

УДК: 519.6: 533.6.011

Моделирование движения астероида в атмосфере Земли

М.М. Голомазов

Институт автоматизации проектирования РАН, Россия, 123056, г. Москва, 2-я Брестская ул., д. 19/18

E-mail: mmg@icad.org.ru

Получено 15 сентября 2013 г.

В статье исследуется явление падения астероида в районе Челябинска. На основе немногочисленных зафиксированных видеокадров и измерений выполнено моделирование траектории и основных параметров астероида. Проведены расчеты обтекания астероида до и после его разрушения. Обсуждаются возможные варианты совместного падения нескольких астероидов. Представлены значения траекторных параметров и газодинамических и термодинамических функций потока для проведения расчетов процесса разрушения астероида.

Ключевые слова: траектория, гиперзвуковое обтекание, затупленное тело

Simulation of asteroid braking in the Earth atmosphere

M.M. Golomazov

Institute for Computer Aided Design, 19/18 2nd Brestskaya str., Moscow, 123056, Russia

Abstract. — This article is investigated phenomenon of asteroid braking in neighborhood Chelyabinsk. Simulation of trajectory and asteroid basic parameters is accomplished on the basis of not numerous fixed video film and measurements. Calculation of hypersonic flow around asteroid is carried out before and after asteroid collapse. Possible version of asteroids synchronous braking is discussed. Trajectory data and gas dynamic functions are presented as data for definition of asteroid collapse.

Keywords: trajectory, hypersonic flow, blunt body

Citation: Computer Research and Modeling, 2013, vol. 5, no. 6, pp. 917–926 (Russian).

Статья опубликована в специальном выпуске журнала «Компьютерные исследования и моделирование», посвященном исследованиям метеорита, упавшего 15 февраля 2013 года в районе города Челябинска.

Введение

Для расчета траектории астероида в атмосфере Земли необходимо знать исходные данные: размеры *D*, массу *m* и форму астероида, скорость *V* и угол входа θ в атмосферу. Из названных величин известны (по данным СМИ) скорость *V* = 18 км/с и максимальный размер *D* = 17 м. Кроме того, благодаря многочисленным наблюдениям и снимкам, полученным с помощью телефонных камер, удалось установить время движения астероида $t \approx 32$ с, увеличение размера в 4–5 раз в момент разрушения астероида, дальность полета $L \approx 600$ км и высоту, на которой произошло разрушение $H^* \approx 30$ км. По снимкам можно определить, что траектория астероида пологая, с начальным углом к местному горизонту $\theta \approx -10^\circ$. Результаты наблюдений весьма приблизительны и разноречивы. К этому можно добавить, что веществом астероида является хондрит как наиболее часто встречающийся в падающих на землю метеоритах. Некоторые вопросы по восстановлению возможной орбиты движения болида до входа в атмосферу Земли приведены, например, в [Jorge I. Zuluaga, Ignacio Ferrin, 2013]. Для уточнения траектории его движения в атмосфере Земли были проведены параметрические исследования возможных траекторий астероида, варьируя значения определяющих величин в некоторых разумных пределах.

Система уравнений баллистики астероида в поле притяжения Земли

Функции, описывающие траекторию астероида в поле притяжения планеты, определяются решением следующей системы уравнений движения [Основы теории полета..., 1972]:

$$\begin{aligned} \frac{dV}{dt} &= -\sigma_x g_0 \frac{\rho V^2}{2} - g \sin \theta, \\ \frac{d\theta}{dt} &= \sigma_x K g_0 \frac{\rho V}{2} + \left(\frac{V}{R} - \frac{g}{V}\right) \cos \theta, \\ \frac{dH}{dt} &= V \sin \theta, \\ \frac{dL}{dt} &= V \frac{R_{\Pi\Pi}}{R} \cos \theta, \\ \sigma_x &= \frac{c_x S}{mg}, \quad K = \frac{c_y}{c_x}, \quad g_0 = \gamma \frac{M_{\Pi\Pi}}{R_{\Pi\Pi}^2}, \quad g = g_0 \frac{R_{\Pi\Pi}^2}{R^2} \end{aligned}$$

Здесь V — скорость центра масс тела; θ — угол наклона вектора скорости к местному горизонту; H — высота полета над поверхностью планеты; L — дальность полета, отсчитываемая вдоль образующей поверхности планеты от точки входа; σ_x — баллистический параметр; g_0 , g ускорение силы тяжести на поверхности планеты и на высоте ; S — площадь миделевого сечения аппарата; m — масса аппарата; $R_{\Pi\Pi}$ — радиус планеты, $R = R_{\Pi\Pi} + H$ — расстояние от центра планеты до центра масс аппарата; c_x , c_y — коэффициенты аэродинамических сил лобового сопротивления и подъемной силы в поточной системе координат; K — аэродинамическое качество; γ — гравитационная постоянная; $M_{\Pi\Pi}$ — масса планеты. Скорость центра масс совпадает со скоростью набегающего потока в обращенном движении.

