КОМПЬЮТЕРНЫЕ ИССЛЕДОВАНИЯ И МОДЕЛИРОВАНИЕ 2014 Т. 6 № 1 С. 119–129

УДК: 544.344

Компьютерное моделирование неравновесного критического поведения трехмерной модели Изинга

В. В. Прудников^а, П. В. Прудников^b, Е. А. Поспелов^с

Омский государственный университет им. Ф.М. Достоевского, Россия, 644077, г. Омск, пр. Мира, 55а

E-mail: a prudnikv@univer.omsk.su, b prudnikp@univer.omsk.su, c posevg@yandex.ru

Получено 23 июля 2013 г., после доработки 16 января 2014 г.

Осуществлено численное моделирование с применением алгоритма тепловой бани неравновесного критического поведения в трехмерной как однородной, так и структурно неупорядоченной модели Изинга. На основе анализа двухвременной зависимости автокорреляционных функций и динамической восприимчивости для систем со спиновыми концентрациями p = 1,0, p = 0,8 и 0,6 были выявлены эффекты старения с аномальным замедлением релаксации системы с ростом времени ожидания. Доказано нарушение флуктуационно-диссипативной теоремы и получены значения универсального предельного флуктуационно-диссипативного отношения для рассматриваемых систем. Показано, что увеличение концентрации дефектов структуры приводит к усилению эффектов старения.

Ключевые слова: компьютерное моделирование, неравновесное критическое поведение, эффекты старения

Monte Carlo simulation of nonequilibrium critical behavior of 3D Ising model

V. V. Prudnikov, P. V. Prudnikov, E. A. Pospelov

Omsk State University, 55a Mira st., Omsk, 644077, Russia

Abstract. – Investigation of influence of non-equilibrium initial states and structural disorder on characteristics of anomalous slow non-equilibrium critical behavior of three-dimensional Ising model is carried out. The unique ageing properties and violations of the equilibrium fluctuation-dissipation theorem are observed for considered pure and disordered systems which were prepared in high-temperature initial state and then quenched in their critical points. The heat-bath algorithm description of ageing properties in non-equilibrium critical behavior of three-dimensional Ising model with spin concentrations p = 1.0, p = 0.8, and 0.6 is realized. On the base of analysis of such two-time quantities as autocorrelation function and dynamical susceptibility were demonstrated the ageing effects and were calculated asymptotic values of universal fluctuation-dissipation ratio in these systems. It was shown that the presence of defects leads to aging gain.

Keywords: computer simulation, non-equilibrium critical behavior, ageing effects

Citation: Computer Research and Modeling, 2014, vol. 6, no. 1, pp. 119-129 (Russian).

Работа выполнена в рамках проекта 2.3046.2011 Министерства образования и науки РФ. Для проведения расчетов были использованы ресурсы суперкомпьютерного комплекса МГУ им. М. В. Ломоносова.

© 2014 Владимир Васильевич Прудников, Павел Владимирович Прудников, Евгений Анатольевич Поспелов

Ки&М

Введение

В настоящее время большой интерес у исследователей вызывает поведение систем, характеризующихся аномально медленной динамикой [Henkel, Pleimling, 2010; Afzal, Pleimling, 2013]. Это обусловлено предсказываемыми и наблюдаемыми при медленной эволюции систем из неравновесного начального состояния свойствами старения, характеризуемыми нарушениями флуктуационно-диссипативной теоремы. Хорошо известными примерами подобных систем с аномально медленной динамикой и эффектами старения являются такие комплексные неупорядоченные системы, как спиновые стекла [Berthier, Kurchan, 2013]. Однако данные особенности неравновесного поведения, как показали различные исследования [Calabrese, Gambassi, 2005; Berthier et al., 2001], могут наблюдаться и в системах, испытывающих фазовые переходы второго рода. Это обусловлено тем, что их поведение вблизи критических температур характеризуется аномально большими временами релаксации.

