Все выпуски

Исследование взаимосвязей размерных и продукционных характеристик фито- и зоопланктона в Вислинском и Куршском заливах Балтийского моря. Часть 1. Статистический анализ данных многолетних наблюдений и разработка структуры математической модели трофической цепи планктона

 pdf (1756K)  / Аннотация

Список литературы:

  1. С. В. Александров. Первичная продукция планктона в лагунных экосистемах Балтийского моря (Вислинский и Куршский заливы). — Калининград: ФГУП «АтлантНИРО», 2010. — 228 с.
    • S. V. Aleksandrov. Primary production of phytoplankton in the Curonian lagoon and Vistula lagoon of the Baltic Sea. — Kaliningrad: AtlantNIRO, 2010. — 228 p. — in Russian.
  2. А. Ф. Алимов, В. В. Богатов, С. М. Голубков. Продукционная гидробиология. — СПб: Наука, 2013. — 343 с.
    • A. F. Alimov, V. V. Bogatov, S. M. Golubkov. Production hydrobiology. — SPb: Nauka, 2013. — 343 p. — in Russian.
  3. Е. Н. Науменко. Зоопланктон прибрежной части Куршского залива. — Калининград: Атлант-НИРО, 2006. — 178 с.
    • E. N. Naumenko. Zooplankton of the littoral Curonian lagoon. — Kaliningrad: AtlantNIRO, 2006. — 178 p. — in Russian.
  4. Е. Н. Науменко. Структурно-функциональная организация зоопланктона Вислинского залива Балтийского моря. — Калининград: АтлантНИРО, 2010. — 198 с.
    • E. N. Naumenko. Structural-functional organization of zooplankton in the Vistula lagoon of the Baltic sea. — Kaliningrad: AtlantNIRO, 2010. — 198 p. — in Russian.
  5. К. А. Подгорный. Исследование свойств пространственно однородной математической модели четырехкомпонентной планктонной системы // Математическая биология и биоинформатика. 2012. — Т. 7, № 1. — С. 299–321.
    • K. A. Podgornyj. Investigation of the properties of spatially homogeneous mathematical model of the four-component plankton system // Mathem. Biol. and Bioinformatics. 2012. — V. 7, no. 1. — P. 299–321. — in Russian.
  6. К. А. Подгорный, А. В. Леонов. Обзор современных методов оценки значений коэффициентов, чувствительности и адекватности имитационных моделей водных экосистем // Водные ресурсы. 2015. — Т. 42, № 4. — С. 406–432.
    • Podgornyj K.. Review of the current methods used to assess the values of coefficients, sensitivity, and adequacy of simulation models of aquatic ecosystems // Water Resources. 2015. — V. 42, no. 4. — P. 406–432. — in Russian.
  7. M. Alcaraz. Marine zooplankton and the metabolic theory of ecology: is it a predictive tool? // J. Plankton Res. 2016. — V. 38. — P. 762–770. — DOI: 10.1093/plankt/fbw012.
  8. D. L. Aksnes, F. J. Cao. Inherent and apparent traits in microbial nutrient uptake // Mar. Ecol. Prog. Ser. 2011. — V. 440. — P. 41–51. — DOI: 10.3354/meps09355.
  9. D. L. Aksnes, J. K. Egge. A theoretical model for nutrient uptake in phytoplankton // Mar. Ecol. Prog. Ser. 1991. — V. 70. — P. 65–72. — DOI: 10.3354/meps070065.
  10. K. H. Andersen, D. L. Aksnes, T. Berge, Ø. Fiksen, A. Visser. Modelling emergent trophic strategies in plankton // J. Plankton Res. 2015. — V. 37. — P. 862–868. — DOI: 10.1093/plankt/fbv054.
  11. K. H. Andersen, T. Berge, R. J. Gonçalves, M. Hartvig, J. Heuschele, S. Hylander, N. S. Jacobsen, C. Lindemann, E. A. Martens, A. B. Neuheimer, K. Olsson, A. Palacz, F. Prowe, J. Sainmont, S. J. Traving, A. W. Visser, N. Wadhwa, T. Kiørboe. Characteristic sizes of life in the oceans, from bacteria to whales // Annu. Rev. Mar. Sci. 2016. — V. 8. — P. 1–25. — DOI: 10.1146/annurev-marine-122414-034144.
  12. R. A. Armstrong. Nutrient uptake rate as a function of cell size and surface transporter density: A Michaelis-like approximation to the model of Pasciak and Gavis // Deep-Sea Res. I. 2008. — V. 55. — P. 1311–1317. — DOI: 10.1016/j.dsr.2008.05.004.
