KOMIIBIOTEPHBIE HCCJIEJOBAHUSA
N MOIEJUPOBAHMUE 2015 T. 7 Ne 3 C. 485-491 KM&M

CEKIIMOHHBIE JOKJIAIBI

YIK: 004.43

Performance of the OpenMP and MPI implementations
on ultrasparc system

A. Bogdanov'?, P. Sone K. Ko™, K. Zaya™

'nstitute for High-performance computing and the integrated systems, St. Petersburg, 199397, Russia
2 St.Petersburg State Marine Technical University, 3 Lotsmanskaya Str., St. Petersburg, 190008 Russia

E-mail: *bogdanov@csa.ru, ° pyaesonekoko@gmail.com, ¢ kyawzaya4436@gmail.com
Received December 4, 2014

This paper targets programmers and developers interested in utilizing parallel programming techniques to
enhance application performance. The Oracle Solaris Studio software provides state-of-the-art optimizing and
parallelizing compilers for C, C++ and Fortran, an advanced debugger, and optimized mathematical and
performance libraries. Also included are an extremely powerful performance analysis tool for profiling serial and
parallel applications, a thread analysis tool to detect data races and deadlock in memory parallel programs, and
an Integrated Development Environment (IDE). The Oracle Message Passing Toolkit software provides the
high-performance MPI libraries and associated run-time environment needed for message passing applications
that can run on a single system or across multiple compute systems connected with high performance
networking, including Gigabit Ethernet, 10 Gigabit Ethernet, InfiniBand and Myrinet. Examples of OpenMP and
MPI are provided throughout the paper, including their usage via the Oracle Solaris Studio and Oracle Message
Passing Toolkit products for development and deployment of both serial and parallel applications on SPARC and
x86/x64 based systems. Throughout this paper it is demonstrated how to develop and deploy an application
parallelized with OpenMP and/or MPI.

Keywords: OpenMP, Parallel Programming, MPI (Message Passing Interface), SPARC System

Citation: Computer Research and Modeling, 2015, vol. 7, no. 3, pp. 485-491.

© 2014 Anekcanap Brnamumuposua bornanos, [Tyae Con Ko Ko, KbsiB 3aiis



KOMIIBIOTEPHBIE HCCJIEJOBAHUSA
N MOIEJUPOBAHMUE 2015 T. 7 Ne 3 C. 485-491 KM&M

CEKIIMOHHBIE JOKJIAIBI

HpousBoaureasnocts OpenMP u peasusauuss MPI Ha cucreme ultrasparc
A. B. Boraanos, Ilyae Con Ko Ko, KbsB 3aiis

" Unemumyma svicoxonpouseooumenvuvix evruucnenuii u Ungpopmayuonmvix Cucmen,
Poccus, 199397, e. Cankm-Ilemep6ype

? Canxm-Iemep6ypeckuii 20cydapcmeennblii MOPCKOIl meXHuuecKuil yHueepcumen,
Poccus, 190008, e. Canxkm-Ilemep6ype, yn. Jloymanckas, 0. 3

