#### КОМПЬЮТЕРНЫЕ ИССЛЕДОВАНИЯ И МОДЕЛИРОВАНИЕ 2013 Т. 5 № 4 С. 607–622

Ки&М

МОДЕЛИ В ФИЗИКЕ И ТЕХНОЛОГИИ

УДК: 519.676

# Структура моделей перколяции узлов на трехмерных квадратных решетках

# П.В. Москалев

Воронежский государственный аграрный университет, Россия, 394087, г. Воронеж, ул. Мичурина, д. 1

E-mail: moskalefff@gmail.com

Получено 23 мая 2013 г., после доработки 4 июля 2013 г.

В работе рассматривается структура моделей перколяции узлов на трехмерных квадратных решетках при различных формах  $(1,\pi)$ -окрестности. Для этих моделей предложены изо- и анизотропные модификации алгоритма инвазивной перколяции с (1,0)- и  $(1,\pi)$ -окрестностями. Все рассмотренные алгоритмы являются частными случаями анизотропного алгоритма инвазивной перколяции на *n*-мерной решетке с  $(1,\pi)$ -окрестностью. Данный алгоритм положен в основу библиотеки SPSL, выпущенной под лицензией GNU GPL-3 с использованием свободного языка программирования R.

Ключевые слова: перколяция узлов, п-мерная квадратная решетка, неметрическое расстояние Минковского, язык программирования R, библиотека SPSL

# The structure of site percolation models on three-dimensional square lattices

#### P.V. Moskalev

Voronezh State Agricultural University, 1 Michurin street, Voronezh, 394087, Russia

**Abstract.** In this paper we consider the structure of site percolation models on three-dimensional square lattices with various shapes of  $(1, \pi)$ -neighborhood. For these models, are proposed iso- and anisotropic modifications of the invasion percolation algorithm with (1,0)- and  $(1,\pi)$ -neighborhoods. All the above algorithms are special cases of the anisotropic invasion percolation algorithm on the *n*-dimensional lattice with a  $(1,\pi)$ -neighborhood. This algorithm is the basis for the package SPSL, released under GNU GPL-3 using the free programming language R.

Keywords: site percolation, n-dimensional square lattice, non-metric Minkowski distance, R programming language, SPSL package

Citation: Computer Research and Modeling, 2013, vol. 5, no. 4, pp. 607–622 (Russian).

© 2013 Павел Валентинович Москалев

## Введение

Впервые задачи теории перколяции появились в работах П. Флори и У. Штокмайера [Flory, 1941; Stockmayer, 1943], посвященных моделированию полимеризации высокомолекулярных соединений. Однако формирование современного математического аппарата и собственной терминологии в исследованиях процессов перколяции принято связывать с публикацией в 1957 году работы С. Бродбента и Дж. Хаммерсли [Broadbent and Hammersley, 1957], в которой они рассматривают задачу о протекании некоторой жидкости через случайно-неоднородную проницаемую среду.

Интересной разновидностью перколяционных моделей является сформулированная Д. Уилкинсоном и Дж. Уиллемсеном задача об инвазивной перколяции [Wilkinson and Willemsen, 1983; Koplik et al., 1983]. Чаще всего процесс инвазии, или вытеснения, рассматривается как результат взаимодействия двух несмешивающихся жидкостей: первой, уже заполняющей пористую среду, и второй, подаваемой в эту среду под некоторым давлением. Основное влияние на этот процесс оказывает соотношение градиентов давления в потоках инжектируемой и вытесняемой жидкости, обусловленное действием сил инерции, вязкого трения и межфазного взаимодействия обеих жидкостей со стенками капиллярных каналов. Существенной особенностью процесса вытеснения является наличие во многих пористых средах тупиковых пор с пониженной связностью, что приводит к захвату во внутрипоровом пространстве некоторого объема вытесняемой жидкости.

Более простая, но не менее важная разновилность молелей инвазивной перколяции возникает при изучении метода ртутной порометрии. В экспериментальных исследованиях пористых структур метод инвазивной ртутной порометрии относится к числу наиболее распространенных и хорошо изученных методов, который позволяет оценивать поры с эквивалентным гидравлическим диаметром d от 3.5 нм до 500 мкм. В его основе лежит высказанная в 1921 году Е. Уошбурном [Washburn, 1921] идея создания контролируемого перепада давления  $\Delta p$  в окружающей пористое тело жидкой ртути для вдавливания некоторого ее объема  $\Delta v$  в капилляры последнего. Квазистатическое увеличение перепада давлений  $\Delta p$  позволяет ртути постепенно проникать во все более мелкие капилляры пористого тела, эквивалентный диаметр d которых будет соответствовать величине вынуждающей силы  $\Delta p$ , а приращение удельного объема инжектируемой жидкости  $\Delta v$  — суммарному объему пор данного диаметра на единицу массы исследуемого образца. Для снижения влияния на результирующие данные низкой связности тупиковых пор и захвата в поровом пространстве вытесняемых газов и/или жидкостей пористый образец перед испытаниями подвергается вакуумированию, а вдавливаемая жидкость — фильтрованию для очистки от посторонних частиц и двойной перегонке для исключения газовыделения в процессе испытаний. В результате, для адекватного описания процесса ртутной порометрии с помощью моделей инвазивной решеточной перколяции требуется лишь выделение подмножества достижимых узлов решетки, связанного с заданным стартовым подмножеством. Отсутствие необходимости в моделировании захвата вытесняемой жидкостью тупиковых и слабосвязных фрагментов порового пространства не только существенно упрощает решаемую задачу, но и позволяет использовать инвазивную решеточную перколяцию без захвата для моделирования внутренней структуры пористой среды.

# Общие определения

Одной из базовых задач, возникающих при моделировании перколяции, является задача выделения подмножества или кластера узлов, непрерывным образом связанных с заданным стартовым подмножеством. Простейшая модель инвазивной решеточной перколяции строится

КОМПЬЮТЕРНЫЕ ИССЛЕДОВАНИЯ И МОДЕЛИРОВАНИЕ

с помощью взвешенного однородного графа или решетки, достижимость произвольного узла которой задается некоторой псевдослучайной величиной  $U_i$ . В том случае, если величины  $U_i$  и  $U_j$ в соседних узлах решетки при  $i = j \pm \varepsilon_k$  взаимно независимы, то говорят о некоррелированной перколяции или перколяции Бернулли. Величина  $\varepsilon_k$  является компонентой сдвигового вектора  $\varepsilon(\varepsilon_1, \varepsilon_2, \ldots, \varepsilon_n)$ , определяемого формой и радиусом окрестности внутренних узлов решетки.