В окрестности температуры T_c фазового перехода второго рода время релаксации системы является расходящейся величиной $t_{\rm rel} \sim |T - T_c|^{-zv}$. Таким образом, системы в критической точке не достигают равновесия в течение всего релаксационного процесса. Именно на этапе $t \ll t_{\rm rel}$ проявляются эффекты старения. Они выражаются в осуществлении двухвременных зависимостей для корреляционной функции и функции отклика от времени ожидания t_w и времени наблюдения $t - t_w$. Время ожидания характеризует время, прошедшее с момента приготовления образца до начала измерения его характеристик. В течение $t - t_w \ll t_{\rm rel}$, где $t_{\rm rel}$ — время релаксации системы, во временном поведении системы проявляется влияние начальных состояний системы.

Отметим также, что введенное ранее для спиновых стекол флуктуационно-диссипативное отношение, связывающее функцию отклика и корреляционную функцию и обобщающее флуктуационно-диссипативную теорему на случай неравновесного поведения, оказывается новой универсальной характеристикой для критического поведения различных систем.

В данной работе решается задача численного Монте-Карло исследования с применением алгоритма тепловой бани особенностей влияния дефектов структуры на характеристики неравновесного критического поведения анизотропных спиновых систем, описываемых трехмерной моделью Изинга. Изучение релаксационной динамики подобных систем, с одной стороны, проводить значительно легче, чем изучение таких сложных неупорядоченных систем, как спиновые стекла, а с другой стороны, эти системы на неравновесном этапе критической эволюции демонстрируют аналогичные спиновым стеклам эффекты старения и отклонение предельной величины флуктуационно-диссипативного отношения (ФДО) от единицы как показателя неравновесности системы.

Ренормгрупповые [Прудников и др., 2008; Прудников и др., 2010], численные [Прудников и др., 2007; Prudnikov et al., 2010; Prudnikov, Medvedeva, 2012] и экспериментальные [Rosov et al., 1992] методы исследования критической динамики структурно неупорядоченных систем позволили к настоящему времени однозначно установить, что присутствие в системах как некоррелированных дефектов структуры, так и дефектов с эффектами дальнодействующей корреляции приводит к новым типам критического поведения и заметному усилению эффектов критического замедления по сравнению с «чистыми» системами. В связи с этим такие особенности неравновесного поведения, как эффекты старения, несомненно, должны найти более яркое проявление в структурно неупорядоченных системах с новыми универсальными значениями флуктуационно-диссипативного отношения.

Ренормгрупповые расчеты ФДО, проведенные в работах [Calabrese, Gambassi, 2002a; Calabrese, Gambassi, 2002b] в рамках метода ε-разложения для диссипативной модели с несохраняющимся параметром порядка в низших порядках теории, показали, что сложности вы-

КОМПЬЮТЕРНЫЕ ИССЛЕДОВАНИЯ И МОДЕЛИРОВАНИЕ

деления флуктуационных поправок в двухвременных зависимостях для корреляционной функции и функции отклика не позволяют пока с достаточной убедительностью выявить характер влияния дефектов на относительное соответствие значений предельного ФДО для структурно неупорядоченной и «чистой» модели Изинга.

Проведенные нами в данной работе численные Монте-Карло исследования, непертубативные по своей основе, позволяют более однозначно ответить на этот вопрос и выделить влияние дефектов структуры на эффекты старения и значения ФДО в неравновесном критическом поведении трехмерной модели Изинга.

Основные теоретические представления

Эффекты старения, проявляющиеся на неравновесном этапе релаксации системы с медленной динамикой, характеризуются существованием двухвременных зависимостей для корреляционной функции и функции отклика от времени ожидания t_w и времени наблюдения $t - t_w$. Для спиновой системы, характеризуемой спиновой плотностью $\sigma(x)$, корреляционная функция определяется выражением ($t > t_w$)

$$C(t,t_w) = \frac{1}{V} \int d^d x [\langle \sigma(x,t)\sigma(0,t_w) \rangle - \langle \sigma(x,t) \rangle \langle \sigma(0,t_w) \rangle], \tag{1}$$

а функция отклика на малое внешнее магнитное поле *h*, приложенное к системе в момент времени *t_w*, — формулой

$$R(t, t_w) = \frac{1}{V} \int d^d x \left. \frac{\delta \langle \sigma(x, t) \rangle}{\delta h(x, t_w)} \right|_{h=0}.$$
(2)

Время ожидания определяется временем, прошедшим с момента приготовления образца до начала измерения его характеристик. В течение $(t - t_w) \ll t_{rel}$, где t_{rel} – время релаксации системы, во временном поведении системы проявляется влияние начальных состояний системы и эффектов старения, характеризующихся как нарушением трансляционной симметрии системы во времени, так и замедлением релаксационных и корреляционных процессов с увеличением «возраста» образца t_w .