Система уравнений движения получена в предположении, что движение — плоское, происходит под действием силы тяжести и аэродинамических сил, планета — шар радиуса $R_{\Pi\Pi}$, ее поле тяготения является центральным. Для определения аэродинамических сил необходимо знать форму тела. По снимкам можно сделать вывод, что исследуемый астероид является телом несимметричной формы, близкой к эллипсоидам с небольшим различием полуосей. Учитывая однородность вещества в объеме тела, можно сделать вывод, что, так как центр масс и центр давления тела достаточно близки, запас устойчивости мал. Поэтому астероид будет произвольно вращаться, расчет динамики аппарата из-за неопределенности формы затруднителен, поэтому

919

движение вокруг центра масс космического тела не рассматривается. Коэффициенты сил лобового сопротивления и подъемной силы усредняются и принимаются постоянными величинами по траектории движения в атмосфере. Масса астероида определяется при D = 17 м, максимальное значение ее достигается для шара: $m_{max} = 10000$ тонн.

Численное решение системы уравнений движения в поле притяжения планеты выполнялось на основе метода Рунге-Кутта 4-го порядка точности.

Результаты расчетов траекторий астероида

Рассматривались траектории астероида со скоростью входа V = 18 км/с. Давление p_H , плотность ρ_H и температура T_H определялись для текущего значения высоты H по стандартной атмосфере. Определяющими параметрами являются угол наклона вектора скорости к линии местного горизонта θ и коэффициент лобового сопротивления c_x , коэффициент подъемной силы c_y можно принять равным нулю.

На рисунке 1 приведены траекторные данные для шара, масса которого является максимальной. Коэффициент лобового сопротивления шара при гиперзвуковых скоростях принимает значение $c_x = 1$, начальный угол входа $\theta = -10^\circ$, скорость входа V = 18 км/с. Расчет проводился с высоты H = 100 км, когда плотность набегающего потока и, следовательно, скоростной напор достигают таких значений, что становится заметным силовое и тепловое воздействие на астероид. На этой высоте скоростной напор $Q_H = 185$ Па и ламинарный тепловой поток q == 2181 кВт/см². Скоростной напор не настолько велик, чтобы снизить скорость, но уже не дает ускоряться астероиду под действием силы тяжести, и его скорость становится практически постоянной в течение 25 секунд полета в атмосфере. С момента t = 25 с начинается замедление скорости V астероида, которая на 32-й секунде достигает значения $V = 17\,117$ м/с. На начальном участке полета тепловой поток, воздействуя на поверхность астероида, способствует испарению поверхности астероида и, достигая на 32-й секунде значения $q = 8.6 \cdot 10^{10}$ кВт/см² при скоростном напоре $Q_H = 11555$ кПа, вызывает разрушение астероида. При t = 32 с высота полета H = 20.5 км, дальность полета L = 560 км и угол наклона вектора скорости к местному горизонту $\theta = -5.9^\circ$. Дальность полета и угол наклона соответствуют наблюдениям. Высота отличается от наблюдаемой (30 км), хотя некоторые источники определяют высоту разрушения астероида именно 20 км. Если бы астероид продолжил движение, не разрушаясь, то он упал бы на поверхность земли со скоростью 5 км/с через 20 с, пролетев 225 км дополнительно.

Обычно астероид является телом несимметричной формы, близкой к эллипсоидам, поэтому коэффициент лобового сопротивления может быть больше единицы, но, скорее всего, не превосходит значения $c_x = 1.5$.

На рисунке 2 приведены результаты расчета траектории астероида с $c_x = 1.5$, остальные исходные данные такие же, как в предыдущем случае. Здесь же для сравнения нанесены траекторные данные для $c_x = 1$ (кривые 1). (Кривые на рисунках и в тексте должны быть курсивными.) Прежде всего, уменьшились скоростной напор и конвективный поток тепла, которые достигают значений QH = 10774 кПа и $q = 9.32 \cdot 1010$ кВт/см², соответственно, при t = 32 с, но увеличились время и дальность полета по траектории. Угол наклона вектора скорости к местному горизонту *θ* практически не изменился с момента входа и до момента падения астероида.