Из курсов топологии и теории множеств известно [Александров, 1977], что ключевое влияние на связность оказывает функция метрики, определяющая расстояния и формирующая  $\varepsilon$ -окрестность некоторой точки *b*. Одним из достаточно общих способов определения окрестности произвольной точки  $U_{\varepsilon,\pi}(b)$  является использование функции неметрического расстояния Минковского  $\rho_{\pi}(a, b)$ :

$$U_{\varepsilon,\pi}(b) = \{a : \rho_{\pi}(a,b) \leq \varepsilon\}, \quad \rho_{\pi}(a,b) = \left(\sum_{i=1}^{n} |a_i - b_i|^{\pi}\right)^{1/\pi},\tag{1}$$

где  $\pi \ge 0$  — показатель неметрического расстояния Минковского (далее по тексту для краткости именуемый просто показателем Минковского);  $a(a_1, a_2, ..., a_n), b(b_1, b_2, ..., b_n)$  — координаты точек a и b.

Применение термина «неметрическое расстояние» обусловлено тем, что строгое определение метрики накладывает на функцию (1) следующие ограничения: а)  $\rho_{\pi}(a,b) = 0 \Leftrightarrow a = b$ ; б)  $\rho_{\pi}(a,b) = \rho_{\pi}(b,a)$ ; в)  $\rho_{\pi}(a,b) \leq \rho_{\pi}(a,c) + \rho_{\pi}(c,b)$ . Для неметрического расстояния Минковского все три ограничения выполняются лишь при  $\pi \ge 1$ , а на интервале  $0 \le \pi < 1$  знак в третьем неравенстве (неравенстве треугольника) меняется на противоположный  $\rho_{\pi}(a,b) > \rho_{\pi}(a,c) + \rho_{\pi}(c,b)$ . В наших задачах функция неметрического расстояния  $\rho_{\pi}(a,b)$  определяет лишь меру удаленности точек *a* и *b* вдоль проходящей через них прямой и используется в (1) для определения окрестности *b* с соответствующим показателем Минковского  $\pi$ .

В общем случае относительные доли достижимых узлов  $p_k$  является компонентами вектора  $p(p_1, p_2, ..., p_n)$ , длина которого соответствует форме и радиусу используемой окрестности внутренних узлов решетки. При равных компонентах вектора p реализации кластеров будут обладать статистически изотропной структурой, а при неравных — структура реализаций станет статистически анизотропной [Москалев, Шитов, 2007].

# Изотропные кластеры с (1,0)-окрестностью

Рассмотрим задачу построения статистически изотропного кластера узлов на трехмерной квадратной решетке с (1,0)-окрестностью фон Неймана. Среди множества алгоритмов, применяющихся для решения задач перколяции, достаточно высокой эффективностью отличается однопроходный алгоритм, базовые реализации которого в были представлены в работах П. Лиса [Leath, 1976] и З. Александровиц [Alexandrowicz, 1980]. Применительно к задаче инвазивной некоррелированной перколяции без захвата основные этапы построения статистически изотропного кластера узлов на трехмерной решетке с (1,0)-окрестностью можно сформулировать следующим образом [Москалев, 2009]:

а) все узлы перколяционной решетки взвешиваются последовательностью псевдослучайных чисел с равномерным распределением  $u_{xyz} \sim U(0, 1)$ ; недостижимыми считаются те узлы перколяционной решетки, весовой коэффициент  $u_{xyz}$  которых больше или равен заданной доли достижимых узлов *p*, а достижимыми — узлы, весовой коэффициент которых меньше доли достижимых узлов

$$u_{xyz} < p; \tag{2}$$

- б) среди узлов решетки формируется некоторое стартовое подмножество и либо все, либо только достижимые узлы стартового подмножества помечаются числовой меткой l > 1, к примеру l = 2;
- в) узлы стартового подмножества объединяются с достижимыми узлами из своего (1,0)периметра, формируемого как объединение (1,0)-окрестностей, и помечаются числовой меткой *l*;
- г) достижимые узлы (1,0)-периметра образуют новое стартовое подмножество на следующей итерации;
- д) пункты (в-г) повторяются до исчерпания достижимых узлов в текущем (1,0)-периметре кластера, либо до присоединения к кластеру узлов из заданного целевого подмножества.

Описанный алгоритм используется в этом разделе для построения статистически изотропных реализаций кластеров узлов и распределений относительных частот по их выборочной совокупности на трехмерной квадратной решетке с (1,0)-окрестностью фон Неймана. В листинге 1 показана реализация на языке С общей функции "ssTNd()", обеспечивающей маркировку кластера узлов, связанного с заданным стартовым подмножеством на *n*-мерной квадратной решетке с анизотропной (1,  $\pi$ )-окрестностью Мура.

Листинг 1. Реализация функции "ssTNd()" на языке С

```
#include <R.h>
2 #include <Rinternals.h>
4 // Функция ssTNd() обеспечивает маркировку кластера узлов,
5 // связанного со стартовым подмножеством на n-мерной
6 // квадратной решетке с анизотропной (1, п)-окрестностью.
8 // Аргументы:
9 //
    bA – число узлов стартового подмножества;
10 //
     clA – линейные индексы узлов кластера;
11 //
    асА – матрица достижимости узлов решетки;
      еА, рА - линейные индексы и относительные доли
12 //
13 //
              достижимых узлов для (1, п)-окрестности.
14 // Переменные:
15 //
    cls, acc, e, b, p - указатели на clA, acA, eA, bA, pA
16 //
      а, *b - индексы узлов из текущего (1,п)-периметра
17 //
            кластера по вектору cls[]: от, до;
18 //
     с - индекс текущего узла периметра по вектору cls[];
19 //
     h - индекс текущего узла окрестности по вектору e[];
20 //
     n - число узлов, образующих (1,п)-окрестность.
22 SEXP ssTNd(SEXP pA, SEXP acA, SEXP bA, SEXP eA, SEXP clA) {
23
   acA = coerceVector(acA, REALSXP);
   clA = coerceVector(clA, INTSXP);
24
   pA = coerceVector(pA, REALSXP);
25
   bA = coerceVector(bA, INTSXP);
26
   eA = coerceVector(eA, INTSXP);
27
   double *p, *acc;
28
   int *b, *e, *cls,
29
      n=length(eA), a=0, db, c, h, ch;
30
   cls = INTEGER(clA); e = INTEGER(eA); b = INTEGER(bA);
31
   acc = REAL(acA); p = REAL(pA); db = *b;
32
   while (db>0) {
                            // Пока периметр непуст:
33
34
     db = 0;
                            // Обнуляем текущий периметр.
```

```
// Для всех узлов периметра:
35
      for (c=a; c<*b; c++) {
        for (h=0; h<n; h++) {
                                 // Для всех узлов окрестности:
36
          ch = cls[c] + e[h];
37
          if (acc[ch] < p[h]) { // Если узел достижим
38
            acc[ch] = 2; db++; // то помечаем узел и
39
            cls[*b+db-1] = ch; // сохраняем его индекс.
40
41
          }
42
        }
43
      }
44
      a = *b; *b += db;
                                // Индексы текущего периметра.
45
    }
46
    return(R_NilValue);
47 }
```

