Фазовый переход от α-спиралей к β-листам в суперспиралях фибриллярных белков

 pdf (3492K)  / Аннотация

Список литературы:

  1. А. А. Жмуров, В. А. Барсегов, С. В. Трифонов и др. Моделирование микромеханики биомолекул на графических процессорах с использованием динамики Ланжевена // Мат. Модел. — 2011. — Т. 23, № 10. — С. 133–156.
  2. A. Ahsan, J. Rudnick, R. Bruinsma. Elasticity theory of the B-DNA to S-DNA transition // Biophys. J. — 1998. — V. 74. — P. 132–137. — DOI: 10.1016/S0006-3495(98)77774-4.
  3. K. Bailey, W. T. Astbury, K. M. Rudall. Fibrinogen and fibrin as members of the keratin-myosin group // Nature. — 1943. — V. 151, no. 3843. — P. 716–717. — DOI: 10.1038/151716a0. — ads: 1943Natur.151..716B.
  4. V. Barsegov, D. Thirumalai. Dynamics of unbinding of cell adhesion molecules: Transition from catch to slip bonds // Proc. Natl. Acad. Sci. USA. — 2005. — V. 102, no. 6. — P. 1835–1839. — DOI: 10.1073/pnas.0406938102. — ads: 2005PNAS..102.1835B.
  5. G. L. Bell. Models for the specific adhesion of cells to cells // Science. — 1978. — V. 200, no. 4342. — P. 618–627. — DOI: 10.1126/science.347575. — ads: 1978Sci...200..618B.
  6. A. E. X. Brown, R. I. Litvinov, D. E. Discher, et al. Multiscale Mechanics of Fibrin Polymer: Gel Stretching with Protein Unfolding and Loss of Water // Science. — 2009. — V. 325, no. 5941. — P. 741–744. — DOI: 10.1126/science.1172484. — ads: 2009Sci...325..741B.
  7. M. J. Buehler, Y. C. Yung. Deformation and failure of protein materials in physiologically extreme conditions and disease // Nat. Mater. — 2009. — V. 8, no. 3. — P. 175–188. — DOI: 10.1038/nmat2387. — ads: 2009NatMa...8..175B.
  8. C. Bustamante, J. F. Marko, E. D. Siggia, S. Smith. Entropic elasticity of lambda-phage DNA // Science. — 1994. — V. 265, no. 5178. — P. 1599–1600. — DOI: 10.1126/science.8079175. — ads: 1994Sci...265.1599B.
  9. J. S. Church, G. L. Corino, A. L. Woodhead. The effects of stretching on wool fibres as monitored by FT-Raman spectroscopy // J. Mol. Struct. — 1998. — V. 440, no. 1-3. — P. 15–23. — DOI: 10.1016/S0022-2860(97)00227-5. — ads: 1998JMoSt.440...15C.
  10. C. Cohen, D. A. D. Parry. α-Helical coiled coils and bundles: How to design an α-helical protein // Proteins. — 1990. — V. 7, no. 1. — P. 1–15. — DOI: 10.1002/prot.340070102.
  11. I. Daidone, F. Simona, D. Roccatano, et al. β-Hairpin conformation of fibrillogenic peptides: Structure and α-β transition mechanism revealed by molecular dynamics simulations // Proteins. — 2004. — V. 57, no. 1. — P. 198–204. — DOI: 10.1002/prot.20178.
  12. B. N. Dominy, C. L. Brooks III. Development of a Generalized Born Model Parametrization for Proteins and Nucleic Acids // J. Phys. Chem. B. — 1999. — V. 103, no. 18. — P. 3765–3773. — DOI: 10.1021/jp984440c.
  13. M. R. Falvo, O. V. Gorkun, S. T. Lord. The molecular origins of the mechanical properties of fibrin // Biophys. Chem. — 2010. — V. 152, no. 1-3. — P. 15–20. — DOI: 10.1016/j.bpc.2010.08.009.
  14. P. Ferrara, J. Apostolakis, A. Caflisch. Evaluation of a fast implicit solvent model for molecular dynamics simulations // Proteins. — 2002. — V. 46, no. 1. — P. 24–33. — DOI: 10.1002/prot.10001.
  15. F. Fraternali, W. F. van Gunsteren. An Efficient Mean Solvation Force Model for Use in Molecular Dynamics Simulations of Proteins in Aqueous Solution // J. Mol. Biol. — 1996. — V. 256, no. 5. — P. 939–948. — DOI: 10.1006/jmbi.1996.0139.
  16. D. Frishman, P. Argos. Knowledge-based protein secondary structure assignment // Proteins. — 1995. — V. 23, no. 4. — P. 566–579. — DOI: 10.1002/prot.340230412.
