlled environment without oversubscription, but in a time-shared environment it is often best to 
leave the scheduling decisions up to the operating system. 

Why Parallelization? 

Parallelization is another optimization technique to further enhance the performance. The goal is 
to reduce the total execution time proportionally to the number of cores used. If the serial execution 
time is 20 seconds for example, executing the parallel version on a quad core system ideally reduces 
this to 20/4 = 5 seconds. This is illustrated in Figure 3. 

 

Fig. 3. Parellelization reduces the execution time 

Parallelization attempts to identify those portions of work in a sequential program that can be 
executed independently. At run time this work is then distributed over the cores available. These units 
of work are encapsulated in threads. 
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The programmer relies on a programming model that will express parallelism inherent in an 
application. Such a parallel programming model specifies how the parallelism is implemented, and the 
parallel execution managed. 

An Application Programming Interface (API) consists of a library of functions available to the 
developer. POSIX Threads (or Pthreads), Java Threads, Windows Threads and the Message Passing 
Interface (MPI) are all examples of programming models that rely on explicit calls to library functions 
to implement parallelism. 

Another approach might utilize compiler directives such as #pragma constructs in C/C++ to 
identify and manage the parallel portions of an application's source code. OpenMP is probably the 
most well known example of such a model.  

Parallel Architectures 

In this section an overview of various types of parallel systems is given. These are generic 
descriptions without any specific information on systems available today. 

The Symmetric Multiprocessor (SMP) Architecture 
The Non-Uniform Memory Access (NUMA) Architecture 
The Hybrid Architecture 
The Cache Coherent Non-Uniform Memory Access (cc-NUMA) Architecture  

Parallel Programming Models 

There are many choices when it comes to selecting a programming model for a parallel system. 
Automatic Parallelization 
The OpenMP Parallel Programming Model 
The Message Passing Interface (MPI) Parallel Programming Model 
The Hybrid Parallel Programming Model 

Performance Results 

The results were obtained on a Sun SPARC Enterprise T5120 server from Oracle. The system 
had a single UltraSPARC T2 processor with 8 cores and 8 hardware threads per core. In Figure the 
elapsed times in seconds for the Automatically Parallelized and OpenMP implementations are plotted 
as a function of the number of threads used. Note that a log scale is used on the vertical axis. 

For up to 8 threads, both versions perform equal. For 16 threads the Automatically Parallelized 
version performs about 9% faster than the OpenMP version. 

Both versions scale very well for up to 8 threads. When using 32 threads, the performance 
deviation compared to the Automatically Parallelized version is about 30% for the OpenMP version. 
For 64 threads, the elapsed time is about twice as high. This difference is caused by the parallel 
overheads increasing as more threads are used. If more computational work was performed, this 
overhead would not be as dominant. 

In Figure5 the performance of the MPI implementation is plotted as a function of the number of 
processes. Both the computational time (solid line) as well as the total time spent in the MPI functions 
(bar chart) are shown. 

The time spent in the MPI functions is obviously zero if only one process is used. When using 
two processes it is just below one second, going up to 2.4 seconds on 64 threads. The computational 
work is very small. As a result, the cost of message passing is relatively dominant and no overall 
performance gain is achieved when running in parallel. If more work were performed, this would be 
different. 
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Fig. 4. Performance of the Automatically Parallelized and OpenMP implementations 

 

Fig. 5. Performance of the MPI implementation 

Conclusion 

The goal of parallel computing is to reduce the elapsed time of an application. To this end, 
multiple processors, or cores, are used to execute the application. The expected speed up depends on 
the number of threads used, but also on the fraction of the execution time that can be parallelized. 
Only if this fraction is very high, scalable performance to a very high number of cores can be 
expected. MPI is used to distribute the work over the nodes, as well as handle the communication 
between the nodes. More fine-grained portions of work are then further parallelized using Automatic 
Parallelization and/or OpenMP. Together with the Oracle Message Passing Toolkit, the Oracle Solaris 
Studio compilers can be used to develop and deploy these kinds of applications. OpenMP is a de-facto 
standard to explicitly implement parallelism. Like Automatic Parallelization, it is suitable for 
multicore and bigger types of shared memory systems. It is a directive based model, augmented with 
run time functions and environment variables. The Oracle Solaris Studio compilers fully support 
OpenMP, as well as additional features to assist with the development of applications using this 
programming model. The choice of the programming model has substantial consequences regarding 
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the implementation, execution and maintenance of the application. We strongly recommend to 
carefully consider these before making a choice. 
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