Все выпуски
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Мультифрактальные и энтропийные статистики сейсмического шума на Камчатке в связи с сильнейшими землетрясениями
Компьютерные исследования и моделирование, 2023, т. 15, № 6, с. 1507-1521В основу изучения свойств сейсмического шума на Камчатке положена идея, что шум является важным источником информации о процессах, предшествующих сильным землетрясениям. Рассматривается гипотеза, что увеличение сейсмической опасности сопровождается упрощением статистической структуры сейсмического шума и увеличением пространственных корреляций его свойств. В качестве статистик, характеризующих шум, использованы энтропия распределения квадратов вейвлет-коэффициентов, ширина носителя мультифрактального спектра сингулярности и индекс Донохо–Джонстона. Значения этих параметров отражают сложность: если случайный сигнал близок по своим свойствам к белому шуму, то энтропия максимальна, а остальные два параметра минимальны. Используемые статистики вычисляются для шести кластеров станций. Для каждого кластера станций вычисляются ежесуточные медианы свойств шума в последовательных временных окнах длиной 1 сутки, в результате чего образуется 18-мерный (3 свойства и 6 кластеров станций) временной ряд свойств. Для выделения общих свойств изменения параметров шума используется метод главных компонент, который применяется для каждого кластера станций, в результате чего информация сжимается до 6-мерного ежесуточного временного ряда главных компонент. Пространственные когерентности шума оцениваются как совокупность максимальных попарных квадратичных спектров когерентности между главным компонентами кластеров станций в скользящем временном окне длиной 365 суток. С помощью вычисления гистограмм распределения номеров кластеров, в которых достигаются минимальные и максимальные значения статистик шума в скользящем временном окне длиной 365 суток, оценивалась миграция областей сейсмической опасности в сопоставлении с сильными землетрясениями с магнитудой не менее 7.
Ключевые слова: сейсмический шум, вейвлеты, энтропия, мультифракталы, многомерный временной ряд, главные компоненты, когерентность. -
Использование сверточных нейронных сетей для прогнозирования скоростей транспортного потока на дорожном графе
Компьютерные исследования и моделирование, 2018, т. 10, № 3, с. 359-367Просмотров за год: 36.Краткосрочное прогнозирование потока трафика является однойиз основных задач моделирования транспортных систем, основное назначение которой — контроль дорожного движения, сообщение об авариях, избежание дорожных пробок за счет знания потока трафика и последующего планирования транспортировки. Существует два типа подходов для решения этой задачи: математическое моделирование трафика и модель с использованием количественных данных трафика. Тем не менее большинство пространственно-временных моделейст радают от высокой математической сложности и низкой эффективности. Искусственные нейронные сети, один из видных подходов второго типа, показывают обещающие результаты в моделировании динамики транспортнойс ети. В данной работе представлена архитектура нейронной сети, используемойдля прогнозирования скоростейт ранспортного потока на графе дорожной сети. Модель основана на объединении рекуррентнойней ронной сети и сверточнойней ронной сети на графе, где рекуррентная нейронная сеть используется для моделирования временных зависимостей, а сверточная нейронная сеть — для извлечения пространственных свойств из трафика. Для получения предсказанийна несколько шагов вперед используется архитектура encoder-decoder, позволяющая уменьшить накопление шума из-за неточных предсказаний. Для моделирования сложных зависимостей мы используем модель, состоящую из нескольких слоев. Нейронные сети с глубокойархитек туройсло жны для тренировки; для ускорения процесса тренировки мы используем skip-соединения между каждым слоем, так что каждыйслой учит только остаточную функцию по отношению к предыдущему слою. Полученная объединенная нейронная сеть тренировалась на необработанных данных с сенсоров транспортного потока из сети шоссе в США с разрешением в 5 минут. 3 метрики — средняя абсолютная ошибка, средняя относительная ошибка, среднеквадратическая ошибка — использовались для оценки качества предсказания. Было установлено, что по всем метрикам предложенная модель имеет более низкую погрешность предсказания по сравнению с ранее опубликованными моделями, такими как Vector Auto Regression, Long Short-Term Memory и Graph Convolution GRU.
