Текущий выпуск Номер 5, 2024 Том 16

Все выпуски

Результаты поиска по 'value system':
Найдено статей: 137
  1. Ситников С.С., Черемисин Ф.Г., Сазыкина Т.А.
    Моделирование начальной стадии истечения двухкомпонентной разреженной газовой смеси через тонкую щель в вакуум
    Компьютерные исследования и моделирование, 2021, т. 13, № 4, с. 747-759

    В работе рассматривается процесс формирования течения при истечении двухкомпонентной газовой смеси через тонкую щель в вакуум. Предлагается подход к моделированию течений разреженных газовых смесей в переходном режиме на основе прямого решения кинетического уравнения Больцмана, в котором для вычисления интегралов столкновения используется консервативный проекционно-интерполяционный метод. Приводятся расчетные формулы, детально описана методика вычислений применительно к течению бинарной газовой смеси. В качестве потенциала взаимодействия молекул используется потенциал Леннарда–Джонса. Разработана программно-моделирующая среда, позволяющая проводить исследование течений газовых смесей в переходном режиме на системах кластерной архитектуры. За счет использования технологий распараллеливания кода получено ускорение счета в 50–100 раз. Проведено численное моделирование нестационарного двумерного истечения бинарной аргон-неоновой газовой смеси в вакуум через тонкую щель для различных значений числа Кнудсена. Получены графики зависимости выходного потока компонентов газовой смеси от времени в процессе установления течения. Обнаружены нестационарные области сильного разделения компонентов газовой смеси, в которых отношение концентраций достигает 10 и более. Обнаруженный эффект может иметь приложения в задаче разделения газовых смесей.

    Sitnikov S.S., Tcheremissine F.G., Sazykina T.A.
    Simulation of the initial stage of a two-component rarefied gas mixture outflow through a thin slit into vacuum
    Computer Research and Modeling, 2021, v. 13, no. 4, pp. 747-759

    The paper considers the process of flow formation in an outflow of a binary gas mixture through a thin slit into vacuum. An approach to modeling the flows of rarefied gas mixtures in the transient regime is proposed based on the direct solution of the Boltzmann kinetic equation, in which the conservative projection method is used to calculate the collision integrals. Calculation formulas are provided; the calculation procedure is described in detail in relation to the flow of a binary gas mixture. The Lennard–Jones potential is used as an interaction potential of molecules. A software modeling environment has been developed that makes it possible to study the flows of gas mixtures in a transitional regime on systems of cluster architecture. Due to the use of code parallelization technologies, an acceleration of calculations by 50–100 times was obtained. Numerical simulation of a two-dimensional outflow of a binary argon-neon gas mixture from a vessel into vacuum through a thin slit is carried out for various values of the Knudsen number. The graphs of the dependence of gas mixture components output flow on time in the process of establishing the flow are obtained. Non-stationary regions of strong separation of gas mixture components, in which the molecular densities ratio reaches 10 or more, were discovered. The discovered effect can have applications in the problem of gas mixtures separation.

  2. Нгуен Б.Х., Ха Д.Т., Цибулин В.Г.
    Мультистабильность для системы трех конкурирующих видов
    Компьютерные исследования и моделирование, 2022, т. 14, № 6, с. 1325-1342

    Проводится исследование вольтерровской модели, описывающей конкуренцию трех видов. Соответствующая система дифференциальных уравнений первого порядка с квадратичной правой частью после замены переменных сводится к системе с восемью параметрами. Два из них характеризуют скорости роста популяций, для первого вида этот параметр принят равным единице. Остальные шесть коэффициентов задают матрицу взаимодействий видов. Ранее при аналитическом исследовании так называемых симметричной модели [May, Leonard, 1975] и асимметричной модели [Chi, Wu, Hsu, 1998] с коэффициентами роста, равными единице, были установлены соотношения на коэффициенты взаимодействия, при которых система имеет однопараметрическое семейство предельных циклов. В данной работе проведено численно-аналитическое исследование полной системы на основе косимметричного подхода, позволившего определить соотношения на параметры, которым отвечают семейства равновесий. Получены различные варианты однопараметрических семейств и показано, что они могут состоять как из устойчивых, так и из неустойчивых равновесий. В случае матрицы взаимодействий с единичными коэффициентами найдены мультикосимметрия системы и двухпараметрическое семейство равновесий, существующее при любых коэффициентах роста. Для различных коэффициентов взаимодействия найдены значения параметров роста, при которых реализуются периодические режимы. Их принадлежность семейству предельных циклов подтверждена расчетом мультипликаторов. В широком диапазоне значений, нарушающих соотношения, при которых обеспечивается существование циклов, получается типичное при разрушении косимметрии медленное колебательное установление. Приведены примеры, когда фиксированному значению одного параметра роста отвечают два значения другого параметра, так что существуют разные семейства периодических режимов. Таким образом, установлена вариативность сценариев развития трехвидовой системы.