В листинге 2 показана реализация на языке R функций "ssi30()" и "fssi30()", которые обеспечивают инициализацию переменных, необходимых для корректного вызова функции "ssTNd()". Функция "ssi30()" обеспечивает маркировку статистически изотропного кластера узлов, связанного с заданным стартовым подмножеством "set" на трехмерной квадратной решетке заданного размера "x" с (1,0)-окрестностью фон Неймана при заданной доле достижимых узлов "p". Функция "fssi30()" обеспечивает расчет матрицы относительных частот узлов для выборки статистически изотропных реализаций заданного объема "n", связанных с заданным стартовым подмножеством "set" на трехмерной квадратной решетке заданного размера "x" с (1,0)-окрестностью фон Неймана при заданной доле достижимых узлов "p".

Листинг 2. Реализации функций "ssi30()" и "fssi30()" на языке R

```
2 # Функции:
з # ssi30() - обеспечивает маркировку изотропных кластеров узлов на
4 #
             трехмерной квадратной решетке с (1,0)-окрестностью;
5 # fssi30() - обеспечивает построение матрицы относительных частот
6 #
             для выборки изотропных кластеров узлов на трехмерной
7 #
             квадратной решетке с (1,0)-окрестностью.
9 # Аргументы:
10 # n - объем выборки кластеров;
и # х - линейный размер перколяционной решетки;
12 # р - относительная доля достижимых узлов решетки;
13 # set - линейные индексы стартового подмножества;
14 # all - триггер: "Маркировать все узлы или только достижимые?"
15 # Переменные:
16 # е - линейные индексы узлов из (1,0)-окрестности;
17 # b - длина стартового подмножества узлов.
18 # Значения:
19 # асс - матрица достижимости узлов перколяционной решетки;
20 # rfq - матрица относительных частот узлов перколяционной решетки.
22 ssi30 <- function(x=33, p=0.311608,
                  set=(x^3+1)/2, all=TRUE) {
23
   e <- as.integer(c(-1, 1,-x, x,-x^2, x^2))</pre>
24
   p <- as.double(rep(p, length(e)))</pre>
25
   acc <- array(runif(x^3), rep(x, times=3))</pre>
26
   if (!all) set <- set[acc[set] < mean(p)]</pre>
27
   b <- as.integer(length(set))</pre>
28
   cls <- rep(OL, max(p)*x^3 + b*all)
29
   acc[set] <- 2
30
   acc[c(1,x),,] <- acc[,c(1,x),] <- acc[,,c(1,x)] <- 1
31
32
   cls[seq_along(set)] <- as.integer(set - 1)</pre>
```

```
33
    .Call("ssTNd", p, acc, b, e, cls)
34
    return(acc)
35 }
36 fssi30 <- function(n=1000, x=33, p=0.311608,
                       set=(x^3+1)/2, all=TRUE) {
37
    rfq <- array(0, dim=rep(x, times=3))</pre>
38
    for (i in seq(n))
39
40
      rfq <- rfq + (ssi30(x, p, set, all) > 1)
41
    return(rfq/n)
42 }
```

Приведенные выше реализации были опубликованы автором в составе библиотеки SPSL [Moskalev, 2012] под лицензией GNU GPL-3 и с июня 2012 года доступны для свободной загрузки через систему репозиториев CRAN.



Рис. 1. Сечения плоскостью z = 0 изотропных кластеров (верхний ряд) и распределений относительных частот узлов (нижний ряд) с (1,0)-окрестностью фон Неймана на трехмерной квадратной решетке размером x = 65 узлов для выборки объемом m = 500 реализаций при:  $p = 0.2816 < p_c$  (слева);  $p = 0.3116 \approx p_c$  (в центре);  $p = 0.3416 > p_c$  (справа)

Примеры построения статистически изотропных реализаций кластеров и распределений относительных частот на трехмерной квадратной решетке размером x = 65 узлов с (1,0)-окрестностью фон Неймана и непроницаемыми граничными условиями при различных значениях доли достижимых узлов *p* показаны на рисунке 1.

Реализации и распределения относительных частот, показанные на рисунке 1 (слева), соответствуют докритическим значениям доли достижимых узлов  $p < p_c$ . На рисунке 1 (в центре) показаны реализации и распределения при околокритических значениях доли достижимых узлов  $p \approx p_c$ , а на рисунке 1 (справа) — при сверхкритических значениях  $p > p_c$ . Для большей наглядности взвешивающая данную решетку последовательность псевдослучайных чисел  $u_{xyz} \sim U(0, 1)$ 

КОМПЬЮТЕРНЫЕ ИССЛЕДОВАНИЯ И МОДЕЛИРОВАНИЕ \_

была зафиксирована. Белым цветом в верхнем ряду на рисунке 1 обозначены узлы, принадлежащие кластеру; светло-серым цветом — недостижимые узлы, а темно-серым — достижимые узлы, не связанные со стартовым подмножеством.

Черным цветом в нижнем ряду на рисунке 1 показаны узлы с относительными частотами  $w_{xy0} = 0.02$ , а белым — с частотами  $w_{xy0} = 0.32$ ; все узлы с частотами, выходящими за пределы данного интервала  $w_{xy0} \notin [0.02; 0.32]$ , условно не показаны. Символом "+" на рисунке 1 отмечено стартовое подмножество узлов кластера в центре решетки, причем размеры элементов символа относительно центральной точки (0, 0, 0) соответствуют доле достижимых узлов, масштабированной по радиусу перколяционной решетки  $\frac{(x-1)p}{2}$ .