Еще одним проявлением медленной динамики является нарушение флуктуационнодиссипативной теоремы (ФДТ) [Berthier et al., 2001; Calabrese, Gambassi, 2002b], которая связывает функцию отклика системы на внешнее возмущение $R(t, t_w)$ и корреляционную функцию $C(t, t_w)$:

$$R(t, t_w) = \frac{X(t, t_w)}{T} \frac{\partial C(t, t_w)}{\partial t_w},$$
(3)

где $X(t, t_w)$ — флуктуационно-диссипативное отношение (ФДО). ФДТ утверждает, что в равновесном состоянии $X(t > t_w \gg t_{rel}) = 1$. Выражение (3) является обобщением ФДТ на случай описания неравновесных процессов, а предельное значение ФДО

$$X^{\infty} = \lim_{t_{w} \to \infty} \lim_{t \to \infty} X(t, t_{w})$$
(4)

может быть использовано в качестве универсальной характеристики неравновесного поведения систем с медленной динамикой.

Однако линейная функция отклика $R(t, t_w)$, соответствующая определению (3), не может быть непосредственно измерена экспериментально или получена методами компьютерного моделирования. В данной работе для исследования нарушения ФДТ мы применили методику, предложенную работах [Ricci-Tersenghi, 2003; Chatelain, 2004] и позволяющую при моделировании динамики системы с помощью алгоритма тепловой бани получить функцию отклика без введения

магнитного поля, выразив ее через специальную двухвременную корреляционную функцию

$$R(t,t_w) = \frac{1}{N}\beta \sum_{i=1}^N \left\langle \sigma_i(t) \left[\sigma_i(t_w+1) - \sigma_i^W(t_w+1) \right] \right\rangle,\tag{5}$$

где N — число спинов на решетке, $\beta = 1/T$ — обратная температура, $\sigma_i^W = \text{th}(\beta J \sum_{j \neq i} \sigma_j)$ с суммированием по *j* ближайшим соседям спина в *i*-том узле, J > 0 — интеграл обменного взаимодействия для ближайших спинов.

В настоящей работе исследование особенностей неравновесного критического поведения было проведено на примере популярной статистической модели для описания ферромагнитного фазового перехода в анизотропных спиновых системах — трехмерной модели Изинга. Ее гамильтониан с учетом влияния локального магнитного поля h_i задается выражением

$$H = -J \sum_{\langle i,j \rangle} \sigma_i \sigma_j - \sum_i h_i \sigma_i, \tag{6}$$

где $\sigma_i = \pm 1$ — изинговские спиновые переменные, характеризующие значения локального параметра порядка (приведенной намагниченности), сумма в (6) пробегает по спинам в ближайших узлах кубической решетки, J > 0 — интеграл обменного взаимодействия для ближайших спинов, h_i для модели Изинга задается как скалярная величина.

С целью выявления влияния дефектов структуры на характеристики неравновесного критического поведения нами рассматривалась также трехмерная разбавленная немагнитными атомами примеси модель Изинга, характеризуемая гамильтонианом

$$H = -J \sum_{\langle i,j \rangle} p_i p_j \sigma_i \sigma_j - \sum_i h_i p_i \sigma_i,$$
(7)

где p_i — случайное число, равное 1, если в узле находится спин, и 0 — в случае его отсутствия (магнитный атом замещен немагнитным атомом примеси). Дефекты структуры равномерно распределяются по всей системе, и при моделировании их положение фиксируется для отдельной примесной конфигурации (случай замороженных дефектов структуры).