    Nguyen B.H., Ha D.T., Tsybulin V.G.
    Multistability for system of three competing species
    Computer Research and Modeling, 2022, v. 14, no. 6, pp. 1325-1342

    The study of the Volterra model describing the competition of three types is carried out. The corresponding system of first-order differential equations with a quadratic right-hand side, after a change of variables, reduces to a system with eight parameters. Two of them characterize the growth rates of populations; for the first species, this parameter is taken equal to one. The remaining six coefficients define the species interaction matrix. Previously, in the analytical study of the so-called symmetric model [May, Leonard, 1975] and the asymmetric model [Chi, Wu, Hsu, 1998] with growth factors equal to unity, relations were established for the interaction coefficients, under which the system has a one-parameter family of limit cycles. In this paper, we carried out a numerical-analytical study of the complete system based on a cosymmetric approach, which made it possible to determine the ratios for the parameters that correspond to families of equilibria. Various variants of oneparameter families are obtained and it is shown that they can consist of both stable and unstable equilibria. In the case of an interaction matrix with unit coefficients, a multicosymmetry of the system and a two-parameter family of equilibria are found that exist for any growth coefficients. For various interaction coefficients, the values of growth parameters are found at which periodic regimes are realized. Their belonging to the family of limit cycles is confirmed by the calculation of multipliers. In a wide range of values that violate the relationships under which the existence of cycles is ensured, a slow oscillatory establishment, typical of the destruction of cosymmetry, is obtained. Examples are given where a fixed value of one growth parameter corresponds to two values of another parameter, so that there are different families of periodic regimes. Thus, the variability of scenarios for the development of a three-species system has been established.

  3. Герасимов А.Н., Шпитонков М.И.
    Математическая модель системы «паразит – хозяин» с распределенным временем сохранения иммунитета
    Компьютерные исследования и моделирование, 2024, т. 16, № 3, с. 695-711

    Пандемия COVID-19 вызвала рост интереса к математическим моделям эпидемического процесса, так как только статистический анализ заболеваемости не позволяет проводить среднесрочное прогнозирование в условиях быстро меняющейся ситуации.

    Среди специфичных особенностей COVID-19, которые нужно учитывать в математических моделях, можно отметить гетерогенность возбудителя, неоднократные смены доминирующего варианта SARS-CoV-2 и относительную кратковременность постинфекционного иммунитета.

    В связи с этим были аналитически изучены решения системы дифференциальных уравнений для модели класса SIR с гетерогенной длительностью постинфекционного иммунитета, а также проведены численные расчеты для динамики системы при средней длительности постинфекционного иммунитета порядка года.

    Для модели класса SIR с гетерогенной длительностью постинфекционного иммунитета было доказано, что любое решение можно неограниченно продолжать по времени в положительную сторону без выхода за область определения системы.

    Для контактного числа $R_0 \leqslant 1$ все решения стремятся к единственномут ривиальному стационарному решению с нулевой долей инфицированных, а для $R_0 > 1$ кроме тривиального решения существует и нетривиальное стационарное решение с ненулевыми долями инфицированных и восприимчивых. Были доказаны существование и единственность нетривиального стационарного решения при $R_0 > 1$, а также доказано, что оно является глобальным аттрактором.

    Также для нескольких вариантов гетерогенности были вычислены собственные числа для скорости экспоненциальной сходимости малых отклонений от нетривиального стационарного решения.

    Получено, что при значениях контактного числа, соответствующих COVID-19, фазовая траектория имеет вид скручивающейся спирали с длиной периода порядка года.

    Это соответствует реальной динамике заболеваемости COVID-19, при которой после нескольких месяцев роста заболеваемости начинается период его падения. При этом второй волны заболеваемости меньшей амплитуды, что предсказывала модель, не наблюдалось, так как на протяжении 2020–2023 годов примерно каждые полгода появлялся новый вариант SARS-CoV-2, имеющий большую заразность, чем предыдущий, в результате чего новый вариант вытеснял предыдущий и становился доминирующим.

    Gerasimov A.N., Shpitonkov M.I.
    Mathematical model of the parasite – host system with distributed immunity retention time
    Computer Research and Modeling, 2024, v. 16, no. 3, pp. 695-711

    The COVID-19 pandemic has caused increased interest in mathematical models of the epidemic process, since only statistical analysis of morbidity does not allow medium-term forecasting in a rapidly changing situation.

    Among the specific features of COVID-19 that need to be taken into account in mathematical models are the heterogeneity of the pathogen, repeated changes in the dominant variant of SARS-CoV-2, and the relative short duration of post-infectious immunity.