Тем не менее, начальное значение угла входа оказывает значительное влияние на изменение величин вдоль траектории. При начальном угле входа $\theta = -8^{\circ}$ траектория астероида проходит выше 20 км при незначительном изменении скорости, затем высота полета начинает увеличиваться. Очевидно, что наиболее вероятными являются более крутые углы входа, чтобы астероид упал на землю. Снижение высоты астероида на начальном участке падения обеспечивается за счет кинематики движения и под действием силы притяжения планеты. Поэтому целесообразно исследовать влияние массы астероида на траекторию, так как несимметричность формы приводит к уменьшению объема при постоянном характерном размере тела.

Значения параметров траектории на 32-й секунде падения для астероидов с массой 3, 5 и 10 кт при одинаковых параметрах входа представлены в таблице 1. Увеличение массы приводит к понижению высоты и возрастанию скорости астероида, что вызывает рост скоростного напора Q_H и конвективного теплового потока q. Угол наклона вектора скорости к местному горизонту θ практически не зависит от массы.

Масса m = 5 кт соответствует форме шара с минимальной плотностью хондрита 2 г/см³. В действительности, как уже сказано выше, форма астероида отличается от шара и более похожа на эллипсоид. Лобовая часть астероида может быть представлена в виде сегмента с радиусом

92	1

	Н, м	<i>V</i> , м/с	Q_H , Па	θ , град	<i>L</i> , м	q, Bt/см ²
<i>m</i> = 3 кт	21609	14462	7012200	-6.0249	552800	$0.55952 \cdot 10^{11}$
<i>m</i> = 5 кт	21125	15623	8859400	-5.9721	557580	$0.73674 \cdot 10^{11}$
<i>m</i> = 10 кт	20721	16704	10774000	-5.9284	561580	$0.93191 \cdot 10^{11}$

Таблица 1

 $R_c = D$, которая при гиперзвуковой скорости имеет $c_x = 1.5$. Масса может варьироваться за счет изменения формы кормовой части, и величина m = 3 кт соответствует такой сегментальной форме со сферической кормой для минимальной плотности хондрита. Следует заметить, что так выбранная форма имеет большой запас статической устойчивости и может использоваться для исследования обтекания астероида. Сравнение показывает, что изменение массы астероида т и c_x слабо влияют на траекторные параметры вплоть до t = 32 с.

На рисунке 3 представлены параметры траектории для исходных данных V = 18 км/с, m == 5 кт, с углом входа в атмосферу $\theta = -14^{\circ}$ и коэффициентом лобового сопротивления $c_x = 1.5$. Видно, что на 32-й секунде высота H = 165 м и дальность полета L = 450 км, что заведомо противоречит зафиксированным данным для этих параметров траектории.

На рисунке 4 нанесены графики скорости V, угла наклона θ , высоты H и дальности полета L, скоростного напора Q_H и ламинарного теплового потока q для траектории с начальными данными H = 100 км, V = 18 км/с, $\theta = -9^{\circ}$, m = 3 кТ, $c_x = 1.5$. В точке траектории на 32-й секунде рассматриваемыетраекторные величины принимают значения H = 30.6 км, L = 562 км, $\theta = -4.9^{\circ}$, т. е. практически совпадают с данными, приводимыми различными источниками. Скоростной напор $Q_H = 2350$ кПа и ламинарный тепловой поток q = 44000 МВт при t = 32 с достаточны, чтобы разрушить астероид.

Таким образом, можно сделать вывод, что при данных размерах астероида определить однозначно его массу и начальные параметры входа в атмосферу не представляется возможным. Необходимы другие критерии, которые позволили бы по крайней мере сузить диапазон этих величин. Можно с определенной уверенностью сказать, что масса не является максимальной

Рис. 4

и углы входа лежат в пределах от -9° до -10° , которые обеспечивают необходимые условия для разрушения астероида на 32 секунде на высоте от 30 до 20 км. Масса астероида будет изменяться из-за испарения материала с поверхности, т. к. при такой скорости входа значительно возрастет лучистый тепловой поток.