# Изотропные кластеры с (1, *π*)-окрестностью

В классической задаче о перколяции узлов на трехмерной квадратной решетке используется единичная окрестность фон Неймана  $U_{1,0}(b)$ , соответствующая нулевому показателю Минковского  $\pi = 0$ . Для выделенного узла *b* такая окрестность включает в себя n = 6 узлов, только одна из координат которых отличается от одноименной координаты узла *b* на единицу. В другом предельном случае при  $\pi \to \infty$  единичная окрестность Мура  $U_{1,\infty}(b)$  для выделенного узла *b* на трехмерной квадратной решетке будет включать в себя n = 26 узлов, хотя бы одна из координат которых отличается от одноименной координаты выделенного узла на единицу.

Нетрудно проверить, что единичная окрестность Мура для узла *b* на трехмерной квадратной решетке образуется как объединение трех подмножеств узлов, для которых: а) только одна, б) только две, в) только три из координат отличаются от одноименной координаты *b* на единицу. Тогда при промежуточных показателях Минковского  $\pi \in (0, \infty)$  мера удаленности  $\rho_{\pi}$ для шести осевых узлов, образующих окрестность  $U_{1,0}$ , будет сохраняться постоянной и равной единице  $\rho_{\pi,1} = 1$ , а для остальных 20 узлов, входящих в окрестность  $U_{1,\infty}$ , будет убывать от  $\rho_{\pi,2} \rightarrow \rho_{\pi,3} \rightarrow \infty$  при  $\pi \rightarrow 0+$  до  $\rho_{\pi,3} \rightarrow \rho_{\pi,2} \rightarrow 1+$  при  $\pi \rightarrow \infty$ . Например, в манхэттенской метрике при  $\pi = 1$  расстояние до 20 неосевых узлов будет равно  $\rho_{1,2} = 2$  или  $\rho_{1,3} = 3$ , а в евклидовой метрике при  $\pi = 2$  расстояние до тех же узлов будет равно  $\rho_{2,2} = \sqrt{2}$  или  $\rho_{2,3} = \sqrt{3}$ .

Для учета неметрического расстояния в модели изотропной решеточной перколяции узлов проведем нормировку доли достижимых узлов p в неравенстве (2) на меру их удаленности  $\rho_{\pi}$  от текущего узла. Тогда итерационный процесс построения реализации перколяционного кластера будет основываться на проверке выполнения весового неравенства

$$u_{xyz} < \frac{p}{\rho_{\pi}} \tag{3}$$

для каждого узла (x, y, z) из единичной окрестности Мура некоторого текущего подмножества узлов, где  $u_{xyz} \sim U(0, 1)$  — равномерно распределенные на интервале (0, 1) псевдослучайные числа; p — относительная доля достижимых узлов решетки.

Также как и в предыдущем случае те узлы, для которых неравенство (3) выполняется, помечаются числовой меткой l > 1 и образуют текущее подмножество для следующей итерации. Условием остановки процесса является появление на очередной итерации пустого текущего подмножества узлов или достижение узла из заданного целевого подмножества.

В листинге 3 показана реализация на языке R функций "ssi3d()" и "fssi3d()", которые обеспечивают инициализацию переменных, необходимых для корректного вызова функции "ssTNd()". Функция "ssi3d()" обеспечивает маркировку статистически изотропного кластера узлов, связанного с заданным стартовым подмножеством "set" на трехмерной квадратной решетке заданного размера "x" с  $(1, \pi)$ -окрестностью Мура при заданных долях достижимых узлов "p0", "p1" и "p2". Функция "fssi3d()" обеспечивает расчет матрицы относительных частот П.В. Москалев

узлов для выборки статистически изотропных реализаций заданного объема "n", связанных с заданным стартовым подмножеством "set" на трехмерной квадратной решетке заданного размера "x" с  $(1, \pi)$ -окрестностью Мура при заданных долях достижимых узлов "p0", "p1" и "p2".

Листинг 3. Реализации функций "ssi3d()" и "fssi3d()" на языке R

```
2 # Функции:
3 # ssi3d()
           - обеспечивает маркировку изотропных кластеров узлов на
4 #
              трехмерной квадратной решетке с (1, п)-окрестностью;
s # fssi3d() - обеспечивает построение матрицы относительных частот
6 #
              для выборки изотропных кластеров узлов на трехмерной
              квадратной решетке с (1, п)-окрестностью.
7 #
9 # Аргументы:
10 # n - объем выборки кластеров;
и # х - линейный размер перколяционной решетки;
12 # р0 - относительная доля достижимых узлов решетки;
13 # p1 - значение p0, взвешенное на расстояние до узлов из
       двумерной (1,п)-окрестности;
14 #
15 # p2 - значение p0, взвешенное на расстояние до узлов из
16 #
       трехмерной (1,п)-окрестности;
17 # set - линейные индексы стартового подмножества;
18 # all - триггер: "Маркировать все узлы или только достижимые?"
19 # Переменные:
20 # е0 - линейные индексы узлов из (1,0)-окрестности;
21 # e1 - линейные индексы узлов из двумерной (1, п)-окрестности;
22 # е2 - линейные индексы узлов из трехмерной (1, п)-окрестности;
23 # b - длина стартового подмножества узлов.
24 # Значения:
25 # асс - матрица достижимости узлов перколяционной решетки;
26 # rfq - матрица относительных частот узлов перколяционной решетки.
28 ssi3d <- function(x=33, p0=0.2, p1=p0/2, p2=p0/3,</pre>
                   set=(x^3+1)/2, all=TRUE) {
29
  e0 <- c(-1, 1, -x, x, -x^2, x^2)
30
   e1 <- colSums(matrix(e0[c(</pre>
31
     1,3, 2,3, 1,4, 2,4,
32
     1,5, 2,5, 1,6, 2,6,
33
     3,5, 4,5, 3,6, 4,6)], nrow=2))
34
   e2 <- colSums(matrix(e0[c(</pre>
35
     1,3,5, 2,3,5, 1,4,5, 2,4,5,
36
     1,3,6, 2,3,6, 1,4,6, 2,4,6)], nrow=3))
37
   e <- as.integer(c(e0,e1,e2))</pre>
38
   p0 <- rep(p0, length(e0))</pre>
39
   p1 <- rep(p1, length(e1))</pre>
40
   p2 <- rep(p2, length(e2))</pre>
41
   p <- as.double(c(p0, p1, p2))
42
43
   acc <- array(runif(x^3), rep(x, times=3))</pre>
   if (!all) set <- set[acc[set] < mean(p)]</pre>
44
   b <- as.integer(length(set))</pre>
45
   cls <- rep(OL, max(p)*x^3 + b*all)
46
   acc[set] <- 2
47
   acc[c(1,x),,] <- acc[,c(1,x),] <- acc[,,c(1,x)] <- 1
48
   cls[seq_along(set)] <- as.integer(set - 1)</pre>
49
   .Call("ssTNd", p, acc, b, e, cls)
50
  return(acc)
51
52 }
53 fssi3d <- function(n=1000, x=33, p0=0.2, p1=p0/2, p2=p0/3,</pre>
                    set=(x^3+1)/2, all=TRUE) {
```

```
55 rfq <- array(0, dim=rep(x, times=3))
56 for (i in seq(n))
57 rfq <- rfq + (ssi3d(x, p0, p1, p2, set, all) > 1)
58 return(rfq/n)
59 }
```

Приведенные выше реализации функций "ssi3d()" и "fssi3d()" также вошли в состав библиотеки SPSL [Moskalev, 2012], опубликованной автором под лицензией GNU GPL-3.