-
Методы и задачи кинетического подхода для моделирования биологических структур
Компьютерные исследования и моделирование, 2018, т. 10, № 6, с. 851-866Биологическая структура рассматривается как открытая неравновесная система, свойства которой могут быть описаны на основе кинетических уравнений. Ставятся новые задачи с неравновесными граничными условиями на границе, причем неравновесное состояние (распределение) преобразуется постепенно в равновесное состояние вниз по течению. Область пространственной неоднородности имеет масштаб, зависящий от скорости переноса вещества в открытой системе и характерного времени метаболизма. В предлагаемом приближении внутренняя энергия движения молекул много меньше энергии поступательного движения; в других терминах: кинетическая энергия средней скорости крови существенно выше, чем энергия хаотического движения частиц в крови. Задача о релаксации в пространстве моделирует живую систему, поскольку сопоставляет области термодинамической неравновесности и неоднородности. Поток энтропии в изучаемой системе уменьшается вниз по потоку, что соответствует общим идеям Э. Шрёдингера о том, что живая система «питается» негэнтропией. Вводится величина, определяющая сложность биосистемы, — это разность между величинами неравновесной кинетической энтропии и равновесной энтропией в каждой пространственной точке, затем проинтегрированная по всему пространству. Решения задач о пространственной релаксации позволяют высказать суждение об оценке размера биосистем в целом как областей неравновесности. Результаты сравниваются с эмпирическими данными, в частности для млекопитающих (размеры животных тем больше, чем меньше удельная энергия метаболизма). Что воспроизводится в предлагаемой кинетической модели, поскольку размеры неравновесной области больше в той системе, где меньше скорость реакции, или в терминах кинетического подхода – чем больше время релаксации характерного взаимодействия между молекулами. Подход применяется для обсуждения характеристик и отдельного органа живой системы, а именно зеленого листа. Рассматриваются проблемы старения как деградации открытой неравновесной системы. Аналогия связана со структурой: для замкнутой системы происходит стремление к равновесию структуры для одних и тех же молекул, в открытой системе происходит переход к равновесию частиц, которые меняются из-за метаболизма. Соответственно, выделяются два существенно различных масштаба времени, отношение которых является приблизительно постоянным для различных видов животных. В предположении существования двух этих временных шкал кинетическое уравнение расщепляется на два уравнения, описывающих метаболическую (стационарную) и «деградационную» (нестационарную) части процесса.
Ключевые слова: неравновесная открытая система, энтропия, кинетические уравнения, старение биосистем.Просмотров за год: 31. -
Экспериментальное выявление организации мысленных вычислений человека на основе алгебр разной ассоциативности
Компьютерные исследования и моделирование, 2019, т. 11, № 2, с. 311-327Работа продолжает исследования по способности человека повышать производительность обработки информации, используя параллельную работу или повышение быстродействия анализаторов. Человек получает серию задач, решение которых требует переработки известного количества информации. Регистрируются время и правильность решения. По правильно решенным задачам определяется зависимость среднего времени решения от объема информации в задаче. В соответствии с предложенной ранее методикой задачи содержат вычисления выражений в двух алгебрах, одна из которых ассоциативная, а другая неассоциативная. Для облегчения работы испытуемых в опыте были использованы образные графические изображения элементов алгебры. Неассоциативные вычисления реализовывались в форме игры «Камень, ножницы, бумага». Надо было определить символ-победитель в длинной строке этих рисунков, считая, что они возникают последовательно слева направо и играют с предыдущим символом победителем. Ассоциативные вычисления были основаны на распознавании рисунков из конечного набора простых изображений. Надо было определить, какого рисунка из этого набора в строке не хватает, либо констатировать, что все рисунки присутствуют. В каждой задаче отсутствовало не более одной картинки. Вычисления