(Ки&М)

МОДЕЛИ В ФИЗИКЕ И ТЕХНОЛОГИИ

УДК: 539.382.2

Моделирование пластической деформации нанокристалла меди при одноосном растяжении

Т. А. Золотых^а, А. Т. Косилов⁶, В. В. Ожерельев^в

Воронежский государственный технический университет, Россия, 394026, г. Воронеж, Московский проспект, д. 14, учебный корпус №1

E-mail: ^atimofei0@mail.ru, ⁶kosilovat@mail.ru, ^Bozher@mail.ru

Получено 27 февраля 2013 г., после доработки 17 апреля 2013 г.

Проведено компьютерное моделирование пластической деформации нанокристалла ГЦК меди в процессе одноосного растяжения в направлении [001] с использованием методов молекулярной динамики и статической релаксации. Показано, что за пластическую деформацию ответственно термоупругое мартенситное превращение, решетка ГЦК перестраивается в решетку ГПУ. Установлены ориентационные соотношения контактирующих фаз.

Ключевые слова: мартенситное превращение, деформация, компьютерное моделирование, молекулярная динамика, нанокристалл, одноосное растяжение

Simulation of copper nanocrystal plastic deformation at uniaxial tension

T. A. Zolotyh, A. T. Kosilov, V. V. Ozherelyev

Voronezh state technical university, 14 Moskovskiy pr-t, Voronezh, 394026, Russia

Abstract. — Computer simulation of plastic deformation of FCC copper nanocrystal in the process of uniaxial tension in a direction [001] is performed by methods of molecular dynamics and a static relaxation. It is shown that thermoelastic martensite transformation is responsible for plastic deformation, FCC lattice is reconstructed into HCP lattice. Orientation relationship of contacting phases is identified.

Keywords: martensite transformation, deformation, computer simulation, molecular dynamics, nanocrystal, uniaxial tension

Citation: Computer Research and Modeling, 2013, vol. 5, no. 2, pp. 225-230 (Russian).

Введение

Процессы пластической деформации в массивных кристаллических материалах к настоящему моменту детально изучены. Кинетику деформации кристаллов под нагрузкой, их способность к пластической деформации определяют процессы зарождения дислокаций, взаимодействия с локальными центрами и полем внутренних напряжений [Келли, Гровс, 1974]. В наноразмерных объектах так же возможны процессы зарождения и беспрепятственного прохождения дислокаций в своих плоскостях скольжения под действием приложенной нагрузки. Однако, в связи с доминирующим влиянием поверхности трудно представить формирование устойчивой дислокационной структуры в таких объектах.

Еще одним механизмом пластического течения является мартенситное превращение, при котором деформация в направлении приложенной нагрузки достигается за счет перестройки атомной структуры путем перемещения когерентных границ раздела фаз.

Поскольку теоретические и экспериментальные исследования наноразмерных материалов сопряжены с известными трудностями [Келли, Гровс, 1974], при их изучении часто прибегают к методам компьютерного моделирования [Kadau et al., 2004; Zhao et al., 2009; Коноваленко и др., 2011; Лагунов, Синани, 2001; Лобастов, Шудегов, Чудинов, 2000; Норман, Стегайлов, Янилкин, 2007; Junge, Molinari, 2012].

Атомистическое моделирование методом молекулярной динамики позволяет раскрыть механизмы процессов, протекающих в наноматериалах под воздействием нагрузки, прогнозировать их эксплуатационные и функциональные характеристики. Так, в работе [Kadau et al., 2004] выполнены молекулярно-динамические исследования эволюции атомной структуры нанокристаллического алюминия в условиях пластических деформаций; в [Zhao et al., 2009] изучено влияние размерных эффектов на механизмы деформации монокристалла меди, содержащего нанопору; в [Коноваленко и др., 2011] проведено молекулярно-динамическое моделирование зарождения и развития пластической деформации в кристаллите титана при одноосном растяжении с различными скоростями. В работе [Евтеев и др., 2006] показано, что пластическое формоизменение нанокристаллов железа ориентации [001] в условиях одноосного растяжения при T = 300 К происходит путем последовательной серии термоупругих мартенситных превращений.