Рис. 2. Сечения плоскостью z = 0 изотропных кластеров (верхний ряд) и распределений относительных частот узлов (нижний ряд) с  $(1, \pi)$ -окрестностью Мура на трехмерной квадратной решетке размером x = 65 узлов для выборки объемом m = 500 реализаций при p = 0.175 и:  $\pi = 0.5$  (слева);  $\pi = 1$  (в центре);  $\pi = 2$  (справа)

Примеры построения отдельных реализаций статистически изотропных кластеров и распределений относительных частот на трехмерной квадратной решетке размером x = 65 узлов с  $(1, \pi)$ -окрестностью Мура и непроницаемыми граничными условиями при фиксированной доле достижимых узлов p = 0.175 и различных значениях показателя Минковского  $\pi$  приведены на рисунке 2.

На рисунке 2 (слева) показаны реализации и распределения относительных частот при значениях показателя Минковского  $\pi = 0.5$ , соответствующих неметрическим расстояниям. На рисунке 2 (в центре) показаны реализации и распределения относительных частот при значениях  $\pi = 1$ , соответствующих манхеттенской метрике, а на рисунке 2 (справа) — при значениях  $\pi = 2$ , соответствующих евклидовой метрике. Остальные параметры для отображения отдельных реализаций в верхнем ряду на рисунке 2 и распределений относительных частот в нижнем ряду на рисунке 2 выбраны идентичными примерам из предыдущего раздела. Символом "\*" на рисунке 2 отмечено стартовое подмножество узлов кластера в центре решетки, причем размеры элементов символов относительно центральной точки (0,0,0) соответствуют долям достижимых

узлов и их попарным средним, нормированным на меру удаленности узла в  $(1, \pi)$ -окрестности Мура и масштабированным по радиусу перколяционной решетки  $\frac{(x-1)p}{2q_{\pi}}$ .

Сравнение статистически изотропных распределений относительных частот для инвариантно взвешенных решеток с единичными окрестностями фон Неймана и Мура в нижнем ряду на рисунках 1 и 2 показывает, что вероятность появления перколяционного кластера  $P_{\infty}(p, \pi)$  является возрастающей функцией как по доле достижимых узлов p, так и по показателю Минковского  $\pi$ . Следовательно, при возрастании значений показателя  $\pi$  на решетке с окрестностью Мура критическое значение доли достижимых узлов  $p_c(\pi)$  будет снижаться. Действительно, сравнивая показанные в нижнем ряду слева на рисунках 1 и 2 сечения плоскостью z = 0 статистически изотропных распределений относительных частот узлов с единичными окрестностями фон Неймана и Мура нетрудно заметить, что последний случай соответствует докритическому значению для трехмерной решетки  $p = 0.175 < p_c(\pi = 0.5)$ . Тогда показанные в центре и справа в нижнем ряду на рисунке 2 распределения соответствуют около- и сверхкритическим значениям долей достижимых узлов для трехмерной решетки:  $p = 0.175 \approx p_c(\pi = 1)$  и  $p = 0.175 < p_c(\pi = 2)$ .

# Анизотропные кластеры с (1,0)-окрестностью

Рассмотрим задачу о построении статистически анизотропного кластера узлов на трехмерной квадратной решетке с (1,0)-окрестностью фон Неймана. С алгоритмической точки зрения это означает векторизацию изотропного весового неравенства (2) по узлам, образующим (1,0)-окрестность фон Неймана [Москалев, 2013]

$$u_{xyz} < p_k$$
 для  $k = 1, 2, \dots, n,$  (4)

где  $p_k$  — компоненты вектора долей достижимых узлов *p* размерности n = 6 для трехмерной решетки. При  $p_1 = p_2 = \ldots = p_n$  кластер узлов будет статистически изотропным, в противном случае — неравные компоненты вектора *p* приведут к появлению ненулевой меры статистической анизотропии.

Для количественной оценки статистической анизотропии кластера воспользуемся евклидовой нормой разности векторов  $L_2 = ||p - \langle p \rangle||$ , где  $\langle p \rangle$  — усредненный по компонентам вектор долей достижимых узлов p. Тогда в изотропном случае при  $p = \langle p \rangle$  мера анизотропии будет равна нулю  $L_2 = 0$ , а в анизотропном случае при  $p \neq \langle p \rangle$  — строго больше нуля  $L_2 > 0$ .

Также как и в изотропном случае те узлы, для которых неравенство (4) выполняется, помечаются числовой меткой l > 1 и образуют текущее подмножество для следующей итерации. Условием остановки процесса является появление на очередной итерации пустого текущего подмножества узлов или достижение узла из заданного целевого подмножества.