Jannas pabora HareJIeHa Ha MPOTPaMMHUCTOB U Pa3paOOTUUKH, 3aMHTEPECOBAHHBIX B MCIIOJIb30BAaHUHU TEX-
HOJIOTUH TapajljIeIbHOTO MTPOTrPaMMHPOBAHNS JJIsl YBEJIMUEHHS TPOU3BOINTEIBHOCTH NpHIIoKeHuH. [IporpaMm-
Hoe oOecrmedenue Oracle Solaris Studio obecrednBaeT COBpEeMEHHYIO ONTHUMH3AIMI0 M pacHapaUieINBaHHe
KoM TopoB uis si36IkoB C, C ++ 1 ®OPTPAH, npoaBHHYTHINA OTIIAAYNK, 1 ONTUMU3APOBAHHEIE MaTEMaTH-
YecKue u OBICTpoeiicTByIomue OnbmroTekn. Takke BKIFOUEHBI YPE3BBHIYANHO MOIIHBIA WHCTPYMEHT aHAIH3a
HPOU3BOAUTENBHOCTH JUIS NMPO(MINPOBaHUS IIOCIEAOBATENbHBIX U NapalIeIbHbIX NPUIOKEHHUH, HHCTPYMEHT
aHanM3a Uil OOHApYKEHHs COCTSI3aHMS MU Ieperade AaHHBIX U OJOKMPOBKH B MaMSATH MApaJUIENbHBIX IPO-
rpamm u IDE. IIporpammuoe obecnieuenune Oracle Message Passing Toolkit obecrnieunBaeT BBICOKOTIPOU3BOIM-
tenbHble MPI OMOIMOTEKH M CONPSDKEHHYIO Cpeay BO BpeMsi paboThl IPOrpaMMbl, HEOOXOIUMYIO JUIsl IPUIIOXKE-
HUH TIepefayu cooOIIeHHH, KOTOpbIE MOTYT padoTaTh Ha OJHOW CHCTEME WIIM [0 BCEMY MHOXKECTBY BBIYHMCIIU-
TEJBHBIX CHUCTEM C BBICOKOIPOM3BOUTEIILHBIM CETEBBIM OCHaIeHueM, BkiIrouas Gigabit Ethernet, 10 Gigabit
Ethernet, InfiniBand u Myrinet. IIpumepst OpenMP 1 MPI nipescraBiieHsI 110 BceMy TEKCTY paOOTHI, BKIIIOUAs UX
UCIIOJIb30BaHKE uepe3 nporpamMHble npoaykTel Oracle Solaris Studio u Oracle Message Passing Toolkit mst pas-
BUTHSI U pa3BEPTHIBAHUS MOCIIEIOBATENLHBIX U MApAJUICIILHBIX NPHIIoKeHNH Ha ocHOBe crcteM SPARC u x86/x64.
B pabore mpoaeMOHCTpHPOBaHO, KaK Pa3BHBaTh M Pa3BEpPTHIBATh NPHIIOKEHHUE, pacnapamieneHHoe ¢ OpenMP
w/nmm MPL

Knrouessie cnoBa: OpenMP, napamensHoe nporpammupoBanue, MPI (Message Passing Interface), cucre-
ma SPARC

© 2014 Anexcannp Bragumuposuu bornanos, [Tyae Con Ko Ko, Kess 3aiist



Performance of the OpenMP and MPI implementations 487

Multicore Processor Technology

In a multicore processor architecture there are multiple independent processing units available to
execute an instruction stream. Such a unit is generally referred to as a core. A processor might consist
of multiple cores, with each core capable of executing an instruction stream. Since each core can oper-
ate independently, different instruction streams can be executed simultaneously. Nowadays all major
chip vendors offer various types of multicore processors. A block diagram of a generic multicore ar-

chitecture is shown in Figure 1.
private
ache(s)
private
Systern Interconnect [ shared ache(s)

(Memary, 1O, eto) cache(s)
private
it

Fig. 1. Block diagram of a generic multicore architecture

In some architectures, each core has additional hardware support to efficiently execute multiple
independent instruction streams in an interleaved way. For example, while one instruction stream
waits for data to come from memory, another stream may be able to continue execution. This is
transparent to the application and reduces, or even entirely avoids, processor cycles being wasted
while waiting. It also adds a second level of parallelism to the architecture. Although a very important
feature to improve both the throughput and single application parallel performance, we will not make
this distinction in the remainder.

On the memory side, multiple levels of fast buffer memory can be found. These are generally
referred to as cache memory or cache(s) for short. Today first level caches are typically local to the
core. Higher-level caches can be local, but may also be shared across the cores. Typically at least the
highest level of cache often is shared.

The instruction streams can be completely unrelated. For example, one might watch a video on
a laptop, while having an email client open at the same time. This gives rise to (at least) two
instruction streams. We say “at least” because each of these applications could be internally
parallelized. If so, they might each execute more than one instruction stream.

On a dual-core processor, one core can handle the application showing the video, while the other
core executes the email client. This type of parallel execution is often referred to as throughput
computing. A multicore architecture greatly improves throughput capacity.