Данная работа посвящена изучению в рамках метода молекулярной динамики (МД) структурных и фазовых превращений наноразмерного нитевидного кристалла ГЦК-меди ориентации [001] в условиях одноосного растяжения при температуре 300 К.

Методика компьютерного эксперимента

Исходная модель кристаллита ГЦК-меди содержала 20000 атомов и имела форму параллелепипеда, длины ребер которого равнялись $L_X = L_Y = 23$ Å, $L_Z = 359.69$ Å. Методика МД расчета состояла в численном интегрировании уравнений движения с временным шагом $\Delta t = 1.523 \times 10^{-15}$ с по алгоритму Верле в скоростной форме [Verlet, 1967].

Для описания взаимодействия атомов меди использовался метод погруженного атома [Daw, Baskes, 1983; Daw, Baskes, 1984]. В начальный момент времени атомам сообщались скорости согласно распределению Максвелла для заданной температуры 300 К. Далее моделируемая система достигала состояния равновесия при постоянной температуре. Затем кристалл подвергался одноосному растяжению с постоянной скоростью деформации в направлении оси Z при заданной температуре. Этот процесс носил циклический характер и был разделен на следующие этапы: однородная мгновенная деформация на величину $\Delta \varepsilon = 0.001$, установление теплового равновесия в системе при постоянной температуре в течение $1000 \times \Delta t$ и последующий отжиг в адиабатических условиях на протяжении $9000 \times \Delta t$. Таким образом, продолжительность одного цикла составляла $10000 \times \Delta t$, или 1.523×10^{-11} с, а средняя скорость деформации — $6.6 \times 10^7 c^{-1}$. Чтобы убрать влияние тепловых колебаний атомов на рассчитываемые характеристики, после каждого цикла систему методом статической релаксации переводили в состояние с T = 0 K, предоставляя возможность атомам занять равновесные положения в локальных потенциальных ямах.

В процессе компьютерного эксперимента по изучению структурных превращений при одноосной деформации кристалла ГЦК-меди осуществлялся непрерывный контроль за термодинамическими характеристиками системы, функцией радиального распределения атомов (ФРРА) $\rho(r)$, стереографическими проекциями основных кристаллографических направлений, а также проводился визуальный анализ расположения атомов. После проведения процедуры статической релаксации определялась средняя величина напряжения σ в направлении оси растяжения, а также средняя величина потенциальной энергии U_0 , приходящаяся на один атом.

Результаты и их обсуждение

Были построены зависимости напряжения σ и потенциальной энергии U_0 модели нанокристалла меди ориентации [001] от деформации ε при температуре T = 300 К (см. рис. 1). Характер этих зависимостей, существенно отличающийся от подобных зависимостей для массивных монокристаллов [Губкин, 1961], позволяет выделить несколько стадий упругой и пластической деформации (I–IV на рис. 1).

Рис. 1. Зависимость напряжения σ в направлении оси растяжения от деформации ε при T = 300 K (a); зависимость потенциальной энергии системы U_0 , приходящейся на один атом, от деформации ε (b)

Линейно возрастающий характер зависимости σ от ε на стадии I соответствует упругой деформации ГЦК-меди ориентации [001]. При деформациях, соответствующих стадии II, в кристалле происходит фазовый переход, стимулированный упругими напряжениями. С помощью анализа положения пиков на ФРРА (см. рис. 2) и метода анализа общих ближайших соседей [Faken, Jonsson, 1994] было установлено, что новая фаза имеет ГПУ структуру.

На рисунке 2 приведены две ФРРА: для исходной ГЦК-фазы и образовавшейся ГПУ-фазы; пики ФРРА соответствуют кратчайшим межатомным расстояниям в указанных направлениях.