    In this regard, solutions to a system of differential equations for a SIR class model with a heterogeneous duration of post-infectious immunity were analytically studied, and numerical calculations were carried out for the dynamics of the system with an average duration of post-infectious immunity of the order of a year.

    For a SIR class model with a heterogeneous duration of post-infectious immunity, it was proven that any solution can be continued indefinitely in time in a positive direction without leaving the domain of definition of the system.

    For the contact number $R_0 \leqslant 1$, all solutions tend to a single trivial stationary solution with a zero share of infected people, and for $R_0 > 1$, in addition to the trivial solution, there is also a non-trivial stationary solution with non-zero shares of infected and susceptible people. The existence and uniqueness of a non-trivial stationary solution for $R_0 > 1$ was proven, and it was also proven that it is a global attractor.

    Also, for several variants of heterogeneity, the eigenvalues of the rate of exponential convergence of small deviations from a nontrivial stationary solution were calculated.

    It was found that for contact number values corresponding to COVID-19, the phase trajectory has the form of a twisting spiral with a period length of the order of a year.

    This corresponds to the real dynamics of the incidence of COVID-19, in which, after several months of increasing incidence, a period of falling begins. At the same time, a second wave of incidence of a smaller amplitude, as predicted by the model, was not observed, since during 2020–2023, approximately every six months, a new variant of SARS-CoV-2 appeared, which was more infectious than the previous one, as a result of which the new variant replaced the previous one and became dominant.

  4. Прудников В.В., Прудников П.В., Поспелов Е.А.
    Компьютерное моделирование неравновесного критического поведения трехмерной модели Изинга
    Компьютерные исследования и моделирование, 2014, т. 6, № 1, с. 119-129

    Осуществлено численное моделирование с применением алгоритма тепловой бани неравновесного критического поведения в трехмерной как однородной, так и структурно неупорядоченной модели Изинга. На основе анализа двухвременной зависимости автокорреляционных функций и динамической восприимчивости для систем со спиновыми концентрациями p = 1,0, = 0,8 и 0,6 были выявлены эффекты старения c аномальным замедлением релаксации системы с ростом времени ожидания. Доказано нарушение флуктуационно-диссипативной теоремы и получены значения универсального предельного флуктуационно-диссипативного отношения для рассматриваемых систем. Показано, что увеличение концентрации дефектов структуры приводит к усилению эффектов старения.

    Prudnikov V.V., Prudnikov P.V., Pospelov E.A.
    Monte Carlo simulation of nonequilibrium critical behavior of 3D Ising model
    Computer Research and Modeling, 2014, v. 6, no. 1, pp. 119-129

    Investigation of influence of non-equilibrium initial states and structural disorder on characteristics of anomalous slow non-equilibrium critical behavior of three-dimensional Ising model is carried out. The unique ageing properties and violations of the equilibrium fluctuation-dissipation theorem are observed for considered pure and disordered systems which were prepared in high-temperature initial state and then quenched in their critical points. The heat-bath algorithm description of ageing properties in non-equilibrium critical behavior of three-dimensional Ising model with spin concentrations p = 1.0, p = 0.8, and 0.6 is realized. On the base of analysis of such two-time quantities as autocorrelation function and dynamical susceptibility were demonstrated the ageing effects and were calculated asymptotic values of universal fluctuation-dissipation ratio in these systems. It was shown that the presence of defects leads to aging gain.

    Просмотров за год: 11.
  5. Косых Н.Э., Свиридов Н.М., Савин С.З., Потапова Т.П.
    Компьютерный автоматизированный анализ в задачах распознавания медицинских изображений на примере сцинтиграфии
    Компьютерные исследования и моделирование, 2016, т. 8, № 3, с. 541-548

    С помощью программы, созданной на принципах компьютерного автоматизированного анализа, на планарных сцинтиграммах скелета больных диссеминированным раком молочной железы выделены очаги гиперфиксации радиофармпрепарата. Рассчитаны гистограммные параметры: средняя яркость, гладкость яркости, третий момент яркости, однородность яркости, энтропия яркости. Установлено, что в большинстве зон скелета значения гистограммных параметров в патологических очагах гиперфиксации преобладают над аналогичными значениями в физиологических. Наиболее часто в патологических очагах гиперфиксации, как на передних, так и на задних сцинтиграммах, фиксируется преобладание показателей яркости и гладкости яркости изображения по сравнению с аналогичными показателями физиологических очагов гиперфиксации радиофармпрепарата. Отдельные показатели гистограммного анализа используются в уточняющей диагностике метастазов при математическом моделировании и интерпретации данных остеосцинтиграфии.

