Анализ гемодинамики в идеализированном соединении брюшной аорты и почечной артерии средствами вычислительной гидродинамики: предварительное исследование для определения местонахождения атеросклеротической бляшки

 pdf (246K)  / Аннотация

Список литературы:

  1. M. Ameenuddin, M. Anand. Effect of angulation and Reynolds number on recirculation at the abdominal aorta-renal artery junction // Artery Research. — 2018. — V. 21. — P. 1–8. — DOI: 10.1016/j.artres.2017.11.007.
  2. K. E. Barrett, S. M. Barman, S. Boitano, H. Brooks. Ganong’s Review of Medical Physiology. — McGraw-Hill Medical, 2009. — 23/e.
  3. C. G. Caro, J. M. Fitz-Gerald, R. C. Schroter. Carotid bifurcation atherosclerosis. Atheroma and arterial wall shear-Observation, correlation and proposal of a shear dependent mass transfer mechanism for atherogenesis // In. Proc. R. Soc. Lond. B. The Royal Society. — 1971. — V. 177, no. 1046. — P. 109–133. — DOI: 10.1098/rspb.1971.0019. — ads: 1971RSPSB.177..109C.
  4. S. Chien, S. Usami, R. J. Dellenback, M. I. Gregersen, L. B. Nanninga, M. M. Guest. Blood viscosity: influence of erythrocyte aggregation // Science. — 1967. — V. 157, no. 3790. — P. 829–831. — DOI: 10.1126/science.157.3790.829. — ads: 1967Sci...157..829C.
  5. S. Chien, S. S. Feng, M. Vayo, L. A. Sung, S. Usami, R. Skalak. The dynamics of shear disaggregation of red blood cells in a flow channel // Biorheology. — 1990. — V. 27, no. 2. — P. 135–147. — DOI: 10.3233/BIR-1990-27202.
  6. Y. I. Cho, K. R. Kensey. Effects of the non-Newtonian viscosity of blood on flows in a diseased arterial vessel. Part 1: Steady flows // Biorheology. — 1991. — V. 28, no. 3-4. — P. 241–262. — DOI: 10.3233/BIR-1991-283-415.
  7. D. L. Fry. Certain histological and chemical responses of the vascular interface to acutely induced mechanical stress in the aorta of the dog // Circulation research. — 1969. — V. 24, no. 1. — P. 93–108. — DOI: 10.1161/01.RES.24.1.93.
  8. H. A. Himburg, D. M. Grzybowski, A. L. Hazel, J. A. LaMack, X. M. Li, M. H. Friedman. Spatial comparison between wall shear stress measures and porcine arterial endothelial permeability // American Journal of Physiology-Heart and Circulatory Physiology. — 2004. — V. 286, no. 5. — P. 1916–1922. — DOI: 10.1152/ajpheart.00897.2003.
  9. R. Holenstein, D. N. Ku. Reverse flow in the major infrarenal vessels — a capacitive phenomenon // Biorheology. — 1988. — V. 25, no. 6. — P. 835–842. — DOI: 10.3233/BIR-1988-25604.
  10. D. N. Ku, D. P. Giddens, C. K. Zarins, S. Glagov. Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low oscillating shear stress // Arteriosclerosis, thrombosis, and vascular biology. — 1985. — V. 5, no. 3. — P. 293–302.
  11. D. N. Ku, S. Glagov, Jr. J. E. Moore, C. K. Zarins. Flow patterns in the abdominal aorta under simulated postprandial and exercise conditions: an experimental study // Journal of Vascular Surgery. — 1989. — V. 9, no. 2. — P. 309–316. — DOI: 10.1016/0741-5214(89)90071-2.
  12. Z. Lou, W. J. Yang. A computer simulation of the non-Newtonian blood flow at the aortic bifurcation // Journal of biomechanics. — 1993. — V. 26, no. 1. — P. 37–49. — DOI: 10.1016/0021-9290(93)90611-H.
  13. A. M. Malek, S. L. Alper, S. Izumo. Hemodynamic shear stress and its role in atherosclerosis // Jama. — 1999. — V. 282, no. 21. — P. 2035–2042. — DOI: 10.1001/jama.282.21.2035.
  14. H. M. Matos, P. J. Oliveira. Steady and unsteady non-Newtonian inelastic flows in a planar T-junction // International Journal of Heat and Fluid Flow. — 2013. — V. 39. — P. 102–126. — DOI: 10.1016/j.ijheatfluidflow.2012.11.005.