What is a Thread?

A thread consists of a sequence of instructions. A thread is the software vehicle to implement
parallelism in an application. A thread has its own state information and can execute independently of
the other threads in an application. The creation, execution and scheduling of threads onto the cores is
the responsibility of the operating system. This is illustrated in Figure 2.

In general it is best for performance to make sure the hardware resources used are not overloaded
and do not exceed their capacity. In case a resource is overloaded, the common phrase is to say that

2015, T. 7, Ne 3, C. 485-491




488 A. Bogdanov, P. S. Ko Ko, K. Zaya

.......... g ”E: g
.......... =" TR — — SRR Software
.......... E’_r :S__ _S__ . Threads
.......... -3 S ) —

o == Scheduling

., e
e e
e " o,
S -~
- o
| T I "

Fig. 2. Software threads scheduled onto the cores

this resource is oversubscribed. For example, when executing more than one application on a single
core, the operating system has to switch between these programs. This not only takes time, but
information in the various caches might be flushed back to main memory as well. In that respect, one
should see the operating system itself as an application too. Its various daemons have to run in
conjunction with the user level programs. This is why it is often most efficient to not use more
software threads than cores available in the system, or perhaps even leave some room for these
daemons to execute as well.

The exception is if a core has hardware support for multiple threads. In this case, some level of
oversubscription of a core could be beneficial for performance. The number of software threads to use
depends on the workload and the hardware implementation details.

On current operating systems, the user can have explicit control over the placement of threads
onto the cores. Optimally assigning work to cores requires an understanding of the processor and core
topology of the system. This is fairly low-level information, but it can be very beneficial to exploit this
feature and improve the performance by carefully placing the threads.

To improve cache affinity, one can also pin the threads down onto the cores. This is called
binding and essentially bypasses the operating system scheduler. It could work well in a very
controlled environment without oversubscription, but in a time-shared environment it is often best to
leave the scheduling decisions up to the operating system.

Why Parallelization?

Parallelization is another optimization technique to further enhance the performance. The goal is
to reduce the total execution time proportionally to the number of cores used. If the serial execution
time is 20 seconds for example, executing the parallel version on a quad core system ideally reduces
this to 20/4 = 5 seconds. This is illustrated in Figure 3.

1 core 4 cores
(20 seconds) (5 seconds)
el |— 1N
= parallel
axgcution

\

Fig. 3. Parellelization reduces the execution time

Parallelization attempts to identify those portions of work in a sequential program that can be
executed independently. At run time this work is then distributed over the cores available. These units
of work are encapsulated in threads.

KOMIIBIOTEPHBIE UCCJIEJOBAHUA U MOJAEJIUPOBAHUE




Performance of the OpenMP and MPI implementations 489

The programmer relies on a programming model that will express parallelism inherent in an
application. Such a parallel programming model specifies how the parallelism is implemented, and the
parallel execution managed.

An Application Programming Interface (API) consists of a library of functions available to the
developer. POSIX Threads (or Pthreads), Java Threads, Windows Threads and the Message Passing
Interface (MPI) are all examples of programming models that rely on explicit calls to library functions
to implement parallelism.

Another approach might utilize compiler directives such as #pragma constructs in C/C++ to
identify and manage the parallel portions of an application's source code. OpenMP is probably the
most well known example of such a model.

Parallel Architectures

In this section an overview of various types of parallel systems is given. These are generic
descriptions without any specific information on systems available today.
The Symmetric Multiprocessor (SMP) Architecture
The Non-Uniform Memory Access (NUMA) Architecture
The Hybrid Architecture
The Cache Coherent Non-Uniform Memory Access (cc-NUMA) Architecture

Parallel Programming Models

There are many choices when it comes to selecting a programming model for a parallel system.
Automatic Parallelization
The OpenMP Parallel Programming Model
The Message Passing Interface (MPI) Parallel Programming Model
The Hybrid Parallel Programming Model

Performance Results

The results were obtained on a Sun SPARC Enterprise T5120 server from Oracle. The system
had a single UltraSPARC T2 processor with 8 cores and 8 hardware threads per core. In Figure the
elapsed times in seconds for the Automatically Parallelized and OpenMP implementations are plotted
as a function of the number of threads used. Note that a log scale is used on the vertical axis.