    Kosykh N.E., Sviridov N.M., Savin S.Z., Potapova T.P.
    Computer aided analysis of medical image recognition for example of scintigraphy
    Computer Research and Modeling, 2016, v. 8, no. 3, pp. 541-548

    The practical application of nuclear medicine demonstrates the continued information deficiency of the algorithms and programs that provide visualization and analysis of medical images. The aim of the study was to determine the principles of optimizing the processing of planar osteostsintigraphy on the basis of сomputer aided diagnosis (CAD) for analysis of texture descriptions of images of metastatic zones on planar scintigrams of skeleton. A computer-aided diagnosis system for analysis of skeletal metastases based on planar scintigraphy data has been developed. This system includes skeleton image segmentation, calculation of textural, histogram and morphometrical parameters and the creation of a training set. For study of metastatic images’ textural characteristics on planar scintigrams of skeleton was developed the computer program of automatic analysis of skeletal metastases is used from data of planar scintigraphy. Also expert evaluation was used to distinguishing ‘pathological’ (metastatic) from ‘physiological’ (non-metastatic) radiopharmaceutical hyperfixation zones in which Haralick’s textural features were determined: autocorrelation, contrast, ‘forth moment’ and heterogeneity. This program was established on the principles of сomputer aided diagnosis researches planar scintigrams of skeletal patients with metastatic breast cancer hearths hyperfixation of radiopharmaceuticals were identified. Calculated parameters were made such as brightness, smoothness, the third moment of brightness, brightness uniformity, entropy brightness. It has been established that in most areas of the skeleton of histogram values of parameters in pathologic hyperfixation of radiopharmaceuticals predominate over the same values in the physiological. Most often pathological hyperfixation of radiopharmaceuticals as the front and rear fixed scintigramms prevalence of brightness and smoothness of the image brightness in comparison with those of the physiological hyperfixation of radiopharmaceuticals. Separate figures histogram analysis can be used in specifying the diagnosis of metastases in the mathematical modeling and interpretation bone scintigraphy. Separate figures histogram analysis can be used in specifying the diagnosis of metastases in the mathematical modeling and interpretation bone scintigraphy.

    Просмотров за год: 3. Цитирований: 3 (РИНЦ).
  6. Шокиров Ф.Ш.
    Взаимодействие бризера с доменной стенкой в двумерной О(3) нелинейной сигма-модели
    Компьютерные исследования и моделирование, 2017, т. 9, № 5, с. 773-787

    Методами численного моделирования проведено исследование процессов взаимодействия осциллирующего солитона (бризера) с 180-градусной доменной стенкой нееловского типа в рамках (2 + 1)-мерной суперсимметричной О(3) нелинейной сигма-модели. Целью настоящей работы является исследование нелинейной эволюции и устойчивости системы взаимодействующих локализованных динамических и топологических решений. Для построения моделей взаимодействия были использованы стационарные бризерные решения и решения в виде доменных стенок, полученные в рамках двумерного уравнения синус-Гордона добавлением специально подобранных возмущений вектору А3-поля в изотопическом пространстве блоховской сферы. При отсутствии внешнего магнитного поля нелинейные сигма-модели обладают формальной лоренц-инвариантностью, которая позволяет построить, в частности, движущиеся решения и провести полный анализ экспериментальных данных нелинейной динамики системы взаимодействующих солитонов. В настоящей работе на основе полученных движущихся локализованных решений построены модели налетающих и лобовых столкновений бризеров с доменной стенкой, где, в зависимости от динамических параметров системы, наблюдаются процессы столкновения и отражения солитонов друг от друга, дальнодействующие взаимодействия, а также распад осциллирующего солитона на линейные волны возмущений. В отличие от бризерного решения, обладающего динамикой внутренней степени свободы, интеграл энергии топологически устойчивого солитона во всех проведенных экспериментах сохраняется с высокой точностью. Для каждого типа взаимодействия определен интервал значений скорости движения сталкивающихся динамических и топологических солитонов в зависимости от частоты вращения вектора А3-поля в изотопическом пространстве. Численные модели построены на основе методов теории конечных разностных схем, использованием свойств стереографической проекции, с учетом теоретико-групповых особенностей конструкций класса O(N) нелинейных сигма-моделей теории поля. По периметру двумерной области моделирования установлены специально разработанные граничные условия, которые поглощают линейные волны возмущений, излучаемые взаимодействующими солитонными полями. Таким образом, осуществлено моделирование процессов взаимодействия локализованных решений в бесконечном двумерном фазовом пространстве. Разработан программный модуль, позволяющий провести комплексный анализ эволюции взаимодействующих решений нелинейных сигма-моделей теории поля, с учетом ее групповых особенностей в двумерном псевдоевклидовом пространстве. Проведен анализ изоспиновой динамики, а также плотности и интеграла энергии системы взаимодействующих динамических и топологических солитонов.