Моделирование эволюции макроскопической решеточной системы из N спинов осуществлялось в рамках статистического метода Монте-Карло. Был реализован динамический процесс односпиновых переворотов с применением алгоритма тепловой бани [Janke, 2008], задающим вероятность перехода спина системы в новое состояние $\sigma_i \rightarrow \sigma'_i$ посредством формулы

$$W_{\rm sp}\left(\sigma_i \to \sigma_i'\right) = \frac{\exp\left[-\beta H(\sigma_i')\right]}{\sum_{\sigma_j} \exp\left[-\beta H(\sigma_j)\right]},\tag{8}$$

где суммирование по σ_j в знаменателе проводится по всем возможным состояниям спина узла после переворота при условии фиксации спинов остальных узлов в состоянии до переворота. В качестве единицы времени динамического процесса выбирается шаг Монте-Карло на спин (MCs/s), который обозначает N последовательных переворотов спинов в узлах решетки. Для модели Изинга с двумя возможными состояниями $\sigma_j = \pm 1$ указанную вероятность переворота можно записать в виде

$$W_{\rm sp}\left(\sigma_i \to \sigma_i'\right) = \frac{\exp\left[-\beta H(\sigma_i')\right]}{\exp\left[\beta H(\sigma_i)\right] + \exp\left[-\beta H(\sigma_i)\right]} \tag{9}$$

с реализацией так называемой глауберовской динамики.

КОМПЬЮТЕРНЫЕ ИССЛЕДОВАНИЯ И МОДЕЛИРОВАНИЕ

Опишем методику определения двухвременной зависимости функции отклика для модели Изинга в рамках применения алгоритма тепловой бани. Как известно, динамическая эволюция модели в критической точке является марковским процессом. Обозначим через $\varphi(\{\sigma\}, t)$ – вероятность нахождения системы в состоянии с конфигурацией спинов $\{\sigma\}$ в момент времени t. Основное кинетическое уравнение для случая дискретного времени может быть представлено в виде

$$\varphi(\{\sigma\}, t + \Delta t) = (1 - \Delta t)\varphi(\{\sigma\}, t) + \Delta t \sum_{\{\sigma'\}} W(\{\sigma'\} \to \{\sigma\}, t)\varphi(\{\sigma'\}, t).$$
(10)

 $W(\{\sigma'\} \to \{\sigma\}, t)$ — вероятность перехода из состояния $\{\sigma'\}$ в состояние $\{\sigma\}$ в момент времени t, удовлетворяющая условию нормировки: $\sum_{\{\sigma'\}} W(\{\sigma'\} \to \{\sigma\}, t) = 1$. Можно показать, что аналогичному кинетическому уравнению удовлетворяет и условная вероятность перехода $\varphi(\{\sigma\}, t|\{\sigma'\}, t_w)$ — вероятность обнаружения системы в момент времени t в состоянии $\{\sigma\}$ при условии, что в момент времени t_w ($t_w < t$) система находилась в состоянии $\{\sigma'\}$:

$$\varphi(\{\sigma\}, t + \Delta t | \{\sigma'\}, t_w) = (1 - \Delta t)\varphi(\{\sigma\}, t | \{\sigma'\}, t_w) + \Delta t \sum_{\{\sigma''\}} W(\{\sigma''\} \to \{\sigma\}, t) \varphi(\{\sigma''\}, t, \{\sigma'\}, t_w).$$
(11)

Данная условная вероятность вводится с помощью формулы Байеса:

$$\varphi(\{\sigma\}, t) = \sum_{\{\sigma'\}} \varphi(\{\sigma\}, t | \{\sigma'\}, t_w) \varphi(\{\sigma'\}, t_w).$$

$$(12)$$

В динамике тепловой бани полная вероятность изменения состояния системы за один шаг Монте-Карло на спин определяется следующим выражением (с учетом (9))

$$W(\sigma \to \sigma', t) = \frac{1}{N} \sum_{k=1}^{N} W_k(\{\sigma\} \to \{\sigma'\}) = \frac{1}{N} \sum_{k=1}^{N} \left[\prod_{l \neq k} \delta_{\sigma_l \sigma'_l} \right] W_{\rm sp}(\sigma_k \to \sigma'_k).$$
(13)

В (13) вероятность $W_k(\sigma \to \sigma') = W_{sp}(\sigma_k \to \sigma'_k)$ описывает только односпиновый переворот $\sigma_k \to \sigma'_k$. Произведение дельта-функций задает требование, что все остальные спины не модифицируются в процессе изменения состояния системы.