For up to 8 threads, both versions perform equal. For 16 threads the Automatically Parallelized
version performs about 9% faster than the OpenMP version.

Both versions scale very well for up to 8 threads. When using 32 threads, the performance
deviation compared to the Automatically Parallelized version is about 30% for the OpenMP version.
For 64 threads, the elapsed time is about twice as high. This difference is caused by the parallel
overheads increasing as more threads are used. If more computational work was performed, this
overhead would not be as dominant.

In Figure5 the performance of the MPI implementation is plotted as a function of the number of
processes. Both the computational time (solid line) as well as the total time spent in the MPI functions
(bar chart) are shown.

The time spent in the MPI functions is obviously zero if only one process is used. When using
two processes it is just below one second, going up to 2.4 seconds on 64 threads. The computational
work is very small. As a result, the cost of message passing is relatively dominant and no overall
performance gain is achieved when running in parallel. If more work were performed, this would be
different.

2015, T. 7, Ne 3, C. 485-491




490 A. Bogdanov, P. S. Ko Ko, K. Zaya

1.220 4

W
o
5
§ === O penbP Imple mentation
= 01224 v ek
E g & utomiatic parallelization
=
B
a
=
w

0.0121 T T T T T T T T T T T T T T T 1

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 B4

Mumber of threads

Fig. 4. Performance of the Automatically Parallelized and OpenMP implementations

2.500 5
— 2000 Time spent in
IE: Computational MPI functicns
[+5] .
L3
,__,, }
E 1.000-
2]
&
« 0.5004
w

0.000 1 T

1 2 4
Mumber of processes
Fig. 5. Performance of the MPI implementation
Conclusion

The goal of parallel computing is to reduce the elapsed time of an application. To this end,
multiple processors, or cores, are used to execute the application. The expected speed up depends on
the number of threads used, but also on the fraction of the execution time that can be parallelized.
Only if this fraction is very high, scalable performance to a very high number of cores can be
expected. MPI is used to distribute the work over the nodes, as well as handle the communication
between the nodes. More fine-grained portions of work are then further parallelized using Automatic
Parallelization and/or OpenMP. Together with the Oracle Message Passing Toolkit, the Oracle Solaris
Studio compilers can be used to develop and deploy these kinds of applications. OpenMP is a de-facto
standard to explicitly implement parallelism. Like Automatic Parallelization, it is suitable for
multicore and bigger types of shared memory systems. It is a directive based model, augmented with
run time functions and environment variables. The Oracle Solaris Studio compilers fully support
OpenMP, as well as additional features to assist with the development of applications using this
programming model. The choice of the programming model has substantial consequences regarding

KOMIIBIOTEPHBIE UCCJIEJOBAHUA U MOJAEJIUPOBAHUE




Performance of the OpenMP and MPI implementations 491

the implementation, execution and maintenance of the application. We strongly recommend to
carefully consider these before making a choice.

References

Barbara Chapman, Gabriele Jost, Ruud van der Pas, "Using OpenMP", The MIT Press, 2008.
Darryl Gove, "Solaris Application Programming", Prentice Hall, 2008.

High Performance Computing and Communications Glossary, http://wotug.kent.ac.uk/parallel/
acronyms/hpccgloss

MPI Forum, http://www.mpi-forum.org

Open MPI Home Page, http://www.open-mpi.org

OpenMP Specifications, http://openmp.org/wp/openmp-specifications

Oracle Message Passing Toolkit Home Page, http://www.sun.com/software/products/clustertools
Oracle Solaris Studio Documentation, http://developers.sun.com/sunstudio/documentation

Oracle Solaris Studio Numerical Computation Guide, http://docs.sun.com/app/docs/doc/819-3693

Oracle Solaris Studio Performance Analyzer Reference Manual, http://docs.sun.com/app/docs/
doc/821- 0304.

2015, T. 7, Ne 3, C. 485-491