  17. D. S. Fudge, K. H. Gardner, V. T. Forsyth, et al. The Mechanical Properties of Hydrated Intermediate Filaments: Insights from Hagfish Slime Threads // Biophys. J. — 2003. — V. 85, no. 3. — P. 2015–2027. — DOI: 10.1016/S0006-3495(03)74629-3.
  18. J. Gao, J. Kelly. Toward quantification of protein backbone–backbone hydrogen bonding energies: An energetic analysis of an amide-to-ester mutation in an α-helix within a protein // Protein Sci. — 2009. — V. 17, no. 6. — P. 1096–1101. — DOI: 10.1110/ps.083439708.
  19. M. Guthold, W. Liu, E. A. Sparks, et al. A Comparison of the Mechanical and Structural Properties of Fibrin Fibers with Other Protein Fibers // Cell Biochem. Biophys. — 2007. — V. 49, no. 3. — P. 165–181. — DOI: 10.1007/s12013-007-9001-4.
  20. W. Humphrey, A. Dalke, K. Schulten. VMD: Visual molecular dynamics // J. Molec. Graphics. — 1996. — V. 14, no. 1. — P. 33–38. — DOI: 10.1016/0263-7855(96)00018-5.
  21. B. Isralewitz, M. Gao, K. Schulten. Steered molecular dynamics and mechanical functions of proteins // Current opinion in structural biology. — 2001. — V. 11, no. 2. — P. 224–30. — DOI: 10.1016/S0959-440X(00)00194-9.
  22. J. M. Kollman, L. Pandi, M. R. Sawaya, et al. Crystal Structure of Human Fibrinogen // Biochemistry. — 2009. — V. 48, no. 18. — P. 3877–3886. — DOI: 10.1021/bi802205g.
  23. L. Kreplak, J. Doucet, P. Dumas, F. Briki. New Aspects of the α-Helix to β-Sheet Transition in Stretched Hard α-Keratin Fibers // Biophys. J. — 2004. — V. 87, no. 1. — P. 640–647. — DOI: 10.1529/biophysj.103.036749.
  24. L. Kreplak, H. Herrmann, U. Aebi. Tensile Properties of Single Desmin Intermediate Filaments // Biophys. J. — 2008. — V. 94, no. 7. — P. 2790–2799. — DOI: 10.1529/biophysj.107.119826.
  25. B. B. C. Lim, E. H. Lee, M. Sotomayor, K. Schulten. Molecular Basis of Fibrin Clot Elasticity // Structure. — 2008. — V. 16, no. 3. — P. 449–4596. — DOI: 10.1016/j.str.2007.12.019.
  26. R. I. Litvinov, D. A. Faizullin, Y. F. Zuev, J. W. Weisel. The α-helix to β-sheet transition in stretched and compressed hydrated fibrin clots // Biophysical journal. — 2012. — V. 103, no. 5. — P. 1020–7. — DOI: 10.1016/j.bpj.2012.07.046. — ads: 2012BpJ...103.1020L.
  27. W. Liu, C. R. Carlisle, E. A. Sparks, M. Guthold. The mechanical properties of single fibrin fibers // J. Thromb. Haemost. — 2010. — V. 8, no. 5. — P. 1030–1036.
  28. A. D. MacKerell Jr, D. Bashford, M. Bellott, et al. All-Atom Empirical Potential for Molecular Modeling and Dynamics Studies of Proteins // J. Phys. Chem. B. — 1998. — V. 102, no. 18. — P. 3586–3616. — DOI: 10.1021/jp973084f.
  29. A. D. MacKerell. Empirical force fields for biological macromolecules: Overview and issues // J. Comput. Chem. — 2004. — V. 25, no. 13. — P. 1584–1604. — DOI: 10.1002/jcc.20082.
  30. P. E. Marszalek, H. Lu, H. Li, et al. Mechanical unfolding intermediates in titin modules // Nature. — 1999. — V. 402, no. 6757. — P. 100–3. — DOI: 10.1038/47083. — ads: 1999Natur.402..100M.
  31. L. Medved, J. W. Weisel. Recommendations for nomenclature on fibrinogen and fibrin // J. Thromb. Haemost. — 2009. — V. 7, no. 2. — P. 355–359. — DOI: 10.1111/j.1538-7836.2008.03242.x.
  32. V. Militello, C. Casarino, A. Emanuele, et al. Aggregation kinetics of bovine serum albumin studied by FTIR spectroscopy and light scattering // Biophys. Chem. — 2004. — V. 107, no. 2. — P. 175–187. — DOI: 10.1016/j.bpc.2003.09.004.
  33. B. Pettitt, M. Karplus. Conformational free energy of hydration for the alanine dipeptide: thermodynamic analysis // J. Phys. Chem. — 1988. — V. 92, no. 13. — P. 3994–3997. — DOI: 10.1021/j100324a061.