  15. A. I. Miranda, P. J. Oliveira, F. T. D. Pinho. Steady and unsteady laminar flows of Newtonian and generalized Newtonian fluids in a planar T junction // International journal for numerical methods in fluids. — 2008. — V. 57, no. 3. — P. 295–328. — DOI: 10.1002/fld.1626. — MathSciNet: MR2410153. — ads: 2008IJNMF..57..295M.
  16. J. E. Moore, D. N. Ku, C. K. Zarins, S. Glagov. Pulsatile flow visualization in the abdominal aorta under differing physiologic conditions: implications for increased susceptibility to atherosclerosis // Journal of biomechanical engineering. — 1992. — V. 114, no. 3. — P. 391–397. — DOI: 10.1115/1.2891400.
  17. Jr. Moore, E. James, C. Xu, S. Glagov, C. K. Zarins, D. N. Ku. Fluid wall shear stress measurements in a model of the human abdominal aorta: oscillatory behavior and relationship to atherosclerosis // Atherosclerosis. — 1994. — V. 110, no. 2. — P. 225–240. — DOI: 10.1016/0021-9150(94)90207-0.
  18. N. Nandakumar, K. C. Sahu, M. Anand. Pulsatile flow of a shear-thinning model for blood through a two-dimensional stenosed channel // European Journal of Mechanics-B/Fluids. — 2015. — V. 49. — P. 29–35. — DOI: 10.1016/j.euromechflu.2014.07.005. — MathSciNet: MR3281919. — ads: 2015EJMF...49...29N.
  19. N. K. Nookala. Computational studies leading to a mechanical model for atherosclerotic plaque growth. — Hyderabad: Indian Institute of Technology, 2017. — PhD thesis.
  20. R. J. Poole, M. Alfateh, A. P. Gauntlett. Bifurcation in a T-channel junction: Effects of aspect ratio and shear-thinning // Chemical Engineering Science. — 2013. — V. 104, no. 4. — P. 839–848. — DOI: 10.1016/j.ces.2013.10.006.
  21. B. Saldarriaga, S. A. Pinto, L. E. Ballesteros. Morphological expression of the renal artery. A direct anatomical study in a Colombian half-caste population // Int. J. Morpho. — 2008. — V. 26, no. 1. — P. 31–38. — DOI: 10.4067/S0717-95022008000100005.
  22. I. Sazonov, A. W. Khir, W. S. Hacham, E. Boileau, J. M. Carson, R. van Loon, C. Ferguson, P. Nithiarasu. A novel method for non-invasively detecting the severity and location of aortic aneurysms // Biomechanics and modeling in mechanobiology. — 2017. — V. 16, no. 4. — P. 1225–42. — DOI: 10.1007/s10237-017-0884-8.
  23. S. S. Shibeshi, W. E. Collins. The rheology of blood flow in a branched arterial system // Applied rheology (Lappersdorf, Germany: Online). — 2005. — V. 15, no. 6. — P. 398.
  24. T. Yamamoto, Y. Ogasawara, A. Kimura, H. Tanaka, O. Hiramatsu, K. Tsujioka, M. J. Lever, K. H. Parker, C. J. Jones, C. G. Caro, F. Kajiya. Blood velocity profiles in the human renal artery by Doppler ultrasound and their relationship to atherosclerosis // Arteriosclerosis, thrombosis, and vascular biology. — 1996. — V. 16, no. 1. — P. 172–177. — DOI: 10.1161/01.ATV.16.1.172.
  25. K. K. Yeleswarapu, M. V. Kameneva, K. R. Rajagopal, J. F. Antaki. The flow of blood in tubes: theory and experiment // Mechanics Research Communications. — 1998. — V. 25, no. 3. — P. 257–262. — DOI: 10.1016/S0093-6413(98)00036-6.
  26. C. K. Zarins, D. P. Giddens, B. Bharadvaj, V. S. Sottiurai, R. F. Mabon, S. Glagov. Carotid bifurcation atherosclerosis. Quantitative correlation of plaque localization with flow velocity profiles and wall shear stress // Circulation research. — 1983. — V. 53, no. 4. — P. 502–514.

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал входит в Перечень российских рецензируемых научных журналов, в которых должны быть опубликованы основные научные результаты диссертаций на соискание ученых степеней доктора и кандидата наук ВАК, группы специальностей: 01.01.00, 01.02.00.
 

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал индексируется в Scopus