KOMIIBIOTEPHBIE HCCJIEJOBAHUSA
N MOIAEJIMPOBAHME 2015 T. 7 Ne 3 C. 445—454 KM&M

IIJIEHAPHBIE JTOKJIA 1bI

YIK: 004.023

Deriving semantics from WS-BPEL specifications
of parallel business processes on an example

V. Dimitrov

University of Sofia, Faculty of Mathematics and Informatics, Bulgaria, 1164 Sofia, 5 James Bourchier Blvd.

E-mail: cht@fmi.uni-sofia.bg
Received October 27, 2014

WS-BPEL is a widely accepted standard for specification of business distributed and parallel processes.
This standard is a mismatch of algebraic and Petri net paradigms. Following that, it is easy to specify WS-BPEL
business process with unwanted features. That is why the verification of WS-BPEL business processes is very
important. The intent of this paper is to show some possibilities for conversion of a WS-BPEL processes into
more formal specifications that can be verified. CSP and Z-notation are used as formal models. Z-notation is
useful for specification of abstract data types. Web services can be viewed as a kind of abstract data types.

Keywords: parallel business processes, specification WS-BPEL, semantics

N3Bieuenue cemanTuku u3 cnenupukannii WS-BPEL o0padorku napaJi-
JIeJIbHBIX MIPOLIECCOB B OM3Hece HA MpUMepe

B. Ilumutpos

Yuusepcuter Codpun, Gakynsrer Marematuku u Uudopmaruku, bonrapus, 1164, r. Codus, 6-p Ixeiimc bay-
yepa, 1. 5

WS-BPEL — 3T0 mmpoko pacnpocTpaHEHHBIH CTaHAAPT U CreUu(UKalK paclpeIelIeHHbIX U Tapaj-
JIETIbHBIX OM3HEC-TPOIECCOB. DTOT CTAHAAPT HE MOAXOIUT JJIsl ajreOpandecKux napagiurM U napajnrM Harpas-
nerHbIX TpadoB [erpu. Mcxonst u3 storo, Jerko ompenenuts OuzHec-mnporiecc WS-BPEL ¢ HexenatensHBIME
ocobeHHOCTsIMH. IMeHHO mo3ToMy mpoBepka OuzHec-miporieccoB WS-BPEL ouens BakHa. Llenms sTo# cTathu
COCTOHT B TOM, YTOOBI ITOKa3aTh HEKOTOPBIE BO3MOXKHOCTH I mpeodpazoBanus nporeccoB WS-BPEL B Goxee
(hopmanbHBIE cienn(UKAIIH, KOTOpBIEe MOTYT OBITh TpoBepeHbl. CSP u cuctema o603HaueHNH Z HCIOIB3YIOTCS
Kak popmanbHbie Moaenu. CucteMa 0003HaueHUH Z MoJie3Ha s crieluUKauyd aOCTPAKTHBIX TUIOB JTaHHBIX.
Web-cepBHCE MOTYT paccMaTpUBAThCs KAK CBOETO POJia aOCTPAKTHBIE TUITBI AAHHBIX.

KiroueBble cioBa: mapajuienabHbie OusHec-mporieccel, crnenudukarms WS-BPEL, cemantuka

Research in this paper are funded by Bulgarian Science Fund under contract I®HHM-101/12 “Modern program-
ming languages, environments and technologies, and their application in education of software professionals”.

Citation: Computer Research and Modeling, 2015, vol. 7, no. 3, pp. 445-454.

© 2014 Vladimir Dimitrov

446 V. Dimitrov

Motivation

There are two kinds of business processes in WS-BPEL [OASIS..., 2007]: executable and ab-
stract ones.

The behavioral semantics of executable business processes is well defined in WS-BPEL standard.
There is only one problem with WS-BPEL extensions, because they go outside the notation frame-
work; they are open and unpredictable, but without them the framework semantics is consistent.