Расчет траектории после разрушения астероида

По телевидению много раз демонстрировались кадры движения астероида, на которых было видно, что в определенный момент времени вместо астероида возникла яркая вспышка в виде шара. Размеры шара превосходили размеры астероида в 5–6 раз. Вспышка была зафиксирована на 32-й секунде, что можно однозначно истолковать как разрушение астероида. Было также видно, что шар продолжал перемещаться вдоль той же траектории в течение некоторого времени. Для моделирования этого процесса нами было предположено, что вместо астероида образовалось однородное тело с такой же массой, как у астероида.

На рисунке 5 прослеживается траектория астероида до и после момента разрушения (t = 32 c) для двух начальных значений угла входа $\theta = -9^{\circ}$ и -10° . Различие в скорости для этих случаев определяет тот коридор, в котором находятся траектории, отвечающие озвученным данным по высоте разрушения астероида от 20 до 30 км на 32-й секунде. Резкое падение величины скорости после разрушения астероида и медленное изменение высоты и дальности полета образовавшегося тела прослеживается в расчетах на протяжении десятков секунд, хотя само тело исчезло через несколько секунд. В расчетах принималось, что размер тела увеличился почти в 6 раз и образовался шар с радиусом R = 50 м. Дальность L = 563580 м и 556740 м и углы наклона вектора скорости к местному горизонту $\theta = -4.9^{\circ}$ и -5.9° на 32-й секунде соответственно также подтверждаются наблюдениями.

Исследование одновременного движения двух астероидов

На кадрах киносъемки зафиксирована картина, когда в момент разрушения астероида из шара вылетает метеорное тело с большой скоростью и по той же траектории. Возможны различные варианты этого явления. В частности, в момент разрушения в головной части образовался

КОМПЬЮТЕРНЫЕ ИССЛЕДОВАНИЯ И МОДЕЛИРОВАНИЕ

осколок астероида, который обтекался изолированно от остального скопления осколков и сохранил скорость движения астероида на 32-й секунде около 15.6 км/с (таблица 1), в то время как скорость основной массы упала до 10 км/с в течение долей секунды.

Другой возможный вариант — это падение двух астероидов, большого с R = 8.5 м и малого с r от 0.25 до 0.75 м, которые входят в атмосферу одновременно с одинаковыми начальными траекторными параметрами.

Чтобы осуществился второй вариант, траектории этих астероидов должны пересечься в момент времени сразу после разрушения астероида, т.е. при t > 32 с в течение долей секунды. После проведения расчетов с различными параметрами малых тел, был подобрана траектория астероида с массой 10 т, характерным размером D = 1,5 м и начальным углом входа в атмосферу $\theta = -10^{\circ}$.

На рисунке 6 приведена траектория астероида с начальными данными H = 100 км, V = 18 км/с, $\theta = -10^{\circ}$, m = 5 кт, $c_x = 1.5$. В точке траектории на 32 секунде астероид разрушается и принимает форму шара с радиусом R = 50 м и массой m = 5 кт. Здесь же нанесены траекторные параметры астероида с r = 0.7 м и массой m = 10 т, который входил в атмосферу на высоте H = 100 км со скоростью V = 18 км/с и углом наклона $\theta = -10^{\circ}$. Видно, что координаты (H, L) астероидов практически совпадают до 32-й секунды, а затем резко расходятся на большое расстояние. В момент времени t = 32.031 с координаты большого астероида составляли (21075, 558050), и в следующее мгновение малый астероид врезается в большой, и в это время его координаты были (21074, 558020).

Таким образом, в атмосферу одновременно с астероидом могли войти малые тела и начать двигаться по одной и той же траектории. Сразу после разрушения астероида траектории пересеклись. Так как скорость малого тела превосходит скорость астероида, то это тело движется сквозь образовавшийся шар.

На основании выполненных расчетов можно с достаточной определенностью утверждать, что при входе астероида в атмосферу он имел массу от 3 кт до 10 кт, и начальный угол наклона вектора скорости к местному горизонту θ находился в диапазоне от -9° до -10° . Наблюдавшийся эффект расширения астероида на 32-й секунде может быть объяснен сильным вдувом испарившегося вещества астероида или разрушением и образованием шарового тела, включающего

Траектории двух астероидов с *R*=8.5 и 0.7м

пары хондрида и осколки астероида. Можно также утверждать, что одновременно с астероидом в атмосфере двигались еще несколько астероидов или осколки астероида небольшого размера, порядка одного метра.

Для более точного определения траектории необходимо рассчитать баллистику совместно с расчетом аэродинамики с учетом уноса и вдува испарившегося материала и опережающего излучения.