  34. P. K. Purohit, R. I. Litvinov, A. E. Brown, et al. Protein unfolding accounts for the unusual mechanical behavior of fibrin networks // Acta Biomaterialia. — 2011. — V. 7, no. 6. — P. 2374–2383. — DOI: 10.1016/j.actbio.2011.02.026.
  35. Z. Qin, M. J. Buehler. Molecular Dynamics Simulation of the α-Helix to β-Sheet Transition in Coiled Protein Filaments: Evidence for a Critical Filament Length Scale // Phys. Rev. Lett. — 2010. — V. 104, no. 19. — P. 198304. — DOI: 10.1103/PhysRevLett.104.198304. — ads: 2010PhRvL.104s8304Q.
  36. Z. Qin, L. Kreplak, M. J. Buehler. Hierarchical Structure Controls Nanomechanical Properties of Vimentin Intermediate Filaments // PLoS ONE. — 2009. — V. 10, no. 4. — P. e7294. — ads: 2009PLoSO...4.7294Q.
  37. M. Rief, J. M. Fernandez, H. E. Gaub. Elastically Coupled Two-Level Systems as a Model for Biopolymer Extensibility // Phys. Rev. Lett. — 1998. — V. 81, no. 21. — P. 4764–4767. — DOI: 10.1103/PhysRevLett.81.4764. — ads: 1998PhRvL..81.4764R.
  38. I. Schwaiger, C. Sattler, D. R. Hostetter, M. Rief. The myosin coiled-coil is a truly elastic protein structure // Nat. Mater. — 2002. — V. 1, no. 4. — P. 232–235. — DOI: 10.1038/nmat776. — ads: 2002NatMa...1..232S.
  39. A. Sethuraman, G. Belfort. Protein Structural Perturbation and Aggregation on Homogeneous Surfaces // Biophys. J. — 2005. — V. 88, no. 2. — P. 1322–1333. — DOI: 10.1529/biophysj.104.051797.
  40. A. Sethuraman, G. Vedantham, T. Imoto, et al. Protein unfolding at interfaces: Slow dynamics of α-helix to β-sheet transition // Proteins. — 2004. — V. 56, no. 4. — P. 669–678. — DOI: 10.1002/prot.20183.
  41. W. C. Still, A. Tempczyk, R. C. Hawley, T. Hendrickson. Semianalytical treatment of solvation for molecular mechanics and dynamics // JACS. — 1990. — V. 112, no. 16. — P. 6127–6129. — DOI: 10.1021/ja00172a038.
  42. Y. Takahashi, A. Ueno, H. Mihara. Mutational analysis of designed peptides that undergo structural transition from α helix to β sheet and amyloid fibril formation // Structure. — 2000. — V. 8, no. 9. — P. 915–925. — DOI: 10.1016/S0969-2126(00)00183-0.
  43. J. W. Weisel. The mechanical properties of fibrin for basic scientists and clinicians // Biophys. Chem. — 2004. — V. 112, no. 2-3. — P. 267–276. — DOI: 10.1016/j.bpc.2004.07.029. — ads: 2004hame.book.....W.
  44. J. W. Weisel. Fibrinogen and Fibrin / Fibrous Proteins: Coiled-Coils, Collagen and Elastomers. — Academic Press, 2005. — Parry D. A. D., Squire J. M. (ed.).
  45. J. W. Weisel. Fibrinogen and Fibrin // Advances in Protein Chemistry. — 2005. — V. 70. — P. 247–299. — DOI: 10.1016/S0065-3233(05)70008-5. — ads: 1994LNP...432..247W.
  46. A. Zhmurov, A. E. X. Brown, R. I. Litvinov, et al. Mechanism of fibrin(ogen) forced unfolding // Structure. — 2011. — V. 19, no. 11. — P. 1615–1624. — DOI: 10.1016/j.str.2011.08.013.
  47. A. Zhmurov, R. I. Dima, Y. Kholodov, V. Barsegov. SOP-GPU: Accelerating biomolecular simulations in the centisecond timescale using graphics processors // Proteins. — 2010. — V. 78, no. 14. — P. 2984–2999. — DOI: 10.1002/prot.22824.
  48. A. Zhmurov, K. Rybnikov, Y. Kholodov, V. Barsegov. Generation of Random Numbers on Graphics Processors: Forced Indentation In Silico of the Bacteriophage HK97 // J. Phys. Chem. B. — 2011. — V. 115, no. 18. — P. 5278–5288. — DOI: 10.1021/jp109079t.

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал входит в Перечень российских рецензируемых научных журналов, в которых должны быть опубликованы основные научные результаты диссертаций на соискание ученых степеней доктора и кандидата наук ВАК, группы специальностей: 01.01.00, 01.02.00.
 

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал индексируется в Scopus