  13. M. E. Baird, S. M. Emsley. Towards a mechanistic model of plankton population dynamics // J. Plankton Res. 1999. — V. 21. — P. 85–126. — DOI: 10.1093/plankt/21.1.85.
  14. M. E. Baird, P. R. Oke, I. M. Suthers, J. H. Middleton. A plankton population model with biomechanical descriptions of biological processes in an idealized 2D ocean basin / Journal of Marine Systems. 2004. — V. 50. — P. 199–222.
  15. N. S. Banas. Adding complex trophic interactions to a size-spectral plankton model: emergent diversity patterns and limits on predictability // Ecol. Modelling. 2011. — V. 222. — P. 2663–2675. — DOI: 10.1016/j.ecolmodel.2011.05.018.
  16. A. D. Barton, B. A. Ward, R. G. Williams, M. J. Follows. The impact of fine-scale turbulence on phytoplankton community structure // Limnol. Oceanogr.: Fluids and Environments. 2014. — V. 4. — P. 34–49. — DOI: 10.1215/21573689-2651533.
  17. B. Bec, Y. Collos, A. Vaquer, D. Mouillot, P. Souchu. Growth rate peaks at intermediate cell size in marine photosynthetic picoeukaryotes / Limnol. Oceanogr. 2008. — V. 53. — P. 863–867.
  18. P. Cermeño, E. Marañón, J. Rodríguez, E. Fernández. Size dependence of coastal phytoplankton photosynthesis under vertical mixing conditions / J. Plankton Res. 2005. — V. 27. — P. 473–483.
  19. S. Clayton, S. Dutkiewicz, O. Jahn, M. J. Follows. Dispersal, eddies, and the diversity of marine phytoplankton // Limnol. Oceanogr.: Fluids and Environments. 2013. — V. 3. — P. 182–197. — DOI: 10.1215/21573689-2373515.
  20. M. R. Droop. Some thoughts on nutrient limitation in algae // J. Phycol. 1973. — V. 9. — P. 264–272.
  21. R. C. Dugdale. Nutrient limitation in the sea: dynamics, identification, and significance // Limnol. Oceanogr. 1967. — V. 12. — P. 685–695. — DOI: 10.4319/lo.1967.12.4.0685.
  22. A. M. Edwards. Adding detritus to a nutrient–phytoplankton–zooplankton model: a dynamical-systems approach // J. Plankton Res. 2001. — V. 10. — P. 389–413. — DOI: 10.1093/plankt/23.4.389.
  23. K. F. Edwards, M. K. Thomas, C. A. Klausmeier, E. Litchman. Allometric scaling and taxonomic variation in nutrient utilization traits and maximum growth rate of phytoplankton // Limnol. Oceanogr. 2012. — V. 57. — P. 554–566. — DOI: 10.4319/lo.2012.57.2.0554.
  24. G. T. Evans. The encounter speed of moving predator and prey // J. Plankton Res. 1989. — V. 11. — P. 415–417. — DOI: 10.1093/plankt/11.2.415.
  25. Ø. Fiksen, M. J. Follows, D. L. Aksnes. Trait-based models of nutrient uptake in microbes extend the Michaelis-Menten framework // Limnol. Oceanogr. 2013. — V. 58. — P. 193–202. — DOI: 10.4319/lo.2013.58.1.0193.
  26. Z. V. Finkel. Light absorption and size scaling of light-limited metabolism in marine diatoms // Limnol. Oceanogr. 2001. — V. 46. — P. 86–94. — DOI: 10.4319/lo.2001.46.1.0086.
  27. Z. V. Finkel, M. J. Follows, A. J. Irwin. Size-scaling of macromolecules and chemical energy content in the eukaryotic microalgae // J. Plankton Res. 2016. — V. 38. — P. 1151–1162. — DOI: 10.1093/plankt/fbw057.
  28. Z. V. Finkel, A. J. Irwin. Modeling size-dependent photosynthesis: light absorption and the allometric rule // J. Theor. Biol. 2000. — V. 204. — P. 361–369. — DOI: 10.1006/jtbi.2000.2020.
  29. Z. V. Finkel, A. J. Irwin, O. Schofield. Resource limitation alters the 3/4 size scaling of metabolic rates in phytoplankton // Mar. Ecol. Prog. Ser. 2004. — V. 273. — P. 269–279. — DOI: 10.3354/meps273269.
  30. K. J. Flynn. Use, abuse, misconceptions and insights from quota models — the Droop cell quota models 40 years on // Oceanogr. Mar. Biol. Ann. 2008. — V. 48. — P. 1–23.