Используя кинетическое уравнение (10) и формулу Байеса, среднее значение спина $\langle \sigma_j \rangle$ в момент времени $t > t_w$ можно записать в виде

$$\left\langle \sigma_{j} \right\rangle = \sum_{\{\sigma\}} \sigma_{j} \varphi(\{\sigma\}, t) = \sum_{\{\sigma\}, \{\sigma'\}} \sigma_{j} \varphi(\{\sigma\}, t | \{\sigma'\}, t_{w} + \Delta t) \varphi(\{\sigma'\}, t_{w} + \Delta t) =$$

$$= \sum_{\{\sigma\}, \{\sigma'\}} \sigma_{j} \varphi(\{\sigma\}, t | \{\sigma'\}, t_{w} + \Delta t) \left[(1 - \Delta t) \varphi(\{\sigma'\}, t_{w}) + \Delta t \sum_{\{\sigma''\}} W_{k} \left(\{\sigma''\} \rightarrow \{\sigma'\} \right) \varphi(\{\sigma''\}, t_{w}) \right].$$
(14)

При нахождении функции отклика в соответствии с (2) нас будет интересовать производная $\partial \langle \sigma_j(t) \rangle / \partial h_i$ в пределе $h_i \to 0$. Поскольку в (14) только W_k зависят от поля h_i через выражение (9) и гамильтониан (6) или в общем случае (7), то после дифференцирования получим выражение

$$\left[\frac{\partial \left\langle \sigma_{j}(t)\right\rangle}{\partial h_{i}}\right]_{h_{i}\to0} = \Delta t \delta_{k,i} \sum_{\{\sigma'\},\{\sigma''\}} \sigma_{j} \varphi(\{\sigma\},t|\{\sigma'\},t_{w}+\Delta t) \times \left[\frac{\partial W_{i}}{\partial h_{i}}\left(\{\sigma''\}\to\{\sigma'\}\right)\right]_{h_{i}\to0} \varphi(\{\sigma''\},t_{w}). \quad (15)$$

2014, T. 6, № 1, C. 119–129

Данная производная определяет обобщенную восприимчивость системы для случая инфинитезимального магнитного поля, приложенного к спину в узле *i* и действующего во временном интервале $[t_w, t_w + \Delta t]$:

$$\chi_{ji}(t, [t_w, t_w + \Delta t]) = \frac{\partial \left\langle \sigma_j(t) \right\rangle}{\partial h_i}.$$
(16)

Дифференцирование вероятности перехода в (15) с учетом (9) дает выражение

$$\left[\frac{\partial W_{i}}{\partial h_{i}}(\{\sigma^{\prime\prime}\} \to \{\sigma^{'}\})\right]_{h_{i} \to 0} = \beta W_{i}(\{\sigma^{\prime\prime}\} \to \{\sigma^{'}\})\left[\sigma^{\prime}_{i} - \sigma^{W}_{i}\right],\tag{17}$$

где $\sigma_i^W = \text{th} \left(\beta J \sum_{k \neq i} \sigma'_k\right)$. Подставляя (17) в (15), а также используя кинетическое уравнение (10), получаем обобщенную восприимчивость в виде

$$\chi_{ji}(t, [t_w, t_w + \Delta t]) = \beta \delta_{k,i} \sum_{\{\sigma\}, \{\sigma'\}} \sigma_j \varphi(\{\sigma\}, t | \{\sigma'\}, t_w + \Delta t) \Big[\sigma'_i - \sigma^W_i\Big] \times \Big[\varphi(\{\sigma'\}, t_w + \Delta t) - (1 - \Delta t)\varphi(\{\sigma'\}, t_w)\Big].$$
(18)

Функция отклика R_{ii} связана с обобщенной восприимчивостью через выражение

$$\chi_{ji}(t, [t_w, t_w + \Delta t]) = \int_{t_w}^{t_w + \Delta t} R_{ji}(t, s) ds = R_{ji}(t, t_w) \Delta t + O(\Delta t^2).$$
(19)