The other category are the abstract business processes. Their intention is to describe Web ser-
vices interactions without details on Web services internal implementations. The standard defines con-
cretization procedure that can create an executable business process from an abstract one. But it is
possible to generate with this procedure an executable business process with behavior different from
that of the abstract one. It is possible, the executable business process to contain interactions that
change the original ones, i.e. the executable process is not simply specialization of the abstract one.
The standard requires for every abstract process to exist at least one executable business process, that
is concretized by the procedure defined in the standard, and that is compatible with the abstract one. In
such a way, the standard guarantees that above mentioned deviations are not available for at least one
executable business process.

Abstract business process represents a class of executable business processes compatible with it.
It is more productive to verify abstract business processes because:

1. Verification of an abstract business process means a verification of the whole class of executable
business processes that it represents.

2. Abstract business process does not contain implementation details that have no impact on Web
services interactions.

WS-BPEL business process is specified in two parts. First one is the WSDL [W3C..., 2001]
specification of the Web services involved in the interaction. This specification includes the business
process specification as a Web service. The second part is the WS-BPEL business process specifica-
tion as Web services interactions. These both specifications are complementary because the business
process, usually, is a Web service specified in WSDL. On the other hand, the business process as Web
service is implemented in WS-BPEL. WSDL standard is extended to capture Web Services participat-
ing in the WS-BPEL business process and this is an essential part of WS-BPEL.

WSDL specifies only the interfaces and hides implementation details. WSDL specifications
could be formalized. Why such a formalization is needed? WSDL is a XML based notation. Authors
of XML argue that XML is readable for humans and computers. But XML specifications are verbose
and not readable for humans. That is why, it is better, if Web services can be specified in some more
compact notation, that is well better accepted by the humans. Such a tool is the Z notation [ISO/IEC
13568:2002]. Specifications in it tend to be very compact.

Z-notation is mainly used for specification of abstract data types, but it can be used for specifica-
tion of algebras.

Web services can be viewed as abstract data types. In the example below, the WSDL and WS-
BPEL specifications are a specification of abstract business process taken from the standard.

Formalization of the WSDL specification
First, messages exchanged among Web services are defined (shippingPT.wsdl):

<wsdl:definitions
targetNamespace="http://example.com/shipping/interfaces/"
xmlns:ship="http://example.com/shipping/ship.xsd"
xmlns:tns="http://example.com/shipping/interfaces/"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">

KOMIIBIOTEPHBIE UCCJIEJOBAHUA U MOJAEJIUPOBAHUE

Deriving semantics from WS-BPEL specifications ... 447

<wsdl:types>
<xsd:schema>
<!-- import ship schema -->
</xsd:schema>
</wsdl:types>
<wsdl:message name="shippingRequestMsg">
<wsdl:part name="shipOrder" type="ship:shipOrder" />
</wsdl:message>
<wsdl:message name="shippingNoticeMsg">
<wsdl:part name="shipNotice" type="ship:shipNotice" />
</wsdl:message>
<wsdl:portType name="shippingServicePT">
<wsdl:operation name="shippingRequest">
<wsdlL:input message="tns:shippingRequestMsg" />
</wsdl:operation>
</wsdl:portType>
<wsdl:portType name="shippingServiceCustomerPT">
<wsdl:operation name="shippingNotice">
<wsdl:input message="tns:shippingNoticeMsg" />
</wsdl:operation>
</wsdl:portType>
</wsdl:definitions>

The application data schemas are imported in this part of the WSDL specification. Such a types
here are shipOrder and shipNotice. They are the application data containers. Only the properties, de-

fined on these messages, have impact on the message exchange among the business process Web ser-
vices. These data types are modeled as basic types in Z notation:

[shipOrder, shipNotice]

Messages are modelled with Z schemas:

_shippingRequestMsg
‘ shipOrder: shipOrder

_shippingNoticeMsg

‘ shipNotice: shipNotice

Every message part in the Z-schemas is specified as a field with the same part name and the same type
name.