в ассоциативной алгебре допускают параллельный счет, а при отсутствии ассоциативности возможны только последовательные вычисления. Поэтому анализ времени решения серий задач позволяет выявить последовательную равномерную, последовательную ускоренную и параллельную стратегии вычислений. В экспериментах было установлено, что для решения неассоциативных задач все испытуемые применяли равномерную последовательную стратегию. Для ассоциативных задач все испытуемые использовали параллельные вычисления, а некоторые использовали параллельные вычисления с ускорением по мере роста сложности задачи. Небольшая часть испытуемых при большой сложности, судя по эволюции времени решения, дополняла параллельный счет последовательным этапом вычислений (возможно, для контроля решения). Разработан специальный метод оценки скорости переработки входной информации человеком. Он позволил оценить уровень параллельности расчета в ассоциативных задачах. Была зарегистрирована параллельность уровня от двух до трех. Характерная скорость обработки информации в последовательном случае (примерно полтора символа в секунду) вдвое меньше типичной скорости распознавания изображений человеком. Видимо, разница времени обработки расходуется собственно на процесс вычислений. Для ассоциативной задачи в случае минимального объема информации время решения либо близко к неассоциативному случаю, либо меньше до двух раз. Вероятно, это связано с тем, что для малого числа символов распознавание практически исчерпывает вычисления для использованной неассоциативной задачи.
Ключевые слова: параллельный счет, инженерная психология, тестирование, алгебра, ассоциативность, распознавание зрительных образов.Просмотров за год: 16. -
Компьютерное и физико-химическое моделирование эволюции фрактального коррозионного фронта
Компьютерные исследования и моделирование, 2021, т. 13, № 1, с. 105-124Коррозионные повреждения металлов и сплавов — одна из основных проблем прочности и долговечности металлических конструкций и изделий, эксплуатируемых в условиях контакта с химически агрессивными средами. В последнее время возрастает интерес к компьютерному моделированию эволюции коррозионных повреждений, особенно питтинговой коррозии, для более глубокого понимания коррозионного процесса, его влияния на морфологию, физико-химические свойства поверхности и механическую прочность и долговечность материала. Это обусловлено в основном сложностью аналитических и высокой стоимостью экспериментальных in situ исследований реальных коррозионных процессов. Вместе с тем вычислительные мощности современных компьютеров позволяют с высокой точностью рассчитывать коррозию лишь на относительно небольших участках поверхности. Поэтому разработка новых математических моделей, позволяющих рассчитывать большие области для прогнозирования эволюции коррозионных повреждений металлов, является в настоящее время актуальной проблемой.
В настоящей работе с помощью разработанной компьютерной модели на основе клеточного автомата исследовали эволюцию коррозионного фронта при взаимодействии поверхности поликристаллического металла с жидкой агрессивной средой. Зеренная структура металла задавалась с помощью многоугольников Вороного, используемых для моделирования поликристаллических сплавов. Коррозионное разрушение осуществлялось при помощи задания вероятностной функции перехода между ячейками клеточного автомата. Принималось во внимание, что коррозионная прочность зерен неодинакова вследствие кристаллографической анизотропии. Показано, что это приводит к формированию шероховатой фазовой границы в ходе коррозионного процесса. Снижение концентрации активных частиц в растворе агрессивной среды в ходе протекающей химической реакции приводит к затуханию коррозии за конечное число итераций расчета. Установлено, что конечная фазовая граница имеет фрактальную структуру с размерностью 1.323 ± 0.002, близкой к размерности фронта градиентной перколяции, что хорошо согласуется с фрактальной размерностью фронта травления поликристаллического алюминий-магниевого сплава АМг6 концентрированным раствором соляной кислоты. Показано, что коррозия поликристаллического металла в жидкой агрессивной среде представляет новый пример топохимического процесса, кинетика которого описывается теорией Колмогорова–Джонсона–Мейла–Аврами.
