Оценка максимальных значений выхода биомассы, основанная на материально-энергетическом балансе метаболизма клеток

 pdf (361K)  / Аннотация

Список литературы:

  1. T. Bauchop, S. R. Elsden. The Growth of Micro-organisms in Relation to Their Energy Supply // Journal of General Microbiology. — 1960. — V. 23, no. 3. — P. 457–469.
  2. E. H. Battley. Growth Reaction Equations for Saccharomyces cerevisiae // Physiologia Plantarum. — 1960. — V. 13, no. 2. — P. 192–203. — DOI: 10.1111/j.1399-3054.1960.tb08023.x.
  3. G. H. Bell. Yield Factors and Their Significance // Process Biochemistry. — 1972. — V. 7, no. 4. — P. 21–24, 34. — ads: 1972ifts.book.....B.
  4. C. M. Brown, A. H. Rose. Effect of Temperature on Composition and Cell Volume of Candida utilis // Journal of Bacteriology. — 1969. — V. 97, no. 1. — P. 261–272.
  5. C. M. Brown, A. H. Rose. Fatty-Acid Composition of Candida utilis as Affected by Growth Temperature and Dissolved Oxygen Tension // Journal of Bacteriology. — 1969. — V. 99, no. 2. — P. 371–378.
  6. A. Einsele, A. Fiechter, H.-P. Knoppel. Respiratory Activity of Candida tropicals during Growth on Hexadecane and Glucose // Archiv für Mikrobiologie. — 1972. — V. 82, no. 3. — P. 247–253. — DOI: 10.1007/BF00412196.
  7. E. V. Emel’yanova, I. G. Minkevich, V. K. Eroshin. Growth Characteristics of the Yeast Candida valida VKM-Y-2327 on Glucose // Mikrobiologiya (Russian). — 1992. — V. 61, no. 3. — P. 422−430.
  8. J. J. Heijnen, J. A. Roels. A Macroscopic Model Describing Yield and Maintenance Relationships in Aerobic Fermentation Processes // Biotechnology and Bioengineering. — 1981. — V. 23, no. 4. — P. 739–763. — DOI: 10.1002/bit.260230407.
  9. J. J. Heijnen, J. P. van Dijken. In Search of a Thermodynamic Description of Biomass Yields for the Chemotrophic Growth of Microorganisms // Biotechnology and Bioengineering. — 1992. — V. 39, no. 8. — P. 833–858. — DOI: 10.1002/bit.260390806.
  10. E. Hernandez, M. J. Johnson. Energy Supply and Cell Yield in Aerobically Grown Microorganisms // Journal of Bacteriology. — 1967. — V. 94, no. 4. — P. 996–1001.
  11. R. Kleerebezem, M. C. M. van Loosdrecht. A Generalized Method for Thermodynamic State Analysis of Environmental Systems // Critical Reviews in Environmental Science and Technology. — 2010. — V. 40, no. 1. — P. 1–54. — DOI: 10.1080/10643380802000974.
  12. R. H. Mennett, T. O. M. Nakayama. Influence of Temperature on Substrate and Energy Conversion in Pseudomonas fluorescens // Applied Microbiology. — 1971. — V. 22, no. 5. — P. 272–276.
  13. A. Yu. Krynitskaya, I. G. Minkevich, V. K. Eroshin. Study of Physiological Characteristics of the Yeast Candida valida VKM Y-2327 Growth in Bistat // Applied Biochemistry and Microbiology. — 1987. — V. 23, no. 3. — P. 366–373. — in Russian.
  14. H. K. von Meyenburg. Energetics of the Budding Cycle of Saccharomyces cerevisiae during Glucose Limited Aerobic Growth // Archiv für Mikrobiologie. — 1969. — V. 66, no. 4. — P. 289–303. — DOI: 10.1007/BF00414585.
  15. I. G. Minkevich. Physico-Chemical Properties of Organic Compounds and the Energetics of Metabolism // Journal of Theoretical Biology. — 1982. — V. 95, no. 3. — P. 569–590. — DOI: 10.1016/0022-5193(82)90035-2.
  16. I. G. Minkevich. Estimation of Available Efficiency of Microbial Growth on Methanol and Ethanol // Biotechnology and Bioengineering. — 1985. — V. 27, no. 6. — P. 792–799. — DOI: 10.1002/bit.260270607.
  17. I. G. Minkevich. Mass-energy balance and kinetics of the growth of microorganisms. — Moscow–Izhevsk: Regular and Chaotic Dynamics, 2005. — 351 p. — in Russian.
  18. I. G. Minkevich. Stoichiometric Synthesis of Metabolic Pathways // Computer Research and Modeling. — 2015. — V. 7, no. 6. — P. 1241−1267. — DOI: 10.20537/2076-7633-2015-7-6-1241-1267.
  19. I. G. Minkevich. Mathematical Problems of Metabolic Pathway Organization from Biochemical Reactions // Mathematical Biology and Bioinformatics. — 2016. — V. 11, no. 2. — P. 406–425. — in Russian. — DOI: 10.17537/2016.11.406.
  20. I. G. Minkevich. The Effect of Cell Metabolism on Biomass Yield during the Growth on Various Substrates // Computer Research and Modeling. — 2017. — V. 9, no. 6. — P. 993−1014. — DOI: 10.20537/2076-7633-2017-9-6-993-1014.
  21. I. G. Minkevich, E. G. Dedyukhina, T. I. Chistyakova. The Effect of Lipid Content on the Elemental Composition and Energy Capacity of Yeast Biomass // Applied Microbiology and Biotechnology. — 2010. — V. 88, no. 3. — P. 799–806. — DOI: 10.1007/s00253-010-2766-1.