Время в численном моделировании является дискретной величиной, поэтому, полагая $\Delta t = 1$ в (18) и (19), получаем

$$R_{ji}(t, t_w) = \chi_{ji}(t, [t_w, t_w + 1]) = \beta \delta_{k,i} \left\langle \sigma_j(t) \Big[\sigma_i(t_w + 1) - \sigma_i^W(t_w + 1) \Big] \right\rangle.$$
(20)

Так как за единицу времени при моделировании используется шаг Монте-Карло на спин с *N* переворотами спинов, то итоговое выражение для функции отклика, определяемой при численном Монте-Карло исследовании, представляется в виде

$$R(t, t_w) = \frac{1}{N} \sum_{i=1}^{N} R_{ii} = \frac{1}{N} \beta \sum_{i=1}^{N} \left\langle \sigma_i(t) \left[\sigma_i(t_w + 1) - \sigma_i^W(t_w + 1) \right] \right\rangle,$$
(21)

то есть $R(t, t_w)$ усредняется по всем переворотам N спинов в течение одного шага Монте-Карло. Двухвременная автокорреляционная функция задается выражением

$$C(t, t_w) = \left\langle \frac{1}{N} \sum_{i=1}^N \sigma_i(t) \sigma_i(t_w) \right\rangle, \tag{22}$$

поэтому ее производная по времени ожидания принимает следующий вид

$$\frac{\partial}{\partial t_w} C(t, t_w) = \frac{1}{N} \sum_{i=1}^N \left\langle \sigma_i(t) \Big[\sigma_i(t_w + 1) - \sigma_i(t_w) \Big] \right\rangle.$$
(23)

В соответствии с определением (3) и при использовании полученных выражений (21)– (23) флуктуационно-диссипативное отношение может быть вычислено на основе следующей итоговой формулы

$$X(t,t_w) = \frac{TR(t,t_w)}{\frac{\partial}{\partial t_w}C(t,t_w)} = \frac{\sum_{i=1}^N \left\langle \sigma_i(t) \left[\sigma_i(t_w+1) - \sigma_i^W(t_w+1) \right] \right\rangle}{\sum_{i=1}^N \left\langle \sigma_i(t) \left[\sigma_i(t_w+1) - \sigma_i(t_w) \right] \right\rangle}.$$
(24)

КОМПЬЮТЕРНЫЕ ИССЛЕДОВАНИЯ И МОДЕЛИРОВАНИЕ

Рис. 1. Временные зависимости функции отклика $R(t, t_w)$ от $(t - t_w)$ для различных спиновых концентраций и времен ожидания t_w

Результаты моделирования и их анализ

В данной работе проведено моделирование неравновесного поведения как «чистой», так и структурно неупорядоченной модели Изинга при спиновых концентрациях p = 1.0, 0.8 и 0.6 на трехмерной кубической решетке с линейным размером L = 128 (количество спинов в решетке $N = pL^3$). Рассматривалась эволюция системы из специально сформированного при $T \gg T_c$ высокотемпературного начального состояния с малым значением намагниченности $m_0 \ll 1$ ($m_0 = 0,02$ для $p = 1,0, m_0 = 0,01$ для p = 0,8 и $m_0 = 0,005$ для p = 0,6). После приготовления начальной конфигурации динамика системы реализовывалась при критических температурах: $T_c(p = 1) = 4.5114(1), T_c(p = 0.8) = 3.4995(2)$ и $T_c(p = 0.6) = 2.4241(1)$, соответствующих рассматриваемым спиновым концентрациям [Прудников и др., 2007; Prudnikov et al., 2010]. Поведение систем исследовалось на временах до 10000 шагов Монте-Карло на спин. При моделировании «чистой» системы проводилось статистическое усреднение по 94000 прогонок. При моделировании структурно неупорядоченной модели Изинга усреднение вычисляемых величин проводилось по 6200 примесным конфигурациям и 15 прогонкам для каждой примесной конфигурации.