Расчет обтекания астероида

Для выполнения аэродинамических расчетов была проведена реконструкция формы астероида исходя из проведенных расчетов траекторий. Лобовая часть является сегментом с $R_c = D = 17$ м, хвостовая часть — эллипсоид вращения с полуосями a = 8.5 м и b = 8.265 м. Коэффициент лобового сопротивления такого сегментального тела при гиперзвуковых скоростях и нулевом угле атаки равен 1.5.

Реконструкция формы астероида

На рисунке 7 дана форма построенного сегментального тела. Для сравнения приведены три изображения астероидов, которые были получены разными космическими аппаратами с близкого расстояния. Изображение Матильды (слева) получено космическим аппаратом «NEAR» 27 июня 1997 года Астероиды Гаспра (в центре) и Ида (справа) сфотографированы АМС «Галилео» в 1991 и 1993 годах соответственно.

КОМПЬЮТЕРНЫЕ ИССЛЕДОВАНИЯ И МОДЕЛИРОВАНИЕ

Особенность расчета обтекания астероида состоит в том, что его скорость слегка возрастает, а затем медленно падает, и астероид движется практически с одной скоростью во все более плотной атмосфере. Температура в ударном слое увеличивается, при этом давление вырастает на порядки. На высоте H = 73.4 км при скорости V = 18 км/с температура в ударном слое изменяется в пределах от 13515 К до 15952 К, а давление — от 11831 Па до 18030 Па. На высоте H = 26.4 км (t = 29 с) температура в ударном слое достигает максимального значения — T == 22070 К, а давление — p = 7884000 Па, причем скорость снизилась до 16.96 км/с. При таких температурах весьма значительным становится лучистый тепловой поток, вещество испаряется, и поверхность тела имеет температуру испарения хондрита. Для величины лучистого теплового потока большое значение имеет толщина ударного слоя.

На рисунке 8 даны физические картины обтекания астероида на 9-й и 32-й секунде. Красным цветом выделен ударный слой, пунктирные желтые линии — звуковые линии. Видно, что ударные слои в обоих случаях отличаются только толщиной, $\Delta = 0.72$ м и $\Delta = 0.987$ м соответственно. Давление в критической точке в момент t = 32 с принимает значение p = 17118000 Па, а температура T = 22469 K, что могло привести к разрушению астероида.

Таблица 🛙

у	0	0.078628	0.16102	0.25120	0.35352	0.39878	0.44540	0.5
р	0.96360	0.95594	0.93119	0.88299	0.80065	0.71488	0.51848	0.000258

Для расчета разрушения астероида необходимо знать распределение давления по его поверхности. В таблице 2 приводится распределение давления по лобовой поверхности. Давление отнесено к удвоенному скоростному напору $\rho_{\infty}V_{\infty}^2$, координата y — к характерному размеру астероида 17 м, давление на задней поверхности принимается равным давлению в набегающем потоке p_{∞} .

В таблице 3 даны траекторные параметры время t, высота H, дальность L, скорость V, давление p и температура T в набегающем потоке, скоростной напор Q_H и угол наклона вектора скорости к местному горизонту θ для астероида с массой 5 кт, характерным размером 17 м и начальными скоростью 18 км/с и углом входа -10° на высоте 100 км.

На 32-й секунде происходит разрушение астероида и из осколков образуется шар диаметром 100 м. Скорость резко падает, и на 34 секунде шар движется со скоростью 3810 м/с. Температура в ударном слое уменьшается до 4400 К, и свечение газа становится незаметным на фоне дневного неба.

Вход астероида в атмосферу обнаруживается не только из-за свечения газа, но и за счет образования значительного количества заряженных частиц. В среднем до разрушения в ударном слое количество электронов в 1 см³ составляло от $1.9 \cdot 10^{19}$ до $5.85 \cdot 10^{19}$ частиц.