    Shokirov F.S.
    Interaction of a breather with a domain wall in a two-dimensional O(3) nonlinear sigma model
    Computer Research and Modeling, 2017, v. 9, no. 5, pp. 773-787

    By numerical simulation methods the interaction processes of oscillating soliton (breather) with a 180-degree Neel domain wall in the framework of a (2 + 1)-dimensional supersymmetric O(3) nonlinear sigma model is studied. The purpose of this paper is to investigate nonlinear evolution and stability of a system of interacting localized dynamic and topological solutions. To construct the interaction models, were used a stationary breather and domain wall solutions, where obtained in the framework of the two-dimensional sine-Gordon equation by adding specially selected perturbations to the A3-field vector in the isotopic space of the Bloch sphere. In the absence of an external magnetic field, nonlinear sigma models have formal Lorentz invariance, which allows constructing, in particular, moving solutions and analyses the experimental data of the nonlinear dynamics of an interacting solitons system. In this paper, based on the obtained moving localized solutions, models for incident and head-on collisions of breathers with a domain wall are constructed, where, depending on the dynamic parameters of the system, are observed the collisions and reflections of solitons from each other, a long-range interactions and also the decay of an oscillating soliton into linear perturbation waves. In contrast to the breather solution that has the dynamics of the internal degree of freedom, the energy integral of a topologically stable soliton in the all experiments the preserved with high accuracy. For each type of interaction, the range of values of the velocity of the colliding dynamic and topological solitons is determined as a function of the rotation frequency of the A3-field vector in the isotopic space. Numerical models are constructed on the basis of methods of the theory of finite difference schemes, using the properties of stereographic projection, taking into account the group-theoretical features of constructions of the O(N) class of nonlinear sigma models of field theory. On the perimeter of the two-dimensional modeling area, specially developed boundary conditions are established that absorb linear perturbation waves radiated by interacting soliton fields. Thus, the simulation of the interaction processes of localized solutions in an infinite two-dimensional phase space is carried out. A software module has been developed that allows to carry out a complex analysis of the evolution of interacting solutions of nonlinear sigma models of field theory, taking into account it’s group properties in a two-dimensional pseudo-Euclidean space. The analysis of isospin dynamics, as well the energy density and energy integral of a system of interacting dynamic and topological solitons is carried out.

    Просмотров за год: 6.
  7. Коваленко С.Ю., Юсубалиева Г.М.
    Задача выживаемости для математической модели терапии глиомы с учетом гематоэнцефалического барьера
    Компьютерные исследования и моделирование, 2018, т. 10, № 1, с. 113-123

    В статье предлагается математическая модель терапии глиомы с учетом гематоэнцефалического барьера, радиотерапии и терапии антителами. Проведена оценка параметров по экспериментальным данным, а также оценка влияния значений параметров на эффективность лечения и прогноз болезни. Исследованы возможные варианты последовательного применения радиотерапии и воздействия антител. Комбинированное применение радиотерапии с внутривенным введением $mab$ $Cx43$ приводит к потенцированию терапевтического эффекта при глиоме. Радиотерапия должна предшествовать химиотерапии, поскольку радиовоздействие уменьшает барьерную функцию эндотелиальных клеток. Эндотелиальные клетки сосудовмоз га плотно прилегают друг к другу. Между их стенками образуются так называемые плотные контакты, роль которых во беспечении ГЭБ состоит в том, что они предотвращают проникновение в ткань мозга различных нежелательных веществ из кровеносного русла. Плотные контакты между эндотелиальными клетками блокируют межклеточный пассивный транспорт.

    Математическая модель состоит из непрерывной части и дискретной. Экспериментальные данные объема глиомы показывают следующую интересную динамику: после прекращения радиовоздействия рост опухоли не возобновляется сразу же, а существует некоторый промежуток времени, в течение которого глиома не растет. Клетки глиомы разделены на две группы. Первая группа — живые клетки, делящиеся с максимально возможной скоростью. Вторая группа — клетки, пострадавшие от радиации. В качестве показателя здоровья системы гематоэнцефалического барьера выбрано отношение количества клеток ГЭБ вт екущий момент к количеству клеток всо стоянии покоя, то есть всре днем здоровом состоянии.

    Непрерывная часть модели включает в себя описание деления обоих типов клеток глиомы, восстановления клеток ГЭБ, а также динамику лекарственного средства. Уменьшение количества хорошо функционирующих клеток ГЭБ облегчает проникновение лекарственного средства к клеткам мозга, то есть усиливает действие лекарства. При этом скорость деления клеток глиомы не увеличивается, поскольку ограничена не дефицитом питательных веществ, доступных клеткам, а внутренними механизмами клетки. Дискретная часть математической модели включает в себя оператор радиовоздействия, который применяется к показателю ГЭБ и к глиомным клеткам.