  22. I. G. Minkevich, V. K. Eroshin. Expenditure of Oxygen and Water during Growth of Microorganisms // Izvestiya AN SSSR, seriya biologicheskaya (Proceedings of the USSR Academy of Sciences, Biological Series, Russian). — 1972. — no. 2. — P. 245−254.
  23. I. G. Minkevich, V. K. Eroshin. Productivity and Heat Generation of Fermentation under Oxygen Limitation // Folia Microbiologica. — 1973. — V. 18, no. 5. — P. 376–385. — DOI: 10.1007/BF02875932.
  24. I. G. Minkevich, V. K. Eroshin. Regularities of Intracellular Mass-Energy Balance of the Growth of Microorganisms // Uspekhi Sovremennoi Biologii (Proceedings of Modern Biology, Russian). — 1976. — V. 82, no. 1 (4). — P. 103−116.
  25. I. G. Minkevich, P. V. Fursova, L. D. Tjorlova, A. A. Tsygankov, G. Yu. Riznichenko. The Stoichiometry and Energetics of Oxygenic Phototrophic Growth // Photosynthesis Research. — 2013. — V. 116, no. 1. — P. 55–78. — DOI: 10.1007/s11120-013-9896-0.
  26. J. G. Morris. Studies on the Metabolism of Arthrobacter globiformis // Journal of General Microbiology. — 1960. — V. 22, no. 2. — P. 564–582. — DOI: 10.1099/00221287-22-2-564.
  27. H. Ng. Effect of Decreasing Growth Temperature on Cell Yield of Escherichia coli // Journal of Bacteriology. — 1969. — V. 98, no. 1. — P. 232–237.
  28. O. M. Neijssel, D. W. Tempest. Bioenergetic Aspects of Aerobic Growth of Klebsiella aerogenes NCTC 418 in Carbon-Limited and Carbon-Sufficient Chemostat Culture // Archives of Microbiology. — 1976. — V. 107. — P. 215–221. — DOI: 10.1007/BF00446843.
  29. D. L. Nelson, M. M. Cox. Lehninger Principles of Biochemistry. — New York: W. H. Freemann and Co, 2008. — 1158 p.
  30. E. Oura. Reaction Leading to the Formation of Yeast Cell Material from Glucose and Ethanol / The Effect of Aeration on the Growth Energetics and Biochemical Composition of Baker’s Yeast. — Helsinki, 1972. — P. 232–237. — Appendix to the book.
  31. S. J. Pirt. The Maintenance Energy of Bacteria in Growing Cultures // Proceedings of the Royal Society. Series B. Biological Sciences. — 1965. — V. 163, no. 991. — P. 224–231. — DOI: 10.1098/rspb.1965.0069. — ads: 1965RSPSB.163..224P.
  32. D. W. Ribbons. Automatic Assessment of Respiration during Growth in Stirred Fermentors // Applied Microbiology. — 1969. — V. 18, no. 3. — P. 438–443.
  33. U. von Stockar, Th. Maskow, J. Liu, I. W. Marison, R. Patiño. Thermodynamics of Microbial Growth and Metabolism: an Analysis of the Current Situation // Journal of Biotechnology. — 2006. — V. 121, no. 4. — P. 517–533. — DOI: 10.1016/j.jbiotec.2005.08.012.
  34. U. von Stockar, V. Vojinović, Th. Maskow, J. Liu. Can Microbial Growth Yield Be Estimated Using Simple Thermodynamic Analogies To Technical Processes? // Chemical Engineering and Processing. — 2008. — V. 47, no. 6. — P. 980–990. — DOI: 10.1016/j.cep.2007.02.016.
  35. U. von Stockar. Biothermodynamics of Live Cells: a Tool for Biotechnology and Biochemical Engineering // Journal of Non-Equilibrium Thermodynamics. — 2010. — V. 35, no. 4. — P. 415–475. — ads: 2010JNET...35..415V.
  36. U. von Stockar, I. Marison, M. Janssen, R. Patinõ. Calorimetry and thermodynamic aspects of heterotrophic, mixotrophic, and phototrophic growth // Journal of Thermal Analysis and Calorimetry. — 2011. — V. 104, no. 1. — P. 45–52. — DOI: 10.1007/s10973-010-1278-7.
  37. A. H. Stouthamer. The Search for Correlation Between Theoretical and Experimental Growth Yields // International Review of Biochemistry. — 1979. — V. 21. — P. 1–47.
  38. A. H. Stouthamer. A Theoretical Study on the Amount of ATP Required for Synthesis of Microbial Cell Material // Antony van Leeuwenhoek Journal of Microbiology and Serology. — 1973. — V. 39, no. 3. — P. 545–565. — DOI: 10.1007/BF02578899.
  39. J. M. VanBriesen. Evaluation of Methods to Predict Bacterial Yield Using Thermodynamics // Biodegradation. — Kluwer Academic Publishers, 2002. — V. 13, no. 3. — P. 171–190. — DOI: 10.1023/A:1020887214879.
  40. J. M. VanBriesen, B. E. Rittmann. Mathematical Description of Microbiological Reactions Involving Intermediates // Biotechnology and Bioengineering. — 2000. — V. 67, no. 1. — P. 35–52. — DOI: 10.1002/(SICI)1097-0290(20000105)67:1<35::AID-BIT5>3.0.CO;2-G.
  41. J. Xiao, J. M. VanBriesen. Expanded Thermodynamic True Yield Prediction Model: Adjustments and Limitations // Biodegradation. — 2008. — V. 19, no. 1. — P. 99–127.

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал входит в Перечень российских рецензируемых научных журналов, в которых должны быть опубликованы основные научные результаты диссертаций на соискание ученых степеней доктора и кандидата наук ВАК, группы специальностей: 01.01.00, 01.02.00.
 

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал индексируется в Scopus