В листинге 4 показана реализация на языке R функций "ssa30()" и "fssa30()", которые обеспечивают инициализацию переменных, необходимых для корректного вызова функции "ssTNd()". Функция "ssa30()" обеспечивает маркировку статистически анизотропного кластера узлов, связанного с заданным стартовым подмножеством "set" на трехмерной квадратной решетке заданного размера "x" с (1,0)-окрестностью фон Неймана при заданных компонентах вектора долей достижимых узлов "p". Функция "fssa30()" обеспечивает расчет матрицы относительных частот узлов для выборки статистически анизотропных реализаций заданного объема "n", связанных с заданным стартовым подмножеством "set" на трехмерной квадратной решетке заданного размера "x" с (1,0)-окрестностью фон Неймана при заданных компонентах вектора долей достижимых узлов "p". Листинг 4. Реализации функций "ssa30()" и "fssa30()" на языке R

```
2 # Функции:
з # ssa30() - обеспечивает маркировку анизотропных кластеров узлов на
4 #
              трехмерной квадратной решетке с (1,0)-окрестностью;
5 # fssa30() - обеспечивает построение матрицы относительных частот
6 #
              для выборки анизотропных кластеров узлов на трехмерной
7 #
              квадратной решетке с (1,0)-окрестностью.
9 # Аргументы:
10 # n - объем выборки кластеров;
и # х - линейный размер перколяционной решетки;
12 # р - вектор относительных долей достижимых узлов по основным
       направлениям решетки: -х, +х, -у, +у, -z, +z;
13 #
14 # set - линейные индексы стартового подмножества;
15 # all - триггер: "Маркировать все узлы или только достижимые?"
16 # Переменные:
17 # е – линейные индексы узлов из (1,0)-окрестности;
18 # b - длина стартового подмножества узлов.
19 # Значения:
20 # асс - матрица достижимости узлов перколяционной решетки;
21 # rfq - матрица относительных частот узлов перколяционной решетки.
23 ssa30 <- function(x=33, p=runif(6, max=0.6),</pre>
                  set=(x^3+1)/2, all=TRUE) {
24
   e <- as.integer(c(-1, 1, -x, x, -x^2, x^2))</pre>
25
26
  p <- as.double(p)</pre>
27
   acc <- array(runif(x^3), rep(x, 3))
28
   if (!all) set <- set[acc[set] < mean(p)]</pre>
   b <- as.integer(length(set))</pre>
29
   cls <- rep(OL, max(p)*x^3 + b*all)
30
   acc[set] <- 2
31
   acc[c(1,x),,] <- acc[,c(1,x),] <- acc[,,c(1,x)] <- 1
32
   cls[seq_along(set)] <- as.integer(set - 1)</pre>
33
   .Call("ssTNd", p, acc, b, e, cls)
34
   return(acc)
35
36 }
37 fssa30 <- function(n=1000, x=33, p=runif(6, max=0.6),
                   set=(x^3+1)/2, all=TRUE) {
38
  rfq <- array(0, dim=rep(x, times=3))</pre>
39
   for (i in seq(n))
40
     rfq <- rfq + (ssa30(x, p, set, all) > 1)
41
42
   return(rfq/n)
43 }
```

Приведенные выше реализации функций "ssa30()" и "fssa30()" вошли в состав библиотеки SPSL [Moskalev, 2012], опубликованной автором под лицензией GNU GPL-3.

Примеры построения отдельных реализаций статистически анизотропных кластеров и распределений относительных частот на трехмерной квадратной решетке размером x = 65 узлов с (1,0)-окрестностью фон Неймана и непроницаемыми граничными условиями при различных значениях доли достижимых узлов *p* показаны на рисунке 3.

Примеры построения отдельных реализаций статистически анизотропных кластеров и распределений относительных частот на трехмерной квадратной решетке размером x = 65 узлов с (1,0)-окрестностью фон Неймана и непроницаемыми граничными условиями при различных векторах долей достижимых узлов *p* показаны на рисунке 3. Основные параметры для отображения отдельных реализаций в верхнем ряду на рисунке 3 и распределений относительных



Рис. 3. Сечения плоскостью z = 0 анизотропных кластеров (верхний ряд) и распределений относительных частот узлов (нижний ряд) с (1,0)-окрестностью фон Неймана на трехмерной квадратной решетке размером x = 65 узлов для выборки объемом m = 500 реализаций при:  $p_1 = (0.232; 0.372; 0.242; 0.322; 0.282; 0.282)$  (слева);  $p_2 = (0.262; 0.402; 0.272; 0.352; 0.312; 0.312)$  (в центре);  $p_3 = (0.292; 0.432; 0.302; 0.382; 0.342; 0.342)$  (справа)

частот в нижнем ряду на рисунке 3 выбраны идентичными примерам из предыдущих разделов. Символом "+" на рисунке 3 отмечено стартовое подмножество узлов кластера в центре решетки, причем размеры элементов символов относительно центральной точки (0,0,0) соответствуют компонентам вектора долей достижимых узлов, масштабированным по радиусу перколяционной решетки  $\frac{(x-1)p}{2}$ .

Используя сечения плоскостью z = 0 статистически анизотропных распределений относительных частот, представленных в нижнем ряду на рисунке 3, нетрудно заметить, что основное влияние на протекание в заданном направлении перколяционной решетки  $\pm i$ ,  $\pm j$ ,  $\pm k$  оказывают значения соответствующих компонент векторов  $p_3$ . К примеру, кластеры распределении относительных частот, показанном в нижнем ряду слева на рисунке 3 обладают структурой, сверхкритической в направлениях орт *i*, *j* и докритической в направлениях -i, -j. Действительно, сравнивая компоненты вектора  $p_1 = (0.232; 0.372; 0.242; 0.322; 0.282; 0.282)$  с порогом перколяции узлов на трехмерной квадратной решетке  $p_c \approx 0.311$  можно записать, что доли достижимых узлов имеют докритические значения  $p_{11} < p_{13} < p_c$  в направлениях орт *i*, *j*, и сверхкритические  $p_{12} > p_{14} > p_c$  в направлениях -i, -j. При этом протекания ни в одном из этих направлений не наблюдается, поскольку доли достижимых узлов в ортогональных направлениях  $\pm k$  также имеют докритические значения  $p_{15} = p_{16} < p_c$ .

#### Анизотропные кластеры с $(1, \pi)$ -окрестностью

Рассмотрим задачу о построении статистически анизотропного кластера узлов на трехмерной квадратной решетке с (1, *π*)-окрестностью Мура. С алгоритмической точки зрения это означает нормирование векторизованного весового неравенства (4) на неметрическое расстояние Минковского  $\rho_{\pi}$  до данного узла с текущим показателем  $\pi$  [Москалев, 2013]:

$$u_{xyz} < \frac{p_k}{\rho_{\pi}}$$
 для  $k = 1, 2, \dots, n,$  (5)

где  $p_k$  — компоненты вектора долей достижимых узлов p размерности n = 26 для трехмерной решетки.  $(1, \pi)$ -окрестность Мура на трехмерной квадратной решетке образуется как объединение трех подмножеств узлов, для которых: а) только одна; б) только две; в) только три из координат отличаются от одноименной координаты выделенного узла на единицу. Нормирующий делитель взвешивающего неравенства  $\rho_{\pi}$  для элементов этих подмножеств будет принимать одно из трех значений: а)  $\rho_{\pi} = 1^{1/\pi} = 1$ ; б)  $\rho_{\pi} = 2^{1/\pi} = \sqrt[\pi]{2}$ ; в)  $\rho_{\pi} = 3^{1/\pi} = \sqrt[\pi]{3}$ .