-
Электронный аналог однородной ДНК
Компьютерные исследования и моделирование, 2017, т. 9, № 5, с. 789-798Известно, что внутренняя подвижность молекул ДНК играет важную роль в функционировании этих молекул. Этим объясняется большой интерес исследователей к изучению особенностей внутренней динамики ДНК. Сложность, трудоемкость и дороговизна проведения исследований в этой области стимулируют поиск и создание более простых физических аналогов, удобных для имитации различных динамических режимов, возможных в ДНК. Одно из направлений такого поиска связано с использованием механического аналога ДНК — цепочки связанных маятников. В этой модели маятники имитируют азотистые основания, горизонтальная нить, на которой подвешены маятники, имитирует сахаро-фосфатную цепочку, а гравитационное поле имитирует поле, наводимое второй нитью ДНК. Простота и наглядность — основные достоинства механического аналога. Однако модель становится слишком громоздкой в тех случаях, когда необходимо моделировать длинные (более тысячи пар оснований) последовательности ДНК. Другое направление связано с использованием электронного аналога молекулы ДНК, который лишен недостатков механической модели. В данной работе мы исследуем возможность использования в качестве электронного аналога джозефсоновскую линию. Мы рассчитали коэффициенты прямых и непрямых преобразований для простого случая однородной, синтетической ДНК, последовательность которой содержит только аденины. Внутренняя подвижности молекулы ДНК моделировалась уравнением синус-Гордона для угловых колебаний азотистых оснований, принадлежащих одной из двух полинуклеотидных цепей ДНК. При этом вторая полинуклеотидная цепь моделировалась как некоторое усредненное поле, в котором происходят эти колебания. Преобразование, позволяющее перейти от ДНК к электронному аналогу, было получено двумя способами. Первый включает две стадии: (1) переход от ДНК к механическому аналогу (цепочке связанных маятников) и (2) переход от механического аналога к электронному (линии Джозефсона). Второй способ прямой. Он включает только одну стадию — прямой переход от ДНК к электронному аналогу.
Ключевые слова: моделирование динамики ДНК, механический аналог ДНК, электронный аналог ДНК, линия Джозефсона.Просмотров за год: 9. -
Математическое моделирование тенсегрити-роботов с жесткими стержнями
Компьютерные исследования и моделирование, 2020, т. 12, № 4, с. 821-830В работе рассматривается вопрос математического моделирования робототехнических структур на основе напряженно-связных конструкций, известных в англоязычных источниках как tensegrity structures (тенсегрити-структуры). Определяющим свойством таких конструкций является то, что образующие их элементы работают только на сжатие или растяжение, что позволяет использовать материалы и конструктивные решения для выполнения этих элементов, минимизирующие вес структуры, сохраняя ее прочность.
Тенсегрити-структуры отличаются рядом свойств, важных для коллаборативной робототехники, задач разведывания и движения в недетерминированных средах: естественной податливостью, компактностью при транспортировке, малым весом при значительной удароустойчивости и жесткости. При этом открытыми остаются многие вопросы управления такими структурами, что в свою очередь связано со сложностью описания их динамики.
В работе предложен подход к описанию и составлению динамических уравнений для таких конструкций, основанный на описании динамики второго порядка декартовых координат элементов структуры (стержней), динамики первого порядка для угловых скоростей стержней и динамики первого порядка для кватернионов, используемых для описания ориентации стержней. Предложен подход к численному решению составленных динамических уравнений. Предложенные методы реализованы в виде свободно распространяемого математического пакета с открытым исходным кодом.