Port types define Web services. They could be represented as abstract data types. In Z-notation,
abstract data types are defined with schema type (Z schema) and operations (Z-schemas) applied on it.
There is no way in the Z-notation, operations to be defined on the basic types. That is why initially, the
basic type WebService is introduced and then it is used in the port types Z-schemas. The field ws is
not very elegant approach for introducing the Web services, but it works.

All port types are only with one operation. They are represented with the corresponding Z-
schema. Operations are one way. Each of them has only one input parameter.

2015, T. 7, Ne 3, C. 445454

448 V. Dimitrov

[WebService]
shippingServicePT = [ws: WebService]
shippingCustomerPT = [ws: WebService]

_shippingRequest

A shippingServicePT
input?: shippingRequestMsg

_shippingNotice

A shippingCustomerPT

input?: shippingNoticeMsg

These specifications of the Web services do not contain any information about the Web services
structure or behavior.
Properties definition in the WSDL specification is:

<wsdl:definitions

targetNamespace="http://example.com/shipping/properties/"
xmlns:bpel="http://docs.oasis-open.org/wsbpel/2.0/process/executable"
xmlns:vprop="http://docs.oasis-open.org/wsbpel/2.0/varprop"
xmlns:ship="http://example.com/shipping/ship.xsd"
xmlns:sif="http://example.com/shipping/interfaces/"
xmlns:tns="http://example.com/shipping/properties/"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<wsdl:import location="shippingPT.wsdl"

namespace="http://example.com/shipping/interfaces/" />
<I-- types used in Abstract Processes are required to be finite
domains. The itemCountType is restricted by range -->
<wsdl:types>

<xsd:schema

targetNamespace="http://example.com/shipping/ship.xsd">
<xsd:simpleType name="itemCountType">
<xsd:restriction base="xsd:int">
<xsd:minlnclusive value="1" />
<xsd:maxInclusive value="50" />
</xsd:restriction>
</xsd:simpleType>

</xsd:schema>
</wsdl:types>
<vprop:property name="shipOrderID" type="xsd:int" />
<vprop:property name="shipComplete" type="xsd:boolean" />
<vprop:property name="itemsTotal" type="ship:itemCountType" />
<vprop:property name="itemsCount" type="ship:itemCountType" />
<vprop:propertyAlias propertyName="tns:shipOrderID"

messageType="sif:shippingRequestMsg" part="shipOrder">

KOMIIBIOTEPHBIE UCCJIEJOBAHUA U MOJAEJIUPOBAHUE

Deriving semantics from WS-BPEL specifications ...

449

<vprop:query>
ship:ShipOrderRequestHeader/ship:shipOrderID
</vprop:query>
</vprop:propertyAlias>
<vprop:propertyAlias propertyName="tns:shipOrderID"
messageType="sif:shippingNoticeMsg" part="shipNotice">
<vprop:query>ship:ShipNoticeHeader/ship:shipOrderID</vprop:query>
</vprop:propertyAlias>
<vprop:propertyAlias propertyName="tns:shipComplete"
messageType="sif:shippingRequestMsg" part="shipOrder">
<vprop:query>
ship:ShipOrderRequestHeader/ship:shipComplete
</vprop:query>
</vprop:propertyAlias>
<vprop:propertyAlias propertyName="tns:itemsTotal"
messageType="sif:shippingRequestMsg" part="shipOrder">
<vprop:query>
ship:ShipOrderRequestHeader/ship:itemsTotal
</vprop:query>
</vprop:propertyAlias>
<vprop:propertyAlias propertyName="tns:itemsCount"
messageType="sif:shippingRequestMsg" part="shipOrder">
<vprop:query>
ship:ShipOrderRequestHeader/ship:itemsCount
</vprop:query>
</vprop:propertyAlias>
<vprop:propertyAlias propertyName="tns:itemsCount"
messageType="sif:shippingNoticeMsg" part="shipNotice">
<vprop:query>ship:ShipNoticeHeader/ship:itemsCount</vprop:query>
</vprop:propertyAlias>
</wsdl:definitions>

A new type for the properties is introduced and it Z-schema is:
itemCountType == 1..50
The properties are then represented as types:

shipOrderID == N,
shipComplete ::= False | True
itemsTotal == itemCountType

itemsCount == itemCountType

There are two deviations in the Z-notation schemas from the WSDL specification. The order
numbers are positive numbers — not simply integers as is defined in the WSDL specification. In Z-

notation, there is no Boolean type and it is modelled with two values False and True.