Также как и в предыдущих случаях те узлы, для которых указанное неравенство выполняется, помечаются числовой меткой l > 1 и образуют текущее подмножество для следующей итерации. Условием остановки процесса является появление на очередной итерации пустого текущего подмножества узлов или достижение узла из заданного целевого подмножества.

В листинге 5 показана реализация на языке R функций "ssa3d()" и "fssa3d()", которые обеспечивают инициализацию переменных, необходимых для корректного вызова функции "ssTNd()". Функция "ssa3d()" обеспечивает маркировку статистически анизотропного кластера узлов, связанного с заданным стартовым подмножеством "set" на трехмерной квадратной решетке заданного размера "x" с  $(1, \pi)$ -окрестностью Мура при заданных компонентах векторов долей достижимых узлов "p0", "p1" и "p2". Функция "fssa3d()" обеспечивает расчет матрицы относительных частот узлов для выборки статистически анизотропных реализаций заданного объема "n", связанных с заданным стартовым подмножеством "set" на трехмерной квадратной решетке заданного размера "x" с  $(1, \pi)$ -окрестностью Мура при заданных компонентах векторов долей достижимых узлов "p0", "p1" и "p2".

Листинг 5. Реализации функций "ssa3d()" и "fssa3d()" на языке R

```
# # # # # # # #
2 # Функции:
з # ssa3d() - обеспечивает маркировку анизотропных кластеров узлов на
4 #
             трехмерной квадратной решетке с (1, п)-окрестностью;
5 # fssa3d() - обеспечивает построение матрицы относительных частот
6 #
             для выборки анизотропных кластеров узлов на трехмерной
7 #
             квадратной решетке с (1, п)-окрестностью.
9 # Аргументы:
10 # n - объем выборки кластеров;
и # х - линейный размер перколяционной решетки;
12 # p0 - вектор относительных долей достижимых узлов по основным
       направлениям решетки: -х, +х, -у, +у, -z, +z;
13 #
14 # p1 - парные усредненные комбинации компонент p0, взвешенные на
15 #
        расстояние до узлов из двумерной (1, п)-окрестности;
16 # p2 - тройные усредненные комбинации компонент p0, взвешенные на
       расстояние до узлов из трехмерной (1, п)-окрестности;
17 #
18 # set - линейные индексы стартового подмножества;
19 # all - триггер: "Маркировать все узлы или только достижимые?"
20 # Переменные:
21 # е0 - линейные индексы узлов из (1,0)-окрестности;
22 # e1 - линейные индексы узлов из двумерной (1, п)-окрестности;
23 # e2 - линейные индексы узлов из трехмерной (1, п)-окрестности;
24 # b - длина стартового подмножества узлов.
25 # Значения:
26 # асс - матрица достижимости узлов перколяционной решетки;
```

```
27 # rfq - матрица относительных частот узлов перколяционной решетки.
29 ssa3d <- function(x=33,
                    p0=runif(6, max=0.4),
30
                     p1=colMeans(matrix(p0[c(
31
                       1,3, 2,3, 1,4, 2,4,
32
                       1,5, 2,5, 1,6, 2,6,
33
34
                       3,5, 4,5, 3,6, 4,6)], nrow=2))/2,
35
                     p2=colMeans(matrix(p0[c(
36
                       1,3,5, 2,3,5, 1,4,5, 2,4,5,
                       1,3,6, 2,3,6, 1,4,6, 2,4,6)], nrow=3))/3,
37
                     set=(x^3+1)/2, all=TRUE) {
38
    e0 <- c(-1, 1,-x, x,-x^2, x^2)
39
    e1 <- colSums(matrix(e0[c(</pre>
40
      1,3, 2,3, 1,4, 2,4,
41
      1,5, 2,5, 1,6, 2,6,
42
      3,5, 4,5, 3,6, 4,6)], nrow=2))
43
44
    e2 <- colSums(matrix(e0[c(</pre>
      1,3,5, 2,3,5, 1,4,5, 2,4,5,
45
      1,3,6, 2,3,6, 1,4,6, 2,4,6)], nrow=3))
46
    e <- as.integer(c(e0,e1,e2))</pre>
47
   p <- as.double(c(p0,p1,p2))</pre>
48
    acc <- array(runif(x^3), rep(x, times=3))</pre>
49
50
   if (!all) set <- set[acc[set] < mean(p)]</pre>
   b <- as.integer(length(set))</pre>
51
    cls <- rep(OL, max(p)*x^3 + b*all)
52
    acc[set] < -2
53
    acc[c(1,x),,] <- acc[,c(1,x),] <- acc[,,c(1,x)] <- 1
54
55
    cls[seq_along(set)] <- as.integer(set - 1)</pre>
    .Call("ssTNd", p, acc, b, e, cls)
56
57
    return(acc)
58 }
59 fssa3d <- function(n=1000, x=33,
                      p0=runif(6, max=0.4),
60
                      p1=colMeans(matrix(p0[c(
61
                        1,3, 2,3, 1,4, 2,4,
62
                        1,5, 2,5, 1,6, 2,6,
63
                        3,5, 4,5, 3,6, 4,6)], nrow=2))/2,
64
                      p2=colMeans(matrix(p0[c(
65
                        1,3,5, 2,3,5, 1,4,5, 2,4,5,
66
                        1,3,6, 2,3,6, 1,4,6, 2,4,6)], nrow=3))/3,
67
                      set=(x^3+1)/2, all=TRUE) {
68
    rfq <- array(0, dim=rep(x, times=3))</pre>
69
70
    for (i in seq(n))
      rfq <- rfq + (ssa3d(x, p0, p1, p2, set, all) > 1)
71
    return(rfq/n)
72
73 }
```

Приведенные выше реализации функций "ssa3d()" и "fssa3d()" вошли в состав библиотеки SPSL [Moskalev, 2012], опубликованной автором под лицензией GNU GPL-3.

Примеры построения отдельных реализаций статистически анизотропных кластеров и распределений относительных частот на трехмерной квадратной решетке размером x = 65 узлов с  $(1, \pi)$ -окрестностью Мура и непроницаемыми граничными условиями при фиксированном векторе долей достижимых узлов p по основным направлениям перколяционной решетки:  $\pm i$ ,  $\pm j$ ,  $\pm k$  и различных значениях показателя Минковского  $\pi$  приведены на рисунке 4.