В работе продемонстрировано, как разработанный программный комплекс может использоваться для моделирования динамики и определения режимов работы тенсегрити-структур. Рассмотрен пример тенсегрити-структуры с тремя жесткими стержнями и девятью упругими элементами, работающими на растяжение (тросами), движущейся в невесомости. Показаны особенности динамики структуры в процессе достижения положения равновесия, определены области начальных значений параметров ориентации стержней, при которых структура работает в штатном режиме, и значения, при которых растяжение тросов превышает выбранное критическое значение или происходит провисание тросов. Полученные результаты могут непосредственно использоваться при анализе характера пассивных динамических движений роботов, основанных на трехзвенной тенсегрити-структуре, рассмотренный в работе; предложенные методы моделирования и разработанное программное обеспечение пригодны для моделирования значительного многообразия тенсегрити-роботов.
-
Исследование влияния миграции на социальную напряженность с использованием модели сплошной социальной стратификации
Компьютерные исследования и моделирование, 2022, т. 14, № 3, с. 661-673Фоновая социальная напряженность общества может быть количественно оценена по различным статистическим индикаторам. Модели, прогнозирующие динамику социальной напряженности, успешно применяются для описания различных социальных процессов. Когда количество рассматриваемых групп общества мало, динамику соответствующих индикаторов можно описать при помощи системы обыкновенных дифференциальных уравнений. При увеличении количества взаимодействующих элементов резко возрастает сложность задач, что существенно затрудняет их аналитическое исследование. Модель сплошной социальной стратификации получаетсяв результате перехода от дискретной цепочки взаимодействующих социальных слоев к их непрерывному распределению на некотором интервале, то есть перехода к модели сплошной среды. В этом случае напряженность распространяется локально, но в действительности элита общества влияет на все слои через средства массовой информации, а также интернет позволяет влиять всем группам на другие. Эти факторы можно учесть через слагаемое модели, описывающее негативное внешнее воздействие. В настоящей работе предложена модель сплошной социальной стратификации, описывающая динамику системы из двух социумов, связанных через процесс миграции населения. Предполагается, что из социального слоя системы-донора с наибольшей напряженностью происходит отток людей, переносящих свою напряженность в систему-акцептор, причем при миграции люди попадают в более бедные слои принимающего общества. Рассматриваетсяслуч ай пространственно однородных коэффициентов, что соответствует частному случаю небольшого социума. При помощи метода конечных объемов построена пространственнаяди скретизация задачи, корректно отражающая конечную скорость распространения напряженности в обществе. Выполнена проверка выбранной дискретизации путем сравненияч исленного решения с точными решениями вспомогательного уравнения нелинейной диффузии. Проведено численное исследование системы с миграцией при различных значениях параметров, проанализировано влияние интенсивности миграции на принимающее общество, найдены условия дестабилизации общества акцептора под влиянием миграции. Полученные в работе результаты могут быть применены при дальнейшем исследовании модели в случае пространственно неоднородных коэффициентов, что соответствует более реалистичной картине общества.
-
Сравнение оценок онлайн- и офлайн-подходов для седловой задачи в билинейной форме
Компьютерные исследования и моделирование, 2023, т. 15, № 2, с. 381-391Стохастическая оптимизация является актуальным направлением исследования в связи со значительными успехами в области машинного обучения и их применениями для решения повседневных задач. В данной работе рассматриваются два принципиально различных метода решения задачи стохастической оптимизации — онлайн- и офлайн-алгоритмы. Соответствующие алгоритмы имеют свои качественные преимущества перед друг другом. Так, для офлайн-алгоритмов требуется решать вспомогательную задачу с высокой точностью. Однако это можно делать распределенно, и это открывает принципиальные возможности, как, например, построение двойственной задачи. Несмотря на это, и онлайн-, и офлайн-алгоритмы преследуют общую цель — решение задачи стохастической оптимизации с заданной точностью. Это находит отражение в сравнении вычислительной сложности описанных алгоритмов, что демонстрируется в данной работе.