The aliases are properties placed on the messages. Here, they are modelled as functions from thr
message type to the property type. There is no need to model XPath queries, because they are exten-
sions to WS-BPEL. Queries written in other languages can be modelled in the same way. The aliases

specification is more abstract:

2015, T. 7, Ne 3, C. 445454

450 V. Dimitrov

shipOrderlD_shipOrder: shippingRequestMsg — shipOrderlD
shipOrderID _shippingNotice: shippingNoticeMsg — shipOrderID
shipComplete shipOrder: shippingNoticeMsg — shipComplete
itemsTotal shipOrder: shippingRequestMsg — itemsTotal
itemsCount_shipOrder: shippingRequestMsg — itemsCount

itemsCount_shippingNotice: shippingNoticeMsg — itemsCount

One property could have many aliases with the same name. In the Z-notation, above defined
functions are global ones and their names must be unique. So, alias name is formed by the property
name and the part name, in which it is defined. It is mapping from message type to property type.

Formalization of partner link type has no sensible interpretation here and they are modeled in the
context of the WS-BPEL business process.

Finally, as result of the modelling effort, the specification is very compact and very simple. It
does not include the business process as a Web service. This specification could be used for Web Ser-
vices development, but it is very simple without invariants.

Formalization of the WS-BPEL specification
The specification of the example abstract business process in WS-BPEL is:

<process name="shippingService"
targetNamespace="http://example.com/shipping/"
xmlns="http://docs.oasis-open.org/wsbpel/2.0/process/abstract"
xmlns:plt="http://example.com/shipping/partnerLink Types/"
xmlns:props="http://example.com/shipping/properties/"
xmlns:ship="http://example.com/shipping/ship.xsd"
xmlns:sif="http://example.com/shipping/interfaces/"
abstractProcessProfile=
"http://docs.oasis-open.org/wsbpel/2.0/process/abstract/ap11/2006/08">
<import importType="http://schemas.xmlsoap.org/wsdl/"
location="shippingLT.wsdl"
namespace="http://example.com/shipping/partnerLink Types/" />
<import importType="http://schemas.xmlsoap.org/wsdl/"
location="shippingPT.wsdl"
namespace="http://example.com/shipping/interfaces/" />
<import importType="http://schemas.xmlsoap.org/wsdl/"
location="shippingProperties.wsdl"
namespace="http://example.com/shipping/properties/" />
<partnerLinks>
<partnerLink name="customer" partnerLinkType="plt:shippingL T"
partnerRole="shippingServiceCustomer"
myRole="shippingService" />
</partnerLinks>
<variables>
<variable name="shipRequest" messageType="sif:shippingRequestMsg" />
<variable name="shipNotice" messageType="sif:shippingNoticeMsg" />
<variable name="itemsShipped" type="ship:itemCountType" />
</variables>