    В рамках математической модели лечения раковой опухоли (глиомы) решается задача оптимального управления с фазовыми ограничениями. Состояние пациента описывается двумя переменными: объемом опухоли и состоянием ГЭБ. Фазовые ограничения очерчивают некоторую область в пространстве этих показателей, которую мы называем областью выживаемости. Наша задача заключается в поиске таких стратегий лечения, которые минимизируют время лечения, максимизируют время отдыха пациента и при этом позволяют показателям состояния не выходить за разрешенные пределы. Поскольку задача выживаемости состоит в максимизации времени жизни пациента, то ищутся именно такие стратегии лечения, которые возвращают показатели в исходное положение (и мы видим на графиках периодические траектории). Периодические траектории говорят о том, что смертельно опасная болезнь переведена враз ряд хронических.

    Kovalenko S.Yu., Yusubalieva G.M.
    Survival task for the mathematical model of glioma therapy with blood-brain barrier
    Computer Research and Modeling, 2018, v. 10, no. 1, pp. 113-123

    The paper proposes a mathematical model for the therapy of glioma, taking into account the blood-brain barrier, radiotherapy and antibody therapy. The parameters were estimated from experimental data and the evaluation of the effect of parameter values on the effectiveness of treatment and the prognosis of the disease were obtained. The possible variants of sequential use of radiotherapy and the effect of antibodies have been explored. The combined use of radiotherapy with intravenous administration of $mab$ $Cx43$ leads to a potentiation of the therapeutic effect in glioma.

    Radiotherapy must precede chemotherapy, as radio exposure reduces the barrier function of endothelial cells. Endothelial cells of the brain vessels fit tightly to each other. Between their walls are formed so-called tight contacts, whose role in the provision of BBB is that they prevent the penetration into the brain tissue of various undesirable substances from the bloodstream. Dense contacts between endothelial cells block the intercellular passive transport.

    The mathematical model consists of a continuous part and a discrete one. Experimental data on the volume of glioma show the following interesting dynamics: after cessation of radio exposure, tumor growth does not resume immediately, but there is some time interval during which glioma does not grow. Glioma cells are divided into two groups. The first group is living cells that divide as fast as possible. The second group is cells affected by radiation. As a measure of the health of the blood-brain barrier system, the ratios of the number of BBB cells at the current moment to the number of cells at rest, that is, on average healthy state, are chosen.

    The continuous part of the model includes a description of the division of both types of glioma cells, the recovery of BBB cells, and the dynamics of the drug. Reducing the number of well-functioning BBB cells facilitates the penetration of the drug to brain cells, that is, enhances the action of the drug. At the same time, the rate of division of glioma cells does not increase, since it is limited not by the deficiency of nutrients available to cells, but by the internal mechanisms of the cell. The discrete part of the mathematical model includes the operator of radio interaction, which is applied to the indicator of BBB and to glial cells.

    Within the framework of the mathematical model of treatment of a cancer tumor (glioma), the problem of optimal control with phase constraints is solved. The patient’s condition is described by two variables: the volume of the tumor and the condition of the BBB. The phase constraints delineate a certain area in the space of these indicators, which we call the survival area. Our task is to find such treatment strategies that minimize the time of treatment, maximize the patient’s rest time, and at the same time allow state indicators not to exceed the permitted limits. Since the task of survival is to maximize the patient’s lifespan, it is precisely such treatment strategies that return the indicators to their original position (and we see periodic trajectories on the graphs). Periodic trajectories indicate that the deadly disease is translated into a chronic one.

    Просмотров за год: 14.
  8. Королева М.Р., Мищенкова О.В., Редер Т., Тененев В.А., Чернова А.А.
    Численное моделирование процесса срабатывания предохранительного клапана
    Компьютерные исследования и моделирование, 2018, т. 10, № 4, с. 495-509