На рисунке 4 (слева) показаны реализации и распределения относительных частот при значениях показателя Минковского  $\pi = 0.5$ , соответствующих неметрическим расстояниям. На

КОМПЬЮТЕРНЫЕ ИССЛЕДОВАНИЯ И МОДЕЛИРОВАНИЕ \_



Рис. 4. Сечения плоскостью z = 0 анизотропных кластеров (верхний ряд) и распределений относительных частот узлов (нижний ряд) с  $(1, \pi)$ -окрестностью Мура на трехмерной квадратной решетке размером x = 65 узлов для выборки объемом m = 500 реализаций при  $p_3 = (0.125; 0.265; 0.135; 0.215; 0.175; 0.175)$  и:  $\pi = 0.5$  (слева);  $\pi = 1$  (в центре);  $\pi = 2$  (справа)

рисунке 4 (в центре) показаны реализации и распределения относительных частот при значениях  $\pi = 1$ , соответствующих манхеттенской метрике, а на рис. 4 (справа) — при значениях  $\pi = 2$ , соответствующих евклидовой метрике. Основные параметры для отображения отдельных реализаций в верхнем ряду на рисунке 3 и распределений относительных частот в нижнем ряду на рисунке 3 выбраны идентичными примерам из предыдущих разделов. Символом "ж" на рисунке 4 отмечено стартовое подмножество узлов кластера в центре решетки, причем размеры элементов символов относительно центральной точки (0,0,0) соответствуют компонентам вектора долей достижимых узлов и их попарным средним, нормированным на меру их удаленности в (1,  $\pi$ )-окрестности Мура и масштабированным по радиусу перколяционной решетки  $\frac{(x-1)p}{2\rho_{\pi}}$ .

#### Заключение

Сопоставление структуры рассмотренных выше моделей перколяции узлов на трехмерной квадратной решетке показывает, что изотропная модель с (1, 0)-окрестностью фон Неймана является частным случаем как изотропной модели с  $(1, \pi)$ -окрестностью Мура, так и анизотропной модели с (1, 0)-окрестностью фон Неймана. В свою очередь, изо- и анизотропная модели с (1, 0)-окрестностью фон Неймана, а также изотропная модель с  $(1, \pi)$ -окрестностью Мура являются частными случаями анизотропной модели с  $(1, \pi)$ -окрестностью Мура, причем размерность решетки на указанные отношения существенной роли не влияет. Это приводит к выводу о существовании иерархической структуры моделей перколяции узлов на *n*-мерных квадратных решетках, допускающих описание в рамках универсального алгоритма, реализация которого приведена в листинге 1.

Основным параметром изотропной модели перколяции узлов с (1,0)-окрестностью фон Неймана является относительная доля достижимых узлов:  $p = \frac{N_p}{N_t}$ , где  $N_p$  — количество достижимых узлов решетки;  $N_t$  — общее количество узлов решетки. Сопоставляя отдельному узлу перколяционной решетки некий минимальный объем  $V_0$ , нетрудно показать, что с физической точки зрения относительная доля достижимых узлов p соответствует априорной оценке полной объемной пористости моделируемой среды:  $\Pi_{vt} = \frac{V_p}{V_t}$ , где  $V_p = V_0 N_p$  — полный (несвязный) объем порового пространства;  $V_t = V_0 N_t$  — репрезентативный объем пористой среды. Тогда компоненты вектора  $p(p_1, p_2, ..., p_n)$  в анизотропных моделях перколяции узлов будут совпадать с априорными оценками полной объемной пористости по соответствующим направлениям моделируемой среды  $\Pi_{vt}(\Pi_{vt1}, \Pi_{vt2}, ..., \Pi_{vtn})$ .

Выделение кластера, содержащего  $N_c$  узлов, позволяет оценить эффективную объемную пористость моделируемой среды:  $\Pi_{vc} = \frac{V_c}{V_t}$ , где  $V_c = V_0 N_c -$ эффективный (связный) объем порового пространства. Обобщение (1,0)-окрестности фон Неймана до (1, $\pi$ )-окрестности Мура показывает, что связный объем порового пространства зависит от показателя Минковского  $V_{c,\pi}$ и подчиняется неравенству:  $0 \le V_{c,0} \le V_{c,\pi} \le V_{c,\infty} \le V_p$ , где  $V_{c,0}$ ,  $V_{c,\infty}$  – объемы порового пространства, соответствующие наихудшей и наилучшей связности моделируемой среды.

## Список литературы

- Александров П. С. Введение в теорию множеств и общую топологию. М.: Наука, 1977. 368 с. Москалев П. В., Шитов В. В. Математическое моделирование пористых структур. — М.: ФИЗ-МАТЛИТ, 2007. — 120 с.
- Москалев П. В. Анализ структуры перколяционного кластера // Журнал технической физики. 2009. Т. 79, № 6. С. 1–7.
- Москалев П. В. Иерархическое построение моделей перколяции узлов на *n*-мерных квадратных решетках // Математика. Компьютер. Образование. Сборник тезисов XX Международной научной конференции. № 20. М.–Ижевск: Регулярная и хаотическая динамика, 2013. С. 184.
- Alexandrowicz Z. Critically branched chains and percolation clusters // Physics Letters A. 1980. Vol. 80, no. 4. P. 284–286.
- Broadbent S., Hammersley J. Percolation processes: I. Crystals and mazes // Proceedings of the Cambridge Philosophical Society. 1957. Vol. 53, no. 3. P. 629–641.
- *Flory P.* Molecular size distribution in three dimensional polymers. Part I–III // *Journal of the American Chemical Society.* 1941. Vol. 63, no. 11. P. 3083–3100.
- Koplik J., Wilkinson D., Willemsen J. Percolation and capillary fluid displacement // The Mathematics and Physics of Disordered Media: Percolation, Random Walk, Modeling, and Simulation / Hughes B., Ninham B. (ed.). – Berlin: Springer, 1983. – P. 169–183.
- Leath P. Cluster size and boundary distribution near percolation threshold // Physical Review B. 1976. Vol. 14, no. 11. P. 5046–5055.
- *Moskalev P. V.* SPSL: Site percolation on square lattice. 2012. R package version 0.1-8. URL: http://cran.r-project.org/package=SPSL.
- Stockmayer W. Theory of molecular size distribution and gel formation in branched-chain polymers // *The Journal of Chemical Physics.* – 1943. – Vol. 11, no. 2. – P. 45–55.
- Washburn E. Note on a method of determining the distribution of pore sizes in a porous material // Proceedings of the National Academy of Sciences of the United States of America. – 1921. – Vol. 7, no. 4. – P. 115–116.
- *Wilkinson D., Willemsen J.* Invasion percolation: a new form of percolation theory // Journal of Physics A: Mathematical and General. 1983. Vol. 16, no. 14. P. 3365–3376.