На рисунке 1 представлены в двойном логарифмическом масштабе полученные зависимости функции отклика $R(t, t_w)$ от времени наблюдения $t - t_w$ для набора различных времен ожидания t_w . Наглядно видно проявление эффектов старения через зависимость $R(t, t_w)$ от «возраста» системы t_w (с увеличением возраста системы ее реакция на внешние возмущения уменьшается), а также что с ростом концентрации дефектов (уменьшением спиновой концентрации p) релаксация системы замедляется.

Для функции отклика ренормгрупповое описание предсказывает следующую скейлинговую двухвременную зависимость:

$$R(t, t_w) \sim t_w^{-1 - (d - 2 + \eta)/z} F_R(t/t_w), \tag{25}$$

где d — размерность системы; η , z — критические индексы. Для подтверждения скейлинговой зависимости функции отклика (25) было осуществлено построение зависимости $t_w^{1+(1+\eta)/z}R(t,t_w)$ от $t - t_w/t_w$. Результат приведен на рисунке 2, который демонстрирует «коллапс» полученных

Рис. 2. Скейлинговые зависимости функции отклика для различных спиновых концентраций с характерным «коллапсом» данных для различных *t*_w на универсальных кривых

Рис. 3. Временные зависимости автокорреляционной функции $C(t, t_w)$ от $(t - t_w)$ для различных спиновых концентраций p и времен ожидания t_w

данных для различных t_w на соответствующих p = 1,0, p = 0,8 и p = 0,6 универсальных кривых, соответствующих скейлинговой функции $F_R(t/t_w)$ в (25).

Аналогичное проявление эффектов старения демонстрируют полученные двухвременные зависимости для автокорреляционной функции $C(t, t_w)$, представленные на рисунке 3 (с увеличением возраста системы t_w временные корреляционные эффекты в ней замедляются). Поведение автокорреляционной функции характеризуют при этом скейлинговой зависимостью

$$C(t, t_w) \sim t_w^{-(d-2+\eta)/z} F_c(t/t_w),$$
 (26)

подтверждением которой также служит представленный на рисунке 4 «коллапс» данных для различных t_w на универсальных кривых, соответствующих рассмотренным спиновым концентрациям p.

КОМПЬЮТЕРНЫЕ ИССЛЕДОВАНИЯ И МОДЕЛИРОВАНИЕ _

Рис. 4. Скейлинговые зависимости функции отклика для различных спиновых концентраций с характерным «коллапсом» данных для различных *t*_w на универсальных кривых

Рис. 5. Функциональная зависимость флуктуационно-диссипативного отношения $X(t, t_w)$ от $t_w/(t - t_w)$ при $t - t_w \gg t_w$ для различных спиновых концентраций

На рисунке 5 представлено вычисленное на основе формулы (24) флуктуационнодиссипативное отношение в виде функциональной зависимости $X(t,t_w)$ от $t_w/(t - t_w)$ при $t - , t_w \gg t_w$ для систем с различными спиновыми концентрациями. Линейная аппроксимация зависимости $X(t,t_w)$ при $t_w/(t - t_w) \rightarrow 0$ дает возможность определить значения $X(t_w)$ для каждого t_w (см. таблицу) и соответствующей спиновой концентрации. К полученным значениям $X(t_w)$ для различных времен ожидания была применена аппроксимация $X(t_w \rightarrow \infty)$, которая и позволила определить искомое предельное флуктуационно-диссипативное отношение X^{∞} . Наглядное представление для осуществленной процедуры аппроксимации дано на рисунке 6. В результате были получены следующие значения предельного ФДО: $X^{\infty} = 0,381(16)$ для $p = 1,0, X^{\infty} = 0,413(10)$ для p = 0,8 и $X^{\infty} = 0,446(10)$ для p = 0,6.