    Рассматриваются вопросы построения математической модели процесса срабатывания пружинного предохранительного клапана прямого действия, в том числе и вопросыоб основания физически корректной величинына чального подъема диска при решении сопряженной задачи о движении диска в рабочем объеме клапана для газовых сред. Проводится обзор существующих подходов и методов решения данного типа задач. Приводятся постановка задачи о срабатывании клапана при повышении давления в резервуаре и математическая модель процесса срабатывания клапана. Особое внимание уделяется вопросам связывания физических подзадач. Описываются используемые методы, численные схемы и алгоритмы. Математическое моделирование проводится на основе фундаментальной системыдиф ференциальных уравнений движения вязкого сжимаемого газа, совместно с уравнением движения диска. В осесимметричной постановке решение рассматриваемой задачи строится численно с использованием метода конечных объемов. Сопоставляются результаты решения задачи о срабатывании предохранительного клапана, полученные с использованием вязкой модели и модели течения идеального газа. В невязкой постановке задача решается с использованием схемы Годунова, реализуемой в рамках авторского кода, а в вязкой постановке — на основе метода Курганова–Тадмора, реализуемого в рамках open source пакета OpenFOAM. Проводится сравнение результатов двух расчетов. В результате выполненных расчетов была получена зависимость высоты подъема диска от времени, которая сопоставляется с экспериментальными данными. Приводятся распределение давления газа по поверхности диска, а также профили скорости в поперечных сечениях зазора для различных высот подъема диска. Показывается, что величина начального подъема диска не влияет на характер течения газа и динамику подвижной части клапана, что может существенно сократить время расчета полного цикла работы клапана с момента его открытия до закрытия при понижении давления ниже установленного уровня. Для проверки адекватности и корректности используемых численных схем проводится моделирование процесса срабатывания клапана в рамках метода Годунова для невязкого газа. Полученные данные хорошо коррелируются между собой, что свидетельствует как о корректности сформулированной математической модели процесса срабатывания клапана, так и о возможности применения для описания динамики предохранительных клапанов модели невязкого газа.

    Koroleva M.R., Mishenkova O.V., Raeder T., Tenenev V.A., Chernova A.A.
    Numerical simulation of the process of activation of the safety valve
    Computer Research and Modeling, 2018, v. 10, no. 4, pp. 495-509

    The conjugate problem of disk movement into gas-filled volume of the spring-type safety valve is solved. The questions of determining the physically correct value of the disk initial lift are considered. The review of existing approaches and methods for solving of such type problems is conducted. The formulation of the problem about the valve actuation when the vessel pressure rises and the mathematical model of the actuation processes are given. A special attention to the binding of physical subtasks is paid. Used methods, numerical schemes and algorithms are described. The mathematical modeling is performed on basе the fundamental system of differential equations for viscous gas movement with the equation for displacement of disk valve. The solution of this problem in the axe symmetric statement is carried out numerically using the finite volume method. The results obtained by the viscous and inviscid models are compared. In an inviscid formulation this problem is solved using the Godunov scheme, and in a viscous formulation is solved using the Kurganov – Tadmor method. The dependence of the disk displacement on time was obtained and compared with the experimental data. The pressure distribution on the disk surface, velocity profiles in the cross sections of the gap for different disk heights are given. It is shown that a value of initial drive lift it does not affect on the gas flow and valve movement part dynamic. It can significantly reduce the calculation time of the full cycle of valve work. Immediate isotahs for various elevations of the disk are presented. The comparison of jet flow over critical section is given. The data carried out by two numerical experiments are well correlated with each other. So, the inviscid model can be applied to the numerical modeling of the safety valve dynamic.

    Просмотров за год: 34. Цитирований: 1 (РИНЦ).
  9. Зейде К.М., Вардугина А.Ю., Марвин С.В.
    Быстрый метод анализа возмущения электромагнитного поля малыми сферическими рассеивателями
    Компьютерные исследования и моделирование, 2020, т. 12, № 5, с. 1039-1050

    В данной работе рассматривается особая аппроксимация обобщенной формулы возмущения электромагнитного поля семейством электрически малых сферических неоднородностей. Задача, рассматриваемая в настоящей работе, возникает во множестве приложений технической электродинамики, радиолокации, подповерхностного зондирования и дефектоскопии. В общем случае она формулируются следующим образом: в некоторой точке возмущенного пространства необходимо определить амплитуду электромагнитного поля. Возмущение электромагнитных волн вызывается семейством электрически малых распределенных в пространстве рассеивателей. Источник электромагнитных волн располагается также в возмущенном пространстве. Задача решается введением допущения для дальнего поля рассеяния и через формулировку для эффективной поверхности рассеяния неоднородности. Это, в свою очередь, позволяет существенно убыстрить вычисления возмущенного электромагнитного поля семейством идентичных друг другу сферических неоднородностей с произвольными электрофизическими параметрами. Аппроксимация проверяется путем сравнения получаемых результатов с решением обобщенной формулы для возмущения электромагнитного поля. В данной работе рассматривается только прямая задача рассеяния, тем самым все параметры рассеивателей являются известными. В этом контексте можно утверждать, что формулировка соответствует корректно поставленной задаче и не подразумевает решение интегрального уравнения в обобщенной формуле. Одной из особенностью предложенного алгоритма является выделение характерной плоскости на границе пространства. Все точки наблюдения за состоянием системы принадлежат этой плоскости. Семейство рассеивателей располагается внутри области наблюдения, которая формируется этой поверхностью. Данный подход, кроме всего прочего, позволяет снять ряд ограничений на использование обобщенной формулировки для возмущенного электрического поля, например требование по удаленности неоднородностей друг от друга в пространстве распространения электромагнитных волн. Учет вклада каждого рассеивателя в семействе неоднородностей производится путем перехода к значениям их эффективных поверхностей рассеяния и дальнейшего их суммирования с учетом возникающих волновых эффектов, таких как интерференция и многократное отражение. В статье приводятся и описываются ограничения предложенного метода, а также рассматриваются возможные его модификации и дополнения.