Сравнение описанных методов проводится для двух типов стохастических задач — выпуклой оптимизации и седел. Для задач стохастической выпуклой оптимизации существующие решения позволяют довольно подробно сравнить онлайн- и офлайн-алгоритмы. В частности, для сильно выпуклых задач вычислительная сложность алгоритмов одинаковая, причем условие сильной выпуклости может быть ослаблено до условия $\gamma$-роста целевой функции. С этой точки зрения седловые задачи являются гораздо менее изученными. Тем не менее существующие решения позволяют наметить основные направления исследования. Так, значительные продвижения сделаны для билинейных седловых задач с помощью онлайн-алгоритмов. Оффлайн-алгоритмы представлены всего одним исследованием. В данной работе на этом примере демонстрируется аналогичная с выпуклой оптимизацией схожесть обоих алгоритмов. Также был проработан вопрос точности решения вспомогательной задачи для седел. С другой стороны, седловая задача стохастической оптимизации обобщает выпуклую, то есть является ее логичным продолжением. Это проявляется в том, что существующие результаты из выпуклой оптимизации можно перенести на седла. В данной работе такой перенос осуществляется для результатов онлайн-алгоритма в выпуклом случае, когда целевая функция удовлетворяет условию $\gamma$-роста.
-
Актуальные проблемы компьютерного моделирования тромбоза, фибринолиза и тромболизиса
Компьютерные исследования и моделирование, 2024, т. 16, № 4, с. 975-995Система гемостаза представляет собой одну из ключевых защитных систем организма, которая присутствует практически во всех его жидких тканях, но наиболее важна в крови. Она активируется при различных повреждениях стенки сосуда, и взаимодействие ее специализированных клеток и гуморальных систем приводит сначала к формированию гемостатического сгустка, останавливающего потерю крови, а затем к постепенному растворению этого сгустка. Образование гемостатического тромба — уникальный с точки зрения физиологии процесс, так как за время порядка минуты система гемостаза образует сложные структуры, имеющие пространственный масштаб от микрометров (в случае повреждения микрососудов или стыков между отдельными эндотелиальными клетками) до сантиметра (в случае повреждения крупных магистральных артерий). Гемостатический ответ зависит от множества скоординированных и параллельно идущих процессов, включающих адгезию тромбоцитов, их активацию, агрегацию, секрецию различных гранул, изменение формы, состава внешней части липидного бислоя, контракцию тромба и образование фибриновой сети в результате работы каскада свертывания крови. Компьютерное моделирование представляет собой мощный инструмент для исследования этой сложной системы и решения практических задач в этой области на разных уровнях организации: от внутриклеточной сигнализации в тромбоцитах, моделирования гуморальных систем свертывания крови и фибринолиза и до разработки многомасштабных моделей тромбообразования. Проблемы, связанные с компьютерным моделированием биологических процессов, можно разделить на две основные категории: отсутствие адекватного физико-математического описания имеющихся в литературе экспериментальных данных из-за сложности биологических систем (проблема отсутствия адекватной теоретической модели биологических процессов) и проблема высокой вычислительной сложности некоторых моделей, которая не позволяет применять их для исследования физиологически интересных сценариев. Здесь мы рассмотрим как некоторые принципиальные проблемы в области моделирования свертывания крови, которые до сих пор остаются нерешенными, так и прогресс в экспериментальных исследованиях гемостаза и тромбоза, ведущий к пересмотру многих ранее принятых представлений, что необходимо отразить в новых компьютерных моделях этих процессов. Особое внимание будет уделено нюансам артериального, венозного и микрососудистого тромбоза, а также проблемам фибринолиза и тромболизиса. В обзоре также кратко обсуждаются основные типы используемых математических моделей, их сложность с точки зрения вычислений, а также принципиальные вопросы, связанные с возможностью описания процессов тромбообразования в артериях.
Ключевые слова: гемостаз, тромбоз, компьютерное моделирование, фибринолиз, тромболизис, тромбоциты, тромбин, каскадсв ертывания.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"