Полученные значения предельного флуктуационно-диссипативного отношения X^{∞} указывают на нарушение флуктуационно-диссипативной теоремы в неравновесном критическом

t_w		X^{∞}	
	<i>p</i> = 1,0	p = 0.8	p = 0,6
10	0,361(2)		
15	0,371(3)		
20	0,365(5)	0,373(9)	
25	0,369(9)		
30	0,374(9)	0,380(13)	0,382(12)
50	0,379(9)	0,393(8)	0,407(9)
100		0,406(11)	0,427(9)
150		0,412(11)	0,433(17)
$\rightarrow \infty$	0,381(16)	0,413(10)	0,446(10)

Таблица 1. Значения флуктуационно-диссипативного отношения X^{∞} для систем со спиновыми концентрациями p = 1,0, p = 0,8 и 0,6

Рис. 6. Функциональные зависимости флуктуационно-диссипативного отношения $X(t_w, p)$ от $1/t_w$ для различных спиновых концентраций. Значения $X^{\infty}(p)$ получаются в пределе $1/t_w \to 0$ путем линейной аппроксимации

поведении «чистых» и структурно неупорядоченных систем, описываемых трехмерной моделью Изинга, а также на то, что присутствие дефектов структуры приводит к увеличению значений X^{∞} .

Список литературы

- Прудников В. В., Прудников П. В., Вакилов А. Н. и др. Компьютерное моделирование критического поведения трехмерной неупорядоченной модели Изинга // ЖЭТФ. — 2007. — Т. 132. — С. 417.
- Прудников В. В., Прудников П. В., Калашников И. А. и др. Ренормгрупповое описание процессов неравновесной критической релаксации в коротковременном режиме: трехпетлевое приближение // ЖЭТФ. – 2008. – Т. 133. – С. 1251.

- Прудников В. В., Прудников П. В., Калашников И. А. и др. Неравновесная критическая релаксация структурно неупорядоченных систем в коротковременном режиме: ренормгрупповое описание и компьютерное моделирование // ЖЭТФ. – 2010. – Т. 137. – С. 287.
- *Afzal N., Pleimling M.* Aging processes in systems with anomalous slow dynamics // Phys. Rev. E. 2013. Vol. 87. P. 012114.
- *Berthier L., Holdsworth P. C. W., Sellitto M.* Nonequilibrium critical dynamics of the two-dimensional XY model // J. Phys. A. 2001. Vol. 34. P. 1805.
- *Berthier L., Kurchan J.* Non-equilibrium glass transitions in driven and active matter // Nature Phys. 2013. Vol. 9. P. 310.
- Calabrese P., Gambassi A. Two-loop critical fluctuation-dissipation ratio for the relaxational dynamics of the O(N) Landau-Ginzburg Hamiltonian // Phys. Rev. E. -2002. Vol. 66. P. 066101.
- *Calabrese P., Gambassi A.* Aging and fluctuation-dissipation ratio for the dilute Ising model // Phys. Rev. B. 2002. Vol. 66. P. 212407.
- Calabrese P., Gambassi A. Ageing properties of critical systems // J. Phys. A. 2005. Vol. 38. P. R133.
- Chatelain C. On universality in ageing ferromagnets // J. Stat. Mech. 2004. P. P06006.
- Janke W. Monte Carlo methods in classical statistical physics, in Lecture Notes in Physics Berlin:Springer. Vol. 739, 2008. P. 79-140.
- Henkel M., Pleimling M. Ageing and dynamical scaling far from equilibrium, in Non-equilibrium Phase Transitions, Heidelberg-Springer. 2010. Vol. 2. 544 p.
- *Prudnikov V. V., Prudnikov P. V., Vakilov A. N. et al.* Short-time dynamics and critical behavior of the three-dimensional site-diluted Ising model // Phys. Rev. E. 2010. Vol. 81. P. 011130.
- *Prudnikov P. V., Medvedeva M. A.* Non-equilibrium critical relaxation of the 3D Heisenberg magnets with long-range correlated disorder // Progr. Theor. Phys. 2012. Vol. 127. P. 369.
- *Ricci-Tersenghi F.* Measuring the fluctuation-dissipation ratio in glassy systems with no perturbing field // Phys. Rev. E. 2003. Vol. 68. P. 065104.
- *Rosov N., Hohenemser C., Eibschutz M.*, Dynamic critical behavior of the random-exchange Ising system Fe_{0.9}Zn_{0.1}F₂ determined via M ossbauer spectroscopy // Phys. Rev. B. 1992. Vol. 46. P. 3452.