Рис. 2. Функции радиального распределения атомов $\rho(r)$ ГЦК и ГПУ фаз при $\varepsilon = 0.074$

Зарождение новой ГПУ-фазы произошло при $\varepsilon = 0.074$ (см. рис. 3), а полностью перестройка завершилась при $\varepsilon = 0.148$. Упругая деформация, соответствующая «зубу текучести» при $\varepsilon = 0.074$ и $\sigma = 3.7$ ГПа, переходит в пластическую деформацию в результате резкого сброса напряжения. (Уход кривой $\sigma(\varepsilon)$ в область отрицательных значений объясняется инерционными эффектами).

Для определения ориентационных соотношений были построены стереографические проекции основных направлений ГЦК и ГПУ решеток (см. рис. 4). Выполняются следующие ориентационные соотношения: $(001)_{\Gamma \amalg K} \parallel (0001)_{\Gamma \Pi Y}$, $[010]_{\Gamma \amalg K} \parallel [1210]_{\Gamma \Pi Y}$. Небольшое отклонение, на величину ~1.5°, от точного выполнения приведенного соотношения связано с наблюдаемыми в ходе эксперимента локальными изгибами образца на границах раздела фаз.

Рис. 3. Область когерентного сопряжения ГЦК и ГПУ фаз при $\varepsilon = 0.074$

Для иллюстрации процесса перестройки структуры при данном фазовом переходе из модели был выделен фрагмент структуры в области исходной ГЦК-фазы (рис. 5а) и фрагмент, образованный теми же атомами после перехода в ГПУ-фазу (рис. 5b). Из рисунка 5 видно, что фазовый переход носит мартенситный характер и его формально можно разбить на два этапа: деформацию Бейна и взаимное смещение базисных плоскостей в направлении [100]. Деформация Бейна характеризуется растяжением решетки в направлениях [100] и [001] на величину $\sqrt{3/2} - 1 \approx 0.22$ и ($\sqrt{2/3} - 1/\sqrt{2}$)/($1/\sqrt{2}$) ≈ 0.15 соответственно и сжатием в направлении [010] на величину $1 - \sqrt{2}/2 \approx 0.29$. В результате в каждой плоскости (001) формируется атомная структура в виде правильных шестиугольников (атомы 1–6). Отметим, что рассчитанная величина пластической деформации растяжения $\varepsilon \approx 0.15$ в направлении [001] практически совпадает с величиной деформации $\varepsilon = 0.148$, при которой завершается вторая стадия деформации.

Рис. 4. Стереографические проекции основных направлений для ГЦК и ГПУ фаз

Взаимные сдвиги базисных плоскостей сводятся к поочередному смещению каждой атомной плоскости (001) в направлениях [100] и [$\overline{1}$ 00]на величину $a_{ITTV} / (2\sqrt{3}) \approx 0.74$. В результате чередование координатных атомных плоскостей *АВАВ*... исходной ГЦК-структуры сменяется чередованием базисных плоскостей *А'В'А'В'*.... гексагонального кристалла. При этом атомы каждого слоя оказываются в позициях треугольных «лунок» соседних слоев.

Отметим, что взаимное смещение атомных плоскостей не сопровождается макроскопической деформацией, поэтому вклад в деформацию растяжения обеспечивает только деформация Бейна.

Таким образом, при одноосном растяжении нитевидного нанокристалла меди ориентации [001] пластическая деформация происходит не путем зарождения и перемещения дислокаций, а вследствие термоупругого мартенситного превращения кристалла ГЦК в ГПУ путем движения когерентной границы раздела в направлении исходной фазы.

Рис 5. Фрагмент модели в исходной ГЦК-фазе (а) и после перестройки в ГПУ-фазу (b)

На стадии III ($\varepsilon = 0.148-0.184$) происходит упругая деформация кристалла ГПУ-меди, деформационная кривая линейно возрастает. На стадии IV образуется шейка, происходит утонение образца и при $\varepsilon = 0.311$ он разрушается. Деформация на этой стадии носит локальный характер. Методом анализа общих ближайших соседей было установлено, что в области шейки вновь появляется ГЦК структура, которая сохраняется вплоть до разрушения.

