Исследование формирования структур Тьюринга под влиянием волновой неустойчивости

 pdf (14888K)  / Аннотация

Список литературы:

  1. Б. П. Белоусов. Периодически действующая реакция и ее механизм / Сборник рефератов по радиационной медицине за 1958 год. — М: Медгиз, 1959. — С. 145–147.
    • B. P. Belousov. Periodically operating reaction and its mechanism / Collection of essays on radiation medicine for 1958. — Moscow: Medgiz, 1959. — P. 145–147. — in Russian.
  2. М. Ю. Борина, А. А. Полежаев. Диффузионная неустойчивостьв трехкомпонентной модели типа «реакция – диффузия» // Компьютерные исследования и моделирование. — 2011. — Т. 3, № 2. — С. 135–146. — DOI: 10.20537/2076-7633-2011-3-2-135-146
    • M. Yu. Borina, A.A. Polezhaev. Diffusion instability in a three-component model of the reaction-diffusion type // Computer research and modeling. — 2011. — V. 3, no. 2. — P. 135–146. — in Russian. — DOI: 10.20537/2076-7633-2011-3-2-135-146
  3. М. Ю. Борина, А. А. Полежаев. Исследование механизмов формирования сегментированных волн в активных средах // Компьютерные исследования и моделирование. — 2013. — Т. 5, № 4. — С. 533–542. — DOI: 10.20537/2076-7633-2013-5-4-533-542
    • M. Yu. Borina, A. A. Polezhaev. Study of the formation mechanisms of segmented waves in active media // Computer research and modeling. — 2013. — V. 5, no. 4. — P. 533–542. — in Russian. — DOI: 10.20537/2076-7633-2013-5-4-533-542
  4. Е. Е. Гиричева. Моделирование состояния планктонного сообщества с учетом плотностнозависимой смертности и пространственной активности зоопланктона // Компьютерные исследования и моделирование. — 2016. — Т. 8, № 3. — С. 549–560. — DOI: 10.20537/2076-7633-2016-8-3-549-560
    • E. E. Giricheva. Modeling the state of plankton community with account of densitydependent mortality and spatial activity of zooplankton // Computer research and modeling. — 2016. — V. 8, no. 3. — P. 549–560. — in Russian. — DOI: 10.20537/2076-7633-2016-8-3-549-560
  5. М. Б. Кузнецов, А. А. Полежаев. Механизм образования осциллонов — уединенных колебательных структур // Компьютерные исследования и моделирование. — 2015. — Т. 7, № 6. — С. 1177–1184. — DOI: 10.20537/2076-7633-2015-7-6-1177-1184
    • M. B. Kuznetsov, A. A. Polezhaev. The mechanism of formation of oscillons — localized oscillatory structures // Computer research and modeling. — 2015. — V. 7, no. 6. — P. 1177–1184. — in Russian. — DOI: 10.20537/2076-7633-2015-7-6-1177-1184
  6. A. Nakamasu, G. Takahashi, S. Teperick, S. Kondo. Hexagon and stripe Turing structures in a gas discharge system // Physics Letters A. — 1996. — V. 211, no. 3. — P. 184–190. — DOI: 10.1016/0375-9601(95)00926-4.
  7. I. A. Berenstein. Superlattice Turing structures in a photosensitive reaction-diffusion system // Physical review letters. — 2003. — V. 91, no. 5. — 058302. — DOI: 10.1103/PhysRevLett.91.058302. — ads: 2003PhRvL..91e8302B.
  8. W. Mazin, K. Rasmussen, E. Mosekilde, P. Borckmans. Experimental evidence of a sustained standing Turing-type nonequilibrium chemical pattern // Physical Review Letters. — 1990. — V. 64, no. 24. — P. 2953–2956. — DOI: 10.1103/PhysRevLett.64.2953.
  9. M. A. Dolnik. Standing Waves in a Two-Dimensional Reaction- Diffusion Model with the Short-Wave Instability // The Journal of Physical Chemistry A. — 1999. — V. 103, no. 1. — P. 38–45. — DOI: 10.1021/jp982771j. — ads: 1999JPCA..103...38D.
  10. A. Koch, H. Meinhardt. Biological pattern formation: from basic mechanisms to complex structures // Reviews of modern physics. — 1994. — V. 66, no. 4. — P. 1481. — DOI: 10.1103/RevModPhys.66.1481. — MathSciNet: MR2691472. — ads: 1994RvMP...66.1481K.
  11. M. A. Kuznetsov. Pattern formation in a reaction-diffusion system of Fitzhugh-Nagumo type before the onset of subcritical Turing bifurcation // Physical Review E. — 2017. — V. 95, no. 5. — 052208. — DOI: 10.1103/PhysRevE.95.052208. — MathSciNet: MR3797860. — ads: 2017PhRvE..95e2208K.
  12. A. Mamaev, M. Saffman. Pattern formation in a linear photorefractive oscillator // Optics communications. — 1996. — V. 128, no. 4-6. — P. 281–286. — DOI: 10.1016/0030-4018(96)00158-7. — ads: 1996OptCo.128..281M.
  13. W. A. Mazin. Pattern formation in the bistable Gray – Scott model // Mathematics and Computers in Simulation. — 1996. — V. 40, no. 3-4. — P. 371–396. — DOI: 10.1016/0378-4754(95)00044-5.