Список литературы

Jorge I. Zuluaga, Ignacio Ferrin. A preliminary reconstruction of the orbit of the Chelyabinsk Meteoroid. Instituto de F'isica – FCEN, Universidad de Antioquia, Calle 67 No. 53-108,

<i>t</i> , c	<i>Н</i> , м	<i>L</i> , м	<i>V</i> , м/с	p, Π а	T, K	Q_H, Π а	θ , град
1	96894	17461	18002	0.05	178	$0.14679 \cdot 10^{3}$	-9.8728
2	93827	34939	18003	0.08	172	$0.26503 \cdot 10^{3}$	-9.7455
3	90799	52433	18005	0.15	171	$0.48611 \cdot 10^3$	-9.6181
4	8781	69943	18006	0.26	172	$0.84617 \cdot 10^{3}$	-9.4905
5	84861	87469	18008	0.46	177	$0.14606 \cdot 10^4$	-9.3629
6	81951	105012	18009	0.77	184	$0.23679 \cdot 10^4$	-9.2351
7	7908	122569	18011	1.31	193	$0.38199 \cdot 10^4$	-9.1073
8	76249	140142	18012	2.09	202	$0.58250\cdot 10^4$	-8.9793
9	73457	15773	18013	3.30	211	$0.87938 \cdot 10^4$	-8.8513
10	70705	175333	18013	5.06	219	$0.12998 \cdot 10^5$	-8.7231
11	67993	19295	18014	7.53	226	$0.18732 \cdot 10^{5}$	-8.5949
12	65321	21058	18014	11.18	233	$0.27031 \cdot 10^{5}$	-8.4665
13	62689	228222	18013	16.29	239	$0.38339 \cdot 10^{5}$	-8.3381
14	60097	245877	18011	23.21	245	$0.53222 \cdot 10^{5}$	-8.2096
15	57545	263542	18008	32.83	252	$0.73383 \cdot 10^{5}$	-8.0811
16	55033	281216	18004	45.77	258	$0.99627 \cdot 10^{5}$	-7.9525
17	52563	298897	17997	62.76	265	$0.13299 \cdot 10^{6}$	-7.8239
18	50133	316582	17988	84.77	271	$0.17536 \cdot 10^{6}$	-7.6953
19	47745	334269	17975	114.26	275	$0.23257 \cdot 10^{6}$	-7.5668
20	45399	351953	17958	152.00	276	$0.30824 \cdot 10^{6}$	-7.4383
21	43096	369630	17935	202.15	272	$0.41429 \cdot 10^{6}$	-7.3100
22	40835	387290	17903	268.28	266	$0.56162 \cdot 10^{6}$	-7.1819
23	38619	404925	17860	356.91	257	$0.76685 \cdot 10^{6}$	-7.0541
24	36449	422520	17799	476.28	249	$0.10500 \cdot 10^{7}$	-6.9268
25	34327	440055	17716	637.88	242	$0.14359 \cdot 10^{7}$	-6.8001
26	32255	457505	17602	854.63	236	$0.19476 \cdot 10^{7}$	-6.6745
27	30236	474832	17447	1149.41	231	$0.26260 \cdot 10^{7}$	-6.5502
28	28275	491992	17241	1528.93	227	$0.34693 \cdot 10^{7}$	-6.4278
29	26377	508925	16969	2036.22	224	$0.45371 \cdot 10^{7}$	-6.3079
30	24548	525560	16617	2698.16	222	$0.58243 \cdot 10^{7}$	-6.1913
31	22795	541810	16172	3544.46	220	$0.72973 \cdot 10^{7}$	-6.0789
32	21125	557575	15623	4591.61	219	$0.88594 \cdot 10^{7}$	-5.9721
33	20116	567228	6323	5329.18	219	$0.16871 \cdot 10^{7}$	-5.9462
34	19608	572066	3810	5799.97	219	$0.66677 \cdot 10^{6}$	-6.0190
35	19271	575221	2673	6133.87	219	$0.34698 \cdot 10^{6}$	-6.1670
36	19017	577530	2036	6385.20	219	$0.20968 \cdot 10^{6}$	-6.3861
37	1881	579335	1634	6589.55	219	$0.13931 \cdot 10^{6}$	-6.6757
38	18632	580809	1358	6764.66	219	$0.98813 \cdot 10^5$	-7.0362
39	18474	582049	1158	6925.20	219	$0.73525 \cdot 10^5$	-7.4681
40	18329	583116	1007	7063.33	219	$0.56745 \cdot 10^{5}$	-7.9722

Таблица 3

Medell'in, Colombia. Preprint submitted to arXiv February 22, 2013: 1302.5377vl [astro-ph.EP] 21 Feb. 2013.

Основы теории полета космических аппаратов. Под редакцией Нариманова Г.С. и Тихонравова М.К. – М.: Машиностроение, 1972. – 608 с.

КОМПЬЮТЕРНЫЕ ИССЛЕДОВАНИЯ И МОДЕЛИРОВАНИЕ