  31. P. J. S. Franks. Planktonic ecosystem models: perplexing parameterizations and a failure to fail // J. Plankton Res. 2009. — V. 31. — P. 1299–1306. — DOI: 10.1093/plankt/fbp069.
  32. W. Gentleman, A. Leising, B. Frost, S. Strom, J. Murray. Functional responses for zooplankton feeding on multiple resources: a review of assumptions and biological dynamics // Deep-Sea Res. II. 2003. — V. 50. — P. 2847–2875. — DOI: 10.1016/j.dsr2.2003.07.001.
  33. K. Y. H. Gin, J. Guo, H.-F. Cheong. A size-based ecosystem model for pelagic waters // Ecol. Modelling. 1998. — V. 112. — P. 53–72. — DOI: 10.1016/S0304-3800(98)00126-4.
  34. J. S. Guasto, R. Rusconi, R. Stocker. Fluid mechanics of planktonic microorganisms / Annu. Rev. Fluid Mech. 2012. — V. 44. — P. 373–400. — MathSciNet: MR2882602.
  35. Handbook of environmental data and ecological parameters. — New York: Pergamon Press Inc, 1979. — 1185 p. — Ed. S. E. Jørgensen.
  36. P. J. Hansen, P. K. Bjørnsen, B. W. Hansen. Zooplankton grazing and growth: Scaling within the 2– 2,000-μm body size range / Limnol. Oceanogr. 1997. — V. 42. — P. 687–704.
  37. M. Hein, M. F. Pedersen, K. Sand-Jensen. Size-dependent nitrogen uptake in micro- and macroalgae // Mar. Ecol. Prog. Ser. 1995. — V. 118. — P. 247–253. — DOI: 10.3354/meps118247.
  38. M. Huete-Ortega, P. Cermeño, A. Calvo-Díaz, E. Marañón. Isometric size-scaling of metabolic rate and the size abundance distribution of phytoplankton // Proc. R. Soc. B. 2012. — V. 279. — P. 1815–1823. — DOI: 10.1098/rspb.2011.2257.
  39. M. Kagami, J. Urabe. Phytoplankton growth rate as a function of cell size: an experimental test in lake Biwa // Limnology. 2001. — V. 2. — P. 111–117. — DOI: 10.1007/s102010170006.
  40. L. Karp-Boss, E. Boss, P. A. Jumars. Nutrient fluxes to planktonic osmotrophs in the presence of fluid motion // Oceanography and Marine Biology: an Annual Review. 1996. — V. 34. — P. 71–107.
  41. T. Kiørboe. Turbulence, phytoplankton cell size, and the structure of pelagic food webs // Adv. in Marine Biology. 1993. — V. 29. — P. 1–72. — DOI: 10.1016/S0065-2881(08)60129-7.
  42. T. Kiørboe, E. Saiz. Planktivorous feeding in calm and turbulent environments, with emphasis on copepods // Mar. Ecol. Prog. Ser. 1995. — V. 122. — P. 135–145. — DOI: 10.3354/meps122135.
  43. C. Lindemann, Ø. Fiksen, K. H. Andersen, D. L. Aksnes. Scaling laws in phytoplankton nutrient uptake affinity // Frontiers in Marine Science. 2016. — V. 3. — P. 1–6. — DOI: 10.3389/fmars.2016.00026.
  44. E. Litchman, C. A. Klausmeier, O. M. Schofield, P. G. Falkowski. The role of functional traits and trade-offs in structuring phytoplankton communities: scaling from cellular to ecosystem level // Ecology Letters. 2007. — V. 10. — P. 1170–1181. — DOI: 10.1111/j.1461-0248.2007.01117.x.
  45. B. R. MacKenzie, W. C. Leggett. Wind-based models for estimating the dissipation rates of turbulent energy in aquatic environments: empirical comparisons // Mar. Ecol. Prog. Ser. 1993. — V. 94. — P. 207–216. — DOI: 10.3354/meps094207.
  46. E. Marañón. Inter-specific scaling of phytoplankton production and cell size in the field // J. Plankton Res. 2008. — V. 30. — P. 157–163.
  47. E. Marañón, P. Cermeño, D. C. López-Sandoval, T. Rodríguez-Ramos, C. Sobrino, M. Huete-Ortega, J. M. Blanco, J. Rodríguez. Unimodal size scaling of phytoplankton growth and the size dependence of nutrient uptake and use // Ecology Letters. 2013. — V. 16. — P. 371–379. — DOI: 10.1111/ele.12052.