Заключение

В отличие от массивных монокристаллов ориентации [001], пластическая деформация которых в условиях одноосного растяжения происходит за счет движения дислокаций, одноосное растяжение нанокристаллов меди той же ориентации сопровождается бездиффузионным фазовым превращением мартенситного типа: плоскость (001) исходной ГЦК фазы переходит в базисную плоскость (0001) ГПУ фазы. Перестройка решетки включает два этапа: деформацию Бейна и смещения базисных плоскостей в направлении [100]. Наблюдаемые особенности пластического формоизменения нанокристаллов являются проявлением размерного эффекта.

Список литературы

- *Губкин С. И.* Пластическая деформация металлов. М.: Металлургиздат, 1961. Т. 2. 417 с.
- Евтеев А. В., Косилов А. Т., Куликов Е. В., Левченко Е. В. Фазовые превращения при высокоскоростной деформации нанокристаллов ОЦК-железа ориентации [001] при различных температурах // Вестник ВГТУ. — 2006. — Т. 2, Вып. 11. — С. 15–19.
- Келли А., Гровс Г. Кристаллография и дефекты в кристаллах. М.: Мир, 1974. 504 с.
- Коноваленко И. С., Крыжевич Д. С., Зольников К. П., Псахье С. Г. Атомные механизмы локальных структурных перестроек при деформировании кристаллита титана // Письма в ЖТФ. 2011. Т. 37, Вып. 20. С. 9–15.
- *Лагунов В. А., Синани А. Б.* Компьютерное моделирование деформирования и разрушения кристаллов // ФТТ. 2001. Т. 43, Вып. 4. С. 644–650.
- *Лобастов А. И., Шудегов В. Е., Чудинов В. Г.* Пластическая деформация монокристаллов алюминия в компьютерном эксперименте // ЖТФ. — 2000. — Т. 70, Вып. 4. — С. 123–127.
- Норман Г. Э., Стегайлов В. В., Янилкин А. В. Моделирование высокоскоростного растяжения кристаллического железа методом молекулярной динамики // Теплофизика высоких температур. 2007. Т. 45, Вып. 2. С. 193–202.
- Daw M. S., Baskes M. I. Embeded-Atom Method: Derivation and Application to Impurities, Surfaces, and other Defects in Metals // Phys. Rev. B: Solid State. — 1984. — Vol. 29, No 12. — P. 6443– 6453.
- *Daw M. S., Baskes M. I.* Semiempirical Quantum Mechanical Calculation of Hydrogen Embrittlement in Metals // Phys. Rev. Lett. 1983. Vol. 50, No 17. P. 1285–1288.
- *Faken D., Jonsson H.* Systematic analysis of local atomic structure combined with 3D computer graphics // Computational Materials Science. 1994. Vol. 2. P. 279–286.
- Junge T., Molinari G.-F. Molecular dynamics nano-scratching of aluminium: a novel quantitative energy-based analysis method // Procedia IUTAM. 2012. Vol. 3. P. 192–204.
- Kadau K., Germann T. C., Lomdahl P. S., Kadau D., Entel P., Kreth M., Westerhoff F., Wolf D. E. Molecular-Dynamics Study of Mechanical Deformation in Nano-Crystalline Aluminum // Metallurgical and materials transactions A. — 2004. — Vol. 35A. — P. 2719–2723.
- Verlet L. Computer Experiments on Classical Fluids // PhysRev. 1967. Vol. 159. P. 98–103.
- Zhao K. J., Chen C. Q., Shen Y. P., Lu T. J. Molecular dynamics study on the nano-void growth in face-centered cubic single crystal copper // Computational Materials Science. 2009. Vol. 46. P. 749–754.