    Zeyde K.M., Vardugina A.Y., Marvin S.V.
    Fast method for analyzing the electromagnetic field perturbation by small spherical scatterer
    Computer Research and Modeling, 2020, v. 12, no. 5, pp. 1039-1050

    In this work, we consider a special approximation of the general perturbation formula for the electromagnetic field by a set of electrically small inhomogeneities located in the domain of interest. The problem considered in this paper arises in many applications of technical electrodynamics, radar technologies and subsurface remote sensing. In the general case, it is formulated as follows: at some point in the perturbed domain, it is necessary to determine the amplitude of the electromagnetic field. The perturbation of electromagnetic waves is caused by a set of electrically small scatterers distributed in space. The source of electromagnetic waves is also located in perturbed domain. The problem is solved by introducing the far field approximation and through the formulation for the scatterer radar cross section value. This, in turn, allows one to significantly speed up the calculation process of the perturbed electromagnetic field by a set of a spherical inhomogeneities identical to each other with arbitrary electrophysical parameters. In this paper, we consider only the direct scattering problem; therefore, all parameters of the scatterers are known. In this context, it may be argued that the formulation corresponds to the well-posed problem and does not imply the solution of the integral equation in the generalized formula. One of the features of the proposed algorithm is the allocation of a characteristic plane at the domain boundary. All points of observation of the state of the system belong to this plane. Set of the scatterers is located inside the observation region, which is formed by this surface. The approximation is tested by comparing the results obtained with the solution of the general formula method for the perturbation of the electromagnetic field. This approach, among other things, allows one to remove a number of restrictions on the general perturbation formula for E-filed analysis.

  10. Митрофанова А.Ю., Темная О.С., Сафин А.Р., Кравченко О.В., Никитов С.А.
    Моделирование усиления спиновых волн в ферромагнитных пленках с помощью применения метода характеристик к нелинейному уравнению переноса
    Компьютерные исследования и моделирование, 2022, т. 14, № 4, с. 795-803

    В работе приведен анализ нелинейного уравнения переноса огибающей магнитостатической спиновой волны (МСВ) с учетом переноса спинового момента методом характеристик. Продемонстрирована зависимость амплитуды МСВ от коэффициента нелинейности. На фазовых портретах наглядно продемонстрирована зависимость искомой функции от коэффициента нелинейности. Посредством исследования характера эволюции начального профиля волны методом фазовой плоскости установлено, что действительная и мнимая части волны осциллируют. Показан переход траекторий из неустойчивого фокуса в предельный цикл, который соответствует осцилляции действительной и мнимой частей. Для амплитуды волны такой переход характеризуется ее усилением или затуханием (в зависимости от коэффициента нелинейности и выбранных начальных условий) до некоторого порогового значения. Показано, что время переходного процесса от усиления (затухания) к стабилизации амплитуды также зависит от параметра нелинейности. Выяснено, что на интервале усиления амплитуды спиновой волны происходит уменьшение времени переходного процесса, а большим параметрам нелинейности соответствуют меньшие значения амплитуды.

    Mitrofanova A.Y., Temnaya O.S., Safin A.R., Kravchenko O.V., Nikitov S.A.
    Simulation of spin wave amplification using the method of characteristics to the transport equation
    Computer Research and Modeling, 2022, v. 14, no. 4, pp. 795-803

    The paper presents an analysis of the nonlinear equation of spin wave transport by the method of characteristics. The conclusion of a new mathematical model of spin wave propagation is presented for the solution of which the characteristic is applied. The behavior analysis of the behavior of the real and imaginary parts of the wave and its amplitude is performed. The phase portraits demonstrate the dependence of the desired function on the nonlinearity coefficient. It is established that the real and imaginary parts of the wave oscillate by studying the nature of the evolution of the initial wave profile by the phase plane method. The transition of trajectories from an unstable focus to a limiting cycle, which corresponds to the oscillation of the real and imaginary parts, is shown. For the amplitude of the wave, such a transition is characterized by its amplification or attenuation (depending on the nonlinearity coefficient and the chosen initial conditions) up to a certain threshold value. It is shown that the time of the transition process from amplification (attenuation) to stabilization of the amplitude also depends on the nonlinearity parameter. It was found out that at the interval of amplification of the amplitude of the spin wave, the time of the transition process decreases, and lower amplitude values correspond to higher parameters of nonlinearity.

Страницы: « первая предыдущая следующая последняя »

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.