  48. A. M. Metcalfe, T. J. Pedley, T. F. Thingstad. Incorporating turbulence into a plankton foodweb model // Journal of Marine Systems. 2004. — V. 49. — P. 105–122. — DOI: 10.1016/j.jmarsys.2003.07.003.
  49. C. L. Moloney, J. G. Field. General allometric equations for rates of nutrient uptake, ingestion, and respiration in plankton organisms // Limnol. Oceanogr. 1989. — V. 34. — P. 1290–1299. — DOI: 10.4319/lo.1989.34.7.1290.
  50. C. L. Moloney, J. G. Field. The size-dependent dynamics of plankton food webs. I. A simulation model of carbon and nitrogen flows // J. Plankton Res. 1991. — V. 13. — P. 1003–1038. — DOI: 10.1093/plankt/13.5.1003.
  51. V. A. Nepomnyashchikh, K. A. Podgornyj. Emergence of adaptive searching rules from the dynamics of a simple nonlinear system // Adaptive Behavior. 2003. — V. 11. — P. 245–265. — DOI: 10.1177/1059712303114002.
  52. J. G. Okie. General models for the spectra of surface area scaling strategies of cells and organisms: fractality, geometric dissimilitude, and internalization // Am. Nat. 2013. — V. 181. — P. 421–439. — DOI: 10.1086/669150.
  53. M. A. Paredes, V. Montecino. Size diversity as an expression of phytoplankton community structure and the identification of its patterns on the scale of fjords and channels // Continental Shelf Res. 2011. — V. 31. — P. 272–281. — DOI: 10.1016/j.csr.2010.07.012.
  54. F. Peters, L. Arin, C. Marrasé, E. Berdalet, M. M. Sala. Effects of small-scale turbulence on the growth of two diatoms of different size in a phosphorus-limited medium // Journal of Marine Systems. 2006. — V. 61. — P. 134–148. — DOI: 10.1016/j.jmarsys.2005.11.012.
  55. F. J. Poulin, P. J. S. Franks. Size-structured planktonic ecosystems: constraints, controls and assembly instructions // J. Plankton Res. 2010. — V. 32. — P. 1121–1130. — DOI: 10.1093/plankt/fbp145.
  56. J. C. Prairie, K. R. Sutherland, K. J. Nickols, A. M. Kaltenberg. Biophysical interactions in the plankton: a cross-scale review // Limnol. Oceanogr.: Fluids and Environments. 2012. — V. 2. — P. 121–145. — DOI: 10.1215/21573689-1964713.
  57. J. A. Raven, J. E. Kübler. New light on the scaling of metabolic rate with the size of algae // J. Phycol. 2002. — V. 38. — P. 11–16. — DOI: 10.1046/j.1529-8817.2002.01125.x.
  58. B. J. Rothschild, T. R. Osborn. Small-scale turbulence and plankton contract rates // J. Plankton Res. 1988. — V. 10. — P. 465–474. — DOI: 10.1093/plankt/10.3.465.
  59. Y. Shimoda, Y. R. Rao, S. Watson, G. B. Arhonditsis. Optimizing the complexity of phytoplankton functional group modeling: an allometric approach // Ecological Informatics. 2016. — V. 31. — P. 1–17. — DOI: 10.1016/j.ecoinf.2015.11.001.
  60. Transboundary waters and basins in the South-East Baltic. — Kaliningrad: Terra Baltica, 2008. — 306 p. — Ed. by B. Chubarenko.
  61. S. Våge, M. Castellani, J. Giske, T. F. Thingstad. Successful strategies in size structured mixotrophic food webs // Aquat. Ecol. 2013. — V. 47. — P. 329–347. — DOI: 10.1007/s10452-013-9447-y.
  62. A. Verdy, M. Follows, G. Flierl. Optimal phytoplankton cell size in an allometric model // Mar. Ecol. Prog. Ser. 2009. — V. 379. — P. 1–12. — DOI: 10.3354/meps07909.
  63. A. W. Visser, Ø. Fiksen. Optimal foraging in marine ecosystem models: selectivity, profitability and switching // Mar. Ecol. Prog. Ser. 2013. — V. 473. — P. 91–101. — DOI: 10.3354/meps10079.
  64. B. A. Ward, S. Dutkiewicz, A. D. Barton, M. J. Follows. Biophysical aspects of resource acquisition and competition in algal mixotrophs // Am. Nat. 2011. — V. 178. — P. 98–112. — DOI: 10.1086/660284.
  65. Z. Witek, M. Zalewski, M. Wielgat-Rychert. Nutrient stocks and fluxes in the Vistula lagoon at the end of the twentieth century. — Slupsk–Gdynia, 2010. — 186 p.

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.