KOMIIBIOTEPHBIE UCCJIEJOBAHUA U MOJAEJIUPOBAHUE

Deriving semantics from WS-BPEL specifications ... 451

<correlationSets>
<correlationSet name="shipOrder" properties="props:shipOrderID" />
</correlationSets>
<sequence>
<receive partnerLink="customer" operation="shippingRequest" variable="shipRequest">
<correlations>
<correlation set="shipOrder" initiate="yes" />
</correlations>
</receive>
<if>
<condition>
bpel:getVariableProperty('shipRequest', 'props:shipComplete’)
</condition>
<sequence>
<assign>
<copy>
<from variable="shipRequest" property="props:shipOrderID" />
<to variable="shipNotice" property="props:shipOrderID" />
</copy>
<copy>
<from variable="shipRequest" property="props:itemsCount" />
<to variable="shipNotice" property="props:itemsCount" />
</copy>
</assign>
<invoke partnerLink="customer" operation="shippingNotice" inputVariable="shipNotice">
<correlations>
<correlation set="shipOrder" pattern="request" />
</correlations>
</invoke>
</sequence>
<else>
<sequence>
<assign>
<copy>
<from>0</from>
<to>$itemsShipped</to>
</copy>
</assign>
<while>
<condition>
$itemsShipped < bpel:getVariableProperty(‘shipRequest', 'props:itemsTotal')
</condition>
<sequence>
<assign>
<copy>
<opaqueFrom/>
<to variable="shipNotice" property="props:shipOrderID" />
</copy>
<copy~>
<opaqueFrom/>
<to variable="shipNotice" property

—n"

—n"

props:itemsCount" />

2015, T. 7, Ne 3, C. 445454

452 V. Dimitrov

</copy>
</assign>
<invoke partnerLink="customer" operation="shippingNotice" inputVariable="shipNotice">
<correlations>
<correlation set="shipOrder" pattern="request" />
</correlations>
</invoke>
<assign>
<copy>
<from>
$itemsShipped + bpel:getVariableProperty('shipNotice', 'props:itemsCount')
</from>
<to>$itemsShipped</to>
</copy>
</assign>
</sequence>
</while>
</sequence>
</else>
</if>
</sequence>
</process>

At the beginning, the partner link, in which the business process participates, is defined. The role
of the process in this link is fixed. The partner link is defined with the partner link type taken from the
WSDL specification (shippingL T.wsdl):

<wsdl:definitions
targetNamespace="http://example.com/shipping/partnerLink Types/"
xmlns:plnk="http://docs.oasis-open.org/wsbpel/2.0/plnktype"
xmlns:sif="http://example.com/shipping/interfaces/"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
<wsdl:import location="shippingPT.wsdlI"
namespace="http://example.com/shipping/interfaces/" />
<plnk:partnerLink Type name="shippingLT">
<plnk:role name="shippingService" portType="sif:shippingServicePT" />
<plnk:role name="shippingServiceCustomer" portType="sif:shippingServiceCustomerPT" />
</plnk:partnerLinkType>
</wsdl:definitions>

The partner link type shippingLT connects a service (shippingService) with its consumer
(shippingServiceConsumer). In the WS-BPEL specification, the business process role is a fixed ser-
vice provider. The roles of port types are defined in shippingL T.wsdl and are represented as operations
in shippingPT.wsdl.

The business process logic written is pseudo code is:
receive shipOrder
if condition shipComplete

send shipNotice
else
itemsShipped :=0
while itemsShipped < itemsTotal

KOMIIBIOTEPHBIE UCCJIEJOBAHUA U MOJAEJIUPOBAHUE

Deriving semantics from WS-BPEL specifications ... 453

itemsCount := opaque // non-deterministic assignment corresponding e.g. to
// internal interaction with back-end system

send shipNotice

itemsShipped = itemsShipped + itemsCount

The process is instantiated when a shipOrder is received. If the received order has been executed
then a shipNotice is replied. This situation is checked in the message header property shipComplete.
Otherwise, a cycle is started for the order execution. At every step, part of the items are delivered and
a notification is send. The counter is incremented with the number of the sent items. The cycle exits
when all items are delivered and only then the process is terminated. In the abstract process, the num-
ber of delivered items at every step is non-deterministic. This information is retrieved from the
backend system that actually register how many items have been send. From interactions point of
view, this process is very simple.