  14. M. A. Meixner. Generic spatiotemporal dynamics near codimension-two Turing-Hopf bifurcations // Physical Review E. — 1997. — V. 55, no. 6. — P. 6690. — DOI: 10.1103/PhysRevE.55.6690. — MathSciNet: MR1453807. — ads: 1997PhRvE..55.6690M.
  15. Q. Ouyang, H. L. Swinney. Interactions between zebrafish pigment cells responsible for the generation of Turing patterns // Proceedings of the National Academy of Sciences. — 2009. — V. 106, no. 21. — P. 8429–8434. — DOI: 10.1073/pnas.0808622106.
  16. A. M. Nesterenko. Morphogene adsorption as a Turing instability regulator: Theoretical analysis and possible applications in multicellular embryonic systems // PloS one. — 2017. — V. 12, no. 2. — e0171212. — DOI: 10.1371/journal.pone.0171212.
  17. E. M. Nicola. Drifting pattern domains in a reaction-diffusion system with nonlocal coupling // Physical Review E. — 2002. — V. 65, no. 5. — 055101. — DOI: 10.1103/PhysRevE.65.055101. — ads: 2002PhRvE..65e5101N.
  18. V. Castets, E. Dulos, J. Boissonade, P. P. De Kepper. Transition from a uniform state to hexagonal and striped Turing patterns // Nature. — 1991. — V. 352, no. 6336. — P. 610.
  19. P. F. Pelz. Similar size of slums caused by a Turing instability of migration behavior // Physical Review E. — 2019. — V. 99, no. 2. — 022302. — DOI: 10.1103/PhysRevE.99.022302. — ads: 2019PhRvE..99b2302P.
  20. I. A. Prigogine. Symmetry breaking instabilities in dissipative systems. II // The Journal of Chemical Physics. — 1968. — V. 48, no. 4. — P. 1695–1700. — DOI: 10.1063/1.1668896. — ads: 1968JChPh..48.1695P.
  21. H. A. Shoji. Stripe // Journal of theoretical biology. — 2003. — V. 224, no. 3. — P. 339–350. — DOI: 10.1016/S0022-5193(03)00170-X. — MathSciNet: MR2067242.
  22. A. Mamaev, M. Saffman. Dissipation and displacement of hotspots in reaction-diffusion models of crime // Proceedings of the National Academy of Sciences. — 2010. — V. 107, no. 9. — P. 3961–3965. — DOI: 10.1073/pnas.0910921107.
  23. A. M. Turing. The chemical basis of morphogenesis // Bulletin of mathematical biology. — 1990. — V. 52, no. 1-2. — P. 153–197. — DOI: 10.1007/BF02459572.
  24. V. K. Vanag. Comparative analysis of packet and trigger waves originating from a finite wavelength instability // The Journal of Physical Chemistry A. — 2002. — V. 106, no. 46. — P. 11394–11399. — DOI: 10.1021/jp026081y. — ads: 2002JPCA..10611394V.
  25. V. K. Vanag. Diffusive instabilities in heterogeneous systems // The Journal of chemical physics. — 2003. — V. 119, no. 14. — P. 7297–7307. — DOI: 10.1063/1.1606677. — ads: 2003JChPh.119.7297V.
  26. V. K. Vanag. Subcritical wave instability in reaction-diffusion systems // The Journal of chemical physics. — 2004. — V. 121, no. 2. — P. 890–894. — DOI: 10.1063/1.1760742. — ads: 2004JChPh.121..890V.
  27. V. K. Vanag. Resonance-induced oscillons in a reaction-diffusion system // Physical Review E. — 2006. — V. 73, no. 1. — 016201. — DOI: 10.1103/PhysRevE.73.016201. — ads: 2006PhRvE..73a6201V.
  28. H. A. Willebrand. Experimental Observation of Simultaneously Existing Moving and Standing Patterns in a Gas-Discharge System // Contributions to Plasma Physics. — 1992. — V. 32, no. 2. — P. 57–68. — DOI: 10.1002/ctpp.2150320202. — ads: 1992CoPP...32...57W.
  29. L. A. Yang. Pattern formation arising from interactions between Turing and wave instabilities // The Journal of chemical physics. — 2002. — V. 117, no. 15. — P. 7259–7265. — DOI: 10.1063/1.1507110. — ads: 2002JChPh.117.7259Y.
  30. L. A. Yang. Oscillatory Turing patterns in reaction-diffusion systems with two coupled layers // Physical review letters. — 2003. — V. 90, no. 17. — 178303. — DOI: 10.1103/PhysRevLett.90.178303. — ads: 2003PhRvL..90q8303Y.
  31. L. A. Yang. Jumping solitary waves in an autonomous reaction-diffusion system with subcritical wave instability // Physical Chemistry Chemical Physics. — 2006. — V. 8, no. 40. — P. 4647–4651. — DOI: 10.1039/B609214D.
  32. A. M. Zhabotinsky. Pattern formation arising from wave instability in a simple reaction-diffusion system // The Journal of chemical physics. — 1995. — V. 103, no. 23. — P. 10306–10314.

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал входит в Перечень российских рецензируемых научных журналов, в которых должны быть опубликованы основные научные результаты диссертаций на соискание ученых степеней доктора и кандидата наук ВАК, группы специальностей: 01.01.00, 01.02.00.
 

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал индексируется в Scopus