Initially, the process waits to receive an order message from a consumer and then replies with
one or more messages. There are no error handlers, no compensators, no return values. There is no
need for correlation sets coordination: when a new instance of the process is created, the process can
be restarted in parallel to wait for new order, and the current instance is executing the received yet or-
der.

In CSP, the process is very simple as is shown below:

channel customer 0;

shippingService() = customer?shipOrder -> (checkOrder(shipOrder) |||
shippingService());
checkOrder(shipOrder) = (shipComplete -> customer!shipOrder -> Skip) []
(shipNotComplete -> executeOrder(shipOrder));
executeOrder(shipOrder) =
(itemsShipped -> Skip) []
(itemsNotShipped -> change itemsCount -> customer!shipOrder ->
executeOrder(shipOrder));

var count = 10;

shippingServiceCustomer() =
if (count > 0) {customer!count -> {count--} -> receive()} else {Skip};
receive() = customer?shipNotice -> receive();

System() = shippingServiceCustomer() ||| shippingService();
#assert System() deadlockfree;

PAT, product for specification and verification of CSP models, is used here. In this specification,
there is only one channel between service provider and service consumer. This channel is modelling
the partner link from the WS-BPEL specification. The channel could have some capacity, but here
only a message can be exchanged through it, like in the classic CSP.

The WS-BPEL process is modelled as the CSP process shippingService. This process, initially, is
waiting to receive a shipping order through the channel. When the process receives an order, it starts
its execution, but in parallel restarts a new copy to wait for a new order.

The subprocess checkOrder checks the order. There are two possible events from the check: the
order is executed yet or not. With these two events is modelled the check in the WS-BPEL process.
The order is received as a parameter by the subprocess checkOrder.

If the order has been executed yet, the process sends through the channel a notification, which
may be is the order message in some format. Otherwise, it starts the subprocess executeOrder. In this

2015, T. 7, Ne 3, C. 445454

454 V. Dimitrov

process, all manipulations with variables, messages and properties are abstracted to result events. If all
order items have been sent then the process terminates. Otherwise, the backend system is initiated. The
last one sends information when some delivery is done. This is marked by an occurrence of
change itemsCount. Through the channel, the consumer is informed about that delivery. Then follows
a recursive execution of the subprocess with the left items.

In this specification, instead of shippingNotice is returned shippingOrder. The idea is that a doc-
ument-message, like shippingOrder, carries the business process state and no more other messages are
needed. It possible, the CSP process to use different message in that case, but this would not change
the interaction flow.

In the CSP specification, there are consumer and system subprocesses. They are added for verifi-
cation purposes of the whole system.

The abstraction of data manipulations into events is the main approach in this conversion from
WS-BPEL to CSP. The representation of a cycle as a recursive subprocess (subprogram) is the other
used approach. The conditional statements are modelled as choices among events. The correlation sets
are ignored in the model, because they are used only in the consumer part. The process simply returns
through the channel data (the order) that contain the dialog identifier.

Conclusion

Attractive results in WSDL formalization with Z notation have not been achieved, because there
are no behavior for the modelled Web Services. The business process WSDL specification is simply
an interface to several Web services.

On the other hand, the business process WS-BPEL specification specifies a behavior. Its formali-
zation in CSP is maximally abstracted from implementation details saving the original interaction
flow. The CSP specification can then be formally verified. The CSP model is very compact and reada-
ble.

This example of formalization demonstrates an approach to formal verification of business pro-
cesses.

References

ISO/IEC 13568:2002, Information technology — Z formal specification notation — Syntax, type sys-
tem and semantics,

http://www.iso.org/iso/home/store/catalogue tc/catalogue detail.htm?csnumber=21573

OASIS, Web Services Business Process Execution Language Version 2.0, OASIS Standard, 11 April
2007, http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html

W3C, Web Services Description Language (WSDL) 1.1, W3C Note 15 March 2001,
http://'www.w3.org/TR/wsdl

KOMIIBIOTEPHBIE UCCJIEJOBAHUA U MOJAEJIUPOBAHUE

